# SCHATTEN CLASS OPERATORS ON THE BERGMAN SPACE OVER BOUNDED SYMMETRIC DOMAIN 

NAMITA DAS AND MADHUSMITA SAHOO

Abstract. Let $\Omega$ be a bounded symmetric domain in $\mathbb{C}^{n}$ with Bergman kernel $K(z, w)$. Let $d V_{\lambda}(z)=K(z, z) \frac{d V(z)}{C_{\lambda}}$, where $C_{\lambda}=\int_{\Omega} K(z, z)^{\lambda} d V(z), \lambda \in \mathbb{R}, d V(z)$ is the volume measure of $\Omega$ normalized so that $K(z, 0)=K(0, w)=1$. In this paper we have shown that if the Toeplitz operator $T_{\phi}$ defined on $L_{a}^{2}\left(\Omega, \frac{d V}{C_{0}}\right)$ belongs to the Schatten $p$-class, $1 \leq p<\infty$, then $\widetilde{\phi} \in L^{p}(\Omega, d \eta)$, where $d \eta(z)=K(z, z) \frac{d V(z)}{C_{0}}$ and $\widetilde{\phi}$ is the Berezin transform of $\phi$. Further if $\phi \in L^{p}\left(\Omega, d \eta_{\lambda}\right)$, then $\widetilde{\phi_{\lambda}} \in L^{p}\left(\Omega, d \eta_{\lambda}\right)$ and $T_{\phi}^{\lambda}$ belongs to Schatten $p$-class. Here $d \eta_{\lambda}=K(z, z) \frac{d V(z)}{C_{\lambda}}$, the function $\widetilde{\phi_{\lambda}}$ is the Berezin transform of $\phi$ in $L_{a}^{2}\left(\Omega, d V_{\lambda}\right)$ and $T_{\phi}^{\lambda}$ is the Toeplitz operator defined on $L_{a}^{2}\left(\Omega, d V_{\lambda}\right)$. We also find conditions on bounded linear operator $C$ defined from $L_{a}^{2}\left(\Omega, d V_{\lambda}\right)$ into itself such that $C$ belongs to the Schatten $p$-class by comparing it with positive Toeplitz operators defined on $L_{a}^{2}\left(\Omega, d V_{\lambda}\right)$. Applications of these results are obtained and we also present Schatten class characterization of little Hankel operators defined on $L_{a}^{2}\left(\Omega, d V_{\lambda}\right)$.

## 1. Introduction

Let $\Omega$ be a bounded symmetric domain in $\mathbb{C}^{n}$ with Bergman kernel $K(z, w)$. We assume that $\Omega$ is in its standard (Harish-Chandra) representation. Let $d V$ be the volume measure of $\Omega$ normalized so that $K(z, 0)=K(0, w)=1$ for all $z$ and $w$ in $\Omega$. By [13] and using the polar co-ordinates representation, there exists a positive number $\epsilon_{\Omega}$ such that

$$
C_{\lambda}=\int_{\Omega} K(z, z)^{\lambda} d V(z)<+\infty
$$

if and only if $\lambda<\epsilon_{\Omega}$. Let

$$
d V_{\lambda}(z)=C_{\lambda}^{-1} K(z, z)^{\lambda} d V(z)
$$

Then $d V_{\lambda}$ is a probability measure on $\Omega$ for all $\lambda<\epsilon_{\Omega}$. We fix a $\lambda<\epsilon_{\Omega}$ throughout the paper and consider the weighted Bergman space $L_{a}^{p}\left(\Omega, d V_{\lambda}\right), 1 \leq p<+\infty$, consisting of holomorphic functions in $L^{p}\left(\Omega, d V_{\lambda}\right)$. For $p=2$, we have an orthogonal projection $P_{\lambda}$ from the Hilbert space $L^{2}\left(\Omega, d V_{\lambda}\right)$ onto the closed subspace $L_{a}^{2}\left(\Omega, d V_{\lambda}\right)$. The orthogonal projection $P_{\lambda}$ is given by

$$
P_{\lambda} f(z)=\int_{\Omega} K_{\lambda}(z, w) f(w) d V_{\lambda}(w)
$$

$\underline{\text { where } K_{\lambda}}(z, w)=K(z, w)^{1-\lambda}$ is the reproducing kernel of $L_{a}^{2}\left(\Omega, d V_{\lambda}\right)$. Let $K_{\lambda}(z, w)=$ $\overline{K_{z}^{1-\lambda}(w)}$.

Suppose $\phi$ is a function in $L^{\infty}(\Omega)$. Then the Toeplitz operator with symbol $\phi$ is defined by $T_{\phi}^{\lambda}(f)=P_{\lambda}(\phi f), f \in L_{a}^{2}\left(\Omega, d V_{\lambda}\right)$ and the Hankel operator $H_{\phi}^{\lambda}$ with symbol $\phi$

[^0]is defined by $H_{\phi}^{\lambda}(f)=\left(I-P_{\lambda}\right)(\phi f), f \in L_{a}^{2}\left(\Omega, d V_{\lambda}\right)$. Let $\overline{P_{\lambda}}$ be the orthogonal projection from $L^{2}\left(\Omega, d V_{\lambda}\right)$ onto $\overline{L_{a}^{2}\left(\Omega, d V_{\lambda}\right)}=\left\{\bar{f}: f \in L_{a}^{2}\left(\Omega, d V_{\lambda}\right)\right\}$. Then
$$
\overline{P_{\lambda}} f(z)=\int_{\Omega} \overline{K_{\lambda}(z, w)} f(w) d V_{\lambda}(w)=\int_{\Omega} K_{\lambda}(w, z) f(w) d V_{\lambda}(w)
$$

Thus formula also extends $\overline{P_{\lambda}}$ to $L^{1}\left(\Omega, d V_{\lambda}\right)$. Given $\phi \in L^{\infty}(\Omega)$, define the little Hankel operator $h_{\phi}^{\lambda}$ with domain $L_{a}^{2}\left(\Omega, d V_{\lambda}\right)$ as $h_{\phi}^{\lambda}(f)=\overline{P_{\lambda}}(\phi f)$.

For any $a \in \Omega$, let $k_{a}(z)=\frac{K(z, a)}{\sqrt{K(a, a)}}$. The $k_{a}$ 's are called normalized reproducing kernels of $L_{a}^{2}(\Omega, d V)$. They are unit vectors in $L_{a}^{2}(\Omega, d V)$. It is easy to see that $k_{a}^{1-\lambda}$ is a unit vector of $L_{a}^{2}\left(\Omega, d V_{\lambda}\right)$ for any $a \in \Omega$. Let $\mathcal{L}\left(L_{a}^{2}\left(\Omega, d V_{\lambda}\right)\right)$ be the set of all bounded linear operators from $L_{a}^{2}\left(\Omega, d V_{\lambda}\right)$ into itself. For $A \in \mathcal{L}\left(L_{a}^{2}\left(\Omega, d V_{\lambda}\right)\right)$ we define the Berezin transform $\widetilde{A}_{\lambda}$ of $A$ as

$$
\widetilde{A_{\lambda}}(z)=\left\langle A k_{z}^{1-\lambda}, k_{z}^{1-\lambda}\right\rangle_{\lambda}, \quad z \in \Omega
$$

where $\langle,\rangle_{\lambda}$ is the inner product in $L_{a}^{2}\left(\Omega, d V_{\lambda}\right)$. Since $k_{z}^{1-\lambda}$ converges to 0 weakly in $L_{a}^{2}\left(\Omega, d V_{\lambda}\right)$ as $z$ approaches $\partial \Omega$ (the topological boundary of $\Omega$ ), it follows that $\widetilde{A_{\lambda}}$ is bounded on $\Omega$ if $A \in \mathcal{L}\left(L_{a}^{2}\left(\Omega, d V_{\lambda}\right)\right)$, and $\widetilde{A_{\lambda}}(z) \longrightarrow 0$ as $z \longrightarrow \partial \Omega$ if $A$ is compact. For $\phi \in L^{\infty}(\Omega)$, let $\widetilde{\phi_{\lambda}}(z)=\left\langle T_{\phi}^{\lambda} k_{z}^{1-\lambda}, k_{z}^{1-\lambda}\right\rangle_{\lambda}=\widetilde{T_{\phi}^{\lambda}}(z), z \in \Omega$. Hence $\widetilde{\phi_{\lambda}}$ is the Berezin transform of the Toeplitz operator $T_{\phi}^{\lambda}$. We also define for $\phi \in L^{\infty}(\Omega)$, the operator $S_{\phi}^{\lambda}$ : $L_{a}^{2}\left(\Omega, d V_{\lambda}\right) \longrightarrow L_{a}^{2}\left(\Omega, d V_{\lambda}\right)$ as $S_{\phi}^{\lambda}(f)=P_{\lambda} J_{\lambda}(\phi f)$, where $J_{\lambda}: L^{2}\left(\Omega, d V_{\lambda}\right) \longrightarrow L^{2}\left(\Omega, d V_{\lambda}\right)$ is defined by $J_{\lambda} f(z)=f(\bar{z})$. The operators $S_{\phi}^{\lambda}, h_{\phi}^{\lambda}$ are unitarily equivalent. In fact, $J_{\lambda} S_{\phi}^{\lambda}=h_{\phi}^{\lambda}$. Hence we shall refer both these operators $S_{\phi}^{\lambda}, h_{\phi}^{\lambda}$ as little Hankel operators on $L_{a}^{2}\left(\Omega, d V_{\lambda}\right)$. Let $d \eta(z)=K(z, z) \frac{d V(z)}{C_{\lambda}}$.

Let $\mathcal{L}(H)$ be the set of all bounded linear operators from the Hilbert $H$ into itself and $\mathcal{L C}(H)$ be the set of all compact operators in $\mathcal{L}(H)$. For any non-negative integer $k, T \in \mathcal{L}(H)$, let $s_{k}(T)=\inf \{\|T-R\|: R \in \mathcal{L}(H), \operatorname{rank} R \leq k\}$. The numbers $s_{0}(T) \geq$ $s_{1}(T) \geq s_{2}(T) \geq \cdots \geq 0$ are called $s$-numbers or singular values of $T$. It is wellknown that if $T \in \mathcal{L C}(H)$, then there exist orthonormal vectors $\left\{u_{k}\right\}$ and $\left\{\sigma_{k}\right\}$ in $H$ with $T=\sum_{k=1}^{\infty} s_{k}\left\langle\cdot, u_{k}\right\rangle \sigma_{k}$ for $T x=\sum_{k=1}^{\infty} s_{k}\left\langle x, u_{k}\right\rangle \sigma_{k}$. For any $1 \leq p<+\infty$, the Schatten ideal $S_{p}(H)=S_{p}$ is defined to be the set of all compact operators $T$ on $H$ such that $\sum_{k=1}^{\infty}\left(s_{k}(T)\right)^{p}<+\infty$. The linear space $S_{p}$ is a Banach space with the norm $\|T\|_{p}=\|T\|_{S_{p}}=\left[\sum_{k=1}^{\infty}\left(s_{k}(T)\right)^{p}\right]^{1 / p}$. The space $S_{p}$ is also a two-sided ideal of the algebra $\mathcal{L}(H)$ and for any $T \in S_{p}$ and $S, R \in \mathcal{L}(H)$, we have

$$
\|S T R\|_{S_{p}} \leq\|S\|\|T\|_{S_{p}}\|R\|
$$

The space $S_{1}$ is also called the trace class and $S_{2}$ is called the Hilbert-Schmidt class. If $T \in S_{1}$ and $\left\{u_{k}\right\}$ is an orthonormal basis for $H$, then $\operatorname{tr}(T)=\sum_{k=1}^{\infty}\left\langle T u_{k}, u_{k}\right\rangle$ is convergent and independent of $\left\{u_{k}\right\}$. If $T \in S_{1}$ and $T \geq 0$, then $\|T\|_{S_{1}}=\operatorname{tr}(T)$. In general, we have $\|T\|_{S_{p}}=\left[\operatorname{tr}\left(\left(T^{*} T\right)^{p / 2}\right)\right]^{1 / p}$. For more information on the Schatten ideals, see [22] for example. Suppose $p \geq 1$ and $S_{p}^{\lambda}$ is the Schatten $p$-ideal of the Hilbert space $L_{a}^{2}\left(\Omega, d V_{\lambda}\right)$. For convenience of notation, we will use $S_{\infty}^{\lambda}$ to denote the full algebra of bounded linear operators on the Bergman space $L_{a}^{2}\left(\Omega, d V_{\lambda}\right)$. That is, $S_{\infty}^{\lambda}=\mathcal{L}\left(L_{a}^{2}\left(\Omega, d V_{\lambda}\right)\right)$. The organization of this paper is as follows. In Section 2, we discuss Schatten p-class Toeplitz operators. We show that if $1 \leq p \leq \infty$ and $\phi \in L^{p}\left(\Omega, d \eta_{\lambda}\right)$ then $\widetilde{\phi_{\lambda}} \in L^{p}\left(\Omega, d \eta_{\lambda}\right)$. Further if $0<p<\infty, T_{\phi}^{\lambda} \in S_{p}^{\lambda}$ then $\widetilde{\phi_{\lambda}} \in L^{p}\left(\Omega, d \eta_{\lambda}\right)$ where $d \eta_{\lambda}(z)=K(z, z) \frac{d V(z)}{C_{\lambda}}$. In Section 3, we find conditions on $C \in \mathcal{L}\left(L_{a}^{2}\left(\Omega, d V_{\lambda}\right)\right)$ to have membership in the Schatten class with the help of the Schatten class characterization of Toeplitz operators. In Section 4 , we concentrate on the Hilbert space $L_{a}^{2}\left(\Omega, \frac{d V}{C_{0}}\right)$ and prove that if $T_{\phi} \in S_{p}$ then
$\widetilde{\phi} \in L^{p}(\Omega, d \eta), 1 \leq p<\infty$ where $d \eta(z)=K(z, z) \frac{d V(z)}{C_{0}}$ and we deduce many important corollaries. Section 5 is devoted to the Schatten class characterization of little Hankel operators.

## 2. Schatten class Toeplitz operators

In this section we seek to find necessary and sufficient conditions on $\phi$ which will ensure that the Toeplitz operator belong to $S_{p}^{\lambda}$. We will concentrate on the special case $\phi \geq 0$.
Proposition 2.1. Suppose $A$ is a positive operator in $\mathcal{L}\left(L_{a}^{2}\left(\Omega, d V_{\lambda}\right)\right)$ or $A$ is an operator in the trace class of $L_{a}^{2}\left(\Omega, d V_{\lambda}\right)$. Then

$$
\operatorname{tr}(A)=\int_{\Omega}\left\langle A k_{z}^{1-\lambda}, k_{z}^{1-\lambda}\right\rangle_{\lambda} d \eta_{\lambda}(z)=\int_{\Omega} \widetilde{A_{\lambda}}(z) d \eta_{\lambda}(z)
$$

where $\widetilde{A_{\lambda}}$ is the Berezin symbol of $A$ and $d \eta_{\lambda}(z)=K(z, z) \frac{d V(z)}{C_{\lambda}}$.
Proof. Let $\left\{e_{n}^{\lambda}\right\}_{n=0}^{\infty}$ be an orthonormal basis for $L_{a}^{2}\left(\Omega, d V_{\lambda}\right)$. Hence

$$
\begin{aligned}
\operatorname{tr}(A) & =\sum_{n=1}^{\infty}\left\langle A e_{n}^{\lambda}, e_{n}^{\lambda}\right\rangle_{\lambda}=\sum_{n=1}^{\infty} \int_{\Omega}\left(A e_{n}^{\lambda}\right)(z) \overline{e_{n}^{\lambda}(z)} d V_{\lambda}(z) \\
& =\sum_{n=1}^{\infty} \int_{\Omega}\left\langle A e_{n}^{\lambda}, K_{z}^{1-\lambda}\right\rangle_{\lambda} \overline{e_{n}^{\lambda}(z)} d V_{\lambda}(z) \\
& =\int_{\Omega}\left\langle A\left(\sum_{n=1}^{\infty} e_{n}^{\lambda}(z) \overline{e_{n}^{\lambda}(z)}\right), K_{z}^{1-\lambda}\right\rangle_{\lambda} d V_{\lambda}(z)=\int_{\Omega}\left\langle A K_{z}^{1-\lambda}, K_{z}^{1-\lambda}\right\rangle_{\lambda} d V_{\lambda}(z) \\
& =\int_{\Omega}\left\langle A k_{z}^{1-\lambda}, k_{z}^{1-\lambda}\right\rangle_{\lambda} K(z, z) \frac{d V(z)}{C_{\lambda}}=\int_{\Omega} \widetilde{A_{\lambda}}(z) d \eta_{\lambda}(z) .
\end{aligned}
$$

Corollary 2.2. If $\phi$ is a non-negative function on $\Omega$ then

$$
\operatorname{tr}\left(T_{\phi}^{\lambda}\right)=\int_{\Omega} \phi(w) d \eta_{\lambda}(w)
$$

Proof. By Proposition 2.1 and Fubini's theorem [19], we have

$$
\begin{aligned}
\operatorname{tr}\left(T_{\phi}^{\lambda}\right) & =\int_{\Omega} \widetilde{\phi_{\lambda}}(z) K(z, z) \frac{d V(z)}{C_{\lambda}} \\
& =\int_{\Omega} K(z, z) \frac{d V(z)}{C_{\lambda}} \int_{\Omega}\left|k_{z}^{1-\lambda}(w)\right|^{2} \phi(w) d V_{\lambda}(w) \\
& =\int_{\Omega} \frac{d V(z)}{C_{\lambda}} \int_{\Omega} \frac{\left|K^{1-\lambda}(z, w)\right|^{2}}{K^{1-\lambda}(z, z)} K(z, z) \phi(w) \frac{1}{C_{\lambda}} K^{\lambda}(w, w) d V(w) \\
& =\int_{\Omega} \phi(w) d V(w) \int_{\Omega}\left|K^{1-\lambda}(z, w)\right|^{2} K^{\lambda}(z, z) \frac{1}{C_{\lambda}} K^{\lambda}(w, w) d V(z) \\
& =\int_{\Omega} \phi(w) K^{\lambda}(w, w) \frac{d V(w)}{C_{\lambda}} \int_{\Omega}\left|K^{1-\lambda}(z, w)\right|^{2} K^{\lambda}(z, z) \frac{1}{C_{\lambda}} d V(z) \\
& =\int_{\Omega} \phi(w) K^{\lambda}(w, w) K^{1-\lambda}(w, w) \frac{d V(w)}{C_{\lambda}} \\
& =\int_{\Omega} \phi(w) K(w, w) \frac{d V(w)}{C_{\lambda}}=\int_{\Omega} \phi(w) d \eta_{\lambda}(w) .
\end{aligned}
$$

The above results are very useful in the study of Schatten class operators on the Bergman space $L_{a}^{2}\left(\Omega, d V_{\lambda}\right)$, especially when combined with the inequalities given in (2.2) and (2.3).

Lemma 2.3. If $p \geq 1$ and $\phi \in L^{p}\left(\Omega, d \eta_{\lambda}\right)$, then $T_{\phi}^{\lambda}$ is in the Schatten class $S_{p}^{\lambda}$.
Proof. By interpolation, we only need to prove the result for the case $p=1$. The case $p=+\infty$ is trivial. Suppose $\phi \in L^{1}\left(\Omega, d \eta_{\lambda}\right)$ and $\left\{e_{m}^{\lambda}\right\}_{m=0}^{\infty}$ is an orthonormal basis in $L_{a}^{2}\left(\Omega, d V_{\lambda}\right)$. For any $m \geq 1,\left\langle T_{\phi}^{\lambda} e_{m}^{\lambda}, e_{m}^{\lambda}\right\rangle_{\lambda}=\int_{\Omega}\left|e_{m}^{\lambda}(z)\right|^{2} \phi(z) d V_{\lambda}(z)$. It follows that

$$
\begin{aligned}
\sum_{m=0}^{\infty} & \left|\left\langle T_{\phi}^{\lambda} e_{m}^{\lambda}, e_{m}^{\lambda}\right\rangle_{\lambda}\right| \leq \int_{\Omega} \sum_{m=0}^{\infty}\left|e_{m}^{\lambda}(z)\right|^{2}|\phi(z)| d V_{\lambda}(z) \\
& \leq \int_{\Omega} K^{1-\lambda}(z, z)|\phi(z)| \frac{1}{C_{\lambda}} K^{\lambda}(z, z) d V(z) \\
& =\int_{\Omega}|\phi(z)| \frac{1}{C_{\lambda}} K(z, z) d V(z)=\int_{\Omega}|\phi(z)| d \eta_{\lambda}(z)
\end{aligned}
$$

By [22], the operator $T_{\phi}^{\lambda} \in S_{1}^{\lambda}$ and $\left\|T_{\phi}^{\lambda}\right\|_{S_{1}{ }^{\lambda}} \leq \int_{\Omega}|\phi(z)| d \eta_{\lambda}(z)$.
Let $h>1$. The generalized Kantorvich constant $K(p)$ is defined by

$$
\begin{equation*}
K(p)=\frac{h^{p}-h}{(p-1)(h-1)}\left(\frac{p-1}{p} \frac{h^{p}-1}{h^{p}-h}\right)^{p} \tag{2.1}
\end{equation*}
$$

for any real number $p$ and it is known that $K(p) \in(0,1]$ for $p \in[0,1]$. We state below the known results on the generalized Kantorvich constant $K(p)$. Let $A$ be a strictly positive operator satisfying $M I \geq A \geq m I>0$, where $M>m>0$. Put $h=\frac{M}{m}>1$. Then the following [10] inequalities (2.2) and (2.3) hold for every unit vector $x$ and are equivalent:

$$
\begin{gather*}
K(p)\langle A x, x\rangle^{p} \geq\left\langle A^{p} x, x\right\rangle \geq\langle A x, x\rangle^{p} \quad \text { for } \quad \text { any } p>1 \quad \text { or } \quad \text { any } p<0  \tag{2.2}\\
\langle A x, x\rangle^{p} \geq\left\langle A^{p} x, x\right\rangle \geq K(p)\langle A x, x\rangle^{p} \quad \text { for any } p \in(0,1] \tag{2.3}
\end{gather*}
$$

The Kantorvich constant $K(p)$ is symmetric with respect to $p=\frac{1}{2}$ and $K(p)$ is an increasing function of $p$ for $p \geq \frac{1}{2}, K(p)$ is a decreasing function of $p$ for $p \leq \frac{1}{2}$, and $K(0)=K(1)=1$. Further, $K(p) \geq 1$ for $p \geq 1$ or $p \leq 0$, and $1 \geq K(p) \geq \frac{2 h^{\frac{1}{4}}}{\left(h^{\frac{1}{2}}+1\right)}$ for $p \in[0,1]$.
Corollary 2.4. Suppose $\phi$ is a non-negative function on $\Omega, 1 \leq p \leq+\infty$ and $T_{\phi}^{\lambda} \in S_{p}^{\lambda}$. Then $\widetilde{\phi_{\lambda}} \in L^{p}\left(\Omega, d \eta_{\lambda}\right)$.
Proof. The case $p=\infty$ is not difficult to verify. So suppose $1 \leq p<\infty$ and $T_{\phi}^{\lambda} \in S_{p}^{\lambda}$. Then $\left(T_{\phi}^{\lambda}\right)^{p} \in S_{1}^{\lambda}$ since $T_{\phi}^{\lambda}$ is positive. By Proposition 2.1,

$$
\operatorname{tr}\left(\left(T_{\phi}^{\lambda}\right)^{p}\right)=\int_{\Omega}\left\langle\left(T_{\phi}^{\lambda}\right)^{p} k_{z}^{1-\lambda}, k_{z}^{1-\lambda}\right\rangle_{\lambda} d \eta_{\lambda}(z)<+\infty
$$

By (2.2),

$$
\begin{aligned}
\int_{\Omega}\left[\widetilde{\phi_{\lambda}}(z)\right]^{p} d \eta_{\lambda}(z) & =\int_{\Omega}\left\langle T_{\phi}^{\lambda} k_{z}^{1-\lambda}, k_{z}^{1-\lambda}\right\rangle_{\lambda}^{p} d \eta_{\lambda}(z) \\
& \leq \int_{\Omega}\left\langle\left(T_{\phi}^{\lambda}\right)^{p} k_{z}^{1-\lambda}, k_{z}^{1-\lambda}\right\rangle_{\lambda} d \eta_{\lambda}(z)<+\infty
\end{aligned}
$$

Proposition 2.5. Let $T_{\phi}^{\lambda}$ be strictly positive satisfying $M I \geq T_{\phi}^{\lambda} \geq m I>0$, where $M>m>0$. The following hold:
(i) If $0<p<\infty$ and $T_{\phi}^{\lambda} \in S_{p}^{\lambda}$ then $\widetilde{\phi_{\lambda}} \in L^{p}\left(\Omega, d \eta_{\lambda}\right)$.
(ii) If $0<p \leq 1, \widetilde{\phi_{\lambda}} \in L^{p}\left(\Omega, d \eta_{\lambda}\right)$ then $T_{\phi}^{\lambda} \in S_{p}^{\lambda}$.
(iii) Let $p \in[1, \infty)$ be such that $K(p)<\infty$. If $\widetilde{\phi_{\lambda}} \in L^{p}\left(\Omega, d \eta_{\lambda}\right)$ then $T_{\phi}^{\lambda} \in S_{p}^{\lambda}$.

Proof. To prove (i), suppose $0<p \leq 1$ and $T_{\phi}^{\lambda} \in S_{p}^{\lambda}$. Then

$$
\left.\int_{\Omega}\left\langle\left(T_{\phi}^{\lambda}\right)^{p} k_{z}^{1-\lambda}, k_{z}^{1-\lambda}\right\rangle_{\lambda} d \eta_{\lambda}(z)=\left.\int_{\Omega}\langle | T_{\phi}^{\lambda}\right|^{p} k_{z}^{1-\lambda}, k_{z}^{1-\lambda}\right\rangle_{\lambda} d \eta_{\lambda}(z)<+\infty
$$

Hence from (2.3), it follows that $K(p) \int_{\Omega}\left\langle T_{\phi}^{\lambda} k_{z}^{1-\lambda}, k_{z}^{1-\lambda}\right\rangle_{\lambda}^{p} d \eta_{\lambda}(z)<+\infty$. Since $K(p) \in$ $(0,1]$ for $p \in[0,1]$, hence $\widetilde{\phi_{\lambda}} \in L^{p}\left(\Omega, d \eta_{\lambda}\right)$. Suppose $p>1$ and $T_{\phi}^{\lambda} \in S_{p}^{\lambda}$. Then

$$
\left.\int_{\Omega}\left\langle\left(T_{\phi}^{\lambda}\right)^{p} k_{z}^{1-\lambda}, k_{z}^{1-\lambda}\right\rangle_{\lambda} d \eta_{\lambda}(z)=\left.\int_{\Omega}\langle | T_{\phi}^{\lambda}\right|^{p} k_{z}^{1-\lambda}, k_{z}^{1-\lambda}\right\rangle_{\lambda} d \eta_{\lambda}(z)<+\infty
$$

Hence by (2.2), $\int_{\Omega}\left\langle T_{\phi}^{\lambda} k_{z}^{1-\lambda}, k_{z}^{1-\lambda}\right\rangle_{\lambda}^{p} d \eta_{\lambda}(z)<+\infty$. That is, $\widetilde{\phi_{\lambda}} \in L^{p}\left(\Omega, d \eta_{\lambda}\right)$. To prove (ii), assume $\widetilde{\phi_{\lambda}} \in L^{p}\left(\Omega, d \eta_{\lambda}\right)$. Then if $0<p \leq 1$ then by (2.3), we have $\left.\left.\int_{\Omega}\langle | T_{\phi}^{\lambda}\right|^{p} k_{z}^{1-\lambda}, k_{z}^{1-\lambda}\right\rangle_{\lambda} d \eta_{\lambda}(z)<+\infty$ and hence $T_{\phi}^{\lambda} \in S_{p}^{\lambda}$. To prove (iii), suppose $1 \leq p<+\infty, K(p)<+\infty$ and $\widetilde{\phi_{\lambda}} \in L^{p}\left(\Omega, d \eta_{\lambda}\right)$. Then by (2.2) and (2.3), we have

$$
\left.\left.\int_{\Omega}\langle | T_{\phi}^{\lambda}\right|^{p} k_{z}^{1-\lambda}, k_{z}^{1-\lambda}\right\rangle_{\lambda} d \eta_{\lambda}(z)<+\infty \quad \text { and } \quad T_{\phi}^{\lambda} \in S_{p}^{\lambda}
$$

The Berezin transform of a bounded linear operator on the Bergman space $L_{a}^{2}\left(\Omega, d V_{\lambda}\right)$ contains a lot of information about the operator. It is one of the most useful tools in the study of Toeplitz operators. Another useful tool is Carleson measures on Bergman spaces. The characterization of boundedness and compactness of a positive Toeplitz operator on the Bergman spaces in terms of Carleson measures appears first in [16] and in terms of the Berezin transform appears first in [23]. For more details about Carleson measures, see [15] and [1].

We will denote by $\beta(z, w)$ the Bergman distance function on $\Omega$. For any $z$ in $\Omega$ and $r>0$, let

$$
E(z, r)=\{w \in \Omega: \beta(z, w)<r\} .
$$

We denote by $|E(z, r)|$ the normalized volume of $E(z, r)$, that is, $|E(z, r)|=\int_{E(z, r)} d V(w)$. It is not difficult to see that $|E(z, r)|^{1-\lambda}$ is equivalent [23] to $V_{\lambda}(E(z, r))$ for any fixed $r>0$.

Let $\mu \geq 0$ be a finite Borel measure on $\Omega$. We say that $\mu$ is a Carleson measure on $L_{a}^{p}\left(\Omega, d V_{\lambda}\right)$ if there exists a constant $M>0$ such that

$$
\int_{\Omega}|f(z)|^{p} d \mu(z) \leq M \int_{\Omega}|f(z)|^{p} d V_{\lambda}(z)
$$

for all $f$ in $L_{a}^{p}\left(\Omega, d V_{\lambda}\right)$. The following theorem gives a geometric description of Carleson measures on $L_{a}^{p}\left(\Omega, d V_{\lambda}\right)$. In particular, it implies that Carleson measures on $L_{a}^{p}\left(\Omega, d V_{\lambda}\right)$ only depends on $\lambda$, not on $p$.

Theorem 2.6. Suppose $\mu \geq 0$ is a finite Borel measure on $\Omega, p \geq 1$, then $\mu$ is a Carleson measure on $L_{a}^{p}\left(\Omega, d V_{\lambda}\right)$ if and only if $\frac{\mu(E(z, r))}{|E(z, r)|^{1-\lambda}}$ is bounded on $\Omega$ (as a function of $z$ ) for all (or some) $r>0$. Moreover, the following quantities are equivalent for any fixed $r>0$ and $p \geq 1$ :
(i) $\sup \left\{\frac{\mu(E(z, r))}{|E(z, r)|^{1-\lambda}}: z \in \Omega\right\}$;
(ii) $\sup \left\{\frac{\int_{\Omega}|f(z)|^{p} d \mu(z)}{\int_{\Omega}|f(z)|^{p} d V_{\lambda}(z)}: f \in L_{a}^{p}\left(\Omega, d V_{\lambda}\right)\right\}$.

Proof. For proof see [23].

Let $B T_{\Omega}^{\lambda}=\left\{f \in L^{1}\left(\Omega, d V_{\lambda}\right):\|f\|_{B T_{\Omega}^{\lambda}}=\sup _{z \in \Omega} \widetilde{|f|_{\lambda}}(z)<\infty\right\}$. The space $L^{\infty}(\Omega)$ is properly contained in $B T_{\Omega}^{\lambda}$ since if $\phi \in L^{\infty}(\Omega)$ then for all $z \in \Omega$,

$$
\widetilde{|\phi|_{\lambda}}(z)=\left|\left\langle T_{|\phi|}^{\lambda} k_{z}^{1-\lambda}, k_{z}^{1-\lambda}\right\rangle_{\lambda}\right| \leq\left\|T_{|\phi|}^{\lambda}\right\| \leq\||\phi|\|_{\infty}=\|\phi\|_{\infty}<\infty
$$

It also follows that if $f \in L^{1}\left(\Omega, d V_{\lambda}\right)$ then $f \in B T_{\Omega}^{\lambda}$ if and only if $|f| d V_{\lambda}$ is a Carleson measure on $\Omega$. In the following proposition we verify that if $\phi \in B T_{\Omega}^{\lambda}$ then $T_{\phi}^{\lambda}$ is bounded on $L_{a}^{2}\left(\Omega, d V_{\lambda}\right)$ and there is a constant $C$ such that $\left\|T_{\phi}^{\lambda}\right\| \leq C\|\phi\|_{B T_{\Omega}^{\lambda}}$.
Proposition 2.7. Suppose $1<p<\infty$ and $\phi \in B T_{\Omega}^{\lambda}$. Then $T_{\phi}^{\lambda}$ is bounded on $L_{a}^{p}\left(\Omega, d V_{\lambda}\right)$ and there is a constant $C$ (depending only on $p$ and $\lambda$ ) such that $\left\|T_{\phi}^{\lambda}\right\|_{p} \leq C\|\phi\|_{B T_{\Omega}^{\lambda}}$.
Proof. It is well-known that the dual of $L_{a}^{p}$ is $L_{a}^{q}$ (see [1]) where $\frac{1}{p}+\frac{1}{q}=1$. For $f \in L_{a}^{p}$ and $g \in L_{a}^{q}$, by Holder's inequality

$$
\begin{aligned}
\left|\left\langle T_{\phi}^{\lambda} f, g\right\rangle_{\lambda}\right| & =\left|\langle\phi f, g\rangle_{\lambda}\right|=\left|\int_{\Omega} f(z) \overline{g(z)} \phi(z) d V_{\lambda}(z)\right| \\
& \leq \int_{\Omega}|\phi(z)||f(z)||g(z)| d V_{\lambda}(z) \\
& \leq\left(\int_{\Omega}|f(z)|^{p}|\phi(z)| d V_{\lambda}(z)\right)^{1 / p}\left(\int_{\Omega}|g(z)|^{q}|\phi(z)| d V_{\lambda}(z)\right)^{1 / q}
\end{aligned}
$$

Thus it follows that $\left|\left\langle T_{\phi}^{\lambda} f, g\right\rangle_{\lambda}\right| \leq C\|\phi\|_{B T_{\Omega}^{\lambda}}\|f\|_{p}\|g\|_{q}$ where $C$ is a constant depending only on $p$ and $\lambda$. This shows that $T_{\phi}^{\lambda}$ is bounded on $L_{a}^{p}\left(\Omega, d V_{\lambda}\right)$ and $\left\|T_{\phi}^{\lambda}\right\|_{p} \leq$ $C\|\phi\|_{B T_{\Omega}^{\lambda}}$.
Proposition 2.8. For $1 \leq p \leq \infty$, if $\phi \in L^{p}\left(\Omega, d \eta_{\lambda}\right)$ then $\widetilde{\phi_{\lambda}} \in L^{p}\left(\Omega, d \eta_{\lambda}\right)$.
Proof. Suppose $\phi \in L^{1}\left(\Omega, d \eta_{\lambda}\right)$. Then

$$
\begin{aligned}
& \int_{\Omega}\left|\widetilde{\phi_{\lambda}}(w)\right| d \eta_{\lambda}(w)=\int_{\Omega}\left|\widetilde{\phi_{\lambda}}(w)\right| K(w, w) \frac{d V(w)}{C_{\lambda}} \\
& \leq \int_{\Omega}\left(\int_{\Omega}|\phi(z)| \frac{\left|K^{1-\lambda}(z, w)\right|^{2}}{K^{1-\lambda}(w, w)} \frac{1}{C_{\lambda}} K^{\lambda}(z, z) d V(z)\right) K(w, w) \frac{d V(w)}{C_{\lambda}} \\
&=\int_{\Omega}|\phi(z)| \int_{\Omega}\left|K^{1-\lambda}(z, w)\right|^{2} K^{\lambda}(w, w) \frac{d V(w)}{C_{\lambda}} K^{\lambda}(z, z) \frac{d V(z)}{C_{\lambda}} \\
&=\int_{\Omega}|\phi(z)| K^{\lambda}(z, z)\left(\int_{\Omega}\left|K^{1-\lambda}(z, w)\right|^{2} K^{\lambda}(w, w) \frac{d V(w)}{C_{\lambda}}\right) \frac{d V(z)}{C_{\lambda}} \\
&=\int_{\Omega}|\phi(z)| K^{\lambda}(z, z) K^{1-\lambda}(z, z) \frac{d V(z)}{C_{\lambda}} \\
&=\int_{\Omega}|\phi(z)| K(z, z) \frac{d V(z)}{C_{\lambda}}=\int_{\Omega}|\phi(z)| d \eta_{\lambda}(z)
\end{aligned}
$$

The change of order of integration is justified by the positivity of the integrand. Hence $\widetilde{\phi_{\lambda}} \in L^{1}\left(\Omega, d \eta_{\lambda}\right)$. Similarly if $\phi \in L^{\infty}(\Omega)$ then $\widetilde{\phi_{\lambda}} \in L^{\infty}(\Omega)$ as

$$
\begin{aligned}
\left|\widetilde{\phi_{\lambda}}(w)\right| & =\left|\left\langle\phi k_{w}^{1-\lambda}, k_{w}^{1-\lambda}\right\rangle_{\lambda}\right| \\
& \leq\left\|\phi k_{w}^{1-\lambda}\right\|_{L_{a}^{2}\left(\Omega, d V_{\lambda}\right)}\left\|k_{w}^{1-\lambda}\right\|_{L_{a}^{2}\left(\Omega, d V_{\lambda}\right)} \\
& \leq\|\phi\|_{\infty}\left\|k_{w}^{1-\lambda}\right\|_{L_{a}^{2}\left(\Omega, d V_{\lambda}\right)}^{2}=\|\phi\|_{\infty}
\end{aligned}
$$

By Marcinkiewicz interpolation theorem [22] it follows that if $\phi \in L^{p}\left(\Omega, d \eta_{\lambda}\right)$ then $\widetilde{\phi_{\lambda}} \in$ $L^{p}\left(\Omega, d \eta_{\lambda}\right)$ for $1 \leq p \leq \infty$.

## 3. Schatten class operators in $\mathcal{L}\left(L_{a}^{2}\left(\Omega, d V_{\lambda}\right)\right)$

In this section we find conditions on bounded linear operator $C \in \mathcal{L}\left(L_{a}^{2}\left(\Omega, d V_{\lambda}\right)\right)$ such that $C \in S_{p}^{\lambda}, 1 \leq p<\infty$ by comparing it with positive Toeplitz operators defined on $L_{a}^{2}\left(\Omega, d V_{\lambda}\right)$ and applications of the result are also obtained.

Theorem 3.1. Let $\phi \in L^{p}\left(\Omega, d \eta_{\lambda}\right), \psi \in L^{q}\left(\Omega, d \eta_{\lambda}\right)$, where $1 \leq p, q<\infty$. Let $C \in$ $\mathcal{L}\left(L_{a}^{2}\left(\Omega, d V_{\lambda}\right)\right)$ is such that

$$
\begin{equation*}
\left|\left\langle C K_{z}^{1-\lambda}, K_{w}^{1-\lambda}\right\rangle_{\lambda}\right|^{2} \leq\left\langle T_{|\phi|}^{\lambda} K_{z}^{1-\lambda}, K_{z}^{1-\lambda}\right\rangle_{\lambda}\left\langle T_{|\psi|}^{\lambda} K_{w}^{1-\lambda}, K_{w}^{1-\lambda}\right\rangle_{\lambda} \tag{3.1}
\end{equation*}
$$

for all $z, w \in \Omega$. Then $C \in S_{2 r}^{\lambda}$ and $\|C\|_{2 r}^{2} \leq\left\|T_{|\phi|}^{\lambda}\right\|_{p}\left\|T_{|\psi|}^{\lambda}\right\|_{q}$, where $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$.
Proof. First we show that (3.1) implies

$$
\left|\langle C f, g\rangle_{\lambda}\right|^{2} \leq\left\langle T_{|\phi|}^{\lambda} f, f\right\rangle_{\lambda}\left\langle T_{|\psi|}^{\lambda} g, g\right\rangle_{\lambda}
$$

for all $f, g \in L_{a}^{2}\left(\Omega, d V_{\lambda}\right)$. Let $f=\sum_{j=1}^{n} c_{j} K_{z_{j}}^{1-\lambda}$ where $c_{j}$ are constants, $z_{j} \in \Omega$ for $j=1,2, \ldots, n$ and $g=\sum_{i=1}^{m} d_{i} K_{w_{i}}^{1-\lambda}$ where $d_{i}$ are constants, $w_{i} \in \Omega$ for $i=1,2, \ldots, m$.
Then

$$
\begin{aligned}
\left|\langle C f, g\rangle_{\lambda}\right| & =\left|\left\langle C\left(\sum_{j=1}^{n} c_{j} K_{z_{j}}^{1-\lambda}\right), \sum_{i=1}^{m} d_{i} K_{w_{i}}^{1-\lambda}\right\rangle_{\lambda}\right|=\left|\sum_{i=1, j=1}^{m, n} c_{j} \overline{d_{i}}\left\langle C K_{z_{j}}^{1-\lambda}, K_{w_{i}}^{1-\lambda}\right\rangle_{\lambda}\right| \\
& \leq \sum_{i=1, j=1}^{m, n}\left|c_{j}\right|\left|d_{i}\right|\left|\left\langle C K_{z_{j}}^{1-\lambda}, K_{w_{i}}^{1-\lambda}\right\rangle_{\lambda}\right| \\
& \leq \sum_{i=1, j=1}^{m, n}\left|c_{j}\right|\left|d_{i}\right|\left\langle T_{|\phi|}^{\lambda} K_{z_{j}}^{1-\lambda}, K_{z_{j}}^{1-\lambda}\right\rangle_{\lambda}^{1 / 2}\left\langle T_{|\psi|}^{\lambda} K_{w_{i}}^{1-\lambda}, K_{w_{i}}^{1-\lambda}\right\rangle_{\lambda}^{1 / 2} \\
& =\left\langle T_{|\phi|}^{\lambda}\left(\sum_{j=1}^{n} c_{j} K_{z_{j}}^{1-\lambda}\right), \sum_{j=1}^{n} c_{j} K_{z_{j}}^{1-\lambda}\right\rangle_{\lambda}^{1 / 2}\left\langle T_{|\psi|}^{\lambda}\left(\sum_{i=1}^{m} d_{i} K_{w_{i}}^{1-\lambda}\right), \sum_{i=1}^{m} d_{i} K_{w_{i}}^{1-\lambda}\right\rangle_{\lambda}^{1 / 2} \\
& =\left\langle T_{|\phi|}^{\lambda} f, f\right\rangle_{\lambda}^{1 / 2}\left\langle T_{|\psi|}^{\lambda} g, g\right\rangle_{\lambda}^{1 / 2} .
\end{aligned}
$$

Since the set of vectors $\left\{\sum c_{j} K_{w_{j}}^{1-\lambda}, w_{j} \in \Omega, j=1, \ldots, n\right\}$ is dense in $L_{a}^{2}\left(\Omega, d V_{\lambda}\right)$, hence $\left|\langle C f, g\rangle_{\lambda}\right|^{2} \leq\left\langle T_{|\phi|}^{\lambda} f, f\right\rangle_{\lambda}\left\langle T_{|\psi|}^{\lambda} g, g\right\rangle_{\lambda}$ for all $f, g \in L_{a}^{2}\left(\Omega, d V_{\lambda}\right)$. If $\phi \in L^{p}\left(\Omega, d \eta_{\lambda}\right)$, then $T_{|\phi|}^{\lambda} \in S_{p}^{\lambda}$ and

$$
\left\|T_{|\phi|}^{\lambda}\right\|_{p}=\left(\operatorname{trace}\left(T_{|\phi|}^{\lambda}\right)^{p}\right)^{\frac{1}{p}}<\infty
$$

Similarly, since $\psi \in L^{q}\left(\Omega, d \eta_{\lambda}\right)$ then

$$
\left\|T_{|\psi|}^{\lambda}\right\|_{q}=\left(\operatorname{trace}\left(T_{|\psi|}^{\lambda}\right)^{q}\right)^{\frac{1}{q}}<\infty
$$

Let $\left\{u_{n}^{\lambda}\right\}_{n=0}^{\infty}$ and $\left\{\sigma_{n}^{\lambda}\right\}_{n=0}^{\infty}$ be two orthonormal sequences in $L_{a}^{2}\left(\Omega, d V_{\lambda}\right)$. Then using Holder's inequality, we obtain that

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left|\left\langle C u_{n}^{\lambda}, \sigma_{n}^{\lambda}\right\rangle_{\lambda}\right|^{2 r} & \leq \sum_{n=0}^{\infty}\left\langle T_{|\phi|}^{\lambda} u_{n}^{\lambda}, u_{n}^{\lambda}\right\rangle_{\lambda}^{r}\left\langle T_{|\psi|}^{\lambda} \sigma_{n}^{\lambda}, \sigma_{n}^{\lambda}\right\rangle_{\lambda}^{r} \\
& \leq\left(\sum_{n=0}^{\infty}\left\langle T_{|\phi|}^{\lambda} u_{n}^{\lambda}, u_{n}^{\lambda}\right\rangle_{\lambda}^{p}\right)^{\frac{r}{p}}\left(\sum_{n=0}^{\infty}\left\langle T_{|\psi|}^{\lambda} \sigma_{n}^{\lambda}, \sigma_{n}^{\lambda}\right\rangle_{\lambda}^{q}\right)^{\frac{r}{q}} \\
& \leq\left(\sum_{n=0}^{\infty}\left\langle\left(T_{|\phi|}^{\lambda}\right)^{p} u_{n}^{\lambda}, u_{n}^{\lambda}\right\rangle_{\lambda}\right)^{\frac{r}{p}}\left(\sum_{n=0}^{\infty}\left\langle\left(T_{|\psi|}^{\lambda}\right)^{q} \sigma_{n}^{\lambda}, \sigma_{n}^{\lambda}\right\rangle_{\lambda}\right)^{\frac{r}{q}} \\
& \leq\left(\operatorname{trace}\left(T_{|\phi|}^{\lambda}\right)^{p}\right)^{\frac{r}{p}}\left(\operatorname{trace}\left(T_{|\psi|}^{\lambda}\right)^{q}\right)^{\frac{r}{q}}=\left\|T_{|\phi|}^{\lambda}\right\|_{p}^{r}\left\|T_{|\psi|}^{\lambda}\right\|_{q}^{r}
\end{aligned}
$$

if $\frac{1}{r}=\frac{1}{p}+\frac{1}{q}$. Thus $\|C\|_{2 r} \leq\left\|T_{|\phi|}^{\lambda}\right\|_{p}^{\frac{1}{2}}\left\|T_{|\psi|}^{\lambda}\right\|_{q}^{\frac{1}{2}}$.
Corollary 3.2. If $\phi, \psi \in L^{p}\left(\Omega, d \eta_{\lambda}\right)$ and $C \in \mathcal{L}\left(L_{a}^{2}\left(\Omega, d V_{\lambda}\right)\right)$ is such that

$$
\left|\left\langle C K_{z}^{1-\lambda}, K_{w}^{1-\lambda}\right\rangle_{\lambda}\right|^{2} \leq\left\langle T_{|\phi|}^{\lambda} K_{z}^{1-\lambda}, K_{z}^{1-\lambda}\right\rangle_{\lambda}\left\langle T_{|\psi|}^{\lambda} K_{w}^{1-\lambda}, K_{w}^{1-\lambda}\right\rangle_{\lambda}
$$

for all $z, w \in \Omega$ then $\|C\|_{p}^{2} \leq\left\|T_{|\phi|}^{\lambda}\right\|_{p}\left\|T_{|\psi|}^{\lambda}\right\|_{p}$.
Proof. The proof follows from Theorem 3.1 if we assume $p=q$.
Corollary 3.3. If $A, B$ are two positive operators in $\mathcal{L}\left(L_{a}^{2}\left(\Omega, d V_{\lambda}\right)\right.$ and $A \in S_{p}^{\lambda}, B \in$ $S_{q}^{\lambda}, 1 \leq p, q<\infty$ and $C \in \mathcal{L}\left(L_{a}^{2}\left(\Omega, d V_{\lambda}\right)\right.$ is such that

$$
\left|\left\langle C K_{z}^{1-\lambda}, K_{w}^{1-\lambda}\right\rangle_{\lambda}\right|^{2} \leq\left\langle A K_{z}^{1-\lambda}, K_{z}^{1-\lambda}\right\rangle_{\lambda}\left\langle B K_{w}^{1-\lambda}, K_{w}^{1-\lambda}\right\rangle_{\lambda}
$$

for all $z, w \in \Omega$ then $\|C\|_{2 r}^{2} \leq\|A\|_{p}\|B\|_{q}$ if $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$. If $p=q$, then $\|C\|_{p}^{2} \leq\|A\|_{p}\|B\|_{p}$. Proof. Proceeding similarly as in Theorem 3.1 and Corollary 3.2 by replacing $T_{|\phi|}^{\lambda}$ by $A$ and $T_{|\psi|}^{\lambda}$ by $B$, the corollary follows.

Corollary 3.4. If $A, B \in \mathcal{L}\left(L_{a}^{2}\left(\Omega, d V_{\lambda}\right)\right), 0 \leq A, A \in S_{p}^{\lambda}, 1 \leq p<\infty$ and (3.1) holds for $z, w \in \Omega$, then $\|C\|_{2 p}^{2} \leq\|A\|_{p}\|B\|$.
Proof. Let $\left\{u_{n}^{\lambda}\right\}_{n=0}^{\infty}$ and $\left\{\sigma_{n}^{\lambda}\right\}_{n=0}^{\infty}$ be two orthonormal bases for $L_{a}^{2}\left(\Omega, d V_{\lambda}\right)$, then

$$
\left|\left\langle C u_{n}^{\lambda}, \sigma_{n}^{\lambda}\right\rangle_{\lambda}\right|^{2} \leq\left\langle A u_{n}^{\lambda}, u_{n}^{\lambda}\right\rangle_{\lambda}\left\langle B \sigma_{n}^{\lambda}, \sigma_{n}^{\lambda}\right\rangle_{\lambda} \leq\left\langle A u_{n}^{\lambda}, u_{n}^{\lambda}\right\rangle_{\lambda}\|B\|
$$

Then $\left|\left\langle C u_{n}^{\lambda}, \sigma_{n}^{\lambda}\right\rangle_{\lambda}\right|^{2 p} \leq\|B\|^{p}\left\langle A u_{n}^{\lambda}, u_{n}^{\lambda}\right\rangle_{\lambda}^{p}$. Hence

$$
\sum_{n=0}^{\infty}\left|\left\langle C u_{n}^{\lambda}, \sigma_{n}^{\lambda}\right\rangle_{\lambda}\right|^{2 p} \leq\|B\|^{p} \sum_{n=0}^{\infty}\left\langle A u_{n}^{\lambda}, u_{n}^{\lambda}\right\rangle_{\lambda}^{p}
$$

and $\|C\|_{2 p}^{2} \leq\|B\|\|A\|_{p}$.
If $\phi \in L^{p}\left(\Omega, d \eta_{\lambda}\right)$ then $T_{\phi}^{\lambda} \in S_{p}^{\lambda}$. Hence $\left|T_{\phi}^{\lambda}\right| \in S_{p}^{\lambda}$. Thus if $B \in \mathcal{L}\left(L_{a}^{2}\left(\Omega, d V_{\lambda}\right)\right), C \in$ $\mathcal{L}\left(L_{a}^{2}\left(\Omega, d V_{\lambda}\right)\right)$ are such that

$$
\left|\left\langle C K_{z}^{1-\lambda}, K_{w}^{1-\lambda}\right\rangle_{\lambda}\right|^{2} \leq\langle | T_{\phi}^{\lambda}\left|K_{z}^{1-\lambda}, K_{z}^{1-\lambda}\right\rangle_{\lambda}\left\langle B K_{w}^{1-\lambda}, K_{w}^{1-\lambda}\right\rangle_{\lambda}
$$

for all $z, w \in \Omega$ then $C \in S_{2 p}^{\lambda}$ and $\|C\|_{2 p}^{2} \leq\|B\|\left\|\left|T_{\phi}^{\lambda}\right|\right\|_{p}$.

## 4. SChATTEN $p$-CLASS OperATORS IN $\mathcal{L}\left(L_{a}^{2}\left(\Omega, \frac{d V}{C_{0}}\right)\right)$

In this section we assume that $\Omega$ is in its standard realization so that $0 \in \Omega$ and $\Omega$ is circular. The domain $\Omega$ is also starlike; i.e., $z \in \Omega$ implies that $t z \in \Omega$ for all $t \in[0,1]$. Let $\operatorname{Aut}(\Omega)$ be the Lie group of all automorphisms (biholomorphic mappings) of $\Omega$, and $G_{0}$, the isotropy subgroup at 0 ; i.e., $G_{0}=\{\psi \in \operatorname{Aut}(\Omega): \psi(0)=0\}$. It is well known [14] that $G_{0}$ is compact and that $G_{0}$ is a subgroup of the unitary group $\mathcal{U}_{n}$ of $\mathbb{C}^{n}$. Since $\Omega$ is bounded symmetric, we can canonically define [4] for each $a$ in $\Omega$ an automorphism $\phi_{a}$ in $\operatorname{Aut}(\Omega)$ such that
(i) $\phi_{a} \circ \phi_{a}(z) \equiv z$;
(ii) $\phi_{a}(0)=a, \phi_{a}(a)=0$;
(iii) $\phi_{a}$ has a unique fixed point in $\Omega$.

Actually, the above three conditions completely characterize the $\phi_{a}$ 's as the set of all (holomorphic) geodesic symmetrics of $\Omega$.

For any $a \in \Omega$, let $\gamma_{a}$ be the unique geodesic such that $\gamma_{a}(0)=0, \gamma_{a}(1)=a$. Since $\Omega$ is Hermitian symmetric, there exists a unique $\phi_{a} \in \operatorname{Aut}(\Omega)$ such that $\phi_{a} \mathrm{o} \phi_{a}(z) \equiv z$ and $\gamma_{a}\left(\frac{1}{2}\right)$ is an isolated fixed point of $\phi_{a}$ and $\phi_{a}$ is the geodesic symmetry at $\gamma_{a}\left(\frac{1}{2}\right)$. In particular, $\phi_{a}(0)=a$ and $\phi_{a}(a)=0$. If $a=0$, then we have $\phi_{a}(z)=-z$ for all $z$ in $\Omega$. A good reference for this is [12]. We denote by $m_{a}$ the geodesic midpoint $\gamma_{a}\left(\frac{1}{2}\right)$ of 0 and $a$. Given $\psi \in \operatorname{Aut}(\Omega)$, let $a=\psi^{-1}(0)$, then we have $\psi \circ \phi_{a}(0)=\psi(a)=0$, thus $\psi \circ \phi_{a} \in G_{0}$ and so there exists a unitary matrix $U$ such that $\psi=U \phi_{a}, U \in G_{0}$. If $\psi \in \operatorname{Aut}(\Omega)$ has an isolated fixed point in $\Omega$, then $\psi$ has a unique fixed point and each $\phi_{a}$ has $m_{a}$ as a unique fixed point. Further, for any $a$ and $b$ in $\Omega$, there exists a unitary $U \in G_{0}$ such that $\phi_{b} \circ \phi_{a}=U \phi_{\phi_{a}(b)}$ and $\phi_{m_{a}} \circ \phi_{a}=-\phi_{m_{a}}$ for any $a \in \Omega$. If $a \in \Omega$ and $U \in G_{0}$, then $U \phi_{a}=\phi_{U a} U$.

For any $\psi \in \operatorname{Aut}(\Omega)$, we denote by $J_{\psi}(z)$ the complex Jacobian determinant of the mapping $\psi: \Omega \longrightarrow \Omega$. If $a \in \Omega$, then by a result of [4], there exists a unimodulus constant $\theta(a)$ such that

$$
J_{\phi_{a}}(z)=\theta(a) k_{a}(z)
$$

for all $z \in \Omega$. In the simplest case $\Omega=\mathbb{D}$, we have $\phi_{a}(z)=\frac{a-z}{1-\bar{a} z}$ and $J_{\phi_{a}}(z)=\phi_{a}^{\prime}(z)=$ $-k_{a}(z)$, thus $\theta(a)=-1$ is independent of $a$. This is also true for any bounded symmetric domain $\Omega$. In fact $\theta(a)=(-1)^{n}$ for any $a \in \Omega$, where $n$ is the (complex) dimension of $\Omega$. Suppose $\psi \in \operatorname{Aut}(\Omega)$, there exists a unitary $U \in G_{0}$ such that $\psi=U \phi_{a}$ with $a=\psi^{-1}(0)$. Taking complex Jacobian determinant of this equality, we get

$$
J_{\psi}(z)=\operatorname{det}(U) J_{\phi_{a}}(z)=(-1)^{n} \operatorname{det}(U) k_{a}(z)
$$

In this section we shall assume $\lambda=0$. Then $d V_{0}(z)=\frac{d V(z)}{C_{0}}$ is the normalized Lebesgue measure on $\Omega$. Let $P_{0}=P$ we define the Toeplitz and Hankel operators in the usual way. We write $T_{\phi}^{0}, H_{\phi}^{0}, h_{\phi}^{0}, S_{\phi}^{0}$ as $T_{\phi}, H_{\phi}, h_{\phi}$ and $S_{\phi}$ respectively for notational simplicity. For $A \in \mathcal{L}\left(L_{a}^{2}\left(\Omega, \frac{d V}{C_{0}}\right)\right)$, let $\widetilde{A}(z)=\left\langle A k_{z}, k_{z}\right\rangle_{L_{a}^{2}\left(\Omega, \frac{d V}{C_{0}}\right)}$ for $z \in \Omega$, the Berezin symbol of $A$. That is, $\widetilde{A_{0}}(z)=\widetilde{A}(z)$ for all $z \in \Omega$. Here $k_{z}(w)=\frac{K(w, z)}{\sqrt{K(z, z)}}$, where $K(z, w)=\overline{K_{z}(w)}$ is the reproducing kernel of $L_{a}^{2}\left(\Omega, \frac{d V(z)}{C_{0}}\right)$. Let $\widetilde{\phi}(z)=\left\langle T_{\phi} k_{z}, k_{z}\right\rangle_{L_{a}^{2}\left(\Omega, \frac{d V}{C_{0}}\right)}$ where $T_{\phi}$ is the Toeplitz operator with symbol $\phi \in L^{\infty}(\Omega)$ on $L_{a}^{2}\left(\Omega, \frac{d V}{C_{0}}\right)$. Let $S_{p}^{0}=S_{p}$, the Schatten $p$-class in $\mathcal{L}\left(L_{a}^{2}\left(\Omega, \frac{d V}{C_{0}}\right)\right)$. In this section we show that if $1 \leq p<\infty, d \eta(z)=K(z, z) \frac{d V(z)}{C_{0}}$ and $T_{\phi} \in S_{p}$ then $\widetilde{\phi} \in L^{p}(\Omega, d \eta)$.

Given $z \in \Omega$ and $f$ any measurable function on $\Omega$, we define a function $U_{z} f$ on $\Omega$ by $U_{z} f(w)=k_{z}(w) f\left(\phi_{z}(w)\right)$. Since $\left|k_{z}\right|^{2}$ is real Jacobian determinant of the mapping $\phi_{z}$ (see [4]), $U_{z}$ is easily seen to be a unitary operator on $L^{2}\left(\Omega, \frac{d V}{C_{0}}\right)$ and $L_{a}^{2}\left(\Omega, \frac{d V}{C_{0}}\right)$. It is to check that $U_{z}^{*}=U_{z}$, thus $U_{z}$ is a self-adjoint unitary operator. This implies that
spectrum $\sigma\left(U_{z}\right)=\{-1,1\}$. We can check easily that $U_{z} \neq \pm I$. If $\phi \in L^{\infty}\left(\Omega, \frac{d V}{C_{0}}\right)$ and $z \in \Omega$ then $U_{z} T_{\phi}=T_{\phi \circ \phi_{z}} U_{z}$. This is so as $P U_{z}=U_{z} P$ and for $f \in L_{a}^{2}\left(\Omega, \frac{d V}{C_{0}}\right)$,

$$
\begin{aligned}
T_{\phi \circ \phi_{z}} U_{z} f & =T_{\phi \circ \phi_{z}}\left(\left(f \circ \phi_{z}\right) k_{z}\right) \\
& =P\left(\left(\phi \circ \phi_{z}\right)\left(f \circ \phi_{z}\right) k_{z}\right)=P\left(U_{z}(\phi f)\right) \\
& =U_{z} P(\phi f)=U_{z} T_{\phi} f .
\end{aligned}
$$

Theorem 4.1. Suppose $1 \leq p<\infty$ and $d \eta(z)=K(z, z) \frac{d V(z)}{C_{0}}$. If $T_{\phi} \in S_{p}$ then $\widetilde{\phi} \in$ $L^{p}(\Omega, d \eta)$.
Proof. Suppose $T_{\phi} \in S_{p}$. Then $\left.\left.\int_{\Omega}\langle | T_{\phi}\right|^{p} k_{w}, k_{w}\right\rangle_{L_{a}^{2}\left(\Omega, \frac{d V}{C_{0}}\right)} d \eta(w)<\infty$. (Henceforth in the proof the inner product and norm is evaluated in the space $L^{2}\left(\Omega, \frac{d V}{C_{0}}\right)$.) That is, $\int_{\Omega}\left\langle\left(T_{\phi}^{*} T_{\phi}\right)^{p / 2} k_{w}, k_{w}\right\rangle d \eta(w)<\infty$. If $2 \leq p<\infty$, then

$$
\int_{\Omega}\left\langle T_{\phi}^{*} T_{\phi} k_{w}, k_{w}\right\rangle^{p / 2} d \eta(w) \leq \int_{\Omega}\left\langle\left(T_{\phi}^{*} T_{\phi}\right)^{p / 2} k_{w}, k_{w}\right\rangle d \eta(w)<\infty
$$

This implies

$$
\begin{aligned}
\int_{\Omega}\left\|P\left(\phi \circ \phi_{w}\right)\right\|^{p} d \eta(w) & =\int_{\Omega}\left\|P\left(U_{w}\left(\phi k_{w}\right)\right)\right\|^{p} d \eta(w) \\
& =\int_{\Omega}\left\|U_{w} T_{\phi} k_{w}\right\|^{p} d \eta(w)=\int_{\Omega}\left\|T_{\phi} k_{w}\right\|^{p} d \eta(w) \\
& =\int_{\Omega}\left\langle T_{\phi}^{*} T_{\phi} k_{w}, k_{w}\right\rangle^{p / 2} d \eta(w)<\infty
\end{aligned}
$$

Now

$$
\begin{aligned}
\left\|P\left(\phi \circ \phi_{w}\right)(0)\right\| & =\left|\left\langle P\left(\phi \circ \phi_{w}\right), 1\right\rangle\right|=\left|\left\langle U_{w}\left(T_{\phi} k_{w}\right), 1\right\rangle\right| \\
& =\left|\left\langle T_{\phi} k_{w}, U_{w} 1\right\rangle\right|=\left|\left\langle T_{\phi} k_{w}, k_{w}\right\rangle\right| \\
& \leq\left\|T_{\phi} k_{w}\right\|=\left\|P\left(\phi \circ \phi_{w}\right)\right\| .
\end{aligned}
$$

Thus $\int_{\Omega}\left|P\left(\phi \circ \phi_{w}(0)\right)\right|^{p} d \eta(w)<\infty$. That is, $\int_{\Omega}|\widetilde{\phi}(w)|^{p} d \eta(w)<\infty$ and $\widetilde{\phi} \in L^{p}(\Omega, d \eta)$. Suppose $1 \leq p<2$. Then by Heinz inequality [11], [9] it follows that

$$
\begin{aligned}
\infty & \left.\left.>\left.\int_{\Omega}\langle | T_{\phi}\right|^{p} k_{w}, k_{w}\right\rangle d \eta(w)=\left.\int_{\Omega}\langle | T_{\phi}\right|^{2\left(\frac{p}{2}\right)} k_{w}, k_{w}\right\rangle d \eta(w) \\
& \geq \int_{\Omega} \frac{\left|\left\langle T_{\phi} k_{w}, k_{w}\right\rangle\right|^{2}}{\left.\left.\langle | T_{\phi}^{*}\right|^{2(1-p / 2)} k_{w}, k_{w}\right\rangle} d \eta(w)=\int_{\Omega} \frac{|\widetilde{\phi}(w)|^{2}}{\left\|P\left(\bar{\phi} \circ \phi_{w}\right)\right\|^{2-p}} d \eta(w) \\
& =\int_{\Omega}|\widetilde{\phi}(w)|^{2}\left\|P\left(\bar{\phi} \circ \phi_{w}\right)\right\|^{p-2} d \eta(w) \geq \int_{\Omega} \frac{|\widetilde{\phi}(w)|^{2}}{\left\|P\left(\bar{\phi} \circ \phi_{w}\right)\right\|^{2}}\left\|P\left(\bar{\phi} \circ \phi_{w}\right)\right\|^{p} d \eta(w) \\
& \geq \int_{\Omega} \frac{|\widetilde{\phi}(w)|^{2}}{C^{2}\|\phi\|_{B T}^{2}}\left|P\left(\phi \circ \phi_{w}\right)(0)\right|^{p} d \eta(w)=\int_{\Omega} \frac{|\widetilde{\phi}(w)|^{2}}{C^{2}\|\phi\|_{B T}^{2}}|\widetilde{\phi}(w)|^{p} d \eta(w)
\end{aligned}
$$

since

$$
\begin{aligned}
\left.\left.\langle | T_{\phi}^{*}\right|^{2-p} k_{w}, k_{w}\right\rangle & \left.\left.=\left.\langle | T_{\phi}^{*}\right|^{2\left(\frac{2-p}{2}\right)} k_{w}, k_{w}\right\rangle \leq\left.\langle | T_{\phi}^{*}\right|^{2} k_{w}, k_{w}\right\rangle^{\frac{2-p}{2}} \\
& =\left\langle T_{\phi} T_{\phi}^{*} k_{w}, k_{w}\right\rangle^{\frac{2-p}{2}}=\left\|T_{\phi}^{*} k_{w}\right\|^{2-p}=\left\|P\left(\bar{\phi} \circ \phi_{w}\right)\right\|^{2-p} .
\end{aligned}
$$

Hence $\int_{\Omega}|\widetilde{\phi}(w)|^{p+2} d \eta(w)<\infty$ and therefore $\int_{\Omega}|\widetilde{\phi}(w)|^{p} d \eta(w)<\infty$. Thus $\widetilde{\phi} \in L^{p}(\Omega, d \eta)$.

Let $\pi: \mathcal{L}\left(L_{a}^{2}(\Omega)\right) \longrightarrow \mathcal{L}\left(L_{a}^{2}(\Omega)\right) / \mathcal{L C}\left(L_{a}^{2}(\Omega)\right)$ be the natural surjection onto the Calkin algebra $\mathcal{L}\left(L_{a}^{2}(\Omega)\right) / \mathcal{L C}\left(L_{a}^{2}(\Omega)\right)$.
Corollary 4.2. Suppose $1 \leq p \leq \infty, I-T_{\phi}^{*} T_{\phi} \in S_{p}$ and $\sigma\left(T_{\phi}\right)$ does not fill $\mathbb{D}$. Then $\phi \notin$ $L^{p}(\Omega, d \eta)$ and $T_{\phi}=W+R$ where $W$ is unitary, $R \in S_{p}$. In addition if $T_{\phi}^{-1} \in \mathcal{L}\left(L_{a}^{2}(\Omega)\right)$ and $\lambda \in \sigma\left(T_{\phi}\right)$ with $|\lambda| \neq 1$ then $\lambda$ is an isolated eigenvalue of $T_{\phi}$.
Proof. Suppose $I-T_{\phi}^{*} T_{\phi} \in S_{p}$ and $\phi \in L^{p}(\Omega, d \eta)$. Then by Lemma 2.3, $T_{\phi} \in S_{p}$ and therefore $I \in S_{p}$. But this is not true. Thus $\phi \notin L^{p}(\Omega, d \eta)$. Now since $I-T_{\phi}^{*} T_{\phi} \in S_{p}$, hence $\pi\left(T_{\phi}\right)$ is an isometry and further since $\sigma\left(T_{\phi}\right)$ does not fill $\mathbb{D}$, hence $\pi\left(T_{\phi}\right)$ is unitary. By [6], $T_{\phi}=U+K$ where $K \in \mathcal{L C}\left(L_{a}^{2}(\Omega)\right)$ and $U$ is unitary or a shift or the adjoint of a shift. As $\sigma\left(T_{\phi}\right)$ does not fill $\mathbb{D}$, hence the operator $U$ is unitary. Thus the Fredholm index of $T_{\phi}=\operatorname{ind}\left(T_{\phi}\right)=\operatorname{dim} \operatorname{ker} T_{\phi}-\operatorname{dim} \operatorname{ker} T_{\phi}^{*}=0$ and $T_{\phi}=V S$ where $V$ is unitary and $S^{2}=T_{\phi}^{*} T_{\phi}$. From the hypothesis $I-T_{\phi}^{*} T_{\phi} \in S_{p}$ it follows that $I-S \in S_{p}$. Hence $T_{\phi}=V S=V-V(I-S)=V+R$ where $V$ is unitary and $R=-V(I-S) \in S_{p}$. Now suppose $\lambda \in \sigma\left(T_{\phi}\right)$ but $|\lambda| \neq 1, T_{\phi}^{-1} \in \mathcal{L}\left(L_{a}^{2}(\Omega)\right)$ and $I-T_{\phi}^{*} T_{\phi} \in S_{p}$. As $T_{\phi}=V+R$, we have $I=T_{\phi}^{-1} T_{\phi}=T_{\phi}^{-1} V+T_{\phi}^{-1} R$. Therefore, $V^{*}=T_{\phi}^{-1} V V^{*}+T_{\phi}^{-1} R V^{*}$ where $R \in S_{p}$. That is, $T_{\phi}^{-1}=V^{*}-T_{\phi}^{-1} R V^{*}$ where $R \in S_{p}$. By [18], each $\lambda \in \sigma\left(T_{\phi}\right)$ with $|\lambda|>1$ is an isolated eigenvalue and $\sigma\left(T_{\phi}\right) \bigcap \mathbb{D}$ is either $\mathbb{D}$ or a countable set of isolated eigenvalues of $T_{\phi}$. Hence each $\lambda \in \sigma\left(T_{\phi}\right) \bigcap \mathbb{D}$ is also an isolated eigenvalue of $T_{\phi}$.
Corollary 4.3. Suppose $\phi \geq 0$ and there exists $z \in \Omega$ such that $T_{\phi}-U_{z} \in S_{p}, 1 \leq p<\infty$. If $\lambda \in \sigma\left(T_{\phi}\right)$ and $\lambda \neq \pm 1$ then $\lambda$ is an isolated eigenvalue of $T_{\phi}$ with finite multiplicity.

Proof. The operator $U_{z}$ is unitary and $\sigma\left(U_{z}\right)=\{-1,1\}$. For proof see [21]. Since $\phi \geq 0$, hence $T_{\phi}$ is positive and therefore a normal operator. Notice that $T_{\phi}$ is a compact perturbation of $U_{z}$. According to Weyl's theorem for normal operators, $T_{\phi}$ and $U_{z}$ have same Weyl spectrum [2]. For the normal operator $T_{\phi}$ the Weyl spectrum coincides with the points of $\sigma\left(T_{\phi}\right)$ which are not isolated eigenvalues with finite multiplicity [2]. The operators for which the above set coincides with the Weyl spectrum are characterized in [20]. Since the Weyl spectrum of $U_{z}$ and, hence the Weyl spectrum of $T_{\phi}$ is contained in $\sigma\left(U_{z}\right)=\{-1,1\}$, the conclusion of the corollary follows.

Lemma 4.4. If $\left\{A_{n}\right\},\left\{B_{n}\right\}$ are sequences in $S_{p}^{\lambda}$ and $A_{n} \xrightarrow{w} A$ and $B_{n} \xrightarrow{s} B$ then $A_{n} B_{n} \xrightarrow{w} A B$.
Proof. Fix $f, g \in L_{a}^{2}\left(\Omega, d V_{\lambda}\right)$. Then

$$
\left\langle A_{n} B_{n} f, g\right\rangle_{\lambda}=\left\langle A_{n}\left(B_{n}-B\right) f, g\right\rangle_{\lambda}+\left\langle A_{n} B f, g\right\rangle_{\lambda} .
$$

Since $\left\langle A_{n} B f, g\right\rangle_{\lambda} \longrightarrow\langle A B f, g\rangle_{\lambda}$ and $\left|\left\langle A_{n}\left(B_{n}-B\right) f, g\right\rangle_{\lambda}\right| \leq M\left\|\left(B_{n}-B\right) f\right\|\|g\|$, where $M=\sup _{n}\left\{\left\|A_{n}\right\|\right\}<\infty$, by the uniform boundedness principle, we obtain that $\left\langle A_{n} B_{n} f, g\right\rangle_{\lambda} \longrightarrow\langle A B f, g\rangle_{\lambda}$.
Lemma 4.5. Let $\mathcal{L}$ denote either the space of all operators on $L_{a}^{2}\left(\Omega, d V_{\lambda}\right)$, with the weak operator topology, or any of the Banach spaces $S_{p}^{\lambda}(1<p<\infty)$ with its weak topology. If $\left\{A_{n}\right\},\left\{B_{n}\right\} \subset \mathcal{L}$, with $A_{n} \longrightarrow A$ and $B_{n} \longrightarrow B$ weakly, and if each $B_{n}$ has the upper triangular form, then $A_{n} B_{n} \longrightarrow A B$ weakly.
Proof. We denote the matrices of the operators $A_{n}, B_{n}, A_{n} B_{n}$ and $A B$ as $\left(\widehat{A_{n}}(i, j)\right)$, $\left(\widehat{B_{n}}(i, j)\right),\left(d_{n}(i, j)\right)$ and $(d(i, j))$ respectively. One verifies that if $\left\{A_{n}\right\} \subset \mathcal{L}$ then $A_{n} \xrightarrow{w}$ $A$ if and only if $\left\{\left\|A_{n}\right\|_{\mathcal{L}}\right\}$ is a bounded sequence, and $\widehat{A_{n}}(i, j) \longrightarrow \widehat{A}(i, j)$ for all $i, j$. Thus to complete the proof we have to show that $\left\|A_{n} B_{n}\right\|_{\mathcal{L}}$ are bounded and $d_{n}(i, j) \longrightarrow d(i, j)$ for all $i, j$. We recall that in $S_{p}$ we have

$$
\left\|A_{n} B_{n}\right\|_{p} \leq\left\|A_{n} B_{n}\right\|_{p / 2} \leq\left\|A_{n}\right\|_{p}\left\|B_{n}\right\|_{p}
$$

Thus $\left\{\left\|A_{n} B_{n}\right\|_{\mathcal{L}}\right\}$ is a bounded sequence. Further since each $B_{n}$ is upper triangular,

$$
d_{n}(i, j)=\sum_{k=1}^{j} \widehat{A_{n}}(i, k) \widehat{B_{n}}(k, j)
$$

and

$$
d(i, j)=\sum_{k=1}^{j} \widehat{A}(i, k) \widehat{B}(k, j)
$$

where $(\widehat{A}(i, j))$ and $(\widehat{B}(i, j))$ denote the matrices of $A$ and $B$ respectively. Thus, for each fixed choice of $i, j, d_{n}(i, j) \longrightarrow d(i, j)$.

Lemma 4.6. Let $p \geq 1, A \in \mathcal{L}\left(L_{a}^{2}\left(\Omega, d V_{\lambda}\right)\right)$ and $A_{n} \in S_{p}^{\lambda}$ for all $n \in \mathbb{N}$. If $A_{n} \longrightarrow A$ in weak operator topology and $\left\|A_{n}\right\|_{p} \leq C<\infty$ for all $n \in \mathbb{N}$ and for some constant $C>0$ then $A \in S_{p}^{\lambda}$ and $\|A\|_{p} \leq C$.
Proof. For each $n \in \mathbb{N}$, define

$$
\xi_{n}(K)=\operatorname{tr}\left(A_{n} K\right)
$$

Then $\xi_{n} \in S_{q}^{*}$ where $\frac{1}{p}+\frac{1}{q}=1$ and $\left\|\xi_{n}\right\|=\left\|A_{n}\right\|_{p} \leq C<\infty$. By Banach-Alaoglu's theorem [8], there exists a subsequence $\left\{\xi_{n_{k}}\right\}$ such that $\xi_{n_{k}} \longrightarrow \xi$ in $w^{*}$-topology and $\xi \in$ $\left(S_{q}^{\lambda}\right)^{*}$. Therefore $\operatorname{tr}\left(A_{n_{k}} K\right)=\xi_{n_{k}}(K) \longrightarrow \xi(K)$, for all $K \in S_{q}^{\lambda}$ and $|\xi(K)| \leq M\|K\|_{q}$, for some constant $M>0$. On the other hand, since $A_{n} \longrightarrow A$ in weak operator topology, $\operatorname{tr}\left(A_{n} K\right) \longrightarrow \operatorname{tr}(A K)$ for all operators $K$ of finite rank. The lemma follows since

$$
\|A\|_{p}=\sup \left\{|\operatorname{tr}(A K)|: \operatorname{rank}(K)<\infty \text { and }\|K\|_{q} \leq 1\right\}<\infty
$$

## 5. Schatten class little Hankel operators

In this section we find conditions on $\phi \in L^{2}\left(\Omega, \frac{d V}{C_{0}}\right)$ such that the little Hankel operator $S_{\bar{\phi}}$ defined on $L_{a}^{2}\left(\Omega, \frac{d V}{C_{0}}\right)$ belong to the class $S_{p}, 1 \leq p<\infty$. We then extend the result to obtain Schatten class characterization of little Hankel operators defined on $L_{a}^{2}\left(\Omega, d V_{\lambda}\right)$. We also present many applications of these characterizations. Recall that for $\phi \in L^{\infty}(d V)$, we define the little Hankel operator $S_{\phi}$ from $L_{a}^{2}\left(\Omega, \frac{d V}{C_{0}}\right)$ into $L_{a}^{2}\left(\Omega, \frac{d V}{C_{0}}\right)$ as $S_{\phi} f=P(J(\phi f))$ where $J: L^{2}\left(\Omega, \frac{d V}{C_{0}}\right) \longrightarrow L^{2}\left(\Omega, \frac{d V}{C_{0}}\right)$ is defined as $J f(z)=f(\bar{z})$ and $P$ is the orthogonal projection from $L^{2}\left(\Omega, \frac{d V}{C_{0}}\right)$ onto $L_{a}^{2}\left(\Omega, \frac{d V}{C_{0}}\right)$ and

$$
P f(z)=\int_{\Omega} K(z, w) f(w) d V(w)
$$

The above integral formula extends $P$ to $L^{1}\left(\Omega, \frac{d V}{C_{0}}\right)$. The little Hankel operator $S_{\phi}$ can also be defined for $\phi \in L^{2}\left(\Omega, \frac{d V}{C_{0}}\right)$ as $S_{\phi} f=P(J(\phi f))$ for $f \in L_{a}^{2}\left(\Omega, \frac{d V}{C_{0}}\right)$. Notice that if $\phi \in L^{2}\left(\Omega, \frac{d V}{C_{0}}\right)$, then $S_{\bar{\phi}}=S_{\overline{P \phi}}$ in the sense that $S_{\bar{\phi}} g=S_{\overline{P \phi}} g$ for all $g \in H^{\infty}(\Omega)$ which is dense in $L_{a}^{2}\left(\Omega, \frac{d V}{C_{0}}\right)$. Let $\bar{P}$ be the orthogonal projection from $L^{2}\left(\Omega, \frac{d V}{C_{0}}\right)$ onto $\overline{L_{a}^{2}\left(\Omega, \frac{d V}{C_{0}}\right)}=\left\{\bar{f}: f \in L_{a}^{2}\left(\Omega, \frac{d V}{C_{0}}\right)\right\}$. Then

$$
\bar{P} f(z)=\int_{\Omega} \overline{K(z, w)} f(w) \frac{d V(w)}{C_{0}}=\int_{\Omega} K(w, z) f(w) \frac{d V(w)}{C_{0}}
$$

This formula also extends $\bar{P}$ to $L^{1}\left(\Omega, \frac{d V}{C_{0}}\right)$. Given $\phi \in L^{2}\left(\Omega, \frac{d V}{C_{0}}\right)$, define the operators $H_{\phi}$ and $h_{\phi}$ with domain $L_{a}^{2}\left(\Omega, \frac{d V}{C_{0}}\right)$ as follows : $H_{\phi} f=(I-P)(\phi f) ; h_{\phi} f=\bar{P}(\phi f)$, where $I$ is the identity operator. The operator $H_{\phi}$ is called the Hankel operator with symbol $\phi$ and $h_{\phi}$ is called the reduced (or little) Hankel operator with symbol $\phi$. The word "reduced"
(or little) is justified by the inequality $\bar{P}-P_{0} \leq I-P$, where $P_{0}$ is the orthogonal projection of rank one from $L^{2}\left(\Omega, \frac{d V}{C_{0}}\right)$ onto the constants, that is,

$$
P_{0} f(z)=\int_{\Omega} f(z) \frac{d V(z)}{C_{0}}
$$

We refer both the operators $S_{\phi}$ and $h_{\phi}$ as "little" Hankel operators since $J S_{\phi}=h_{\phi}$ and $J$ is a unitary operator.

The main purpose of this section is to demonstrate that there exists an integral transform on $\Omega$ which carries a lot of information on the little Hankel operators. We give a unified treatment on the size estimates of $S_{\phi}$ using the integral transform $W$ defined as follows. Given $f \in L^{1}\left(\Omega, \frac{d V}{C_{0}}\right), W f$ is the function on $\Omega$ defined by

$$
W f(z)=\lambda_{\Omega} \int_{\Omega} f(w) \overline{k_{z}^{2}(w)} \frac{d V(w)}{C_{0}}, \quad z \in \Omega
$$

where $\lambda_{\Omega}^{-1}=\int_{\Omega} K(z, z)^{-1} \frac{d V(z)}{C_{0}}$. Notice that for $\phi \in L^{2}\left(\Omega, \frac{d V}{C_{0}}\right)$, we always have $S_{\bar{\phi}}=$ $S_{\overline{P \phi}}$, where $P$ is the Bergman projection. Thus in considering little Hankel operators, we can content ourselves with antiholomorphic symbols. We collect here some of the basic properties of the integral transform $W$ as follows. If $f \in L^{2}\left(\Omega, \frac{d V}{C_{0}}\right)$, then
(i) $P W f=P f$;
(ii) $W P f=W f$;
(iii) $W^{2} f=W f$;
(iv) $W$ is a bounded operator on $L^{p}\left(\Omega, K(z, z) \frac{d V(z)}{C_{0}}\right)$ for all $1 \leq p \leq+\infty$ and $W$ is an orthogonal projection on the Hilbert space $L^{2}\left(\Omega, K(z, z) \frac{d V(z)}{C_{0}}\right)$.
The boundedness of $W$ on $L^{p}\left(\Omega, K(z, z) \frac{d V(z)}{C_{0}}\right), 1 \leq p \leq+\infty$ implies that

$$
\int_{\Omega}(W f)(z) \overline{g(z)} K(z, z) \frac{d V(z)}{C_{0}}=\int_{\Omega} f(z) \overline{W g(z)} K(z, z) \frac{d V(z)}{C_{0}}
$$

for all $f \in L^{p}\left(\Omega, K(z, z) \frac{d V(z)}{C_{0}}\right) ; g \in L^{q}\left(\Omega, K(z, z) \frac{d V(z)}{C_{0}}\right)$ with $\frac{1}{p}+\frac{1}{q}=1$. Under the usual integral pairing $\langle$,$\rangle (with respect to \frac{d V}{C_{0}}$ ), we have

$$
W^{*} f(z)=\lambda_{\Omega} \int_{\Omega} \frac{K(z, w)^{2}}{K(w, w)} f(w) \frac{d V(w)}{C_{0}}=Q f(z)
$$

where $Q$ is a bounded projection from $L^{1}\left(\Omega, \frac{d V}{C_{0}}\right)$ onto $L_{a}^{1}\left(\Omega, \frac{d V}{C_{0}}\right)$. It is also not difficult to check that (i) $S_{\bar{\phi}}=S_{\overline{P \phi}}$ (ii) $S_{\bar{\phi}}=S_{\overline{W \phi}}$ and (iii) $\overline{W \phi(z)}=\lambda_{\Omega}\left\langle S_{\bar{\phi}} k_{z}, \overline{k_{z}}\right\rangle$. We verify now that if $\phi \in L^{2}\left(\Omega, \frac{d V}{C_{0}}\right)$ then $S_{\bar{\phi}}$ is bounded if and only if $W \phi(z)$ is bounded in $\Omega$. Since each $k_{z}$ is a unit vector in $L^{2}\left(\Omega, \frac{d V}{C_{0}}\right)$, we have for all $z \in \Omega$,

$$
|W \phi(z)|=\lambda_{\Omega}\left|\left\langle S_{\bar{\phi}} k_{z}, \overline{k_{z}}\right\rangle\right| \leq \lambda_{\Omega}\left\|S_{\bar{\phi}} k_{z}\right\| \leq \lambda_{\Omega}\left\|S_{\bar{\phi}}\right\| .
$$

Hence $\|W \phi\|_{\infty} \leq \lambda_{\Omega}\left\|S_{\bar{\phi}}\right\|$. On the other hand, $S_{\bar{\phi}}=S_{\overline{P \phi}}=S_{\overline{P W \phi}}=S_{\overline{W \phi}}$. Thus $\left\|S_{\bar{\phi}}\right\|=\left\|S_{\overline{W \phi}}\right\|$. It is easy to see that $\left\|S_{\bar{\psi}}\right\| \leq\|\psi\|_{\infty}$ for all $\psi \in L^{\infty}(\Omega)$. Hence we also have $\left\|S_{\bar{\phi}}\right\| \leq\|W \phi\|_{\infty}$.
Theorem 5.1. Suppose $1 \leq p \leq+\infty$. Then $S_{\bar{\phi}} \in S_{p}$ if and only if $W \phi \in$ $L^{p}\left(\Omega, K(z, z) \frac{d V(z)}{C_{0}}\right)$.

Proof. We shall first show that if $W \phi \in L^{p}\left(\Omega, K(z, z) \frac{d V(z)}{C_{0}}\right)$ then $S_{\bar{\phi}} \in S_{p}$. We have already proved the case $p=\infty$. We need only to show for $1 \leq p<\infty$. Since $S_{\bar{\phi}}=S_{\bar{W} \phi}$,
it suffices to show that $S_{\bar{\phi}}$ is in $S_{p}$ whenever $\phi \in L^{p}\left(\Omega, K(z, z) \frac{d V(z)}{C_{0}}\right)$. From Heinz inequality [11], [9], it follows that

$$
\begin{aligned}
\left|\left\langle S_{\bar{\phi}} k_{z}, k_{w}\right\rangle\right|^{2} & \leq\langle | S_{\bar{\phi}}\left|k_{z}, k_{z}\right\rangle\langle | S_{\bar{\phi}}^{*}\left|k_{w}, k_{w}\right\rangle=\left\langle\left(S_{\bar{\phi}}^{*} S_{\bar{\phi}}\right)^{1 / 2} k_{z}, k_{z}\right\rangle\left\langle\left(S_{\bar{\phi}} S_{\bar{\phi}}^{*}\right)^{1 / 2} k_{w}, k_{w}\right\rangle \\
& \leq\left\langle\left(S_{\bar{\phi}}^{*} S_{\bar{\phi}}\right) k_{z}, k_{z}\right\rangle^{1 / 2}\left\langle\left(S_{\bar{\phi}} S_{\bar{\phi}}^{*}\right) k_{w}, k_{w}\right\rangle^{1 / 2} \\
& =\left\|S_{\bar{\phi}} k_{z}\right\|_{L^{2}\left(\Omega, \frac{d V}{C_{0}}\right)}\left\|S_{\bar{\phi}^{+}} k_{w}\right\|_{L^{2}\left(\Omega, \frac{d V}{C_{0}}\right)} \\
& =\left\|P J\left(\bar{\phi} k_{z}\right)\right\|_{L^{2}\left(\Omega, \frac{d V}{C_{0}}\right)}\left\|P J\left(\bar{\phi}^{+} k_{w}\right)\right\|_{L^{2}\left(\Omega, \frac{d V}{C_{0}}\right)} \\
& \leq\left\|\bar{\phi} k_{z}\right\|_{L^{2}\left(\Omega, \frac{d V}{\left.C_{0}\right)}\right.}\left\|\bar{\phi}^{+} k_{w}\right\|_{L^{2}\left(\Omega, \frac{d V}{C_{0}}\right)} \\
& =\left(\int_{\Omega}|\phi(u)|^{2}\left|k_{z}(u)\right|^{2} \frac{d V(u)}{C_{0}}\right)^{1 / 2}\left(\int_{\Omega}\left|\bar{\phi}^{+}(v)\right|^{2}\left|k_{w}(v)\right|^{2} \frac{d V(v)}{C_{0}}\right)^{1 / 2} \\
& =\left\langle T_{|\phi|^{2}} k_{z}, k_{z}\right\rangle^{1 / 2}\left\langle T_{\left|\phi^{+}\right|^{2}} k_{w}, k_{w}\right\rangle^{1 / 2} \\
& =\left\langle M_{|\phi|^{2}} k_{z}, k_{z}\right\rangle^{1 / 2}\left\langle M_{\left|\phi^{+}\right|^{2}} k_{w}, k_{w}\right\rangle^{1 / 2} \\
& =\left\langle M_{|\phi|}^{2} k_{z}, k_{z}\right\rangle^{1 / 2}\left\langle M_{\left|\phi^{+}\right|}^{2} k_{w}, k_{w}\right\rangle^{1 / 2} \\
& \leq d\left\langle M_{|\phi|} k_{z}, k_{z}\right\rangle\left\langle M_{\left|\phi^{+}\right|} k_{w}, k_{w}\right\rangle=d\left\langle T_{|\phi|} k_{z}, k_{z}\right\rangle\left\langle T_{\left|\phi^{+}\right|} k_{w}, k_{w}\right\rangle
\end{aligned}
$$

for some constant $d \geq 0$. The last inequality follows from the Kantorvich inequality $\langle A x, x\rangle^{p} \geq\left\langle A^{p} x, x\right\rangle \geq K(p)\langle A x, x\rangle^{p}, p \in(0,1],\|x\|=1$. Taking $p=\frac{1}{2}$, we have $\langle A x, x\rangle^{\frac{1}{2}} \leq \frac{1}{K\left(\frac{1}{2}\right)}\left\langle A^{\frac{1}{2}} x, x\right\rangle$ and $K\left(\frac{1}{2}\right) \in(0,1]$. Thus

$$
\left|\left\langle S_{\bar{\phi}} K_{z}, K_{w}\right\rangle\right|^{2} \leq d\left\langle T_{|\phi|} K_{z}, K_{z}\right\rangle\left\langle T_{\left|\phi^{+}\right|} K_{w}, K_{w}\right\rangle
$$

Now $\phi \in L^{p}(\Omega, K(z, z) d V(z))$ implies $|\phi|,\left|\phi^{+}\right| \in L^{p}(\Omega, K(z, z) d V(z))$. Hence $T_{|\phi|}, T_{\left|\phi^{+}\right|} \in$ $S_{p}$. Hence by Theorem 3.1, $S_{\bar{\phi}} \in S_{p}$. Now we shall prove that if $1 \leq p \leq+\infty$, then $S_{\bar{\phi}} \in S_{p}$ implies $W \phi \in L^{p}(\Omega, K(z, z) d V(z))$. We have already settled the case $p=+\infty$. Now we assume $2 \leq p<\infty$ and $S_{\bar{\phi}} \in S_{p}$. Then

$$
\begin{aligned}
& \int_{\Omega}|(W \phi)(z)|^{p} K(z, z) d V(z)=\int_{\Omega} \lambda_{\Omega}^{p}\left|\left\langle S_{\bar{\phi}} k_{z}, \overline{k_{z}}\right\rangle\right|^{p} K(z, z) d V(z) \\
& \quad \leq \lambda_{\Omega}^{p} \int_{\Omega}\left\|S_{\bar{\phi}} k_{z}\right\|^{p} K(z, z) d V(z)=\lambda_{\Omega}^{p} \int_{\Omega}\left\langle S_{\bar{\phi}} k_{z}, S_{\bar{\phi}} k_{z}\right\rangle^{p / 2} K(z, z) d V(z) \\
& \quad=\lambda_{\Omega}^{p} \int_{\Omega}\left\langle S_{\bar{\phi}}^{*} S_{\bar{\phi}} k_{z}, k_{z}\right\rangle^{p / 2} K(z, z) d V(z) \leq \lambda_{\Omega}^{p} \int_{\Omega}\left\langle\left(S_{\bar{\phi}}^{*} S_{\bar{\phi}}\right)^{p / 2} k_{z}, k_{z}\right\rangle K(z, z) d V(z) \\
& \left.\quad=\left.\lambda_{\Omega}^{p} \int_{\Omega}\langle | S_{\bar{\phi}}\right|^{p} k_{z}, k_{z}\right\rangle K(z, z) d V(z)
\end{aligned}
$$

Thus $\left.\|W \phi\|_{L^{p}(\Omega, K(z, z) d V(z))} \leq \lambda_{\Omega}\left(\left.\int_{\Omega}\langle | S_{\bar{\phi}}\right|^{p} k_{z}, k_{z}\right\rangle K(z, z) d V(z)\right)^{1 / p}<\infty$ as $S_{\bar{\phi}} \in S_{p}$. Hence $W \phi \in L^{p}(\Omega, K(z, z) d V(z))$.

The proof for $1 \leq p<2$ is very tricky. Fix a sequence of points $\left\{a_{n}\right\}$ in $\Omega$ such that (1) $\Omega=\bigcup_{n=1}^{\infty} E\left(a_{n}, r\right)$, where $E\left(a_{n}, r\right)$ is the Bergman metric ball with center at $a_{n}$ and radius $r$, a fixed positive number;
(2) There exists a constant $C>0$ such that every function $f \in L_{a}^{2}(\Omega, d V(z))$ can be written as $f(z)=\sum_{n=1}^{\infty} c_{n} k_{a_{n}}(z)$ with $\|f\|_{2} \leq C \inf \left\{\sqrt{\sum_{n=1}^{\infty}\left|c_{n}\right|^{2}}: f=\sum_{n=1}^{\infty} c_{n} k_{a_{n}}\right\}$.

One can refer [7] for the construction of such a sequence $\left\{a_{n}\right\}$. Define an operator $A$ on $L_{a}^{2}(\Omega, d V(z))$ by letting $A e_{n}=k_{a_{n}}, n=1,2, \ldots$, where $\left\{e_{n}\right\}_{n=1}^{\infty}$ is a fixed orthonormal basis of $L_{a}^{2}(\Omega, d V(z))$. If $f \in L_{a}^{2}(\Omega, d V(z))$ with $f=\sum_{n=1}^{\infty} f_{n} e_{n}$, then $A f=\sum_{n=1}^{\infty} f_{n} k_{a_{n}}$ and by (2) above,

$$
\|A f\| \leq C \inf \left\{\sqrt{\sum_{n=1}^{\infty}\left|c_{n}\right|^{2}}: A f=\sum_{n=1}^{\infty} c_{n} k_{a_{n}}\right\} \leq C \sqrt{\sum_{n=1}^{\infty}\left|f_{n}\right|^{2}}=C\|f\|
$$

Thus $A$ is a bounded linear operator. Let $\bar{A}$ be the operator on $\overline{L_{a}^{2}(\Omega, d V(z))}$ defined by $\bar{A} \overline{e_{n}}=\overline{k_{a_{n}}}$; then $\bar{A}$ is also bounded. Suppose $S_{\bar{\phi}} \in S_{p}$ with $1 \leq p<2$. Then we also have $\bar{A}^{*} S_{\bar{\phi}} A \in S_{p}$. This implies

$$
\sum_{n=1}^{\infty}\left|\left\langle\bar{A}^{*} S_{\bar{\phi}} A e_{n}, \overline{e_{n}}\right\rangle\right|^{p}<+\infty \quad \text { or } \quad \sum_{n=1}^{\infty}\left|\left\langle S_{\bar{\phi}} k_{a_{n}}, \overline{k_{a_{n}}}\right\rangle\right|^{p}<+\infty
$$

That is, $\sum_{n=1}^{\infty}\left|W \phi\left(a_{n}\right)\right|^{p}<+\infty$. It is not difficult to show that [23], $W \phi(z)$ behaves like $W \phi\left(a_{n}\right)$ for $z \in E\left(a_{n}, r\right)$. Also [23], the Bergman kernel $K(z, z)$ behaves like $K\left(a_{n}, a_{n}\right) \cong$ $\frac{1}{E\left(a_{n}, r\right)}$ for $z \in E\left(a_{n}, r\right)$. It thus follows that

$$
\begin{aligned}
& \int_{\Omega}|W \phi(z)|^{p} K(z, z) d V(z) \leq \sum_{n=1}^{\infty} \int_{E\left(a_{n}, r\right)}|W \phi(z)|^{p} K(z, z) d V(z) \\
& \quad \leq C_{1} \sum_{n=1}^{\infty} \frac{1}{\left|E\left(a_{n}, r\right)\right|} \int_{E\left(a_{n}, r\right)}|W \phi(z)|^{p} d V(z) \\
& \quad \leq C_{2} \sum_{n=1}^{\infty} \frac{1}{\left|E\left(a_{n}, r\right)\right|} \int_{E\left(a_{n}, r\right)}\left|W \phi\left(a_{n}\right)\right|^{p} d V(z)=C_{2} \sum_{n=1}^{\infty}\left|W \phi\left(a_{n}\right)\right|^{p}<\infty
\end{aligned}
$$

and $W \phi \in L^{p}(\Omega, K(z, z) d V(z))$. This completes the proof.
Corollary 5.2. If $1 \leq p \leq \infty$ and $\phi \in L^{p}\left(\Omega, d \eta_{\lambda}\right)$ then $S_{\bar{\phi}}^{\lambda} \in S_{p}^{\lambda}$.
Proof. Suppose $\phi \in L^{p}\left(\Omega, d \eta_{\lambda}\right)$ and $1 \leq p<\infty$. From Heinz inequality [9], [11], it follows that

$$
\begin{aligned}
\left|\left\langle S_{\bar{\phi}}^{\lambda} k_{z}^{1-\lambda}, k_{w}^{1-\lambda}\right\rangle_{\lambda}\right|^{2} & \leq\langle | S_{\phi}^{\lambda}\left|k_{z}^{1-\lambda}, k_{z}^{1-\lambda}\right\rangle_{\lambda}\langle |\left(S_{\bar{\phi}}^{\lambda}\right)^{*}\left|k_{w}^{1-\lambda}, k_{w}^{1-\lambda}\right\rangle_{\lambda} \\
& =\left\langle\left(\left(S_{\bar{\phi}}^{\lambda}\right)^{*} S_{\frac{\lambda}{\phi}}^{\lambda}\right)^{1 / 2} k_{z}^{1-\lambda}, k_{z}^{1-\lambda}\right\rangle_{\lambda}^{1 / 2}\left\langle\left(S_{\bar{\phi}}^{\lambda}\left(S_{\bar{\phi}}^{\lambda}\right)^{*}\right) k_{w}^{1-\lambda}, k_{w}^{1-\lambda}\right\rangle_{\lambda}^{1 / 2} \\
& =\left\|S_{\bar{\phi}}^{\lambda} k_{z}^{1-\lambda}\right\|_{L^{2}\left(\Omega, d V_{\lambda}\right)}\left\|S_{\bar{\phi}^{+}}^{\lambda} k_{w}^{1-\lambda}\right\|_{L^{2}\left(\Omega, d V_{\lambda}\right)} \\
& =\left\|P_{\lambda} J_{\lambda}\left(\bar{\phi} k_{z}^{1-\lambda}\right)\right\|_{L^{2}\left(\Omega, d V_{\lambda}\right)}\left\|P_{\lambda} J_{\lambda}\left(\bar{\phi}^{+} k_{w}^{1-\lambda}\right)\right\|_{L^{2}\left(\Omega, d V_{\lambda}\right)} \\
& \leq\left\|\bar{\phi} k_{z}^{1-\lambda}\right\|_{L^{2}\left(\Omega, d V_{\lambda}\right)}\left\|\bar{\phi}^{+} k_{w}^{1-\lambda}\right\|_{L^{2}\left(\Omega, d V_{\lambda}\right)} \\
& =\left(\int_{\Omega}|\phi(u)|^{2}\left|k_{z}^{1-\lambda}(u)\right|^{2} d V_{\lambda}\right)^{1 / 2}\left(\int_{\Omega}\left|\bar{\phi}^{+}(v)\right|^{2}\left|k_{w}^{1-\lambda}(v)\right|^{2} d V_{\lambda}\right)^{1 / 2} \\
& =\left\langle T_{|\phi|^{2}}^{\lambda} k_{z}^{1-\lambda}, k_{z}^{1-\lambda}\right\rangle_{\lambda}^{1 / 2}\left\langle T_{\left|\phi^{+}\right|^{2}}^{\lambda} k_{w}^{1-\lambda}, k_{w}^{1-\lambda}\right\rangle_{\lambda}^{1 / 2} \\
& =\left\langle M_{|\phi|^{2}}^{\lambda} k_{z}^{1-\lambda}, k_{z}^{1-\lambda}\right\rangle_{\lambda}^{1 / 2}\left\langle M_{\left|\phi^{+}\right|^{2}}^{\lambda} k_{w}^{1-\lambda}, k_{w}^{1-\lambda}\right\rangle_{\lambda}^{1 / 2} \\
& =\left\langle\left(M_{|\phi|}^{\lambda}\right)^{2} k_{z}^{1-\lambda}, k_{z}^{1-\lambda}\right\rangle_{\lambda}^{1 / 2}\left\langle\left(M_{\left|\phi^{+}\right|}^{\lambda}\right)^{2} k_{w}^{1-\lambda}, k_{w}^{1-\lambda}\right\rangle_{\lambda}^{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& \leq d_{\lambda}\left\langle M_{|\phi|}^{\lambda} k_{z}^{1-\lambda}, k_{z}^{1-\lambda}\right\rangle_{\lambda}\left\langle M_{\left|\phi^{+}\right|}^{\lambda} k_{w}^{1-\lambda}, k_{w}^{1-\lambda}\right\rangle_{\lambda} \\
& =d_{\lambda}\left\langle T_{|\phi|}^{\lambda} k_{z}^{1-\lambda}, k_{z}^{1-\lambda}\right\rangle_{\lambda}\left\langle T_{\left|\phi^{+}\right|}^{\lambda} k_{w}^{1-\lambda}, k_{w}^{1-\lambda}\right\rangle_{\lambda}
\end{aligned}
$$

for some constant $d_{\lambda} \geq 0$. Here $\phi^{+}(z)=\overline{\phi(\bar{z})}$ and $M_{\phi}^{\lambda}$ denote the multiplication operator defined on $L_{a}^{2}\left(\Omega, d V_{\lambda}\right)$ with symbol $\phi \in L^{\infty}(\Omega)$. The last inequality follows from Kantorvich's inequality. Thus

$$
\left|\left\langle S_{\frac{\phi}{\lambda}}^{\lambda} K_{z}^{1-\lambda}, K_{w}^{1-\lambda}\right\rangle_{\lambda}\right|^{2} \leq d_{\lambda}\left\langle T_{|\phi|}^{\lambda} K_{z}^{1-\lambda}, K_{z}^{1-\lambda}\right\rangle_{\lambda}\left\langle T_{\left|\phi^{+}\right|}^{\lambda} K_{w}^{1-\lambda}, K_{w}^{1-\lambda}\right\rangle_{\lambda}
$$

Now since $\phi \in L^{p}\left(\Omega, d \eta_{\lambda}\right)$ we have $|\phi|,\left|\phi^{+}\right| \in L^{p}\left(\Omega, d \eta_{\lambda}\right)$. Hence from Lemma 2.3, it follows that $T_{|\phi|}^{\lambda}, T_{|\phi+|}^{\lambda} \in S_{p}^{\lambda}$. From Theorem 3.1, $S \bar{\phi}^{\lambda} \in S_{p}^{\lambda}$. Now if $f \in L^{2}\left(\Omega, d V_{\lambda}\right)$,

$$
\left\|S_{\bar{\phi}}^{\lambda} f\right\|_{L^{2}\left(\Omega, d V_{\lambda}\right)}=\left\|P_{\lambda} J_{\lambda}(\bar{\phi} f)\right\|_{L^{2}\left(\Omega, d V_{\lambda}\right)} \leq\left\|P_{\lambda}\right\|\left\|J_{\lambda}\right\|\|\bar{\phi}\|_{L^{\infty}(\Omega)}\|f\|_{L^{2}\left(\Omega, d V_{\lambda}\right)}
$$

Hence $\left\|S_{\bar{\phi}}^{\lambda}\right\| \leq\|\phi\|_{L^{\infty}(\Omega)}$. The corollary follows.
Corollary 5.3. Let $\phi \in L^{p}\left(\Omega, d \eta_{\lambda}\right), 1<p<\infty$ and $\phi=\phi^{+}$where $\phi^{+}(z)=\overline{\phi(\bar{z})}$. Then there exists an operator $S \in \mathcal{L}\left(L_{a}^{2}\left(\Omega, d V_{\lambda}\right)\right)$ such that $T_{|\phi|}^{\lambda} S=S T_{|\phi|}^{\lambda}$ and $\left\|T_{|\phi|}^{\lambda} S\right\|_{p} \leq$ $r(S)\left\|T_{|\phi|}^{\lambda}\right\|_{p}$ where $r(S)$ is the spectral radius of $S$.

Proof. Since $\phi \in L^{p}\left(\Omega, d \eta_{\lambda}\right)$ and $\phi^{+}=\phi$, hence from Lemma 2.3, Corollary 4.2 it follows that $T_{|\phi|}^{\lambda}$ and $S_{\phi}^{\lambda}$ are self-adjoint operators, $T_{|\phi|}^{\lambda} \in S_{p}^{\lambda}$ and $S_{\phi}^{\lambda} \in S_{p}^{\lambda}$. Let $\mathfrak{N}$ be the group of unitary operators on $L_{a}^{2}\left(\Omega, d V_{\lambda}\right)$. Let $\mathfrak{N}_{A}=\left\{U A U^{*}: U \in \mathfrak{N}\right\}$, the unitary orbit of an operator $A \in \mathcal{L}\left(L_{a}^{2}\left(\Omega, d V_{\lambda}\right)\right)$. Define $f(X)=\left\|T_{|\phi|}^{\lambda}-X\right\|_{p}$ for all $X \in S_{p}^{\lambda}$. Then $f$ attains its minimum at some $S \in S_{p}^{\lambda}$ on $\mathfrak{N}_{S_{\phi}}=\left\{U S_{\phi}^{\lambda} U^{*}: U \in \mathfrak{N}\right\}$ and $T_{|\phi|}^{\lambda} S=S T_{|\phi|}^{\lambda}$. This follows from [5]. The operator $S$ is self-adjoint. To prove the corollary we have to show that for any two orthonormal sequences $\left\{u_{n}^{\lambda}\right\}_{n=0}^{\infty}$ and $\left\{\sigma_{n}^{\lambda}\right\}_{n=0}^{\infty}$ in $L_{a}^{2}\left(\Omega, d V_{\lambda}\right)$,

$$
\sum_{n=0}^{\infty}\left|\left\langle T_{|\phi|}^{\lambda} S u_{n}^{\lambda}, \sigma_{n}^{\lambda}\right\rangle_{\lambda}\right|^{p} \leq r(S)^{p}\left\|T_{|\phi|}^{\lambda}\right\|_{p}^{p}
$$

Notice that since $T_{|\phi|}^{\lambda} S=S T_{|\phi|}^{\lambda}$ and $S=S^{*}$ we obtain

$$
\begin{aligned}
\left|\left\langle T_{|\phi|}^{\lambda} S u_{n}^{\lambda}, \sigma_{n}^{\lambda}\right\rangle_{\lambda}\right|^{2} & =\left|\left\langle T_{|\phi|}^{\lambda}\left(S u_{n}^{\lambda}\right), \sigma_{n}^{\lambda}\right\rangle_{\lambda}\right|^{2} \leq\left\langle T_{|\phi|}^{\lambda}\left(S u_{n}^{\lambda}\right), S u_{n}^{\lambda}\right\rangle_{\lambda}\left\langle T_{|\phi|}^{\lambda} \sigma_{n}^{\lambda}, \sigma_{n}^{\lambda}\right\rangle_{\lambda} \\
& =\left\langle S^{*} T_{|\phi|}^{\lambda} S u_{n}^{\lambda}, u_{n}^{\lambda}\right\rangle_{\lambda}\left\langle T_{|\phi|}^{\lambda} \sigma_{n}^{\lambda}, \sigma_{n}^{\lambda}\right\rangle_{\lambda} \\
& =\left\langle T_{|\phi|}^{\lambda} S^{2} u_{n}^{\lambda}, u_{n}^{\lambda}\right\rangle_{\lambda}\left\langle T_{|\phi|}^{\lambda} \sigma_{n}^{\lambda}, \sigma_{n}^{\lambda}\right\rangle_{\lambda}
\end{aligned}
$$

Repeating this process we obtain

$$
\begin{aligned}
& \left|\left\langle T_{|\phi|}^{\lambda} S u_{n}^{\lambda}, \sigma_{n}^{\lambda}\right\rangle_{\lambda}\right|^{2^{m+1}}=\left(\left|\left\langle T_{|\phi|}^{\lambda} S u_{n}^{\lambda}, \sigma_{n}^{\lambda}\right\rangle_{\lambda}\right|^{2^{m}}\right)^{2} \\
& \quad \leq\left[\left\langle T_{|\phi|}^{\lambda} S^{2^{m}} u_{n}^{\lambda}, u_{n}^{\lambda}\right\rangle_{\lambda}\left\langle T_{|\phi|}^{\lambda} u_{n}^{\lambda}, u_{n}^{\lambda}\right\rangle_{\lambda}^{\left(2^{m-1}\right)-1}\left\langle T_{|\phi|}^{\lambda} \sigma_{n}^{\lambda}, \sigma_{n}^{\lambda}\right\rangle_{\lambda}^{2^{m-1}}\right]^{2} \\
& \quad \leq\left\langle T_{|\phi|}^{\lambda} S^{2^{m}} u_{n}^{\lambda}, S^{2^{m}} u_{n}^{\lambda}\right\rangle_{\lambda}\left\langle T_{|\phi|}^{\lambda} u_{n}^{\lambda}, u_{n}^{\lambda}\right\rangle_{\lambda}\left\langle T_{|\phi|}^{\lambda} u_{n}^{\lambda}, u_{n}^{\lambda}\right\rangle_{\lambda}^{2^{m}-2}\left\langle T_{|\phi|}^{\lambda} \sigma_{n}^{\lambda}, \sigma_{n}^{\lambda}\right\rangle_{\lambda}^{2^{m}} \\
& \quad=\left\langle S^{*^{2^{m}}} T_{|\phi|}^{\lambda} S^{2^{m}} u_{n}^{\lambda}, u_{n}^{\lambda}\right\rangle_{\lambda}\left\langle T_{|\phi|}^{\lambda} u_{n}^{\lambda}, u_{n}^{\lambda}\right\rangle_{\lambda}^{2^{m}-1}\left\langle T_{|\phi|}^{\lambda} \sigma_{n}^{\lambda}, \sigma_{n}^{\lambda}\right\rangle_{\lambda}^{2^{m}} \\
& \quad=\left\langle T_{|\phi|}^{\lambda} S^{2^{m+1}} u_{n}^{\lambda}, u_{n}^{\lambda}\right\rangle_{\lambda}\left\langle T_{|\phi|}^{\lambda} u_{n}^{\lambda}, u_{n}^{\lambda}\right\rangle_{\lambda}^{2^{m}-1}\left\langle T_{|\phi|}^{\lambda} \sigma_{n}^{\lambda}, \sigma_{n}^{\lambda}\right\rangle_{\lambda}^{2^{m}}
\end{aligned}
$$

Thus

$$
\left|\left\langle T_{|\phi|}^{\lambda} S u_{n}^{\lambda}, \sigma_{n}^{\lambda}\right\rangle_{\lambda}\right|^{2^{m}} \leq\left\|T_{|\phi|}^{\lambda}\right\|\left\|S^{2^{m}}\right\|\left\|u_{n}^{\lambda}\right\|^{2}\left\langle T_{|\phi|}^{\lambda} u_{n}^{\lambda}, u_{n}^{\lambda}\right\rangle_{\lambda}^{\left(2^{m-1}\right)-1}\left\langle T_{|\phi|}^{\lambda} \sigma_{n}^{\lambda}, \sigma_{n}^{\lambda}\right\rangle_{\lambda}^{2^{m-1}}
$$

and

$$
\left|\left\langle T_{|\phi|}^{\lambda} S u_{n}^{\lambda}, \sigma_{n}^{\lambda}\right\rangle_{\lambda}\right| \leq\left.\left\|T_{|\phi|}^{\lambda}\right\| \frac{1}{2^{m}}\left\|S^{2^{m}}\right\|\right|^{\frac{1}{2^{m}}}\left\|u_{n}^{\lambda}\right\| \frac{2}{2^{m}}\left\langle T_{|\phi|}^{\lambda} u_{n}^{\lambda}, u_{n}^{\lambda}\right\rangle_{\lambda}^{\frac{1}{2}-\frac{1}{2^{m}}}\left\langle T_{|\phi|}^{\lambda} \sigma_{n}^{\lambda}, \sigma_{n}^{\lambda}\right\rangle_{\lambda}^{\frac{1}{2}} .
$$

Letting $m \longrightarrow \infty$, we obtain

$$
\left|\left\langle T_{|\phi|}^{\lambda} S u_{n}^{\lambda}, \sigma_{n}^{\lambda}\right\rangle_{\lambda}\right|^{2} \leq[r(S)]^{2}\left\langle T_{|\phi|}^{\lambda} u_{n}^{\lambda}, u_{n}^{\lambda}\right\rangle_{\lambda}\left\langle T_{|\phi|}^{\lambda} \sigma_{n}^{\lambda}, \sigma_{n}^{\lambda}\right\rangle_{\lambda} .
$$

Hence proceeding as in Theorem 3.1 and Corollary 3.4, one can show that

$$
\left\|T_{|\phi|}^{\lambda} S\right\|_{p} \leq r(S)\left\|T_{|\phi|}^{\lambda}\right\|_{p}
$$

Let $\mathcal{B}$ denote the unit ball in $n$-dimensional complex space $\mathbb{C}^{n}$ and $d z$ be the normalized Lebesgue volume measure on $\mathcal{B}$. The Bergman space $L_{a}^{2}(\mathcal{B}, d z)$ is the space of analytic functions $h$ on $\mathcal{B}$ which are square-integrable with respect to Lebesgue volume measure. For $z=\left(z_{1}, \cdots, z_{n}\right) \in \mathbb{C}^{n}$, let $\langle z, w\rangle=\sum_{i=1}^{n} z_{i} \overline{w_{i}}$ and $\|z\|^{2}=\langle z, z\rangle$. For $z \in \mathcal{B}$, let $P_{z}$ be the orthogonal projection of $\mathbb{C}^{n}$ onto the subspace [z] generated by $z$ and let $Q_{z}=I-P_{z}$. Then

$$
\phi_{z}(w)=\frac{z-P_{z}(w)-\left(1-\|z\|^{2}\right)^{\frac{1}{2}} Q_{z}(w)}{1-\langle w, z\rangle}
$$

is the automorphism of $\mathcal{B}$ that interchanges 0 and $z$. The reproducing kernel in $L_{a}^{2}(\mathcal{B}, d z)$ is given by

$$
K_{z}^{\mathcal{B}}(w)=\frac{1}{(1-\langle w, z\rangle)^{n+1}}
$$

for $z, w \in \mathcal{B}$ and the normalized reproducing kernel $k_{z}^{\mathcal{B}}$ is $\frac{K_{z}^{\mathcal{B}}(w)}{\left\|K_{z}^{\mathcal{B}}(\cdot)\right\|_{2}}$.
Given $\phi \in L^{\infty}(\mathcal{B})$, the Toeplitz operator $T_{\phi}$ is defined on $L_{a}^{2}(\mathcal{B}, d z)$ by $T_{\phi} f=P_{\mathcal{B}}(\phi f)$ where $P_{\mathcal{B}}$ denotes the orthogonal projection of $L^{2}(\mathcal{B}, d z)$ onto $L_{a}^{2}(\mathcal{B}, d z)$ and the little Hankel operator $S_{\phi}$ from $L_{a}^{2}(\mathcal{B}, d z)$ into $L_{a}^{2}(\mathcal{B}, d z)$ is defined as $S_{\phi} f=P_{\mathcal{B}}\left(J_{\mathcal{B}}(\phi f)\right)$ where $J_{\mathcal{B}}: L^{2}(\mathcal{B}, d z) \longrightarrow L^{2}(\mathcal{B}, d z)$ is defined as $J_{\mathcal{B}} f\left(z_{1}, \ldots, z_{n}\right)=f\left(\overline{z_{1}}, \ldots, \overline{z_{n}}\right)$. We have used the same notation $T_{\phi}, S_{\phi}$ to denote Toeplitz operators and little Hankel operators defined on $L_{a}^{2}\left(\Omega, \frac{d V}{C_{0}}\right)$ and $L_{a}^{2}(\mathcal{B}, d z)$. The context will make it clear on which space we considering these operators. For $z \in \mathcal{B}$ and a non-negative integer $m$, let

$$
K_{z}^{\mathcal{B}, m}(u)=\frac{1}{(1-\langle u, z\rangle)^{m+n+1}}, \quad u \in \mathcal{B}
$$

and define the $m$-Berezin transform of an operator $S \in \mathcal{L}\left(L_{a}^{2}(\mathcal{B}, d z)\right)$ by

$$
B_{m} S(z)=\binom{m+n}{n}\left(1-\|z\|^{2}\right)^{m+n+1} \sum_{|k|=0}^{m} C_{m, k}\left\langle S\left(u^{k} K_{z}^{\mathcal{B}, m}\right), u^{k} K_{z}^{\mathcal{B}, m}\right\rangle
$$

where

$$
C_{m, k}=\binom{m}{|k|}(-1)^{|k|} \frac{|k|!}{k_{1}!\cdots k_{n}!}, \quad u \in \mathcal{B}
$$

$k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n}$, where $\mathbb{Z}_{+}$is the set of non-negative integers, $|k|=\sum_{i=0}^{n} k_{i}$, $u^{k}=u_{1}^{k_{1}} \cdots u_{n}^{k_{n}}, k!=k_{1}!\cdots k_{n}!$. Clearly, $B_{m}: \mathcal{L}\left(L_{a}^{2}(\mathcal{B}, d z)\right) \longrightarrow L^{\infty}(\mathcal{B})$ is a bounded linear operator and for $\phi \in L^{\infty}(\mathcal{B})$, define $B_{m}(\phi)(z)=B_{m}\left(T_{\phi}\right)(z)$. In fact, from [17] it follows that for $\phi \in L^{\infty}(\mathcal{B})$,

$$
B_{m}(\phi)(z)=\int_{\mathcal{B}}\left(\phi \circ \phi_{z}\right)(u) d A_{m}(u)
$$

$z \in \mathcal{B}$, where $d A_{m}(u)=\binom{m+n}{n}\left(1-\|u\|^{2}\right)^{m} d u$. Berezin first introduced the Berezin transform $\mathcal{B}_{0}(S)$ of bounded operators $S$ and the $m$-Berezin transform of functions in [3]. Clearly, for $S \in \mathcal{L}\left(L_{a}^{2}(\mathcal{B}, d z)\right),\left\|B_{m} S\right\|_{\infty} \leq C(m, n)\|S\|$ where $C(m, n)$ is a constant depending only on $m$ and $n$. Thus $B_{m}: \mathcal{L}\left(L_{a}^{2}(\mathcal{B}, d z)\right) \longrightarrow L^{\infty}(\mathcal{B})$ is a bounded linear operator and for $m \geq 0$

$$
\left\|B_{m}\right\|=\binom{m+n}{n} \sum_{|k|=0}^{m}\left|C_{m, k}\right| \frac{n!k!}{(n+|k|)!}
$$

Let

$$
d \eta_{\mathcal{B}}(z)=\frac{1}{\left(1-\|z\|^{2}\right)^{n+1}} d z, \quad z \in \mathcal{B} .
$$

Corollary 5.4. Suppose $2 \leq p<\infty, \phi, \psi \in L^{\infty}(\mathcal{B}), B_{m} S_{\psi} \in L^{p}\left(\mathcal{B}, d \eta_{\mathcal{B}}\right)$ and $B_{m} \phi \in$ $L^{p}\left(\mathcal{B}, d \eta_{\mathcal{B}}\right)$ for all $m \geq 0$. Suppose

$$
\begin{equation*}
\max \left\{\left\|T_{B_{m} S_{\psi}}\right\|_{p},\left\|T_{B_{m} \phi}\right\|_{p}\right\}<M \tag{5.1}
\end{equation*}
$$

for some constant $M>0$ independent of $m$. The following hold.
(i) $S_{\psi} \in S_{p}$.
(ii) $T_{B_{m} \phi} T_{B_{m} S_{\psi}} \xrightarrow{w} T_{\phi} S_{\psi}$ and $T_{\phi} S_{\psi} \in S_{p}$.
(iii) If $C_{m} \in \mathcal{L}\left(L_{a}^{2}(\mathcal{B}, d z)\right), m \geq 0, C_{m} \xrightarrow{w} C$ and if $C_{m}$ is a sequence of upper triangular matrices then $T_{B_{m} S_{\psi}} C_{m} \xrightarrow{w} S_{\psi} C$ and $S_{\psi} C \in S_{p}$.
(iv) If $B_{m} S_{\psi} \geq 0, B_{m} \phi \geq 0$ for all $m \geq 0$ and $\left\|T_{B_{m} S_{\psi}}-S_{\psi}\right\|_{p} \longrightarrow 0, \| T_{B_{m} \phi}-$ $T_{\phi} \|_{p} \longrightarrow 0$ as $m \longrightarrow \infty$ and Range $T_{B_{m} S_{\psi}} \subset \operatorname{ker} T_{B_{m} \phi}$, Range $T_{B_{m} \phi} \subset \operatorname{ker} T_{B_{m} S_{\psi}}$ then Range $S_{\psi} \subset \operatorname{ker} T_{\phi}$ and Range $T_{\phi} \subset \operatorname{ker} S_{\psi}$.
(v) If $B_{m} S_{\psi} \geq 0$ for all $m \geq 0$ and $\left\{C_{m}\right\}$ is a sequence of positive operators in $S_{p}$ such that $C_{m} \xrightarrow{w} C$ and Range $T_{B_{m} S_{\psi}} \subset \operatorname{ker} C_{m}$ and Range $C_{m} \subset \operatorname{ker} T_{B_{m} S_{\psi}}$ for all $m \geq 0$ then Range $S_{\psi} \subset \operatorname{ker} C$ and Range $C \subset \operatorname{ker} S_{\psi}$.
Proof. Since $B_{m} S_{\psi} \in L^{p}\left(\mathcal{B}, d \eta_{\mathcal{B}}\right)$, hence by Lemma 2.3, $T_{B_{m} S_{\psi}} \in S_{p}$. Further, since $\left\|T_{B_{m} S_{\psi}}\right\|_{p}<M$ for all $m \geq 0$, we have

$$
\left.\left\|T_{B_{m} S_{\psi}}\right\|_{p}^{p}=\left.\int_{\mathcal{B}}\langle | T_{B_{m} S_{\psi}}\right|^{p} k_{z}^{\mathcal{B}}, k_{z}^{\mathcal{B}}\right\rangle d \eta_{\mathcal{B}}(z)<M^{p}
$$

Since $2 \leq p<\infty$, we obtain

$$
\begin{aligned}
\int_{\mathcal{B}} & \left\|P_{\mathcal{B}}\left(B_{m} S_{\psi} \circ \phi_{z}\right)\right\|^{p} d \eta_{\mathcal{B}}(z)=\int_{\mathcal{B}}\left\|P_{\mathcal{B}}\left(U_{z}\left(B_{m} S_{\psi}\right) k_{z}^{\mathcal{B}}\right)\right\|^{p} d \eta_{\mathcal{B}}(z) \\
& =\int_{\mathcal{B}}\left\|U_{z} T_{B_{m} S_{\psi}} k_{z}^{\mathcal{B}}\right\|^{p} d \eta_{\mathcal{B}}(z)=\int_{\mathcal{B}}\left\|T_{B_{m} S_{\psi}} k_{z}^{\mathcal{B}}\right\|^{p} d \eta_{\mathcal{B}}(z) \\
& =\int_{\mathcal{B}}\left\langle T_{B_{m} S_{\psi}}^{*} T_{B_{m} S_{\psi}} k_{z}^{\mathcal{B}}, k_{z}^{\mathcal{B}}\right\rangle^{\frac{p}{2}} d \eta_{\mathcal{B}}(z) \leq \int_{\mathcal{B}}\left\langle\left(T_{B_{m} S_{\psi}}^{*} T_{B_{m} S_{\psi}}\right)^{\frac{p}{2}} k_{z}^{\mathcal{B}}, k_{z}^{\mathcal{B}}\right\rangle d \eta_{\mathcal{B}}(z) \\
& \left.=\left.\int_{\mathcal{B}}\langle | T_{B_{m} S_{\psi}}\right|^{p} k_{z}^{\mathcal{B}}, k_{z}^{\mathcal{B}}\right\rangle d \eta_{\mathcal{B}}(z)<M^{p} .
\end{aligned}
$$

This implies

$$
\sup _{z \in \mathcal{B}}\left\|T_{B_{m} S_{\psi} \circ \phi_{z}} 1\right\|_{p}=\sup _{z \in \mathcal{B}}\left\|P_{\mathcal{B}}\left(B_{m} S_{\psi} \circ \phi_{z}\right)\right\|_{p}<M
$$

Since $\left\|T_{B_{m} S_{\psi}}^{*}\right\|_{p}=\left\|T_{B_{m} S_{\psi}}\right\|_{p}$, hence $\sup _{z \in \mathcal{B}}\left\|T_{B_{m} S_{\psi} \circ \phi_{z}}^{*} 1\right\|_{p}<M$. From [17], it thus follows that $T_{B_{m} S_{\psi}} \longrightarrow S_{\psi}$ as $m \longrightarrow \infty$ in $\mathcal{L}\left(L_{a}^{2}(\mathcal{B}, d z)\right.$ )-norm and from Lemma 4.6, it follows that $S_{\psi} \in S_{p}$. This proves (i). To prove (ii) observe that since (5.1) holds, we have $\left\|T_{B_{m} \phi \circ \phi_{z}} 1\right\|_{p}<M$ and $\left\|T_{B_{m} \phi \circ \phi_{z}}^{*} 1\right\|_{p}<M$ for all $m \geq 0$. Hence from [17], it follows that $T_{B_{m} \phi} \longrightarrow T_{\phi}$ as $m \longrightarrow \infty$ in $\mathcal{L}\left(L_{a}^{2}(\mathcal{B}, d z)\right)$-norm. Thus using Lemma 4.4,
we obtain $T_{B_{m} \phi} T_{B_{m} S_{\psi}} \xrightarrow{w} T_{\phi} S_{\psi}$. Since $S_{\psi} \in S_{p}$, we have $T_{\phi} S_{\psi} \in S_{p}$. Now we shall prove ( $i$ iii). From Lemma 4.5 it follows that $T_{B_{m} S_{\psi}} C_{m} \xrightarrow{w} S_{\psi} C$ and since $S_{\psi} \in S_{p}$, we obtain $S_{\psi} C \in S_{p}$. To prove (iv), we first notice that $T_{B_{m} S_{\psi}}$ and $T_{B_{m} \phi}$ are positive operators for all $m \geq 0$. This is so since $B_{m} S_{\psi} \geq 0$ and $B_{m} \phi \geq 0$ for all $m \geq 0$. Given that $T_{B_{m} S_{\psi}} \longrightarrow S_{\psi}$ and $T_{B_{m} \phi} \longrightarrow T_{\phi}$ in $S_{p}$ as $m \longrightarrow \infty$. As $\|T\|_{\mathcal{L}\left(L_{a}^{2}(\mathcal{B}, d z)\right)} \leq\|T\|_{p}$ for all $T \in S_{p}$, hence $T_{B_{m} S_{\psi}} \longrightarrow S_{\psi}$ and $T_{B_{m} \phi} \longrightarrow T_{\phi}$ in norm, $S_{\psi} \geq 0$ and $T_{\phi} \geq 0$. It thus follows that $T_{B_{m} \phi} T_{B_{m} S_{\psi}} \longrightarrow T_{\phi} S_{\psi}$ and $T_{B_{m} S_{\psi}} T_{B_{m} \phi} \longrightarrow S_{\psi} T_{\phi}$ in norm as $m \longrightarrow \infty$. The reason for this is as follows:

$$
\begin{aligned}
\left\|T_{B_{m} \phi} T_{B_{m} S_{\psi}}-T_{\phi} S_{\psi}\right\| & =\left\|T_{B_{m} \phi} T_{B_{m} S_{\psi}}-T_{\phi} T_{B_{m} S_{\psi}}+T_{\phi} T_{B_{m} S_{\psi}}-T_{\phi} S_{\psi}\right\| \\
& \leq\left\|\left(T_{B_{m} \phi}-T_{\phi}\right) T_{B_{m} S_{\psi}}\right\|+\left\|T_{\phi}\left(T_{B_{m} S_{\psi}}-S_{\psi}\right)\right\| \\
& \leq\left\|T_{B_{m} \phi}-T_{\phi}\right\|\left\|T_{B_{m} S_{\psi}}\right\|+\left\|T_{\phi}\right\|\left\|T_{B_{m} S_{\psi}}-S_{\psi}\right\| \longrightarrow 0
\end{aligned}
$$

as $m \longrightarrow \infty$, since $\sup _{m}\left\|T_{B_{m} S_{\psi}}\right\| \leq L$ for some $L>0$ by uniform boundedness principle. Further

$$
\left\|T_{B_{m} S_{\psi}} T_{B_{m} \phi}-S_{\psi} T_{\phi}\right\|=\left\|\left(T_{B_{m} \phi} T_{B_{m} S_{\psi}}\right)^{*}-\left(T_{\phi} S_{\psi}\right)^{*}\right\|=\left\|T_{B_{m} \phi} T_{B_{m} S_{\psi}}-T_{\phi} S_{\psi}\right\| \longrightarrow 0
$$

as $m \longrightarrow \infty$. Now since Range $T_{B_{m} S_{\psi}} \subset \operatorname{ker} T_{B_{m} \phi}$ and Range $T_{B_{m} \phi} \subset \operatorname{ker} T_{B_{m} S_{\psi}}$ we obtain $T_{B_{m} \phi} T_{B_{m} S_{\psi}}=T_{B_{m} S_{\psi}} T_{B_{m} \phi}=0$. Taking limit $m \longrightarrow \infty$, we obtain $T_{\phi} S_{\psi}=S_{\psi} T_{\phi}=0$ and (iv) follows. To prove ( $v$ ), assume that $B_{m} S_{\psi} \geq 0$ for all $m \geq 0$ and $\left\{C_{m}\right\}$ is a sequence in $S_{p}$ such that $C_{m} \xrightarrow{w} C$. If Range $T_{B_{m} S_{\psi}} \subset \operatorname{ker} C_{m}$ and Range $C_{m} \subset \operatorname{ker} T_{B_{m} S_{\psi}}$ for all $m \geq 0$, then $C_{m} T_{B_{m} S_{\psi}}=T_{B_{m} S_{\psi}} C_{m}=0$ for all $m \geq 0$. From Lemma 4.4 it follows that $C_{m} T_{B_{m} S_{\psi}} \longrightarrow C S_{\psi}$. That is, for all $f, g \in L_{a}^{2}(\mathcal{B}, d z)$,

$$
\begin{equation*}
\left\langle C_{m} T_{B_{m} S_{\psi}} f, g\right\rangle \longrightarrow\left\langle C S_{\psi} f, g\right\rangle \tag{5.2}
\end{equation*}
$$

Thus since $C_{m} T_{B_{m} S_{\psi}}=0$ for all $m \geq 0$, hence $C S_{\psi}=0$. Further, from (5.2), it follows that for all $f, g \in L_{a}^{2}(\mathcal{B}, d z)$,

$$
\left\langle f, T_{B_{m} S_{\psi}}^{*} C_{m}^{*} g\right\rangle \longrightarrow\left\langle f, S_{\psi}^{*} C^{*} g\right\rangle
$$

That is,

$$
\left\langle f, T_{B_{m} S_{\psi}} C_{m} g\right\rangle \longrightarrow\left\langle f, S_{\psi} C g\right\rangle
$$

for all $f, g \in L_{a}^{2}(\mathcal{B}, d z)$. Thus $S_{\psi} C=0$ and the result $(v)$ follows.

## References

1. S. Axler, Bergman spaces and their operators, Surveys of Some Recent Results in Operator Theory, Vol. 1 (Eds. J. B. Conway and B. B. Morrel), Pitman Research Notes in Math. 171 (1988), pp. 1-50.
2. S. K. Berberian, The Weyl spectrum of an operator, Indiana Univ. Math. J. 20 (1970), 529-544.
3. F. A. Berezin, Covariant and contravariant symbols for operators, Math. USSR-Izv. 6 (1972), 1117-1151.
4. C. A. Berger, L. A. Coburn, and K. H. Zhu, Function theory on Cartan domains and the Berezin-Toeplitz symbol calculus, Amer. J. Math. 110 (1988), 921-953.
5. R. Bhatia and P. Semrl, Distance between hermitian operators in Schatten classes, Proc. Edinburgh Math. Soc. 39 (1996), 377-380.
6. L. G. Brown, R. G. Douglas, and P. A. Fillmore, Unitary equivalence modulo the compact operators and extensions of $C^{*}$-algebras, Proc. Conf. Operator Theory (Dalhousie Univ., Halifax, N.S., 1973), Springer, Berlin, 1973, pp. 58-128. Lecture Notes in Math. 345.
7. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in $L^{p}$, Asterisque 77 (1980), 11-66.
8. R. G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972.
9. T. Furuta, A simplified proof of Heinz inequality and scrutiny of its equality, Proc. Amer. Math. Soc. 97 (1986), 751-753.
10. T. Furuta, Reverse inequalities involving two relative operator entropies and two relative entropies, Linear Algebra Appl. 403 (2005), 24-30.
11. E. Heinz, On an inequality for linear operators in a Hilbert space, Report of an International Conference on Operator Theory and Group Representations, Arden House, Harriman, New York, 1955, pp. 27-29. Publ. 387, National Academy of Sciences, National Research Council, Washington, DC, 1955.
12. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978.
13. A. Koranyi, The Poisson integral for generalized half-planes and bounded symmetric domains, Ann. Math. 82 (1965), 332-350.
14. A. Koranyi, Function theory on bounded symmetric domains, Several complex variables, Proc. of International Conferences, Cortona, Italy 1976-1977, pp. 205-216.
15. D. Luecking, A technique for characterizing Carleson measure on Bergman spaces, Proc. Amer. Math. Soc. 87 (1983), 656-660.
16. G. McDonald and C. Sundberg, Toeplitz operators on the disc, Indiana Univ. Math. J. 28 (1979), 595-611.
17. K. Nam, D. Zheng, and C. Zhong, m-Berezin transform and compact operators, Rev. Mat. Iberoamericana 22 (2006), no. 3, 867-892.
18. C. Pearcy, Some recent developments in operator theory, CBMS Regional Conf. Ser. in Math., no. 36, Amer. Math. Soc., Providence, RI, 1978.
19. W. Rudin, Principles of Mathematical Analysis, McGraw-Hill International Editions, Singapore, 1976.
20. H. Weyl, Inequalities between the two kinds of eigenvalues of a linear transformation, Proc. Nat. Acad. Sci. USA 35 (1949), 408-411.
21. K. Zhu, On certain unitary operators and composition operators, Proceedings of Symposia in Pure Mathematics, Part 2, vol. 51, 1990, pp. 371-385.
22. K. Zhu, Operator Theory in Function Spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 139, Dekker, New York, 1990.
23. K. Zhu, Positive Toeplitz operators on weighted Bergman spaces of bounded symmetric domains, J. Operator Theory 20 (1988), 329-357.
P. G. Department of Mathematics, Utkal University, Vani Vihar, Bhubaneswar, 751004, Odisha, India

E-mail address: namitadas440@yahoo.co.in
School of Applied Sciences (Mathematics), KilT University, Campus-3 (Kathajori Campus), Bhubaneswar, 751024, Odisha, India

E-mail address: smita_782006@yahoo.co.in


[^0]:    2000 Mathematics Subject Classification. Primary 47B15; Secondary 47B35.
    Key words and phrases. Bergman space, bounded symmetric domain, Toeplitz operators, little Hankel operators, Schatten class.

