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SCHATTEN CLASS OPERATORS ON THE BERGMAN SPACE OVER
BOUNDED SYMMETRIC DOMAIN

NAMITA DAS AND MADHUSMITA SAHOO

ABSTRACT. Let © be a bounded symmetric domain in C"™ with Bergman kernel
K(z,w). Let dVi(z) = K(z,2) dV(z)7 where C)y = / K(z,2)2dV(2), A € R, dV (z)
Q

Cx
is the volume measure of Q normalized so that K(z,0) = K(0,w) = 1. In this paper
we have shown that if the Toeplitz operator T}, defined on L2 (S, %) belongs to the

Schatten p-class, 1 < p < oo, then ¢ € LP(Q,dn), where dn(z) = K(z,z)%&z) and

25 is the Berezin transform of ¢. Further if ¢ € LP(€,dn)), then (;; € LP(Q,dny)
d‘é«E\Z)
the Berezin transform of ¢ in L2(§,dVy) and T(;‘ is the Toeplitz operator defined
on LZ(Q, dVy). We also find conditions on bounded linear operator C' defined from
L2(Q,dVy) into itself such that C belongs to the Schatten p-class by comparing it
with positive Toeplitz operators defined on LE(Q, dVy). Applications of these results
are obtained and we also present Schatten class characterization of little Hankel
operators defined on L2(Q,dVy).

and Tqi‘ belongs to Schatten p-class. Here dny = K(z,z) , the function ¢, is

1. INTRODUCTION

Let ©Q be a bounded symmetric domain in C" with Bergman kernel K(z,w). We
assume that 2 is in its standard (Harish-Chandra) representation. Let dV be the volume
measure of © normalized so that K(z,0) = K(0,w) = 1 for all z and w in Q. By [13]
and using the polar co-ordinates representation, there exists a positive number e such
that

Cy = / K(z,2)2dV(z) < +o00
Q
if and only if A < eq. Let
dVi(2) = Cy 'K (2,2) dV (2).

Then dV), is a probability measure on 2 for all A < eq. We fix a A < € throughout the
paper and consider the weighted Bergman space LE(Q,dVy),1 < p < +00, consisting of
holomorphic functions in LP(2,dV)). For p = 2, we have an orthogonal projection Py
from the Hilbert space L?(£2, dV) onto the closed subspace L2(€2,dVy). The orthogonal
projection Pj is given by

Pyf(z) = /Q K (2, w) f () dVa (),

where Ky (z,w) = K(z,w)!~ is the reproducing kernel of L2(Q,dVy). Let Ky(z,w) =
KM w).

Suppose ¢ is a function in L>°(2). Then the Toeplitz operator with symbol ¢ is
defined by Tq;\(f) = Py\(of), f € L2(9,dVy) and the Hankel operator H$ with symbol ¢
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194 NAMITA DAS AND MADHUSMITA SAHOO

is defined by H>‘(f) = (I—-Py\)(¢f), f € L2(Q,dVy). Let Py be the orthogonal projection
from L?(Q,dVy) onto L2(Q,dVy) = {f: f € LZ(Q,dV))}. Then

P)\f /K,\zw dV,\ /K)\’LU z dV)\( )

Thus formula also extends Py to L'(Q2,dVy). Given ¢ € L® (1), define the little Hankel
operator hjy with domain L2 (2, dVy) as h)(f) = Px(¢f).

For any a € Q, let k,(2) = \/% The k,’s are called normalized reproducing
kernels of L2(€2,dV). They are unit vectors in L2(Q,dV). It is easy to see that k1= is
a unit vector of L2(€,dV)) for any a € Q. Let L(L2(2,dVy)) be the set of all bounded

linear operators from L2 (), dVy) into itself. For A € L(L2(2,dV,)) we define the Berezin
transform Z/\ of A as

AN(z) = (AR BN, zeq,
where (,), is the inner product in L2(Q,dVy). Since k!=* converges to 0 weakly in
L2(,dVy) as z approaches 99 (the topological boundary of €2), it follows that A, is
bounded on Q if A € L(L2(,dVy)), and A)\( ) — 0as z — 00 if A is compact. For
¢ € L®(Q), let pr(z) = <T£‘k;”‘,ki >‘>A = TA( ), z € Q. Hence ¢, is the Berezin

transform of the Toeplitz operator Td;\' We also define for ¢ € L>°(), the operator S$ :
Lg(Q,dV,\) — Li(Q, dV)\) as S(;‘(f) = P,\J)\((ﬁf), where J) : LQ(Q, dV)\) — LQ(Q, dV)\)
is defined by Jxf(z) = f(z). The operators S},h} are unitarily equivalent. In fact,
J )\S;; = hg Hence we shall refer both these operators S;‘, hg as little Hankel operators
on L2(Q,dVy). Let d(z) = K(z,2) 22,

Let L£(H) be the set of all bounded linear operators from the Hilbert H into itself
and LC(H) be the set of all compact operators in L£(H). For any non-negative integer
k, T € L(H), let sg(T) =inf {||T — R|| : R € L(H),rankR < k}. The numbers so(T) >
s1(T) > so(T) > -+- > 0 are called s-numbers or singular values of T. It is well-
known that if 7" € LC(H), then there exist orthonormal vectors {ux} and {o}} in H
with T = Y72 sk (ug) oy for Te = Y72 | sg (x,ux) ok. For any 1 < p < 400, the
Schatten ideal S,(H) = S, is defined to be the set of all compact operators T on H

such that Z(sk(T))p < +o00. The linear space S, is a Banach space with the norm
k=1
o0 1/p . . .
1T, = HT||SP = [Zkzl(sk(T))p} . The space S, is also a two-sided ideal of the
algebra £(H) and for any T' € S, and S, R € L(H), we have
ISTRlls, < [ISIIT1s, II£l-

The space S is also called the trace class and S5 is called the Hilbert-Schmidt class. If
T € S1 and {uy} is an orthonormal basis for H, then tr(T) = > | (Tug, uy) is conver-
gent and independent of {uy}. If T € 51 and T' > 0, then ||T|g, = tr(T'). In general, we

have [T, = [te((T*T)7/2)] "
example. Suppose p > 1 and SIQ\ is the Schatten p-ideal of the Hilbert space L2(Q,dVy).

For convenience of notation, we will use S2 to denote the full algebra of bounded linear
operators on the Bergman space L2(§,dVy). That is, S = L(L2(2,dV3)). The orga-
nization of this paper is as follows. In Section 2, we discuss Schatter/lv p-class Toeplitz
operators. We show that if 1 < p < oo and ¢ € LP(Q,dny) then ¢y € LP(Q,dny).
Further if 0 < p < oo, Tdi‘ € S} then ¢\ € LP(Q,dny) where dny(z) = K(z,z)%(;). In
Section 3, we find conditions on C' € L(L2(£2,dVy)) to have membership in the Schatten
class with the help of the Schatten class characterization of Toeplitz operators. In Sec-
tion 4, we concentrate on the Hilbert space L2 (£, %) and prove that if Ty, € S, then

. For more information on the Schatten ideals, see [22] for
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¢ e LP(2,dn), 1 < p < co where dn(z) = K(z, z)d‘éff) and we deduce many important
corollaries. Section 5 is devoted to the Schatten class characterization of little Hankel
operators.

2. SCHATTEN CLASS TOEPLITZ OPERATORS

In this section we seek to find necessary and sufficient conditions on ¢ which will
ensure that the Toeplitz operator belong to Sz);' We will concentrate on the special case
¢ > 0.

Proposition 2.1. Suppose A is a positive operator in L(L?(Q,dVy)) or A is an operator
in the trace class of L?(2,dVy). Then

tr(A)=/<Aki_’\,ki My dm(z /A/\ ) dna(z

where Ay is the Berezin symbol of A and dny(z) = K(z, 2) Cg ),

Proof. Let {eﬁ}oo_ be an orthonormal basis for LZ(£,dV)). Hence

o0

tr(4) = 3 (4, ed) Z/ (A)(2)eX (=) AV (2)

n=1

*Z/ en: K37 )\>,\ z)dVi(z
/< (Ze @), K1) diA(2) /(AKl MK da(z)

_ _ dVv (z)
_ 1—X 1—-X
_ /Q (AR K, K (2,2)

AN(z) dia(2).
Q

Corollary 2.2. If ¢ is a non-negative function on € then
(1) = [ otw)dm(w).

Proof. By Proposition 2.1 and Fubini’s theorem [19], we have

o e
/ K(:
/ dV (z) ’KI’A(z w)’2
Q o K'7(z,2)
/¢ )dV (w /\Kl A( (z,z)C%K’\(w,w)dV(z)

- / () K, 0) 0

/ b(w) K™ (w, w)Kl A(w )<
- /Q H(w)K (1w, w / o(w) diga (w

The above results are very useful in the study of Schatten class operators on the
Bergman space LZ(2,dV)), especially when combined with the inequalities given in (2.2)
and (2.3).

1A )| g(w) Vi (w)

dV (w)

O
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Lemma 2.3. If p>1 and ¢ € LP(Q,dn)), then T(;‘ is in the Schatten class S;‘.

Proof. By interpolation, we only need to prove the result for the case p = 1. The case

p = +o0o0 is trivial. Suppose ¢ € L'(Q,dn,) and {ehn}::zo is an orthonormal basis in

L2(Q,dVy). For any m > 1, <Tq;\em, m> = Jo ‘e ){2 ¢(z) dV\(z). It follows that

Z\ e O \</Z|e )| dVa(2)

< / Kl-*<z,z> 6()] o K 2) AV ()

= [ 106 g GV = [ 166 an:

By [22], the operator T} € S7* and HTgHsl* < o 16(2) dna(2). O
Let h > 1. The generalized Kantorvich constant K (p) is defined by
h? — h p—1hP —1\"
2.1 K(p) =
2 === (5 #=1)

for any real number p and it is known that K (p) € (0, 1] for p € [0, 1]. We state below the
known results on the generalized Kantorvich constant K (p). Let A be a strictly positive
operator satisfying MI > A > ml > 0, where M >m > 0. Put h = % > 1. Then the
following [10] inequalities (2.2) and (2.3) hold for every unit vector z and are equivalent:

(2.2) K(p) (Az,z)? > (APz,x) > (Az,z)’ for anyp>1 or anyp<O0;

(2.3) (Az,z)? > (APz,z) > K(p) (Az,z)’ for any p € (0,1].

The Kantorvich constant K(p) is symmetric with respect to p = % and K(p) is an
%7 %7 and
K(0) = K(1) = 1. Further, K(p) > 1forp>1orp<0,and 1> K(p) > (héhi) for
p € [0,1].

increasing function of p for p > 5, K(p) is a decreasing function of p for p <

Corollary 2.4. Suppose ¢ is a non-negative function on Q,1 < p < 400 and T(;‘ € S;,\.
Then ¢y € LP(Q, dny).
Proof. The case p = o is not difficult to verify. So suppose 1 < p < co and T(;‘ € S;‘.
Then ()P € S} since T} is positive. By Proposition 2.1,

tr((7))P) :A((TQ)%;—*,/{;—X}A dna(z) < 4o00.

By (2.2),
/Q[?,ﬁ}(z)rdm(z)z/ﬂ< T, KLY digy (2)

< /Q <(T$)pki7)‘,k;;7>‘>)\ dnx(z) < 4.
a
Proposition 2.5. Let Td),‘ be strictly positive satisfying M1 > T(;‘ > ml > 0, where
M >m > 0. The following hold:
(i) If0<p< ooAcind Té‘ € S;‘ then ¢y € LP(, dny).
(ii) If 0 <p <1,¢x € LP(Q,dny) then T} € S;;
(i) Let p € [1,00) be such that K(p) < oo. If ¢ € LP(Q,dny) then T(;\ €S,
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Proof. To prove (i), suppose 0 < p <1 and Td))‘ € Sﬁ. Then
/Q ((TRPEN KLY da(z) = /Q <{T$|p ki“,ki”% dna(2) < +oo.

Hence from (2.3), it follows that K (p) [, <Tq;\k;*)‘, k;’)‘>z dnx(z) < +oo. Since K(p) €
(0,1] for p € [0,1], hence &: € LP(Q,dny). Suppose p > 1 and Tdf‘ € Sﬁ. Then

/ (THPESA KLY, di(z) = / (ITH" B2 KLY dina(2) < +oo.
Q Q A

P —
Hence by (2.2), [, <T$k;”,k;”>/\ dna(z) < +oo. That is, ox € LP(Q,dny). To
prove (ii), assume % € LP(Q,dny). Then if 0 < p < 1 then by (2.3), we have

A
fg<’T¢

1<p<+o00,K(p) < 400 and E; € LP(Q,dny). Then by (2.2) and (2.3), we have

J2
ki”‘,k;*)‘> dna(z) < +oo and hence T} € S). To prove (iii), suppose
A

/Q<\T$]pki_k,k;”>kdn,\(z) <400 and T} €S
0

The Berezin transform of a bounded linear operator on the Bergman space L2 (€2, dVy)
contains a lot of information about the operator. It is one of the most useful tools in
the study of Toeplitz operators. Another useful tool is Carleson measures on Bergman
spaces. The characterization of boundedness and compactness of a positive Toeplitz
operator on the Bergman spaces in terms of Carleson measures appears first in [16] and
in terms of the Berezin transform appears first in [23]. For more details about Carleson
measures, see [15] and [1].

We will denote by 8(z,w) the Bergman distance function on €. For any z in Q and
r >0, let

E(z,r)={weQ:B(z,w) <r}.
We denote by |E(z, )| the normalized volume of E(z,r), that is, |E(z,r)| = fE(z " v (w).
It is not difficult to see that |E(z,7)|' ™" is equivalent [23] to Vi(E(z,r)) for any fixed
r > 0.

Let p > 0 be a finite Borel measure on {). We say that p is a Carleson measure on
L2(Q,dV)) if there exists a constant M > 0 such that

/ FEP du(z) < M / P V()
Q Q

for all f in LP(Q,dVy). The following theorem gives a geometric description of Carleson
measures on LP(€,dVy). In particular, it implies that Carleson measures on L2 (9, dVy)
only depends on A, not on p.

Theorem 2.6. Suppose p > 0 is a finite Borel measure on 2, p > 1, then u is a Carleson

E
measure on LP (8, dV)\) if and only if W\ is bounded on Q (as a function of z)
z,r
for all (or some) r > 0. Moreover, the following quantities are equivalent for any fized
r>0andp>1:

| WEGED) oy
(i) sup{W 1z € Q},
o TP dn)
@) s { 2 P an )

Proof. For proof see [23]. O

fe Lg(Q,dVA)}.
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Let BT) = {f € LY(Q,dVy) : Hf”BTS = sup,cq |ff\\;(z) < oo}. The space L>(Q) is
properly contained in BTy since if ¢ € L>(€) then for all z € Q,
6132 = (TRt k) | < IRl < lloe = 16l < o0

It also follows that if f € L1(2,dVy) then f € BT} if and only if | f|dVy is a Carleson
measure on 2. In the following proposition we verify that if ¢ € BT} then T(; is bounded

on L2(2,dVy) and there is a constant C' such that ||Tq;\|| < Cllélpry-

Proposition 2.7. Suppose 1 < p < oo and ¢ € BTS. Then Td),‘ is bounded on LE(Q), dVy)
and there is a constant C' (depending only on p and \) such that ||Tq;\||p < Cléllpry-

Proof. Tt is well-known that the dual of L? is L? (see [1]) where % + % =1. For f e L?
and g € LY, by Holder’s inequality

[(@21.9), | = ltet.0] =| [ 105G A

< / 16(2)] 1£(2)]19(2)| dVa(2)
< ([P veian) ([ lsrseae) "

Thus it follows that ’<T£‘f,g>)\’ < C’||¢HBTS ||f||p lgll, where C is a constant depend-
ing only on p and A. This shows that Tq;\ is bounded on LE(Q,dVy) and HTQHP <
C 18]z 0

Proposition 2.8. For 1 <p < oo, if ¢ € LP(2,dn,) then (fi):\ € LP(Q,dn,) .
Proof. Suppose ¢ € L'(Q,dny). Then

/‘ﬁb,\ dn(w /‘tbx K(w w)d‘g(:])

/ /|¢ ‘Kl Mz, w)PK/\(z,z)dV(z))K(w,w)dV(w)

K'=*Mw,w) C, C
/|¢ |/|K1)\Z,w|K)\ ()K’\( )d‘éiZ)
_ z )\zz Mz,w )\wde()dV(Z)
‘/Q|¢<>|K<,>/Q\Kl (zvw)[ K 0,0) =5 =) =

= [ 1G] R e K ) T
Q A

= [1E1KEATEE = [ ol ne)
Q Q

The change of order of integration is justified by the positivity of the integrand. Hence
dx € LY(Q,dny). Similarly if ¢ € L°°(Q) then ¢, € L>(Q) as

’:ﬁ:(w ‘ :‘ (bkl—)\ k,l—A> ’
<| 2 ,ava) 1w
< 19l ”kzlu /\HLg(sz,dVU = (9]l

By Marcinkiewicz interpolation theorem [22] it follows that if ¢ € LP(Q,dny) then N
LP(Q,dny) for 1 <p< oo . O

2(Q,dVy)
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3. SCHATTEN CLASS OPERATORS IN L(L2(Q2,dVy))

In this section we find conditions on bounded linear operator C' € L(L2(Q,dV5)) such
that C € Sg, 1 < p < oo by comparing it with positive Toeplitz operators defined on
L2(2,dV)) and applications of the result are also obtained.

Theorem 3.1. Let ¢ € LP(Q,dny),v € Li(Q,dny), where 1 < p,q < oco. Let C €
L(L2(Q,dVy)) is such that

(3.1) (ORI K, [P < (TR K (T i K

for all zyw € Q. Then C € S3,. and HC’||§T < Hﬂ;‘“p”ﬂi‘“”q’ where % + % =1

T

Proof. First we show that (3.1) implies
|<Cfa g>)\|2 S <ﬂ?¢>\fﬂ f>>\ <71|i\p|gag>>\

for all f,g € L2(Q,dVy). Let f = Z?Zl chZl;A where ¢; are constants, z; € Q for
j=12,...,nandg=> 1", diK}u:/\ where d; are constants, w; € Q for i =1,2,...,m.
Then

o= (o(Eom) S | atons i) |
J=1 i=1 i=1,j=1
< Y leldd|(Cr K |
i=1,7=1
— 1/2 1/2
E )
i=1,j=1
n n 1/2 m m 1/2
— A 1-X 1—X A 1—) 1—x
= (T (Ser2) ek ) (1 (odekin), o)
j=1 j=1 N i=1 i=1 A

\ 2, 1/2
= <11|¢|f>f>)\ <,-r\¢;\gag>)\
Since the set of vectors { chKi;’\,wj cj=1,... ,n} is dense in L2(£2,dVy), hence

(CL.g0\* < (T £ 1)\ (TP 9.9), for all f.g € L2(Q,dVA). If ¢ € LP(Q,dny), then
T € S and
[¢] P

|=

I, = (race (13)7) " < o

Similarly, since ¥ € L9(£,dn,) then

1y 1l, = (trace (T7y)7)" < oo,

2
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Let {u;\L}:o:O and {0’2}20:0 be two orthonormal sequences in L2(2,dVy). Then using
Holder’s inequality, we obtain that

z\wum o) <Z<T|¢‘un, wy) (Thonad),
< (§<T¢“3’ ﬁx);(i@w% 2))

[es] r oo r
< (X (@yrww) ) (X (@yproda) )"
n=0 n=0
< (twace (13y)7) " (trace (1)7) " = T I ITU
1 1
if ;= 5+ ¢ Thus [Clly, < |73 1217712 - O
Corollary 3.2. If ¢, € LP(Q,dny) and C € L(L?(Q,dVy)) is such that
(ERIMKN < (TR KI) (TR K,
for all z,w € Q then | \C’|| H ¢|Hp||T|i‘/}|||p.
Proof. The proof follows from Theorem 3.1 if we assume p = q. (]

Corollary 3.3. If A,B are two positive operators in L(L2(Q,dVy) and A € S}, B €
S;‘,l <p,q< o0 and C € L(L2(Q,dVy) is such that

Y —a\ |2 Y Y Y Y
(ORI KL, [ < (ARI K, (B KLY,
for all z,w € Q then ||C|13, < ||All, | Bll, if 1+ = L. Ifp=q, then ||C| < || Al | BIl,-

Proof. Proceeding similarly as in Theorem 3.1 and Corollary 3.2 by replacing TI@I by A
and Tli\l)l by B, the corollary follows. O

Corollary 3.4. If A,B € L(L2(Q,dV4)),0< A, A€ S;‘,l <p < oo and (3.1) holds for

2w €9, then ||C|l3, < || Al IBI.

Proof. Let {uﬁb}zozo and {aﬁ;}zo:o be two orthonormal bases for L2(Q,dV,), then
‘<C’u o >>\|2 <Au u > <BO’ a’\>)\ <Au u > IB]| .

n’ n n? n n? n n? n

Then |(Cup,op), |2p < ||BI[ (Au}, u});. Hence

Z! (Cupyom |7 < IBIP D (Aup,up)y
n=0
and [|C|3, < |IB[|A], - U

If ¢ € LP(Q,dny) then T, € S Hence |T| € S). Thus if B € L(L2(Q2,dVy)),C €
L(L2(,dVy)) are such that

(ORI KL < (MK KA (BEL KLY,

for all z,w € Q then C € S3, and ||CH2P | B]] |||T>‘|||
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4. SCHATTEN p-CLASS OPERATORS IN L(L2(2, %))

In this section we assume that (2 is in its standard realization so that 0 € Q and € is
circular. The domain € is also starlike; i.e., z € Q implies that ¢z € Q for all t € [0, 1].
Let Aut(Q2) be the Lie group of all automorphisms (biholomorphic mappings) of €2, and
G, the isotropy subgroup at 0; i.e., Go = {¢ € Aut(2) : (0) = 0}. It is well known [14]
that Gy is compact and that Gy is a subgroup of the unitary group U,, of C". Since (Q is
bounded symmetric, we can canonically define [4] for each a in 2 an automorphism ¢,
in Aut(Q) such that

(1) ¢aodalz) =2
(ii) ¢a(0) = a,¢a(a) = 0;

(iii) ¢, has a unique fixed point in .

Actually, the above three conditions completely characterize the ¢,’s as the set of all
(holomorphic) geodesic symmetrics of €.

For any a € §, let 7, be the unique geodesic such that 7,(0) = 0, 7,(1) = a. Since
Q) is Hermitian symmetric, there exists a unique ¢, € Aut(Q2) such that ¢p,0¢.(z) = =z
and 7,(%) is an isolated fixed point of ¢, and ¢, is the geodesic symmetry at v4(3). In
particular, ¢,(0) = a and ¢,(a) = 0. If a = 0, then we have ¢,(z) = —z for all z in Q. A
good reference for this is [12]. We denote by m, the geodesic midpoint v4(%) of 0 and a.
Given v € Aut(Q), let a = 1»=1(0), then we have 1) 0 ¢,(0) = (a) = 0, thus ¥ o ¢, € Gy
and so there exists a unitary matrix U such that ¢ = U¢,,U € Go. If ¢ € Aut(2) has
an isolated fixed point in 2, then 1 has a unique fixed point and each ¢, has m, as a
unique fixed point. Further, for any a and b in 2, there exists a unitary U € Gy such
that ¢, 0 ¢ = Udg, (1) and ¢p, © ¢g = —@p, for any a € Q. If a € Q and U € Gy, then
U¢a = (bUaU-

For any ¢ € Aut(Q2), we denote by Jy(z) the complex Jacobian determinant of the
mapping ¢ : Q@ — Q. If a € Q, then by a result of [4], there exists a unimodulus constant
6(a) such that

Jsu(2) = 0(a)ka(2)
for all z € Q. In the simplest case 2 =D, we have ¢,(z) = = and Jy,(2) = ¢, (2) =
—kq(2), thus 8(a) = —1 is independent of a. This is also true for any bounded symmetric
domain Q. In fact 6(a) = (—1)" for any a € 2, where n is the (complex) dimension of 2.
Suppose 1 € Aut(), there exists a unitary U € G such that ¢ = U¢, with a = ~1(0).
Taking complex Jacobian determinant of this equality, we get

T4 (2) = det(U) Ty, (2) = (~1)" det(U)ka ().

In this section we shall assume A = 0. Then dVy(2) = %ﬁz) is the normalized Lebesgue

measure on ). Let Py = P we define the Toeplitz and Hankel operators in the usual
way. We write T, Hg7 hg, Sg as Ty, Hy, hgy and Sy respectively for notational simplicity.
For A € L(L2(9, %)), let A(z) = (Ak., kz>L§(Q,%‘g) for z € Q, the Berezin symbol of A.
That is, Ag(z) = A(z) for all z € Q. Here kz(w~) = %, where K(z,w) = K,(w)
). Let ¢(z) = <T¢kz,kz>L2(Q v where T is
at’ " Co
the Toeplitz operator with symbol ¢ € L>(Q) on L2(€, %) Let S) = S}, the Schatten
p-class in L(L2(9, %)) In this section we show that if 1 < p < oo, dn(z) = K(z, z)%ﬁz)
and Ty € S), then ¢ € LP(Q, dn).

Given z € Q and f any measurable function on {2, we define a function U, f on )
by U.f(w) = k.(w)f(¢-(w)). Since |k.|* is real Jacobian determinant of the mapping
¢, (see [4]), U, is easily seen to be a unitary operator on L?((, %) and L2(Q, %) It
is to check that U} = U,, thus U, is a self-adjoint unitary operator. This implies that

. . dV (z)
is the reproducing kernel of L2(€, o
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spectrum o(U,) = {—1,1}. We can check easily that U, # £I. If ¢ € L*>®(Q, ‘é—‘:) and
z € Q then U, Ty = Tpop.U,. This is so as PU, = U, P and for f € L2(9, ‘é,‘of),
Tyop. Uz f = Tgop. ((f 0 92 )kz)

=P((¢0d:)(f 0 ¢.)k.) = P(U.(¢f))

= Uzp(¢f) = Usz)f-
Theorem 4.1. Suppose 1 < p < 0o and dn(z) = K(z, z)d‘éz . If Ty € Sp then ng €
LP(Q,dn).
Proof. Suppose T, € S,. Then [, (|Ty" kw, kw) 2 %v)dn(w) < o0o. (Henceforth in

al™™ Co

the proof the inner product and norm is evaluated in the space L?(f2, %)) That is,

/2
I <(T;T¢)p K, kw> dn(w) < oo. If 2 < p < oo, then

[t < |

) <(T¢ T2 b >dn(w) < .

This implies

/HP 60 du)|I” dn(w /||P DIP dn(w)
/ U Tk P di(aw / | Tk di(w)

:/Q<T;T¢kw7kw>/ dn(w) < oo
Now

[P (¢ 0 ¢w) (0)| = (P (d0duw),1)| = [(Uuw (Tskw), 1)
= ‘<T¢kw,Uw1>‘ = |<T¢kw>kw>|

S Tgkwll = 1P (¢ 0 du)ll -
~ D -
Thus [, |P (¢ 0 ¢(0))|” dn(w) < oo. That is, [, ’(b(w)’ dn(w) < oo and ¢ € LP (Q, dn).
Suppose 1 < p < 2. Then by Heinz inequality [11], [9] it follows that

00> / Ty I? Fo Ko i) = / <|T¢|2<%>kw,kw>dn<w>

|<T¢kwak>
= d
—/Q<|T$| 2(1— p/Z)k e / HP ¢ ¢w n(w)
¢ P(¢o ¢w 10 2 P (¢pody dn
- [ o |p @ /HPMan( 1k
Low)” P(b o b)) (0P dn(w) = o)~ v
L O @0 o O dnlw) = | o Eo gt dntw)

since

2_pk‘w,kw> _ < " 2(22p)kw,/€w> < <‘T; 2 w>2%

Ty T ke k) 7 = [Tk = || P (3 ap
= (T4 Tpkw kw) 7 = || Toko|™ " =[P (60 du)|

)|p+2dn(w) < oo and therefore [, }g(w)|pdn(w) < o0. Thus ¢ € LP(Q, dn).
]

(Ir;

w

Hence [, |$(w
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Let m: L(L2(Q)) — L(L2(Q))/LC(L2(Q)) be the natural surjection onto the Calkin
algebra £(L2(Q))/LC(L2(Q)).

Corollary 4.2. Suppose 1 <p < oo,I-T;Ts € S, and o(Ty) does not fill D. Then ¢ ¢
LP(Q2,dn) and Ty = W + R where W is unitary, R € Sp. In addition if T¢>_1 € L(L2())
and A € o(Ty) with |A| # 1 then X is an isolated eigenvalue of Ty.

Proof. Suppose I —T;Ty € Sy, and ¢ € LP(S2,dn). Then by Lemma 2.3, Ty € 5, and
therefore I € Sp. But this is not true. Thus ¢ & LP(€2,dn). Now since I — T;Ty € S,
hence 7(T}) is an isometry and further since o (T} ) does not fill D, hence 7(T}) is unitary.
By [6], Ty = U + K where K € LC(L2(2)) and U is unitary or a shift or the adjoint of
a shift. As o(T}) does not fill D, hence the operator U is unitary. Thus the Fredholm
index of Ty = ind(7y) = dimker T, — dimker T}, = 0 and Ty = V'S where V' is unitary
and S? = T;T,. From the hypothesis I — TZTy € S it follows that I — S € .5,. Hence
T, =VS=V-V({I—-S5)=V+ R where V is unitary and R = -V (I — S) € §,. Now
suppose A € o(Ty) but |A| # 1,T¢_1 € L(LZ(Q) and I —=T;Ty € Sp. As Ty =V + R, we
have [ =T, 'Ty = T, 'V + T, ' R. Therefore, V* = T, 'VV* + T, ' RV* where R € S,,.
That is, T¢_1 =V*- T(;lRV* where R € S,. By [18], each A € 6(Ty) with |A\| > 1 is an
isolated eigenvalue and o(Ty) (D is either D or a countable set of isolated eigenvalues
of T,,. Hence each A € 0(T) (D is also an isolated eigenvalue of Tj. d

Corollary 4.3. Suppose ¢ > 0 and there exists z € 2 such that Ty —U, € Sp, 1 < p < o0.
If X € o(Ty) and X # £1 then X is an isolated eigenvalue of Ty with finite multiplicity.

Proof. The operator U, is unitary and o(U,) = {—1,1}. For proof see [21]. Since ¢ > 0,
hence Ty is positive and therefore a normal operator. Notice that Ty is a compact
perturbation of U,. According to Weyl’s theorem for normal operators, Ty and U, have
same Weyl spectrum [2]. For the normal operator T, the Weyl spectrum coincides with
the points of o(T) which are not isolated eigenvalues with finite multiplicity [2]. The
operators for which the above set coincides with the Weyl spectrum are characterized in
[20]. Since the Weyl spectrum of U, and, hence the Weyl spectrum of T} is contained in
o(U,) = {—1,1}, the conclusion of the corollary follows. O

Lemma 4.4. If {A,} ,{By} are sequences in S) and A, —» A and B, — B then
AnB, — AB.

Proof. Fix f,g € L2(Q,dVy). Then

<Aanfa g>)\ = <An(Bn - B)f7g>)\ + <Aanvg>)\ .
Since (A, Bf,g), — (ABf,g), and [(A,(B, — B)f,g9),| < M ||(B, — B)f|||lg]], where
M = sup, {||4»]l} < oo, by the uniform boundedness principle, we obtain that
(AnBnf,9)\ — (ABf,g)- a

Lemma 4.5. Let L denote either the space of all operators on L2(Q, dVy), with the weak
operator topology, or any of the Banach spaces S;‘ (1 < p < o0) with its weak topology.
If {A,},{Bn} C L, with A, — A and B, — B weakly, and if each B,, has the upper
triangular form, then A, B, — AB weakly.

—~

Proof. We denote the matrices of the operators A,, By, A, B, and AB as (4,(3,7)),
(E(i,j)), (dn(i,5)) and (d(i, j)) respectively. One verifies that if {A4,} C £ then A4,
Aif and only if {||A, ]|, } is a bounded sequence, and A:L(i,j) —s A(4, §) for all 4, j. Thus
to complete the proof we have to show that || A, B,|| , are bounded and d,, (i, j) — d(i, j)

for all ¢, 7. We recall that in S, we have
[AnBull, < 14 Bnll,/2 < [|Anll, 1 Ball, -
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Thus {||A,,B,| .} is a bounded sequence. Further since each B, is upper triangular,
J

dn(ij) = > An(i, k) Ba(k., j)

k=1
and
j ~ ~
d(i,j) =Y A(i, k) B(k, j),
k=1
where (A(i, j)) and (B(i, 7)) denote the matrices of A and B respectively. Thus, for each
fixed choice of %, j, d,(i,7) — d(i, 7). O

Lemma 4.6. Let p > 1, A € L(L2(Q,dV))) and A, € S for alln e N. If A, — A in
weak operator topology and || Ay, < C < oo for alln € N and for some constant C > 0
then A € S} and ||All, < C.

Proof. For each n € N, define

&n(K) =tr(4,K).
Then &, € S; where %—i— % =1 and ||&,] = [|4Anll, < C < co. By Banach-Alaoglu’s
theorem [8], there exists a subsequence {&,, } such that £,, — £ in w*-topology and £ €
(S;‘)*. Therefore tr(A,, K) = &, (K) — &(K), for all K € S;‘ and |[£(K)| < M| K]||q,
for some constant M > 0. On the other hand, since A,, — A in weak operator topology,
tr(A,K) — tr(AK) for all operators K of finite rank. The lemma follows since

|A]l, = sup {|tr(AK)| : rank(K) < oo and || K| <1} < oo.

5. SCHATTEN CLASS LITTLE HANKEL OPERATORS

In this section we find conditions on ¢ € L?(9, %) such that the little Hankel operator

S5 defined on L2(Q, %) belong to the class S,,1 < p < co. We then extend the
result to obtain Schatten class characterization of little Hankel operators defined on

L2(9Q,dVy). We also present many applications of these characterizations. Recall that

for ¢ € L°°(dV'), we define the little Hankel operator Sy from L2 (£, %) into L2(Q, %)
as Spf = P(J(¢f)) where J : L*(Q, &) — L*(Q, &) is defined as J f(2) = f(2) and

P is the orthogonal projection from L?(, %) onto LZ(Q, ‘é—‘g) and

Pf(z):/ﬂK(z,w)f(w)dV(w).

The above integral formula extends P to L'(€, %) The little Hankel operator Sy can
also be defined for ¢ € L*(Q, %) as Sof = P(J(¢f)) for f € L2(%, %) Notice that
if ¢ € L?(Q, %), then S5 = Spquin the sense that Szg = Spgzg for all g € H>(Q)
which is dense in L2(€, %) Let P be the orthogonal projection from L?((, %) onto

L2 4 = {? fe Lﬁ(&%)}. Then

— — dV (w dV (w
P = [ Ko Ta = [ Kw s o
Q 0 Q 0
This formula also extends P to L!(€, %) Given ¢ € L?(9, %), define the operators Hy
and hy with domain L2 (€, %) as follows : Hyf = (I—P)(¢f);hef = P(¢f), where I is
the identity operator. The operator Hy is called the Hankel operator with symbol ¢ and
hg is called the reduced (or little) Hankel operator with symbol ¢. The word “reduced”
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(or little) is justified by the inequality P — Py < I — P, where P, is the orthogonal
projection of rank one from L?({2, dv) onto the constants, that is,

Pof(z / f(z

We refer both the operators Sy and hg as “little” Hankel operators since JSg; = hy and
J is a unitary operator.

The main purpose of this section is to demonstrate that there exists an integral trans-
form on 2 which carries a lot of information on the little Hankel operators. We give a
unified treatment on the size estimates of Sy using the integral transform W defined as
follows. Given f € L'(, dc—‘g), W f is the function on Q) defined by

9 =a [ HR@TG, sen

where A\g' = [, K(z,z)*l%gz). Notice that for ¢ € L2(€, ‘é—‘g), we always have S5 =
S’Pfqﬁ, where P is the Bergman projection. Thus in considering little Hankel operators, we
can content ourselves with antiholomorphic symbols. We collect here some of the basic
properties of the integral transform W as follows. If f € L?(Q, dc—‘g), then

(i) PWf=Pf;

(i) WPf =Wf;
(iii) W2f = Wf;
(iv) W is a bounded operator on L (€2, K(z, 2) dV(Z)) forall 1 < p < +oo and W is

an orthogonal projection on the Hilbert space L2 (Q K(z,2) d‘é( )).

The boundedness of W on LP(§, K (z, z)%ﬁ'z)), 1 <p < 400 implies that

D= [ st e T

/Q (W )(2)a@ K (2 2) DL

Co
integral pairing (,) (with respect to %), we have

for all f € LP(Q, K (z, 2) d‘éf)z));g € LI(Q, K(z, 2) Y &) with 1 5+ ¢ = 1. Under the usual

dV (w)
Co
where @ is a bounded projection from L!((, ‘é—‘;) onto LL(Q, ‘é—‘g) It is also not difficult
to check that (1)S3 = Sp5 (il)S5 = Syrg and (i) We(z) = Aa(Sgk=, k=). We verify now
that if ¢ € L?(Q, %) then S5 is bounded if and only if W¢(2) is bounded in Q. Since

each k. is a unit vector in L?((, %), we have for all z € Q,

W) = da | L ) T = afo)

Wo(2)] = hal(Szks, 2)| < Aal|Sgha[| < ra| S5

Hence [Wé|s < AallSzll. On the other hand, S5 = Spz; = Sppg = Syrg. Thus
1531 = [ISwgll- 1t is easy to see that [[Sy|| < [[¢]lec for all ¢ € L°(€2). Hence we also

have 1551 < Wl
Theorem 5.1. Suppose 1 < p < +oo. Then Sg € Sy if and only if Wo €

Lr (Q,K(z,z)%gz)).

Proof. We shall first show that if W¢ € LP(Q, K(z, )dv(z)) then Sz € 5,. We have
already proved the case p = co. We need only to show for 1 <p<oo. Slnce S¢ = SW¢7
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it suffices to show that Sz is in S, whenever ¢ € LP(2, K(z,z) d‘ész)). From Heinz
inequality [11], [9], it follows that

sk = ) (5ot = (55) b (55) "t
(s k) 555 k)

= HsaszL?(Q,%)H‘S’ngkaLg(Q’%)

= PTGk 2000 [1PT@ ) | 2 )

< ksl oo, 20 ||$+kw||L2 o,8)
dV /2 dV (v)y\1/2
= ([ 16@PIrPT ) ([ 5 0P k@)

Co
= (Tjyeks ko) <T|¢+|2kw’kw>1/2
= (Miggeka k) (Migrak k)
= (M k., kz>1/2 (MR kw>1/2
< d(Migkzy k) (Mg Fus k) = d (Tigi Rz, ke ) (Tigr Fus Fu)

for some constant d > 0. The last inequality follows from the Kantorvich inequality
(Az,z)? > (Apx z) > K(p)(Az,z)’ ,p € (0,1],]jz|] = 1. Taking p =
(Az, a:)"‘ <% <A2m :I:> and K (3) € (0,1]. Thus

%, we have

K()
(55,1 )| < (T K K (T K K.

Now ¢ € LP(Q, K (2, 2)dV (z)) implies |¢|, [¢T| € LP(Q, K(z,2)dV (z)). Hence T4, Tj4+| €
Sp. Hence by Theorem 3.1, Sg € Sp. Now we shall prove that if 1 < p < +oo, then
S5 € Sp implies W¢ € LP(2, K (z,2)dV (2)). We have already settled the case p = +oo.
Now we assume 2 < p < oo and Sg € Sp. Then

L1000 @F Keaave) = [ ](sgh)
<A / EZ (2,2)dV(z) = AL, /Q <S$kz7S$kz>p/2 K(z,2)dV(2)
2, <S*S k., k. > P K2 aviz) <A / <(S*S Y2k k. > K(z,2)dV()

Q

_ /Q (I8517k k) K (2, 2) dV (2).

(2,2)dV(2)

1/p
Thus [ W6l oo eroyav oy < Ao (Jo (15517 ke ) K (2,2)dV(2)) 7 < o0 as S5 € 8,

Hence W¢ € LP(Q2, K(z, 2)dV (2)).
The proof for 1 < p < 2 is very tricky. Fix a sequence of points {a,} in Q such that

(1) @=U,2, E(an,r), where E(a,,r) is the Bergman metric ball with center at a,, and
radius 7, a fixed positive number;

(2) There exists a constant C' > 0 such that every function f € L2(Q,dV(z)) can be

written as f(z) = > .~ ¢k, (2) with || f|l, <Clnf{\/ el =30 an}
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One can refer [7] for the construction of such a sequence {a,}. Define an operator A on
L%(Q,dV (z)) by letting Ae,, = kq,,n = 1,2,..., where {e,} -, is a fixed orthonormal
basis of L2(Q,dV (2)). If f € L2(Q,dV (z)) with f =307 | fnen, then Af =577 foka,
and by (2) above,

[Af] < Cinf{

Z lenl?  Af = chkan} <C Z |fnl? = CIIf].
n=1 n=1

n=1

Thus A is a bounded linear operator. Let A be the operator on L2(Q,dV (z)) defined by
Ae,, = kg, ; then A is also bounded. Suppose S € Sp with 1 < p < 2. Then we also

have A" S’ A € S,. This implies

,i ‘<Z*S$Aema> P« +oo or ni_o:l ’<S$kamm> P

That is, Yoo | [We(a,)P < +oo. It is not difficult to show that [23], W¢(z) behaves like
Wo(ay,) for z € E(ay,r). Also [23], the Bergman kernel K (z, z) behaves like K (ay,, an) =

ﬁ for z € E(an,r). It thus follows that

< +o00.

/ Wo(2)PK (2 2) dV(z) < Z / Wo(2)PK (2, 2) dV(2)

E(an,r)
< Pd
Cy Z ‘E el ENLC OO
<C _— Waolan)|PdV(z) = C Waolan)lP < oo
s B g AV = 02 3 W)
and W¢ € LP(Q, K(z,2)dV (z)). This completes the proof. O

Corollary 5.2. If 1 <p < oo and ¢ € LP(,dn)) then 5% € S;‘.

Proof. Suppose ¢ € LP(§,dny) and 1 < p < co. From Heinz inequality [9], [11], it follows
that

st ) [ it ), (s ),

(s sy () o)

ol PP L S

L2(Q,dVy) L2(Q,dVy)

o 1
= [PAI@E ) gy [P @ )]
—t1-x

B
‘(b Y L2(Q,dvy)

-(/ |¢<u>|2k;-k<u>|2dvx)l/2 (f |¢+<v>|2|k;—k<v>2dvx)m

1/2 1/2

1-X\ 71— A 11—\ 7.1—-X\
<T‘¢‘2k k! >A <T‘¢+‘2kw kL >A
< 1/2

1/2
M@)‘zk;—*,k;—k> <M@+‘2k}U‘A, k};*>
A A

L2(Q,dVy)

< ||$ki_)\||L2(Q,de)

1/2

- <(M|?5|)2 ki kik>l/2 <(M3>+)2 ka kiﬂ>
A

A
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A 21—\ p1-) A z1-X 7.1-X
SdA <M|¢|k'z 7kz >)\ <M|¢+‘k’w ,kw >A
A 1=X 2.1-X A 1-X 7.1-X
(T (T )

for some constant dy > 0. Here ¢ (2) = ¢(z) and M, ;5‘ denote the multiplication ope-
rator defined on L2(Q,dV,) with symbol ¢ € L°(£2). The last inequality follows from
Kantorvich’s inequality. Thus

A

SéK17A7K17)\ 2 S d)\ T)\ K17A7K17)\ T/\+ K1 A Kl A
¢z w N |p| 2 z N o] N

w w

Now since ¢ € LP(£,dny) we have |¢|, |¢pT| € LP(Q dny). Hence from Lemma 2.3, it
follows that T‘¢|, :\25+| € S From Theorem 3.1, Sgi) € S)‘ Now if f € L?(Q,dVy),

HS%fHL%Q,dV)\) = [[PAAa(2f) HLZ(Q,dV,\) < [IBAIIIA H(bHLw(Q) 11l z2(0,av4) -
Hence HS%H < 1]l o (q2)- The corollary follows. O

Corollary 5.3. Let ¢ € LP(Q,dny),1 <p < oo and ¢ = gb* where ¢+( ) = gb(E) Then
there exists an operator S € L(L2(Q,dVy)) such that Tp,S = ST s and ||T|¢‘S||p <

L2l
T(S)”Tﬁz\ﬂ”p where 1(S) is the spectral radius of S .

Proof. Since ¢ € LP(Q,dn,) and ¢+ = ¢, hence from Lemma 2.3, Corollary 4.2 it follows
that :F\/<\i>| and S;,\ are self-adjoint operators, T\;\zﬁl € S;‘ and Sg € S;‘. Let O be the group

of unitary operators on L2(€2,dV}). Let ‘)’IA {UAU* : U € 9}, the unitary orbit of

an operator A € L(L2(Q,dVy)). Define f(X) = H Ii\zﬁl —XHP for all X € S). Then f

attains its minimum at some S € S;‘ on Mg, = {US;;U* :U € ‘ﬂ} and TWS ST \¢\

This follows from [5]. The operator S is self-adjoint. To prove the corollary we have to
show that for any two orthonormal sequences {uﬁ}:ozo and {02}:;0 in L2(Q,dVy),

Z (mysuon) | < risy|

Notice that since T|¢|S’ ST¢| and S = S* we obtain

[(mysutot) | = (T sudad) [ < (myisud.su) (Toho),
=(s'TySun ) (Thonon),

A A A A
< TiyS “nv“n>k<T|¢\%‘Tn>A

Repeating this process we obtain

‘<T‘¢|SUWUQ>A‘2M+1 - (‘< ¢Sun,02>,\‘2m)2

< [(rsma), (), ayorat), |
<(nys s ) (M) (D), (mekol),
<S* TMSQ u”’u$‘> <Tl¢\“m 2>im71<T\¢|an, 2>im
(

gy ym
2m+1 A W A A
TSy, n> < b/t n>A <T|¢|% n>A :
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Thus

2m—1

2m H-1
P () - (Tyehon)

1
L R
N <T\¢\Un7 n>A

2 m
(mysunan) | <Ims®

n? n

and

D=
[

(TySuyon) | < Ty 152 17 2P (T, ) )

Letting m — oo, we obtain

(s o), | < b (T ), (T o),

Hence proceeding as in Theorem 3.1 and Corollary 3.4, one can show that
173381, < r(S)IT
|

Let B denote the unit ball in n-dimensional complex space C™ and dz be the normalized
Lebesgue volume measure on B. The Bergman space L2(B,dz) is the space of analytic
functions h on B which are square-integrable with respect to Lebesgue volume measure.
For z = (21, ,2,) € C", let (z,w) = Y7 | z;w; and ||z||* = (2, z). For z € B, let P, be
the orthogonal projection of C™ onto the subspace [z] generated by z and let Q, = I — P,.

Then .
0. (w) = 2= L=(0) Iﬂ; II;)H )2 Qx(w)

is the automorphism of B that interchanges 0 and z. The reproducing kernel in L2 (B, dz)
is given by

o
(= w2
B
for z,w € B and the normalized reproducing kernel k:f is %.

Given ¢ € L°°(B), the Toeplitz operator T} is defined on LZ(B,dz) by Ty f = Pg(¢f)
where Pg denotes the orthogonal projection of L?(B,dz) onto L2(B,dz) and the little
Hankel operator S, from L2(B,dz) into L2(B, dz) is defined as S, f = P(Js(¢f)) where
Jg : L?(B,dz) — L*(B,dz) is defined as Jgf(z1,...,2n) = f(Z1,...,%n). We have
used the same notation T4, S4 to denote Toeplitz operators and little Hankel operators
defined on L2(9, %) and L2(B,dz). The context will make it clear on which space we
considering these operators. For z € B and a non-negative integer m, let
1

B,m _
K™ (u) (1= (w, )yttt u€eB

and define the m-Berezin transform of an operator S € £(L2(B,dz)) by

BoS(:) = (’“”) (L= [202)™ S G (S KB™), ub KBy

n
|k|=0

L WYV L
Gt (Ikl>( D 18

k = (ki,...,k,) € Z%, where Zy is the set of non-negative integers, |k| = > I ki,
b = bk kY = Kyl kL Clearly, By, : L(L2(B,dz)) — L°(B) is a bounded
linear operator and for ¢ € L>°(B), define B,,(4)(z) = By (Ty)(2). In fact, from [17] it
follows that for ¢ € L>(B),

Bo(6)(2) = /B (60 62)(u) dAp(u),

K2 (w) =

where
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m+n (1

n
transform By (S) of bounded operators S and the m-Berezin transform of functions in
[3]. Clearly, for S € L(L2(B,dz)), || BmS|sx < C(m,n)||S|| where C(m,n) is a constant
depending only on m and n. Thus B, : £(L?(B,dz)) — L°°(B) is a bounded linear
operator and for m > 0

m-+n i n! k!
Bol = SO R L
1B ( ! )Zw e

|k[=0

z € B, where dA,,(u) = — ||u||?)™du. Berezin first introduced the Berezin

Let 1
Corollary 5.4. Suppose 2 < p < oo, ¢,9 € L>(B), B, Sy € LP(B,dn,) and By,¢ €
LP(B,dn,) for all m > 0. Suppose

(5.1) max {|Ts,,s, llp: 1T5,.0llp} < M
for some constant M > 0 independent of m. The following hold.
(i) Sy € Sp.

(ii) TBm¢TBmSw N Tanw and T¢S¢ € Sp.

(iii) If Con € L(L2(B,dz)),m > 0, Cy,, — C and if C,, is a sequence of upper
triangular matrices then Tg,, s, Cp — SyC and SyC € S,,.

(iv) If BySy > 0,By¢ > 0 for all m > 0 and ||Tg,,s, — Syl — 0, [|TB,,¢ —
T4l —> 0 as m — oo and RangeTp, s, C kerTp,, 4, RangeTlp, ¢ C kerTp, s,
then RangeSy C ker Ty, and RangeTy C ker Sy,.

(v) If BpSy > 0 for all m > 0 and {C,} is a sequence of positive operators in S,
such that C,, — C and RangeTp,, s, C ker Cp, and RangeC,, C kerTp, s, for
all m > 0 then RangeSy, C ker C' and RangeC C ker S.

Proof. Since B,Sy € LP(B,dn,), hence by Lemma 2.3, T, 5, € S,. Further, since
|TB,,5,llp < M for all m > 0, we have

IT5,.5, 12 = /B (T, 5, [PKE. KBY dn, (=) < MP.

Since 2 < p < 0o, we obtain

/||PB BinSy 0 ¢.)|F dn,(2) /||PB (B Sy)kB H dn,(z
= [ 0T s K dn(2) = [ ([T, 1 (2
g * B
/<TB SI/TB kaz’kz> d B(Z)S‘/B<(TBmSwTBmS¢)2kz’kz>d775(z)

/<|TB sy IPEE KBy dn () < MP.

This implies

sup || Ts,,5,00. 1 |p = sup || P(BmSy © ¢2),, < M.
z€B z€B

Since ||T*msw||p = ||TBm5pr, hence sup,cp ||T§mswo¢zl}|p < M. From [17], it thus
follows that T, 5, — Sy as m — oo in L(L2(B,dz))-norm and from Lemma 4.6,
it follows that Sy, € S,. This proves (i). To prove (i) observe that since (5.1) holds,
we have [|Tg,,¢0¢. 1], < M and HTEM¢°¢Z1HP < M for all m > 0. Hence from [17], it

follows that Tp, » — Ty as m — oo in L£(L2(B,dz))-norm. Thus using Lemma 4.4,
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we obtain Tg, ¢T5,.s, — TpSy. Since Sy € Sp, we have TSy € S,. Now we shall

prove (iii). From Lemma 4.5 it follows that Tg,,5,Cm — SyC and since Sy € Sy,
we obtain S,,C' € S,. To prove (iv), we first notice that Tg, s, and T's,, 4 are positive
operators for all m > 0. This is so since B, Sy > 0 and By,¢ > 0 for all m > 0. Given
that Tg,, 5, — Sy and T,y — Ty in S, as m — oo. As ||T||£(L3(B_’dz)) < |7, for
all T € Sy, hence Tp,,s, — Sy and T,y — Ty in norm, Sy, > 0 and T, > 0. It thus
follows that T's,, ¢1B,,s, — TySy and T, 5,18, —> SyTy in norm as m — oo.
The reason for this is as follows:

178,06 805, = ToSp|| = | T80 TBmse = ToTBus, + T6TB,.5, — TSyl
< |(To = Ts) T,s, || + | To (T.s, — So) |
<\ Ts,.6 — Toll | Ts,5, || + 1Tl || T8, s, — Su|| — 0

as m — 00, since sup,,, HTBm Sy || < L for some L > 0 by uniform boundedness principle.
Further

1T8,.5,T8,.6 — SuTs|| =|| (TB,.6TB.5,)" — (T656)" || =||T8,.6TB,.5, — TSyl — 0

as m — oco. Now since RangeTp,,s, C kerTp,,¢ and RangeTp,, 4 C kerTp,, s, we ob-
tain Tp,4TB,,s, = T1B,s,TBn.¢ = 0. Taking limit m — oo, we obtain
TpSy = SyTy = 0 and (iv) follows. To prove (v), assume that B,,Sy > 0 for all
m > 0 and {C,,} is a sequence in S}, such that C,, Ol If Rangel,, s, C ker Cy, and
RangeC),, C kerTp, s, for all m > 0, then C,,15,,s, = TB,,5,Cm = 0 for all m > 0.
From Lemma 4.4 it follows that C,,,Ts,, s, — CSy. That is, for all f,g € L2(B,dz),

Thus since C,,T3,,s, = 0 for all m > 0, hence C'S;, = 0. Further, from (5.2), it follows
that for all f,g € L2(B,dz),

(£.T5,5,Cng) — (£.85C"9).
That is,
<fv TBmSowg> — <f7 S¢Cg>
for all f,g € L2(B,dz). Thus S,C = 0 and the result (v) follows. O
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