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SCHATTEN CLASS OPERATORS ON THE BERGMAN SPACE OVER

BOUNDED SYMMETRIC DOMAIN

NAMITA DAS AND MADHUSMITA SAHOO

Abstract. Let Ω be a bounded symmetric domain in Cn with Bergman kernel

K(z, w). Let dVλ(z) = K(z, z)
dV (z)
Cλ

, where Cλ =

∫

Ω
K(z, z)λdV (z), λ ∈ R, dV (z)

is the volume measure of Ω normalized so that K(z, 0) = K(0, w) = 1. In this paper

we have shown that if the Toeplitz operator Tφ defined on L2
a(Ω, dV

C0
) belongs to the

Schatten p-class, 1 ≤ p < ∞, then φ̃ ∈ Lp(Ω, dη), where dη(z) = K(z, z)
dV (z)
C0

and

φ̃ is the Berezin transform of φ. Further if φ ∈ Lp(Ω, dηλ), then φ̃λ ∈ Lp(Ω, dηλ)

and Tλ
φ

belongs to Schatten p-class. Here dηλ = K(z, z)
dV (z)
Cλ

, the function φ̃λ is

the Berezin transform of φ in L2
a(Ω, dVλ) and Tλ

φ
is the Toeplitz operator defined

on L2
a(Ω, dVλ). We also find conditions on bounded linear operator C defined from

L2
a(Ω, dVλ) into itself such that C belongs to the Schatten p-class by comparing it

with positive Toeplitz operators defined on L2
a(Ω, dVλ). Applications of these results

are obtained and we also present Schatten class characterization of little Hankel
operators defined on L2

a(Ω, dVλ).

1. Introduction

Let Ω be a bounded symmetric domain in C
n with Bergman kernel K(z, w). We

assume that Ω is in its standard (Harish-Chandra) representation. Let dV be the volume
measure of Ω normalized so that K(z, 0) = K(0, w) = 1 for all z and w in Ω. By [13]
and using the polar co-ordinates representation, there exists a positive number ǫΩ such
that

Cλ =

∫

Ω

K(z, z)λdV (z) < +∞

if and only if λ < ǫΩ. Let

dVλ(z) = C−1
λ K(z, z)λdV (z).

Then dVλ is a probability measure on Ω for all λ < ǫΩ. We fix a λ < ǫΩ throughout the
paper and consider the weighted Bergman space Lpa(Ω, dVλ), 1 ≤ p < +∞, consisting of
holomorphic functions in Lp(Ω, dVλ). For p = 2, we have an orthogonal projection Pλ
from the Hilbert space L2(Ω, dVλ) onto the closed subspace L2

a(Ω, dVλ). The orthogonal
projection Pλ is given by

Pλf(z) =

∫

Ω

Kλ(z, w)f(w) dVλ(w),

where Kλ(z, w) = K(z, w)1−λ is the reproducing kernel of L2
a(Ω, dVλ). Let Kλ(z, w) =

K1−λ
z (w).
Suppose φ is a function in L∞(Ω). Then the Toeplitz operator with symbol φ is

defined by Tλφ (f) = Pλ(φf), f ∈ L2
a(Ω, dVλ) and the Hankel operator Hλ

φ with symbol φ
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is defined by Hλ
φ (f) = (I−Pλ)(φf), f ∈ L2

a(Ω, dVλ). Let Pλ be the orthogonal projection

from L2(Ω, dVλ) onto L2
a(Ω, dVλ) =

{
f : f ∈ L2

a(Ω, dVλ)
}
. Then

Pλf(z) =

∫

Ω

Kλ(z, w)f(w) dVλ(w) =

∫

Ω

Kλ(w, z)f(w) dVλ(w).

Thus formula also extends Pλ to L1(Ω, dVλ). Given φ ∈ L∞(Ω), define the little Hankel
operator hλφ with domain L2

a(Ω, dVλ) as h
λ
φ(f) = Pλ(φf).

For any a ∈ Ω, let ka(z) = K(z,a)√
K(a,a)

. The ka’s are called normalized reproducing

kernels of L2
a(Ω, dV ). They are unit vectors in L2

a(Ω, dV ). It is easy to see that k1−λa is
a unit vector of L2

a(Ω, dVλ) for any a ∈ Ω. Let L(L2
a(Ω, dVλ)) be the set of all bounded

linear operators from L2
a(Ω, dVλ) into itself. For A ∈ L(L2

a(Ω, dVλ)) we define the Berezin

transform Ãλ of A as

Ãλ(z) =
〈
Ak1−λz , k1−λz

〉
λ
, z ∈ Ω,

where 〈, 〉λ is the inner product in L2
a(Ω, dVλ). Since k1−λz converges to 0 weakly in

L2
a(Ω, dVλ) as z approaches ∂Ω (the topological boundary of Ω), it follows that Ãλ is

bounded on Ω if A ∈ L(L2
a(Ω, dVλ)), and Ãλ(z) −→ 0 as z −→ ∂Ω if A is compact. For

φ ∈ L∞(Ω), let φ̃λ(z) =
〈
Tλφ k

1−λ
z , k1−λz

〉
λ
= T̃λφ (z), z ∈ Ω. Hence φ̃λ is the Berezin

transform of the Toeplitz operator Tλφ . We also define for φ ∈ L∞(Ω), the operator Sλφ :

L2
a(Ω, dVλ) −→ L2

a(Ω, dVλ) as S
λ
φ(f) = PλJλ(φf), where Jλ : L2(Ω, dVλ) −→ L2(Ω, dVλ)

is defined by Jλf(z) = f(z). The operators Sλφ , h
λ
φ are unitarily equivalent. In fact,

JλS
λ
φ = hλφ. Hence we shall refer both these operators Sλφ , h

λ
φ as little Hankel operators

on L2
a(Ω, dVλ). Let dη(z) = K(z, z)dV (z)

Cλ
.

Let L(H) be the set of all bounded linear operators from the Hilbert H into itself
and LC(H) be the set of all compact operators in L(H). For any non-negative integer
k, T ∈ L(H), let sk(T ) = inf {‖T −R‖ : R ∈ L(H), rankR ≤ k}. The numbers s0(T ) ≥
s1(T ) ≥ s2(T ) ≥ · · · ≥ 0 are called s-numbers or singular values of T . It is well-
known that if T ∈ LC(H), then there exist orthonormal vectors {uk} and {σk} in H
with T =

∑∞
k=1 sk 〈·, uk〉σk for Tx =

∑∞
k=1 sk 〈x, uk〉σk. For any 1 ≤ p < +∞, the

Schatten ideal Sp(H) = Sp is defined to be the set of all compact operators T on H

such that

∞∑

k=1

(sk(T ))
p < +∞. The linear space Sp is a Banach space with the norm

‖T‖p = ‖T‖Sp =
[∑∞

k=1(sk(T ))
p
]1/p

. The space Sp is also a two-sided ideal of the

algebra L(H) and for any T ∈ Sp and S,R ∈ L(H), we have

‖STR‖Sp ≤ ‖S‖ ‖T‖Sp ‖R‖ .
The space S1 is also called the trace class and S2 is called the Hilbert-Schmidt class. If
T ∈ S1 and {uk} is an orthonormal basis for H, then tr(T ) =

∑∞
k=1 〈Tuk, uk〉 is conver-

gent and independent of {uk}. If T ∈ S1 and T ≥ 0, then ‖T‖S1
= tr(T ). In general, we

have ‖T‖Sp =
[
tr((T ∗T )p/2)

]1/p
. For more information on the Schatten ideals, see [22] for

example. Suppose p ≥ 1 and Sλp is the Schatten p-ideal of the Hilbert space L2
a(Ω, dVλ).

For convenience of notation, we will use Sλ∞ to denote the full algebra of bounded linear
operators on the Bergman space L2

a(Ω, dVλ). That is, Sλ∞ = L(L2
a(Ω, dVλ)). The orga-

nization of this paper is as follows. In Section 2, we discuss Schatten p-class Toeplitz

operators. We show that if 1 ≤ p ≤ ∞ and φ ∈ Lp(Ω, dηλ) then φ̃λ ∈ Lp(Ω, dηλ).

Further if 0 < p < ∞, Tλφ ∈ Sλp then φ̃λ ∈ Lp(Ω, dηλ) where dηλ(z) = K(z, z)dV (z)
Cλ

. In

Section 3, we find conditions on C ∈ L(L2
a(Ω, dVλ)) to have membership in the Schatten

class with the help of the Schatten class characterization of Toeplitz operators. In Sec-
tion 4, we concentrate on the Hilbert space L2

a(Ω,
dV
C0

) and prove that if Tφ ∈ Sp then
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φ̃ ∈ Lp(Ω, dη), 1 ≤ p < ∞ where dη(z) = K(z, z)dV (z)
C0

and we deduce many important
corollaries. Section 5 is devoted to the Schatten class characterization of little Hankel
operators.

2. Schatten class Toeplitz operators

In this section we seek to find necessary and sufficient conditions on φ which will
ensure that the Toeplitz operator belong to Sλp . We will concentrate on the special case
φ ≥ 0.

Proposition 2.1. Suppose A is a positive operator in L(L2
a(Ω, dVλ)) or A is an operator

in the trace class of L2
a(Ω, dVλ). Then

tr(A) =

∫

Ω

〈
Ak1−λz , k1−λz

〉
λ
dηλ(z) =

∫

Ω

Ãλ(z) dηλ(z),

where Ãλ is the Berezin symbol of A and dηλ(z) = K(z, z)dV (z)
Cλ

.

Proof. Let
{
eλn

}∞

n=0
be an orthonormal basis for L2

a(Ω, dVλ). Hence

tr(A) =

∞∑

n=1

〈
Aeλn, e

λ
n

〉
λ
=

∞∑

n=1

∫

Ω

(Aeλn)(z)e
λ
n(z) dVλ(z)

=
∞∑

n=1

∫

Ω

〈
Aeλn,K

1−λ
z

〉
λ
eλn(z) dVλ(z)

=

∫

Ω

〈
A
( ∞∑

n=1

eλn(z)e
λ
n(z)

)
,K1−λ

z

〉
λ
dVλ(z) =

∫

Ω

〈
AK1−λ

z ,K1−λ
z

〉
λ
dVλ(z)

=

∫

Ω

〈
Ak1−λz , k1−λz

〉
λ
K(z, z)

dV (z)

Cλ
=

∫

Ω

Ãλ(z) dηλ(z).

�

Corollary 2.2. If φ is a non-negative function on Ω then

tr(Tλφ ) =

∫

Ω

φ(w) dηλ(w).

Proof. By Proposition 2.1 and Fubini’s theorem [19], we have

tr(Tλφ ) =

∫

Ω

φ̃λ(z)K(z, z)
dV (z)

Cλ

=

∫

Ω

K(z, z)
dV (z)

Cλ

∫

Ω

∣∣k1−λz (w)
∣∣2 φ(w) dVλ(w)

=

∫

Ω

dV (z)

Cλ

∫

Ω

∣∣K1−λ(z, w)
∣∣2

K1−λ(z, z)
K(z, z)φ(w)

1

Cλ
Kλ(w,w) dV (w)

=

∫

Ω

φ(w) dV (w)

∫

Ω

∣∣K1−λ(z, w)
∣∣2Kλ(z, z)

1

Cλ
Kλ(w,w) dV (z)

=

∫

Ω

φ(w)Kλ(w,w)
dV (w)

Cλ

∫

Ω

∣∣K1−λ(z, w)
∣∣2Kλ(z, z)

1

Cλ
dV (z)

=

∫

Ω

φ(w)Kλ(w,w)K1−λ(w,w)
dV (w)

Cλ

=

∫

Ω

φ(w)K(w,w)
dV (w)

Cλ
=

∫

Ω

φ(w) dηλ(w).

�

The above results are very useful in the study of Schatten class operators on the
Bergman space L2

a(Ω, dVλ), especially when combined with the inequalities given in (2.2)
and (2.3).
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Lemma 2.3. If p ≥ 1 and φ ∈ Lp(Ω, dηλ), then T
λ
φ is in the Schatten class Sλp .

Proof. By interpolation, we only need to prove the result for the case p = 1. The case
p = +∞ is trivial. Suppose φ ∈ L1(Ω, dηλ) and

{
eλm

}∞

m=0
is an orthonormal basis in

L2
a(Ω, dVλ). For any m ≥ 1,

〈
Tλφ e

λ
m, e

λ
m

〉
λ
=

∫
Ω

∣∣eλm(z)
∣∣2 φ(z) dVλ(z). It follows that

∞∑

m=0

∣∣∣
〈
Tλφ e

λ
m, e

λ
m

〉
λ

∣∣∣ ≤
∫

Ω

∞∑

m=0

∣∣eλm(z)
∣∣2 |φ(z)| dVλ(z)

≤
∫

Ω

K1−λ(z, z) |φ(z)| 1

Cλ
Kλ(z, z) dV (z)

=

∫

Ω

|φ(z)| 1

Cλ
K(z, z) dV (z) =

∫

Ω

|φ(z)| dηλ(z).

By [22], the operator Tλφ ∈ Sλ1 and
∥∥Tλφ

∥∥
S1
λ ≤

∫
Ω
|φ(z)| dηλ(z). �

Let h > 1. The generalized Kantorvich constant K(p) is defined by

(2.1) K(p) =
hp − h

(p− 1)(h− 1)

(
p− 1

p

hp − 1

hp − h

)p

for any real number p and it is known that K(p) ∈ (0, 1] for p ∈ [0, 1]. We state below the
known results on the generalized Kantorvich constant K(p). Let A be a strictly positive
operator satisfying MI ≥ A ≥ mI > 0, where M > m > 0. Put h = M

m > 1. Then the
following [10] inequalities (2.2) and (2.3) hold for every unit vector x and are equivalent:

(2.2) K(p) 〈Ax, x〉p ≥ 〈Apx, x〉 ≥ 〈Ax, x〉p for any p > 1 or any p < 0;

(2.3) 〈Ax, x〉p ≥ 〈Apx, x〉 ≥ K(p) 〈Ax, x〉p for any p ∈ (0, 1].

The Kantorvich constant K(p) is symmetric with respect to p = 1
2 and K(p) is an

increasing function of p for p ≥ 1
2 , K(p) is a decreasing function of p for p ≤ 1

2 , and

K(0) = K(1) = 1. Further, K(p) ≥ 1 for p ≥ 1 or p ≤ 0, and 1 ≥ K(p) ≥ 2h
1
4

(h
1
2 +1)

for

p ∈ [0, 1].

Corollary 2.4. Suppose φ is a non-negative function on Ω, 1 ≤ p ≤ +∞ and Tλφ ∈ Sλp .

Then φ̃λ ∈ Lp(Ω, dηλ).

Proof. The case p = ∞ is not difficult to verify. So suppose 1 ≤ p < ∞ and Tλφ ∈ Sλp .

Then (Tλφ )
p ∈ Sλ1 since Tλφ is positive. By Proposition 2.1,

tr((Tλφ )
p) =

∫

Ω

〈
(Tλφ )

pk1−λz , k1−λz

〉
λ
dηλ(z) < +∞.

By (2.2),
∫

Ω

[
φ̃λ(z)

]p
dηλ(z) =

∫

Ω

〈
Tλφ k

1−λ
z , k1−λz

〉p
λ
dηλ(z)

≤
∫

Ω

〈
(Tλφ )

pk1−λz , k1−λz

〉
λ
dηλ(z) < +∞.

�

Proposition 2.5. Let Tλφ be strictly positive satisfying MI ≥ Tλφ ≥ mI > 0, where
M > m > 0. The following hold:

(i) If 0 < p <∞ and Tλφ ∈ Sλp then φ̃λ ∈ Lp(Ω, dηλ).

(ii) If 0 < p ≤ 1, φ̃λ ∈ Lp(Ω, dηλ) then T
λ
φ ∈ Sλp .

(iii) Let p ∈ [1,∞) be such that K(p) <∞. If φ̃λ ∈ Lp(Ω, dηλ) then T
λ
φ ∈ Sλp .
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Proof. To prove (i), suppose 0 < p ≤ 1 and Tλφ ∈ Sλp . Then
∫

Ω

〈
(Tλφ )

pk1−λz , k1−λz

〉
λ
dηλ(z) =

∫

Ω

〈∣∣Tλφ
∣∣p k1−λz , k1−λz

〉
λ
dηλ(z) < +∞.

Hence from (2.3), it follows that K(p)
∫
Ω

〈
Tλφ k

1−λ
z , k1−λz

〉p
λ
dηλ(z) < +∞. Since K(p) ∈

(0, 1] for p ∈ [0, 1], hence φ̃λ ∈ Lp(Ω, dηλ). Suppose p > 1 and Tλφ ∈ Sλp . Then
∫

Ω

〈
(Tλφ )

pk1−λz , k1−λz

〉
λ
dηλ(z) =

∫

Ω

〈∣∣Tλφ
∣∣p k1−λz , k1−λz

〉
λ
dηλ(z) < +∞.

Hence by (2.2),
∫
Ω

〈
Tλφ k

1−λ
z , k1−λz

〉p
λ
dηλ(z) < +∞. That is, φ̃λ ∈ Lp(Ω, dηλ). To

prove (ii), assume φ̃λ ∈ Lp(Ω, dηλ). Then if 0 < p ≤ 1 then by (2.3), we have∫
Ω

〈∣∣∣Tλφ
∣∣∣
p

k1−λz , k1−λz

〉
λ
dηλ(z) < +∞ and hence Tλφ ∈ Sλp . To prove (iii), suppose

1 ≤ p < +∞,K(p) < +∞ and φ̃λ ∈ Lp(Ω, dηλ). Then by (2.2) and (2.3), we have
∫

Ω

〈∣∣Tλφ
∣∣p k1−λz , k1−λz

〉
λ
dηλ(z) < +∞ and Tλφ ∈ Sλp .

�

The Berezin transform of a bounded linear operator on the Bergman space L2
a(Ω, dVλ)

contains a lot of information about the operator. It is one of the most useful tools in
the study of Toeplitz operators. Another useful tool is Carleson measures on Bergman
spaces. The characterization of boundedness and compactness of a positive Toeplitz
operator on the Bergman spaces in terms of Carleson measures appears first in [16] and
in terms of the Berezin transform appears first in [23]. For more details about Carleson
measures, see [15] and [1].

We will denote by β(z, w) the Bergman distance function on Ω. For any z in Ω and
r > 0, let

E(z, r) = {w ∈ Ω : β(z, w) < r} .
We denote by |E(z, r)| the normalized volume of E(z, r), that is, |E(z, r)| =

∫
E(z,r)

dV (w).

It is not difficult to see that |E(z, r)|1−λ is equivalent [23] to Vλ(E(z, r)) for any fixed
r > 0.

Let µ ≥ 0 be a finite Borel measure on Ω. We say that µ is a Carleson measure on
Lpa(Ω, dVλ) if there exists a constant M > 0 such that

∫

Ω

|f(z)|p dµ(z) ≤M

∫

Ω

|f(z)|p dVλ(z)

for all f in Lpa(Ω, dVλ). The following theorem gives a geometric description of Carleson
measures on Lpa(Ω, dVλ). In particular, it implies that Carleson measures on Lpa(Ω, dVλ)
only depends on λ, not on p.

Theorem 2.6. Suppose µ ≥ 0 is a finite Borel measure on Ω, p ≥ 1, then µ is a Carleson

measure on Lpa(Ω, dVλ) if and only if
µ(E(z, r))

|E(z, r)|1−λ
is bounded on Ω (as a function of z)

for all (or some) r > 0. Moreover, the following quantities are equivalent for any fixed
r > 0 and p ≥ 1:

(i) sup
{ µ(E(z, r))

|E(z, r)|1−λ
: z ∈ Ω

}
;

(ii) sup
{ ∫

Ω
|f(z)|p dµ(z)∫

Ω
|f(z)|p dVλ(z)

: f ∈ Lpa(Ω, dVλ)
}
.

Proof. For proof see [23]. �
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Let BTλΩ =
{
f ∈ L1(Ω, dVλ) : ‖f‖BTλ

Ω
= supz∈Ω |̃f |λ(z) < ∞

}
. The space L∞(Ω) is

properly contained in BTλΩ since if φ ∈ L∞(Ω) then for all z ∈ Ω,

|̃φ|λ(z) =
∣∣∣
〈
Tλ|φ|k

1−λ
z , k1−λz

〉
λ

∣∣∣ ≤
∥∥Tλ|φ|

∥∥ ≤ ‖|φ|‖∞ = ‖φ‖∞ <∞.

It also follows that if f ∈ L1(Ω, dVλ) then f ∈ BTλΩ if and only if |f |dVλ is a Carleson
measure on Ω. In the following proposition we verify that if φ ∈ BTλΩ then Tλφ is bounded

on L2
a(Ω, dVλ) and there is a constant C such that ‖Tλφ ‖ ≤ C‖φ‖BTλ

Ω
.

Proposition 2.7. Suppose 1 < p <∞ and φ ∈ BTλΩ . Then T
λ
φ is bounded on Lpa(Ω, dVλ)

and there is a constant C (depending only on p and λ) such that ‖Tλφ ‖p ≤ C‖φ‖BTλ
Ω
.

Proof. It is well-known that the dual of Lpa is Lqa (see [1]) where 1
p + 1

q = 1. For f ∈ Lpa
and g ∈ Lqa, by Holder’s inequality

∣∣∣
〈
Tλφ f, g

〉
λ

∣∣∣ = |〈φf, g〉λ| =
∣∣∣
∫

Ω

f(z)g(z)φ(z) dVλ(z)
∣∣∣

≤
∫

Ω

|φ(z)| |f(z)| |g(z)| dVλ(z)

≤
(∫

Ω

|f(z)|p |φ(z)| dVλ(z)
)1/p(∫

Ω

|g(z)|q |φ(z)| dVλ(z)
)1/q

.

Thus it follows that
∣∣〈Tλφ f, g

〉
λ

∣∣ ≤ C ‖φ‖BTλ
Ω
‖f‖p ‖g‖q where C is a constant depend-

ing only on p and λ. This shows that Tλφ is bounded on Lpa(Ω, dVλ) and
∥∥Tλφ

∥∥
p
≤

C ‖φ‖BTλ
Ω
. �

Proposition 2.8. For 1 ≤ p ≤ ∞, if φ ∈ Lp(Ω, dηλ) then φ̃λ ∈ Lp(Ω, dηλ) .

Proof. Suppose φ ∈ L1(Ω, dηλ). Then∫

Ω

∣∣∣φ̃λ(w)
∣∣∣ dηλ(w) =

∫

Ω

∣∣∣φ̃λ(w)
∣∣∣K(w,w)

dV (w)

Cλ

≤
∫

Ω

(∫

Ω

|φ(z)|
∣∣K1−λ(z, w)

∣∣2

K1−λ(w,w)

1

Cλ
Kλ(z, z) dV (z)

)
K(w,w)

dV (w)

Cλ

=

∫

Ω

|φ(z)|
∫

Ω

∣∣K1−λ(z, w)
∣∣2Kλ(w,w)

dV (w)

Cλ
Kλ(z, z)

dV (z)

Cλ

=

∫

Ω

|φ(z)|Kλ(z, z)
(∫

Ω

∣∣K1−λ(z, w)
∣∣2Kλ(w,w)

dV (w)

Cλ

)dV (z)

Cλ

=

∫

Ω

|φ(z)|Kλ(z, z)K1−λ(z, z)
dV (z)

Cλ

=

∫

Ω

|φ(z)|K(z, z)
dV (z)

Cλ
=

∫

Ω

|φ(z)| dηλ(z).

The change of order of integration is justified by the positivity of the integrand. Hence

φ̃λ ∈ L1(Ω, dηλ). Similarly if φ ∈ L∞(Ω) then φ̃λ ∈ L∞(Ω) as∣∣∣φ̃λ(w)
∣∣∣ =

∣∣〈φk1−λw , k1−λw

〉
λ

∣∣

≤
∥∥φk1−λw

∥∥
L2
a(Ω,dVλ)

∥∥k1−λw

∥∥
L2
a(Ω,dVλ)

≤ ‖φ‖∞
∥∥k1−λw

∥∥2
L2
a(Ω,dVλ)

= ‖φ‖∞ .

By Marcinkiewicz interpolation theorem [22] it follows that if φ ∈ Lp(Ω, dηλ) then φ̃λ ∈
Lp(Ω, dηλ) for 1 ≤ p ≤ ∞ . �
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3. Schatten class operators in L(L2
a(Ω, dVλ))

In this section we find conditions on bounded linear operator C ∈ L(L2
a(Ω, dVλ)) such

that C ∈ Sλp , 1 ≤ p < ∞ by comparing it with positive Toeplitz operators defined on

L2
a(Ω, dVλ) and applications of the result are also obtained.

Theorem 3.1. Let φ ∈ Lp(Ω, dηλ), ψ ∈ Lq(Ω, dηλ), where 1 ≤ p, q < ∞. Let C ∈
L(L2

a(Ω, dVλ)) is such that

(3.1)
∣∣〈CK1−λ

z ,K1−λ
w

〉
λ

∣∣2 ≤
〈
Tλ|φ|K

1−λ
z ,K1−λ

z

〉
λ

〈
Tλ|ψ|K

1−λ
w ,K1−λ

w

〉
λ

for all z, w ∈ Ω. Then C ∈ Sλ2r and ‖C‖22r ≤
∥∥Tλ|φ|

∥∥
p

∥∥Tλ|ψ|
∥∥
q
, where 1

p +
1
q = 1

r .

Proof. First we show that (3.1) implies

|〈Cf, g〉λ|
2 ≤

〈
Tλ|φ|f, f

〉
λ

〈
Tλ|ψ|g, g

〉
λ

for all f, g ∈ L2
a(Ω, dVλ). Let f =

∑n
j=1 cjK

1−λ
zj where cj are constants, zj ∈ Ω for

j = 1, 2, . . . , n and g =
∑m
i=1 diK

1−λ
wi where di are constants, wi ∈ Ω for i = 1, 2, . . . ,m.

Then

|〈Cf, g〉λ| =
∣∣∣
〈
C
( n∑

j=1

cjK
1−λ
zj

)
,

m∑

i=1

diK
1−λ
wi

〉
λ

∣∣∣ =
∣∣∣

m,n∑

i=1,j=1

cjdi

〈
CK1−λ

zj ,K1−λ
wi

〉
λ

∣∣∣

≤
m,n∑

i=1,j=1

|cj ||di|
∣∣∣
〈
CK1−λ

zj ,K1−λ
wi

〉
λ

∣∣∣

≤
m,n∑

i=1,j=1

|cj ||di|
〈
Tλ|φ|K

1−λ
zj ,K1−λ

zj

〉1/2

λ

〈
Tλ|ψ|K

1−λ
wi ,K1−λ

wi

〉1/2

λ

=
〈
Tλ|φ|

( n∑

j=1

cjK
1−λ
zj

)
,

n∑

j=1

cjK
1−λ
zj

〉1/2

λ

〈
Tλ|ψ|

( m∑

i=1

diK
1−λ
wi

)
,

m∑

i=1

diK
1−λ
wi

〉1/2

λ

=
〈
Tλ|φ|f, f

〉1/2

λ

〈
Tλ|ψ|g, g

〉1/2

λ
.

Since the set of vectors
{∑

cjK
1−λ
wj , wj ∈ Ω, j = 1, . . . , n

}
is dense in L2

a(Ω, dVλ), hence

|〈Cf, g〉λ|
2 ≤

〈
Tλ|φ|f, f

〉
λ

〈
Tλ|ψ|g, g

〉
λ
for all f, g ∈ L2

a(Ω, dVλ). If φ ∈ Lp(Ω, dηλ), then

Tλ|φ| ∈ Sλp and

∥∥Tλ|φ|
∥∥
p
=

(
trace (Tλ|φ|)

p
) 1
p

<∞.

Similarly, since ψ ∈ Lq(Ω, dηλ) then

∥∥Tλ|ψ|
∥∥
q
=

(
trace (Tλ|ψ|)

q
) 1
q

<∞.
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Let
{
uλn

}∞

n=0
and

{
σλn

}∞

n=0
be two orthonormal sequences in L2

a(Ω, dVλ). Then using
Holder’s inequality, we obtain that

∞∑

n=0

∣∣〈Cuλn, σλn
〉
λ

∣∣2r ≤
∞∑

n=0

〈
Tλ|φ|u

λ
n, u

λ
n

〉r
λ

〈
Tλ|ψ|σ

λ
n, σ

λ
n

〉r
λ

≤
( ∞∑

n=0

〈
Tλ|φ|u

λ
n, u

λ
n

〉p
λ

) r
p
( ∞∑

n=0

〈
Tλ|ψ|σ

λ
n, σ

λ
n

〉q
λ

) r
q

≤
( ∞∑

n=0

〈
(Tλ|φ|)

puλn, u
λ
n

〉
λ

) r
p
( ∞∑

n=0

〈
(Tλ|ψ|)

qσλn, σ
λ
n

〉
λ

) r
q

≤
(
trace (Tλ|φ|)

p
) r
p
(
trace (Tλ|ψ|)

q
) r
q

=
∥∥Tλ|φ|

∥∥r
p

∥∥Tλ|ψ|
∥∥r
q

if 1
r = 1

p +
1
q . Thus ‖C‖2r ≤

∥∥Tλ|φ|
∥∥ 1

2

p

∥∥Tλ|ψ|
∥∥ 1

2

q
. �

Corollary 3.2. If φ, ψ ∈ Lp(Ω, dηλ) and C ∈ L(L2
a(Ω, dVλ)) is such that

∣∣〈CK1−λ
z ,K1−λ

w

〉
λ

∣∣2 ≤
〈
Tλ|φ|K

1−λ
z ,K1−λ

z

〉
λ

〈
Tλ|ψ|K

1−λ
w ,K1−λ

w

〉
λ

for all z, w ∈ Ω then ‖C‖2p ≤
∥∥Tλ|φ|

∥∥
p

∥∥Tλ|ψ|
∥∥
p
.

Proof. The proof follows from Theorem 3.1 if we assume p = q. �

Corollary 3.3. If A,B are two positive operators in L(L2
a(Ω, dVλ) and A ∈ Sλp , B ∈

Sλq , 1 ≤ p, q <∞ and C ∈ L(L2
a(Ω, dVλ) is such that

∣∣〈CK1−λ
z ,K1−λ

w

〉
λ

∣∣2 ≤
〈
AK1−λ

z ,K1−λ
z

〉
λ

〈
BK1−λ

w ,K1−λ
w

〉
λ

for all z, w ∈ Ω then ‖C‖22r ≤ ‖A‖p ‖B‖q if 1
p+

1
q = 1

r . If p = q, then ‖C‖2p ≤ ‖A‖p ‖B‖p.

Proof. Proceeding similarly as in Theorem 3.1 and Corollary 3.2 by replacing Tλ|φ| by A

and Tλ|ψ| by B, the corollary follows. �

Corollary 3.4. If A,B ∈ L(L2
a(Ω, dVλ)), 0 ≤ A,A ∈ Sλp , 1 ≤ p < ∞ and (3.1) holds for

z, w ∈ Ω, then ‖C‖22p ≤ ‖A‖p ‖B‖.

Proof. Let
{
uλn

}∞

n=0
and

{
σλn

}∞

n=0
be two orthonormal bases for L2

a(Ω, dVλ), then

∣∣〈Cuλn, σλn
〉
λ

∣∣2 ≤
〈
Auλn, u

λ
n

〉
λ

〈
Bσλn, σ

λ
n

〉
λ
≤

〈
Auλn, u

λ
n

〉
λ
‖B‖ .

Then
∣∣〈Cuλn, σλn

〉
λ

∣∣2p ≤ ‖B‖p
〈
Auλn, u

λ
n

〉p
λ
. Hence

∞∑

n=0

∣∣〈Cuλn, σλn
〉
λ

∣∣2p ≤ ‖B‖p
∞∑

n=0

〈
Auλn, u

λ
n

〉p
λ

and ‖C‖22p ≤ ‖B‖ ‖A‖p . �

If φ ∈ Lp(Ω, dηλ) then Tλφ ∈ Sλp . Hence |Tλφ | ∈ Sλp . Thus if B ∈ L(L2
a(Ω, dVλ)), C ∈

L(L2
a(Ω, dVλ)) are such that

∣∣〈CK1−λ
z ,K1−λ

w

〉
λ

∣∣2 ≤
〈
|Tλφ |K1−λ

z ,K1−λ
z

〉
λ

〈
BK1−λ

w ,K1−λ
w

〉
λ

for all z, w ∈ Ω then C ∈ Sλ2p and ‖C‖22p ≤ ‖B‖
∥∥|Tλφ |

∥∥
p
.
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4. Schatten p-class operators in L(L2
a(Ω,

dV
C0

))

In this section we assume that Ω is in its standard realization so that 0 ∈ Ω and Ω is
circular. The domain Ω is also starlike; i.e., z ∈ Ω implies that tz ∈ Ω for all t ∈ [0, 1].
Let Aut(Ω) be the Lie group of all automorphisms (biholomorphic mappings) of Ω, and
G0, the isotropy subgroup at 0; i.e., G0 = {ψ ∈ Aut(Ω) : ψ(0) = 0}. It is well known [14]
that G0 is compact and that G0 is a subgroup of the unitary group Un of Cn. Since Ω is
bounded symmetric, we can canonically define [4] for each a in Ω an automorphism φa
in Aut(Ω) such that

(i) φa ◦ φa(z) ≡ z ;
(ii) φa(0) = a, φa(a) = 0;
(iii) φa has a unique fixed point in Ω.

Actually, the above three conditions completely characterize the φa’s as the set of all
(holomorphic) geodesic symmetrics of Ω.

For any a ∈ Ω, let γa be the unique geodesic such that γa(0) = 0, γa(1) = a. Since
Ω is Hermitian symmetric, there exists a unique φa ∈ Aut(Ω) such that φaoφa(z) ≡ z
and γa(

1
2 ) is an isolated fixed point of φa and φa is the geodesic symmetry at γa(

1
2 ). In

particular, φa(0) = a and φa(a) = 0. If a = 0, then we have φa(z) = −z for all z in Ω. A
good reference for this is [12]. We denote by ma the geodesic midpoint γa(

1
2 ) of 0 and a.

Given ψ ∈ Aut(Ω), let a = ψ−1(0), then we have ψ ◦ φa(0) = ψ(a) = 0, thus ψ ◦ φa ∈ G0

and so there exists a unitary matrix U such that ψ = Uφa, U ∈ G0. If ψ ∈ Aut(Ω) has
an isolated fixed point in Ω, then ψ has a unique fixed point and each φa has ma as a
unique fixed point. Further, for any a and b in Ω, there exists a unitary U ∈ G0 such
that φb ◦ φa = Uφφa(b) and φma ◦ φa = −φma for any a ∈ Ω. If a ∈ Ω and U ∈ G0, then
Uφa = φUaU .

For any ψ ∈ Aut(Ω), we denote by Jψ(z) the complex Jacobian determinant of the
mapping ψ : Ω −→ Ω. If a ∈ Ω, then by a result of [4], there exists a unimodulus constant
θ(a) such that

Jφa(z) = θ(a)ka(z)

for all z ∈ Ω. In the simplest case Ω = D, we have φa(z) =
a−z
1−az and Jφa(z) = φ′a(z) =

−ka(z), thus θ(a) = −1 is independent of a. This is also true for any bounded symmetric
domain Ω. In fact θ(a) = (−1)n for any a ∈ Ω, where n is the (complex) dimension of Ω.
Suppose ψ ∈ Aut(Ω), there exists a unitary U ∈ G0 such that ψ = Uφa with a = ψ−1(0).
Taking complex Jacobian determinant of this equality, we get

Jψ(z) = det(U)Jφa(z) = (−1)n det(U)ka(z).

In this section we shall assume λ = 0. Then dV0(z) =
dV (z)
C0

is the normalized Lebesgue
measure on Ω. Let P0 = P we define the Toeplitz and Hankel operators in the usual
way. We write T 0

φ , H
0
φ, h

0
φ, S

0
φ as Tφ, Hφ, hφ and Sφ respectively for notational simplicity.

For A ∈ L(L2
a(Ω,

dV
C0

)), let Ã(z) = 〈Akz, kz〉L2
a(Ω,

dV
C0

) for z ∈ Ω, the Berezin symbol of A.

That is, Ã0(z) = Ã(z) for all z ∈ Ω. Here kz(w) = K(w,z)√
K(z,z)

, where K(z, w) = Kz(w)

is the reproducing kernel of L2
a(Ω,

dV (z)
C0

). Let φ̃(z) = 〈Tφkz, kz〉L2
a(Ω,

dV
C0

) where Tφ is

the Toeplitz operator with symbol φ ∈ L∞(Ω) on L2
a(Ω,

dV
C0

). Let S0
p = Sp, the Schatten

p-class in L(L2
a(Ω,

dV
C0

)). In this section we show that if 1 ≤ p <∞, dη(z) = K(z, z)dV (z)
C0

and Tφ ∈ Sp then φ̃ ∈ Lp(Ω, dη).
Given z ∈ Ω and f any measurable function on Ω, we define a function Uzf on Ω

by Uzf(w) = kz(w)f(φz(w)). Since |kz|2 is real Jacobian determinant of the mapping
φz (see [4]), Uz is easily seen to be a unitary operator on L2(Ω, dVC0

) and L2
a(Ω,

dV
C0

). It
is to check that U∗

z = Uz, thus Uz is a self-adjoint unitary operator. This implies that
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spectrum σ(Uz) = {−1, 1}. We can check easily that Uz 6= ±I. If φ ∈ L∞(Ω, dVC0
) and

z ∈ Ω then UzTφ = Tφ◦φzUz. This is so as PUz = UzP and for f ∈ L2
a(Ω,

dV
C0

),

Tφ◦φzUzf = Tφ◦φz ((f ◦ φz)kz)
= P ((φ ◦ φz)(f ◦ φz)kz) = P (Uz(φf))

= UzP (φf) = UzTφf.

Theorem 4.1. Suppose 1 ≤ p < ∞ and dη(z) = K(z, z)dV (z)
C0

. If Tφ ∈ Sp then φ̃ ∈
Lp(Ω, dη).

Proof. Suppose Tφ ∈ Sp. Then
∫
Ω
〈|Tφ|p kw, kw〉L2

a(Ω,
dV
C0

) dη(w) < ∞. (Henceforth in

the proof the inner product and norm is evaluated in the space L2(Ω, dVC0
).) That is,

∫
Ω

〈(
T ∗
φTφ

)p/2
kw, kw

〉
dη(w) <∞. If 2 ≤ p <∞, then

∫

Ω

〈
T ∗
φTφkw, kw

〉p/2
dη(w) ≤

∫

Ω

〈(
T ∗
φTφ

)p/2
kw, kw

〉
dη(w) <∞.

This implies∫

Ω

‖P (φ ◦ φw)‖p dη(w) =
∫

Ω

‖P (Uw (φkw))‖p dη(w)

=

∫

Ω

‖UwTφkw‖p dη(w) =
∫

Ω

‖Tφkw‖p dη(w)

=

∫

Ω

〈
T ∗
φTφkw, kw

〉p/2
dη(w) <∞.

Now

‖P (φ ◦ φw) (0)‖ = |〈P (φ ◦ φw) , 1〉| = |〈Uw (Tφkw) , 1〉|
= |〈Tφkw, Uw1〉| = |〈Tφkw, kw〉|
≤ ‖Tφkw‖ = ‖P (φ ◦ φw)‖ .

Thus
∫
Ω
|P (φ ◦ φw(0))|p dη(w) <∞. That is,

∫
Ω

∣∣∣φ̃(w)
∣∣∣
p

dη(w) <∞ and φ̃ ∈ Lp (Ω, dη).

Suppose 1 ≤ p < 2. Then by Heinz inequality [11], [9] it follows that

∞ >

∫

Ω

〈|Tφ|p kw, kw〉 dη(w) =
∫

Ω

〈
|Tφ|2(

p
2
)
kw, kw

〉
dη(w)

≥
∫

Ω

|〈Tφkw, kw〉|2〈∣∣T ∗
φ

∣∣2(1−p/2)kw, kw
〉dη(w) =

∫

Ω

∣∣φ̃(w)
∣∣2

∥∥P (φ ◦ φw)
∥∥2−p dη(w)

=

∫

Ω

∣∣φ̃(w)
∣∣2 ∥∥P

(
φ ◦ φw

)∥∥p−2
dη(w) ≥

∫

Ω

∣∣φ̃(w)
∣∣2

∥∥P
(
φ ◦ φw

)∥∥2
∥∥P

(
φ ◦ φw

)∥∥p dη(w)

≥
∫

Ω

∣∣φ̃(w)
∣∣2

C2 ‖φ‖2BT
|P (φ ◦ φw)(0)|p dη(w) =

∫

Ω

∣∣φ̃(w)
∣∣2

C2 ‖φ‖2BT

∣∣φ̃(w)
∣∣pdη(w)

since
〈∣∣T ∗

φ

∣∣2−p kw, kw
〉
=

〈∣∣T ∗
φ

∣∣2( 2−p
2

)
kw, kw

〉
≤

〈∣∣T ∗
φ

∣∣2 kw, kw
〉 2−p

2

=
〈
TφT

∗
φkw, kw

〉 2−p
2 =

∥∥T ∗
φkw

∥∥2−p =
∥∥P

(
φ ◦ φw

)∥∥2−p .

Hence
∫
Ω

∣∣φ̃(w)
∣∣p+2

dη(w) <∞ and therefore
∫
Ω

∣∣φ̃(w)
∣∣pdη(w) <∞. Thus φ̃ ∈ Lp(Ω, dη).

�
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Let π : L(L2
a(Ω)) −→ L(L2

a(Ω))/LC(L2
a(Ω)) be the natural surjection onto the Calkin

algebra L(L2
a(Ω))/LC(L2

a(Ω)).

Corollary 4.2. Suppose 1 ≤ p ≤ ∞, I−T ∗
φTφ ∈ Sp and σ(Tφ) does not fill D. Then φ 6∈

Lp(Ω, dη) and Tφ =W +R where W is unitary, R ∈ Sp. In addition if T−1
φ ∈ L(L2

a(Ω))

and λ ∈ σ(Tφ) with |λ| 6= 1 then λ is an isolated eigenvalue of Tφ.

Proof. Suppose I − T ∗
φTφ ∈ Sp and φ ∈ Lp(Ω, dη). Then by Lemma 2.3, Tφ ∈ Sp and

therefore I ∈ Sp. But this is not true. Thus φ 6∈ Lp(Ω, dη). Now since I − T ∗
φTφ ∈ Sp,

hence π(Tφ) is an isometry and further since σ(Tφ) does not fill D, hence π(Tφ) is unitary.
By [6], Tφ = U +K where K ∈ LC(L2

a(Ω)) and U is unitary or a shift or the adjoint of
a shift. As σ(Tφ) does not fill D, hence the operator U is unitary. Thus the Fredholm
index of Tφ = ind(Tφ) = dimkerTφ − dimkerT ∗

φ = 0 and Tφ = V S where V is unitary

and S2 = T ∗
φTφ. From the hypothesis I − T ∗

φTφ ∈ Sp it follows that I − S ∈ Sp. Hence

Tφ = V S = V − V (I − S) = V + R where V is unitary and R = −V (I − S) ∈ Sp. Now

suppose λ ∈ σ(Tφ) but |λ| 6= 1, T−1
φ ∈ L(L2

a(Ω)) and I − T ∗
φTφ ∈ Sp. As Tφ = V +R, we

have I = T−1
φ Tφ = T−1

φ V + T−1
φ R. Therefore, V ∗ = T−1

φ V V ∗ + T−1
φ RV ∗ where R ∈ Sp.

That is, T−1
φ = V ∗ − T−1

φ RV ∗ where R ∈ Sp. By [18], each λ ∈ σ(Tφ) with |λ| > 1 is an

isolated eigenvalue and σ(Tφ)
⋂

D is either D or a countable set of isolated eigenvalues
of Tφ. Hence each λ ∈ σ(Tφ)

⋂
D is also an isolated eigenvalue of Tφ. �

Corollary 4.3. Suppose φ ≥ 0 and there exists z ∈ Ω such that Tφ−Uz ∈ Sp, 1 ≤ p <∞.
If λ ∈ σ(Tφ) and λ 6= ±1 then λ is an isolated eigenvalue of Tφ with finite multiplicity.

Proof. The operator Uz is unitary and σ(Uz) = {−1, 1}. For proof see [21]. Since φ ≥ 0,
hence Tφ is positive and therefore a normal operator. Notice that Tφ is a compact
perturbation of Uz. According to Weyl’s theorem for normal operators, Tφ and Uz have
same Weyl spectrum [2]. For the normal operator Tφ the Weyl spectrum coincides with
the points of σ(Tφ) which are not isolated eigenvalues with finite multiplicity [2]. The
operators for which the above set coincides with the Weyl spectrum are characterized in
[20]. Since the Weyl spectrum of Uz and, hence the Weyl spectrum of Tφ is contained in
σ(Uz) = {−1, 1}, the conclusion of the corollary follows. �

Lemma 4.4. If {An} , {Bn} are sequences in Sλp and An
w−→ A and Bn

s−→ B then

AnBn
w−→ AB.

Proof. Fix f, g ∈ L2
a(Ω, dVλ). Then

〈AnBnf, g〉λ = 〈An(Bn −B)f, g〉λ + 〈AnBf, g〉λ .
Since 〈AnBf, g〉λ −→ 〈ABf, g〉λ and |〈An(Bn −B)f, g〉λ| ≤ M ‖(Bn −B)f‖ ‖g‖, where
M = supn {‖An‖} < ∞, by the uniform boundedness principle, we obtain that
〈AnBnf, g〉λ −→ 〈ABf, g〉λ. �

Lemma 4.5. Let L denote either the space of all operators on L2
a(Ω, dVλ), with the weak

operator topology, or any of the Banach spaces Sλp (1 < p < ∞) with its weak topology.
If {An}, {Bn} ⊂ L, with An −→ A and Bn −→ B weakly, and if each Bn has the upper
triangular form, then AnBn −→ AB weakly.

Proof. We denote the matrices of the operators An, Bn, AnBn and AB as (Ân(i, j)),

(B̂n(i, j)), (dn(i, j)) and (d(i, j)) respectively. One verifies that if {An} ⊂ L then An
w−→

A if and only if {‖An‖L} is a bounded sequence, and Ân(i, j) −→ Â(i, j) for all i, j. Thus
to complete the proof we have to show that ‖AnBn‖L are bounded and dn(i, j) −→ d(i, j)
for all i, j. We recall that in Sp we have

‖AnBn‖p ≤ ‖AnBn‖p/2 ≤ ‖An‖p ‖Bn‖p .
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Thus {‖AnBn‖L} is a bounded sequence. Further since each Bn is upper triangular,

dn(i, j) =

j∑

k=1

Ân(i, k)B̂n(k, j)

and

d(i, j) =

j∑

k=1

Â(i, k)B̂(k, j),

where (Â(i, j)) and (B̂(i, j)) denote the matrices of A and B respectively. Thus, for each
fixed choice of i, j, dn(i, j) −→ d(i, j). �

Lemma 4.6. Let p ≥ 1, A ∈ L(L2
a(Ω, dVλ)) and An ∈ Sλp for all n ∈ N. If An −→ A in

weak operator topology and ‖An‖p ≤ C <∞ for all n ∈ N and for some constant C > 0
then A ∈ Sλp and ‖A‖p ≤ C.

Proof. For each n ∈ N, define

ξn(K) = tr(AnK).

Then ξn ∈ S∗
q where 1

p + 1
q = 1 and ‖ξn‖ = ‖An‖p ≤ C < ∞. By Banach-Alaoglu’s

theorem [8], there exists a subsequence {ξnk} such that ξnk −→ ξ in w∗-topology and ξ ∈
(Sλq )

∗. Therefore tr(AnkK) = ξnk(K) −→ ξ(K), for all K ∈ Sλq and |ξ(K)| ≤ M‖K‖q,
for some constantM > 0. On the other hand, since An −→ A in weak operator topology,
tr(AnK) −→ tr(AK) for all operators K of finite rank. The lemma follows since

‖A‖p = sup {|tr(AK)| : rank(K) <∞ and ‖K‖q ≤ 1} <∞.

�

5. Schatten class little Hankel operators

In this section we find conditions on φ ∈ L2(Ω, dVC0
) such that the little Hankel operator

Sφ defined on L2
a(Ω,

dV
C0

) belong to the class Sp, 1 ≤ p < ∞. We then extend the
result to obtain Schatten class characterization of little Hankel operators defined on
L2
a(Ω, dVλ). We also present many applications of these characterizations. Recall that

for φ ∈ L∞(dV ), we define the little Hankel operator Sφ from L2
a(Ω,

dV
C0

) into L2
a(Ω,

dV
C0

)

as Sφf = P (J(φf)) where J : L2(Ω, dVC0
) −→ L2(Ω, dVC0

) is defined as Jf(z) = f(z) and

P is the orthogonal projection from L2(Ω, dVC0
) onto L2

a(Ω,
dV
C0

) and

Pf(z) =

∫

Ω

K(z, w)f(w) dV (w).

The above integral formula extends P to L1(Ω, dVC0
). The little Hankel operator Sφ can

also be defined for φ ∈ L2(Ω, dVC0
) as Sφf = P (J(φf)) for f ∈ L2

a(Ω,
dV
C0

). Notice that

if φ ∈ L2(Ω, dVC0
), then Sφ = SPφ in the sense that Sφg = SPφg for all g ∈ H∞(Ω)

which is dense in L2
a(Ω,

dV
C0

). Let P be the orthogonal projection from L2(Ω, dVC0
) onto

L2
a(Ω,

dV
C0

) =
{
f : f ∈ L2

a(Ω,
dV
C0

)
}
. Then

Pf(z) =

∫

Ω

K(z, w)f(w)
dV (w)

C0
=

∫

Ω

K(w, z)f(w)
dV (w)

C0
.

This formula also extends P to L1(Ω, dVC0
). Given φ ∈ L2(Ω, dVC0

), define the operators Hφ

and hφ with domain L2
a(Ω,

dV
C0

) as follows : Hφf = (I−P )(φf);hφf = P (φf), where I is
the identity operator. The operator Hφ is called the Hankel operator with symbol φ and
hφ is called the reduced (or little) Hankel operator with symbol φ. The word “reduced”
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(or little) is justified by the inequality P − P0 ≤ I − P , where P0 is the orthogonal
projection of rank one from L2(Ω, dVC0

) onto the constants, that is,

P0f(z) =

∫

Ω

f(z)
dV (z)

C0
.

We refer both the operators Sφ and hφ as “little” Hankel operators since JSφ = hφ and
J is a unitary operator.

The main purpose of this section is to demonstrate that there exists an integral trans-
form on Ω which carries a lot of information on the little Hankel operators. We give a
unified treatment on the size estimates of Sφ using the integral transform W defined as

follows. Given f ∈ L1(Ω, dVC0
),Wf is the function on Ω defined by

Wf(z) = λΩ

∫

Ω

f(w)k2z(w)
dV (w)

C0
, z ∈ Ω,

where λ−1
Ω =

∫
Ω
K(z, z)−1 dV (z)

C0
. Notice that for φ ∈ L2(Ω, dVC0

), we always have Sφ =
SPφ, where P is the Bergman projection. Thus in considering little Hankel operators, we
can content ourselves with antiholomorphic symbols. We collect here some of the basic
properties of the integral transform W as follows. If f ∈ L2(Ω, dVC0

), then

(i) PWf = Pf ;
(ii) WPf =Wf ;
(iii) W 2f =Wf ;

(iv) W is a bounded operator on Lp
(
Ω,K(z, z)dV (z)

C0

)
for all 1 ≤ p ≤ +∞ and W is

an orthogonal projection on the Hilbert space L2
(
Ω,K(z, z)dV (z)

C0

)
.

The boundedness of W on Lp(Ω,K(z, z)dV (z)
C0

), 1 ≤ p ≤ +∞ implies that

∫

Ω

(Wf)(z)g(z)K(z, z)
dV (z)

C0
=

∫

Ω

f(z)Wg(z)K(z, z)
dV (z)

C0

for all f ∈ Lp(Ω,K(z, z)dV (z)
C0

); g ∈ Lq(Ω,K(z, z)dV (z)
C0

) with 1
p +

1
q = 1. Under the usual

integral pairing 〈, 〉 (with respect to dV
C0

), we have

W ∗f(z) = λΩ

∫

Ω

K(z, w)2

K(w,w)
f(w)

dV (w)

C0
= Qf(z),

where Q is a bounded projection from L1(Ω, dVC0
) onto L1

a(Ω,
dV
C0

). It is also not difficult

to check that (i)Sφ = SPφ (ii)Sφ = SWφ and (iii)Wφ(z) = λΩ〈Sφkz, kz〉. We verify now

that if φ ∈ L2(Ω, dVC0
) then Sφ is bounded if and only if Wφ(z) is bounded in Ω. Since

each kz is a unit vector in L2(Ω, dVC0
), we have for all z ∈ Ω,

|Wφ(z)| = λΩ
∣∣〈Sφkz, kz

〉∣∣ ≤ λΩ
∥∥Sφkz

∥∥ ≤ λΩ
∥∥Sφ

∥∥.

Hence ‖Wφ‖∞ ≤ λΩ‖Sφ‖. On the other hand, Sφ = SPφ = SPWφ = SWφ. Thus

‖Sφ‖ = ‖SWφ‖. It is easy to see that ‖Sψ‖ ≤ ‖ψ‖∞ for all ψ ∈ L∞(Ω). Hence we also

have ‖Sφ‖ ≤ ‖Wφ‖∞.

Theorem 5.1. Suppose 1 ≤ p ≤ +∞. Then Sφ ∈ Sp if and only if Wφ ∈
Lp

(
Ω,K(z, z)dV (z)

C0

)
.

Proof. We shall first show that if Wφ ∈ Lp(Ω,K(z, z)dV (z)
C0

) then Sφ ∈ Sp. We have
already proved the case p = ∞. We need only to show for 1 ≤ p <∞. Since Sφ = SWφ,
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it suffices to show that Sφ is in Sp whenever φ ∈ Lp(Ω,K(z, z)dV (z)
C0

). From Heinz

inequality [11], [9], it follows that
∣∣∣
〈
Sφkz, kw

〉∣∣∣
2

≤
〈
|Sφ|kz, kz

〉〈
|S∗
φ
|kw, kw

〉
=

〈(
S∗
φ
Sφ

)1/2

kz, kz

〉〈(
SφS

∗
φ

)1/2

kw, kw

〉

≤
〈(
S∗
φ
Sφ

)
kz, kz

〉1/2 〈(
SφS

∗
φ

)
kw, kw

〉1/2

=
∥∥Sφkz

∥∥
L2(Ω, dV

C0
)

∥∥S
φ
+kw

∥∥
L2(Ω, dV

C0
)

=
∥∥PJ(φkz)

∥∥
L2(Ω, dV

C0
)

∥∥PJ(φ+kw)
∥∥
L2(Ω, dV

C0
)

≤
∥∥φkz

∥∥
L2(Ω, dV

C0
)

∥∥φ+kw
∥∥
L2(Ω, dV

C0
)

=
(∫

Ω

|φ(u)|2|kz(u)|2
dV (u)

C0

)1/2(∫

Ω

|φ+(v)|2|kw(v)|2
dV (v)

C0

)1/2

=
〈
T|φ|2kz, kz

〉1/2 〈
T|φ+|2kw, kw

〉1/2

=
〈
M|φ|2kz, kz

〉1/2 〈
M|φ+|2kw, kw

〉1/2

=
〈
M2

|φ|kz, kz

〉1/2 〈
M2

|φ+|kw, kw

〉1/2

≤ d
〈
M|φ|kz, kz

〉 〈
M|φ+|kw, kw

〉
= d

〈
T|φ|kz, kz

〉 〈
T|φ+|kw, kw

〉

for some constant d ≥ 0. The last inequality follows from the Kantorvich inequality
〈Ax, x〉p ≥ 〈Apx, x〉 ≥ K(p) 〈Ax, x〉p , p ∈ (0, 1], ‖x‖ = 1. Taking p = 1

2 , we have

〈Ax, x〉
1
2 ≤ 1

K( 1
2
)

〈
A

1
2x, x

〉
and K( 12 ) ∈ (0, 1]. Thus

∣∣∣
〈
SφKz,Kw

〉∣∣∣
2

≤ d
〈
T|φ|Kz,Kz

〉 〈
T|φ+|Kw,Kw

〉
.

Now φ ∈ Lp(Ω,K(z, z)dV (z)) implies |φ|, |φ+| ∈ Lp(Ω,K(z, z)dV (z)). Hence T|φ|, T|φ+| ∈
Sp. Hence by Theorem 3.1, Sφ ∈ Sp. Now we shall prove that if 1 ≤ p ≤ +∞, then

Sφ ∈ Sp implies Wφ ∈ Lp(Ω,K(z, z)dV (z)). We have already settled the case p = +∞.
Now we assume 2 ≤ p <∞ and Sφ ∈ Sp. Then

∫

Ω

|(Wφ) (z)|pK(z, z) dV (z) =

∫

Ω

λpΩ

∣∣∣
〈
Sφkz, kz

〉∣∣∣
p

K(z, z) dV (z)

≤ λpΩ

∫

Ω

∥∥∥Sφkz
∥∥∥
p

K(z, z) dV (z) = λpΩ

∫

Ω

〈
Sφkz, Sφkz

〉p/2
K(z, z) dV (z)

= λpΩ

∫

Ω

〈
S∗
φ
Sφkz, kz

〉p/2
K(z, z) dV (z) ≤ λpΩ

∫

Ω

〈
(S∗
φ
Sφ)

p/2kz, kz

〉
K(z, z) dV (z)

= λpΩ

∫

Ω

〈
|Sφ|pkz, kz

〉
K(z, z) dV (z).

Thus ‖Wφ‖Lp(Ω,K(z,z)dV (z)) ≤ λΩ

(∫
Ω

〈
|Sφ|pkz, kz

〉
K(z, z) dV (z)

)1/p

< ∞ as Sφ ∈ Sp.

Hence Wφ ∈ Lp(Ω,K(z, z)dV (z)).
The proof for 1 ≤ p < 2 is very tricky. Fix a sequence of points {an} in Ω such that

(1) Ω =
⋃∞
n=1E(an, r), where E(an, r) is the Bergman metric ball with center at an and

radius r, a fixed positive number;
(2) There exists a constant C > 0 such that every function f ∈ L2

a(Ω, dV (z)) can be

written as f(z) =
∑∞
n=1 cnkan(z) with ‖f‖2 ≤ C inf

{
√∑∞

n=1 |cn|2 : f =
∑∞
n=1 cnkan

}
.
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One can refer [7] for the construction of such a sequence {an}. Define an operator A on
L2
a(Ω, dV (z)) by letting Aen = kan , n = 1, 2, . . ., where {en}∞n=1 is a fixed orthonormal

basis of L2
a(Ω, dV (z)). If f ∈ L2

a(Ω, dV (z)) with f =
∑∞
n=1 fnen, then Af =

∑∞
n=1 fnkan

and by (2) above,

‖Af‖ ≤ C inf

{√√√√
∞∑

n=1

|cn|2 : Af =

∞∑

n=1

cnkan

}
≤ C

√√√√
∞∑

n=1

|fn|2 = C‖f‖.

Thus A is a bounded linear operator. Let A be the operator on L2
a(Ω, dV (z)) defined by

Aen = kan ; then A is also bounded. Suppose Sφ ∈ Sp with 1 ≤ p < 2. Then we also

have A
∗
SφA ∈ Sp. This implies

∞∑

n=1

∣∣∣
〈
A

∗
SφAen, en

〉∣∣∣
p

< +∞ or
∞∑

n=1

∣∣∣
〈
Sφkan , kan

〉∣∣∣
p

< +∞.

That is,
∑∞
n=1 |Wφ(an)|p < +∞. It is not difficult to show that [23], Wφ(z) behaves like

Wφ(an) for z ∈ E(an, r). Also [23], the Bergman kernel K(z, z) behaves like K(an, an) ∼=
1

E(an,r)
for z ∈ E(an, r). It thus follows that

∫

Ω

|Wφ(z)|pK(z, z) dV (z) ≤
∞∑

n=1

∫

E(an,r)

|Wφ(z)|pK(z, z) dV (z)

≤ C1

∞∑

n=1

1

|E(an, r)|

∫

E(an,r)

|Wφ(z)|pdV (z)

≤ C2

∞∑

n=1

1

|E(an, r)|

∫

E(an,r)

|Wφ(an)|pdV (z) = C2

∞∑

n=1

|Wφ(an)|p <∞

and Wφ ∈ Lp
(
Ω,K(z, z)dV (z)

)
. This completes the proof. �

Corollary 5.2. If 1 ≤ p ≤ ∞ and φ ∈ Lp(Ω, dηλ) then S
λ
φ
∈ Sλp .

Proof. Suppose φ ∈ Lp(Ω, dηλ) and 1 ≤ p <∞. From Heinz inequality [9], [11], it follows
that∣∣∣
〈
Sλ
φ
k1−λz , k1−λw

〉
λ

∣∣∣
2

≤
〈
|Sλ
φ
|k1−λz , k1−λz

〉
λ

〈
|(Sλ

φ
)∗|k1−λw , k1−λw

〉
λ

=

〈((
Sλ
φ

)∗

Sλ
φ

)1/2

k1−λz , k1−λz

〉1/2

λ

〈(
Sλ
φ

(
Sλ
φ

)∗)
k1−λw , k1−λw

〉1/2

λ

=
∥∥∥Sλ

φ
k1−λz

∥∥∥
L2(Ω,dVλ)

∥∥∥Sλ
φ
+k1−λw

∥∥∥
L2(Ω,dVλ)

=
∥∥PλJλ(φk1−λz )

∥∥
L2(Ω,dVλ)

∥∥∥PλJλ(φ
+
k1−λw )

∥∥∥
L2(Ω,dVλ)

≤
∥∥φk1−λz

∥∥
L2(Ω,dVλ)

∥∥∥φ+k1−λw

∥∥∥
L2(Ω,dVλ)

=

(∫

Ω

|φ(u)|2|k1−λz (u)|2dVλ
)1/2 (∫

Ω

|φ+(v)|2|k1−λw (v)|2dVλ
)1/2

=
〈
Tλ|φ|2k

1−λ
z , k1−λz

〉1/2

λ

〈
Tλ|φ+|2k

1−λ
w , k1−λw

〉1/2

λ

=
〈
Mλ

|φ|2k
1−λ
z , k1−λz

〉1/2

λ

〈
Mλ

|φ+|2k
1−λ
w , k1−λw

〉1/2

λ

=

〈(
Mλ

|φ|

)2

k1−λz , k1−λz

〉1/2

λ

〈(
Mλ

|φ+|

)2

k1−λw , k1−λw

〉1/2

λ
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≤ dλ

〈
Mλ

|φ|k
1−λ
z , k1−λz

〉
λ

〈
Mλ

|φ+|k
1−λ
w , k1−λw

〉
λ

= dλ

〈
Tλ|φ|k

1−λ
z , k1−λz

〉
λ

〈
Tλ|φ+|k

1−λ
w , k1−λw

〉
λ

for some constant dλ ≥ 0. Here φ+(z) = φ(z) and Mλ
φ denote the multiplication ope-

rator defined on L2
a(Ω, dVλ) with symbol φ ∈ L∞(Ω). The last inequality follows from

Kantorvich’s inequality. Thus
∣∣∣
〈
Sλ
φ
K1−λ
z ,K1−λ

w

〉
λ

∣∣∣
2

≤ dλ

〈
Tλ|φ|K

1−λ
z ,K1−λ

z

〉
λ

〈
Tλ|φ+|K

1−λ
w ,K1−λ

w

〉
λ
.

Now since φ ∈ Lp(Ω, dηλ) we have |φ|, |φ+| ∈ Lp(Ω, dηλ). Hence from Lemma 2.3, it

follows that Tλ|φ|, T
λ
|φ+| ∈ Sλp . From Theorem 3.1, Sφ

λ ∈ Sλp . Now if f ∈ L2(Ω, dVλ),
∥∥Sλ

φ
f
∥∥
L2(Ω,dVλ)

=
∥∥PλJλ(φf)

∥∥
L2(Ω,dVλ)

≤ ‖Pλ‖ ‖Jλ‖
∥∥φ

∥∥
L∞(Ω)

‖f‖L2(Ω,dVλ)
.

Hence
∥∥Sλ

φ

∥∥ ≤ ‖φ‖L∞(Ω). The corollary follows. �

Corollary 5.3. Let φ ∈ Lp(Ω, dηλ), 1 < p < ∞ and φ = φ+ where φ+(z) = φ(z). Then
there exists an operator S ∈ L(L2

a(Ω, dVλ)) such that Tλ|φ|S = STλ|φ| and ‖Tλ|φ|S‖p ≤
r(S)‖Tλ|φ|‖p where r(S) is the spectral radius of S .

Proof. Since φ ∈ Lp(Ω, dηλ) and φ
+ = φ, hence from Lemma 2.3, Corollary 4.2 it follows

that Tλ|φ| and S
λ
φ are self-adjoint operators, Tλ|φ| ∈ Sλp and Sλφ ∈ Sλp . Let N be the group

of unitary operators on L2
a(Ω, dVλ). Let NA = {UAU∗ : U ∈ N}, the unitary orbit of

an operator A ∈ L(L2
a(Ω, dVλ)). Define f(X) =

∥∥∥Tλ|φ| −X
∥∥∥
p
for all X ∈ Sλp . Then f

attains its minimum at some S ∈ Sλp on NSφ =
{
USλφU

∗ : U ∈ N

}
and Tλ|φ|S = STλ|φ|.

This follows from [5]. The operator S is self-adjoint. To prove the corollary we have to

show that for any two orthonormal sequences
{
uλn

}∞

n=0
and

{
σλn

}∞

n=0
in L2

a(Ω, dVλ),

∞∑

n=0

∣∣∣
〈
Tλ|φ|Su

λ
n, σ

λ
n

〉
λ

∣∣∣
p

≤ r(S)p
∥∥∥Tλ|φ|

∥∥∥
p

p
.

Notice that since Tλ|φ|S = STλ|φ| and S = S∗ we obtain

∣∣∣
〈
Tλ|φ|Su

λ
n, σ

λ
n

〉
λ

∣∣∣
2

=
∣∣∣
〈
Tλ|φ|(Su

λ
n), σ

λ
n

〉
λ

∣∣∣
2

≤
〈
Tλ|φ|(Su

λ
n), Su

λ
n

〉
λ

〈
Tλ|φ|σ

λ
n, σ

λ
n

〉
λ

=
〈
S∗Tλ|φ|Su

λ
n, u

λ
n

〉
λ

〈
Tλ|φ|σ

λ
n, σ

λ
n

〉
λ

=
〈
Tλ|φ|S

2uλn, u
λ
n

〉
λ

〈
Tλ|φ|σ

λ
n, σ

λ
n

〉
λ
.

Repeating this process we obtain

∣∣∣
〈
Tλ|φ|Su

λ
n, σ

λ
n

〉
λ

∣∣∣
2m+1

=

(∣∣∣
〈
Tλ|φ|Su

λ
n, σ

λ
n

〉
λ

∣∣∣
2m

)2

≤
[〈
Tλ|φ|S

2muλn, u
λ
n

〉
λ

〈
Tλ|φ|u

λ
n, u

λ
n

〉(2m−1)−1

λ

〈
Tλ|φ|σ

λ
n, σ

λ
n

〉2m−1

λ

]2

≤
〈
Tλ|φ|S

2muλn, S
2muλn

〉
λ

〈
Tλ|φ|u

λ
n, u

λ
n

〉
λ

〈
Tλ|φ|u

λ
n, u

λ
n

〉2m−2

λ

〈
Tλ|φ|σ

λ
n, σ

λ
n

〉2m

λ

=
〈
S∗2m

Tλ|φ|S
2muλn, u

λ
n

〉
λ

〈
Tλ|φ|u

λ
n, u

λ
n

〉2m−1

λ

〈
Tλ|φ|σ

λ
n, σ

λ
n

〉2m

λ

=
〈
Tλ|φ|S

2m+1

uλn, u
λ
n

〉
λ

〈
Tλ|φ|u

λ
n, u

λ
n

〉2m−1

λ

〈
Tλ|φ|σ

λ
n, σ

λ
n

〉2m

λ
.
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Thus
∣∣∣
〈
Tλ|φ|Su

λ
n, σ

λ
n

〉
λ

∣∣∣
2m

≤ ‖Tλ|φ|‖‖S2m‖‖uλn‖2
〈
Tλ|φ|u

λ
n, u

λ
n

〉(2m−1)−1

λ

〈
Tλ|φ|σ

λ
n, σ

λ
n

〉2m−1

λ

and
∣∣∣
〈
Tλ|φ|Su

λ
n, σ

λ
n

〉
λ

∣∣∣ ≤ ‖Tλ|φ|‖
1

2m ‖S2m‖ 1
2m ‖uλn‖

2
2m

〈
Tλ|φ|u

λ
n, u

λ
n

〉 1
2
− 1

2m

λ

〈
Tλ|φ|σ

λ
n, σ

λ
n

〉 1
2

λ
.

Letting m −→ ∞, we obtain
∣∣∣
〈
Tλ|φ|Su

λ
n, σ

λ
n

〉
λ

∣∣∣
2

≤ [r(S)]
2
〈
Tλ|φ|u

λ
n, u

λ
n

〉
λ

〈
Tλ|φ|σ

λ
n, σ

λ
n

〉
λ
.

Hence proceeding as in Theorem 3.1 and Corollary 3.4, one can show that
∥∥Tλ|φ|S

∥∥
p
≤ r(S)

∥∥Tλ|φ|
∥∥
p
.

�

Let B denote the unit ball in n-dimensional complex space Cn and dz be the normalized
Lebesgue volume measure on B. The Bergman space L2

a(B, dz) is the space of analytic
functions h on B which are square-integrable with respect to Lebesgue volume measure.
For z = (z1, · · · , zn) ∈ C

n, let 〈z, w〉 = ∑n
i=1 ziwi and ‖z‖2 = 〈z, z〉. For z ∈ B, let Pz be

the orthogonal projection of Cn onto the subspace [z] generated by z and let Qz = I−Pz.
Then

φz(w) =
z − Pz(w)− (1− ‖z‖2) 1

2Qz(w)

1− 〈w, z〉
is the automorphism of B that interchanges 0 and z. The reproducing kernel in L2

a(B, dz)
is given by

KB
z (w) =

1

(1− 〈w, z〉)n+1

for z, w ∈ B and the normalized reproducing kernel kBz is
KB

z (w)
‖KB

z (·)‖2
.

Given φ ∈ L∞(B), the Toeplitz operator Tφ is defined on L2
a(B, dz) by Tφf = PB(φf)

where PB denotes the orthogonal projection of L2(B, dz) onto L2
a(B, dz) and the little

Hankel operator Sφ from L2
a(B, dz) into L2

a(B, dz) is defined as Sφf = PB(JB(φf)) where
JB : L2(B, dz) −→ L2(B, dz) is defined as JBf(z1, . . . , zn) = f(z1, . . . , zn). We have
used the same notation Tφ, Sφ to denote Toeplitz operators and little Hankel operators

defined on L2
a(Ω,

dV
C0

) and L2
a(B, dz). The context will make it clear on which space we

considering these operators. For z ∈ B and a non-negative integer m, let

KB,m
z (u) =

1

(1− 〈u, z〉)m+n+1
, u ∈ B

and define the m-Berezin transform of an operator S ∈ L(L2
a(B, dz)) by

BmS(z) =

(
m+ n
n

)(
1− ‖z‖2

)m+n+1
m∑

|k|=0

Cm,k
〈
S(ukKB,m

z ), ukKB,m
z

〉
,

where

Cm,k =

(
m
|k|

)
(−1)|k|

|k|!
k1! · · · kn!

, u ∈ B,

k = (k1, . . . , kn) ∈ Z
n
+, where Z+ is the set of non-negative integers, |k| =

∑n
i=0 ki,

uk = uk11 · · ·uknn , k! = k1! · · · kn!. Clearly, Bm : L(L2
a(B, dz)) −→ L∞(B) is a bounded

linear operator and for φ ∈ L∞(B), define Bm(φ)(z) = Bm(Tφ)(z). In fact, from [17] it
follows that for φ ∈ L∞(B),

Bm(φ)(z) =

∫

B

(φ ◦ φz)(u) dAm(u),
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z ∈ B, where dAm(u) =

(
m+ n
n

)
(1 − ‖u‖2)mdu. Berezin first introduced the Berezin

transform B0(S) of bounded operators S and the m-Berezin transform of functions in
[3]. Clearly, for S ∈ L(L2

a(B, dz)), ‖BmS‖∞ ≤ C(m,n)‖S‖ where C(m,n) is a constant
depending only on m and n. Thus Bm : L(L2

a(B, dz)) −→ L∞(B) is a bounded linear
operator and for m ≥ 0

‖Bm‖ =

(
m+ n
n

) m∑

|k|=0

|Cm,k|
n! k!

(n+ |k|)! .

Let

dη
B
(z) =

1

(1− ‖z‖2)n+1
dz, z ∈ B.

Corollary 5.4. Suppose 2 ≤ p < ∞, φ, ψ ∈ L∞(B), BmSψ ∈ Lp(B, dη
B
) and Bmφ ∈

Lp(B, dη
B
) for all m ≥ 0. Suppose

(5.1) max
{
‖TBmSψ‖p, ‖TBmφ‖p

}
< M

for some constant M > 0 independent of m. The following hold.

(i) Sψ ∈ Sp.

(ii) TBmφTBmSψ
w−→ TφSψ and TφSψ ∈ Sp.

(iii) If Cm ∈ L(L2
a(B, dz)),m ≥ 0, Cm

w−→ C and if Cm is a sequence of upper

triangular matrices then TBmSψCm
w−→ SψC and SψC ∈ Sp.

(iv) If BmSψ ≥ 0, Bmφ ≥ 0 for all m ≥ 0 and ‖TBmSψ − Sψ‖p −→ 0, ‖TBmφ −
Tφ‖p −→ 0 as m −→ ∞ and RangeTBmSψ ⊂ kerTBmφ, RangeTBmφ ⊂ kerTBmSψ
then RangeSψ ⊂ kerTφ and RangeTφ ⊂ kerSψ.

(v) If BmSψ ≥ 0 for all m ≥ 0 and {Cm} is a sequence of positive operators in Sp
such that Cm

w−→ C and RangeTBmSψ ⊂ kerCm and RangeCm ⊂ kerTBmSψ for
all m ≥ 0 then RangeSψ ⊂ kerC and RangeC ⊂ kerSψ.

Proof. Since BmSψ ∈ Lp(B, dη
B
), hence by Lemma 2.3, TBmSψ ∈ Sp. Further, since

‖TBmSψ‖p < M for all m ≥ 0, we have

‖TBmSψ‖pp =
∫

B

〈
|TBmSψ |pkBz , kBz

〉
dη

B
(z) < Mp.

Since 2 ≤ p <∞, we obtain∫

B

‖PB(BmSψ ◦ φz)‖p dη
B
(z) =

∫

B

∥∥PB(Uz(BmSψ)k
B
z )

∥∥p dη
B
(z)

=

∫

B

∥∥UzTBmSψkBz
∥∥p dη

B
(z) =

∫

B

∥∥TBmSψkBz
∥∥p dη

B
(z)

=

∫

B

〈
T ∗
BmSψ

TBmSψk
B
z , k

B
z

〉 p
2

dη
B
(z) ≤

∫

B

〈
(T ∗
BmSψ

TBmSψ )
p
2 kBz , k

B
z

〉
dη

B
(z)

=

∫

B

〈
|TBmSψ |pkBz , kBz

〉
dη

B
(z) < Mp.

This implies
sup
z∈B

∥∥TBmSψ◦φz1
∥∥
p
= sup

z∈B
‖PB(BmSψ ◦ φz)‖p < M.

Since
∥∥T ∗

BmSψ

∥∥
p
=

∥∥TBmSψ
∥∥
p
, hence supz∈B

∥∥T ∗
BmSψ◦φz

1
∥∥
p
< M . From [17], it thus

follows that TBmSψ −→ Sψ as m −→ ∞ in L(L2
a(B, dz))-norm and from Lemma 4.6,

it follows that Sψ ∈ Sp. This proves (i). To prove (ii) observe that since (5.1) holds,
we have ‖TBmφ◦φz1‖p < M and

∥∥T ∗
Bmφ◦φz

1
∥∥
p
< M for all m ≥ 0. Hence from [17], it

follows that TBmφ −→ Tφ as m −→ ∞ in L(L2
a(B, dz))-norm. Thus using Lemma 4.4,
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we obtain TBmφTBmSψ
w−→ TφSψ. Since Sψ ∈ Sp, we have TφSψ ∈ Sp. Now we shall

prove (iii). From Lemma 4.5 it follows that TBmSψCm
w−→ SψC and since Sψ ∈ Sp,

we obtain SψC ∈ Sp. To prove (iv), we first notice that TBmSψ and TBmφ are positive
operators for all m ≥ 0. This is so since BmSψ ≥ 0 and Bmφ ≥ 0 for all m ≥ 0. Given
that TBmSψ −→ Sψ and TBmφ −→ Tφ in Sp as m −→ ∞. As ‖T‖L(L2

a(B,dz))
≤ ‖T‖p for

all T ∈ Sp, hence TBmSψ −→ Sψ and TBmφ −→ Tφ in norm, Sψ ≥ 0 and Tφ ≥ 0. It thus
follows that TBmφTBmSψ −→ TφSψ and TBmSψTBmφ −→ SψTφ in norm as m −→ ∞.
The reason for this is as follows:

∥∥TBmφTBmSψ − TφSψ
∥∥ =

∥∥TBmφTBmSψ − TφTBmSψ + TφTBmSψ − TφSψ
∥∥

≤
∥∥(TBmφ − Tφ)TBmSψ

∥∥+
∥∥Tφ

(
TBmSψ − Sψ

)∥∥
≤ ‖TBmφ − Tφ‖

∥∥TBmSψ
∥∥+ ‖Tφ‖

∥∥TBmSψ − Sψ
∥∥ −→ 0

asm −→ ∞, since supm
∥∥TBmSψ

∥∥ ≤ L for some L > 0 by uniform boundedness principle.
Further
∥∥TBmSψTBmφ − SψTφ

∥∥=
∥∥ (TBmφTBmSψ

)∗ − (TφSψ)
∗ ∥∥=

∥∥TBmφTBmSψ − TφSψ
∥∥ −→ 0

as m −→ ∞. Now since RangeTBmSψ ⊂ kerTBmφ and RangeTBmφ ⊂ kerTBmSψ we ob-
tain TBmφTBmSψ = TBmSψTBmφ = 0. Taking limit m −→ ∞, we obtain
TφSψ = SψTφ = 0 and (iv) follows. To prove (v), assume that BmSψ ≥ 0 for all

m ≥ 0 and {Cm} is a sequence in Sp such that Cm
w−→ C. If RangeTBmSψ ⊂ kerCm and

RangeCm ⊂ kerTBmSψ for all m ≥ 0, then CmTBmSψ = TBmSψCm = 0 for all m ≥ 0.

From Lemma 4.4 it follows that CmTBmSψ −→ CSψ. That is, for all f, g ∈ L2
a(B, dz),

(5.2)
〈
CmTBmSψf, g

〉
−→ 〈CSψf, g〉 .

Thus since CmTBmSψ = 0 for all m ≥ 0, hence CSψ = 0. Further, from (5.2), it follows

that for all f, g ∈ L2
a(B, dz),〈

f, T ∗
BmSψ

C∗
mg

〉
−→

〈
f, S∗

ψC
∗g
〉
.

That is, 〈
f, TBmSψCmg

〉
−→ 〈f, SψCg〉

for all f, g ∈ L2
a(B, dz). Thus SψC = 0 and the result (v) follows. �
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