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NONZERO CAPACITY SETS AND DENSE SUBSPACES IN SCALES

OF SOBOLEV SPACES

MYKOLA E. DUDKIN AND VOLODYMYR D. KOSHMANENKO

Abstract. We show that for a compact set K ⊂ R
n of nonzero α-capacity, Cα(K) >

0, α ≥ 1, the subspace
◦

Wα,2(Ω), Ω = R
n \ K in Wα,2(Rn) is dense in Wm,2(Rn),

m ≤ α− 1, iff the m-capacity of K is zero, Cm(K) = 0.

1. Introduction

This paper was stimulated by the following problem.
Consider a couple of Hilbert spaces H ❂ K, where ❂ denotes a dense and continuous

embedding. Besides we assume that the norms in H and K satisfy the inequality

‖ϕ‖H ≤ ‖ϕ‖K, ϕ ∈ K.

Let K be decomposed into an orthogonal sum of nontrivial subspaces

(1) K = M⊕N , M 6= {0} 6= N .

Under what conditions one of these subspaces, say M, is dense in H? That is we ask,
under what conditions on N in (1) the following embedding are both dense:

H ❂ K, H ❂ M?

In other terms this question arises in the operator theory and various applications to
mathematical physics. For example, the above problem has an important motivation in
the theory of self-adjoint extensions of symmetric operators.

Indeed, let A be a self-adjoint operator in H. Set K = DomA equipped with the norm

‖ϕ‖K := ‖Aϕ‖H, ϕ ∈ DomA.

Consider some restriction of A to a linear set,

Ȧ := A ↾ D, D ⊂ DomA.

Under what conditions, Ȧ is a densely defined symmetric operator with nontrivial defi-
ciency indices? Evidently this is so, if the closure D in the Hilbert space K = DomA
defines some subspace M which is dense in H. Of course it may happen that D is dense
in K. Then Ȧ is essentially self-adjoint and the above question has no sense.

We remark that in an abstract setting, the problem of density inH of a proper subspace
M from K (under the assumption that K already is densely embedded in H) has been
investigated in a series of publications (see, for example, [2, 3, 6, 14]) in terms of rigged
Hilbert spaces.

Let a triplet of Hilbert spaces,

(2) H− ❂ H0 ❂ H+
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constitutes a rigged Hilbert space [4]. This means (for details see [4, 5, 14]) that both
embeddings H− ❂ H0, H0 ❂ H+ are dense and continuous, the norms in H−, H0, H+

satisfy the inequalities
‖ · ‖− ≤ ‖ · ‖0 ≤ ‖ · ‖+,

and the spaces H−, H+ are mutually conjugate with respect to H0. Due to the last
condition there exists a bounded map

D−,+ : H+ −→ H−

such that
‖D−,+ϕ‖− = ‖ϕ‖+, ϕ ∈ H+,

〈ω, ϕ〉−,+ = (ω,D−,+ϕ)− = (I+,−ω, ϕ)+, ω ∈ H−,

where I+,− := D−1
−,+ and 〈·, ·〉−,+ stands for the dual inner product between H− and H+.

Note that
〈f, g〉−,+ = (f, g)0, f, g ∈ H0.

The operators D−,+ and I+,− are called the Berezansky canonical isomorphisms.
In what follows H+ plays a role of K. Assume that H+ is decomposed into an orthog-

onal sum of subspaces, H+ = M+⊕N+. Our starting results read as follows (for deeper
statements see [2, 3, 6, 13, 14]).

Theorem 1. Let in (2) H+ = M+ ⊕N+, N+ 6= {0}. Then the subspace M+ is dense
in H0, if and only if the subspace N− := D−,+N+ of H−, which is the image of N+ with
respect to the Berezansky canonical isomorphism D−,+, consists of only those vectors
which do not belong to H0, except for zero,

(3) H0 ❂ M+ ⇐⇒ N− ∩H0 = {0}.

Proof. Let N− ∩H0 = {0}. Take a vector ψ ∈ H0 such that ψ ⊥ M+ in H0. Then

0 = (ψ,M+) = 〈ψ,M+〉−,+ = (D−1
−,+ψ,M+)+.

This means that I+,−ψ ∈ N+ and thus ψ ∈ N−. Therefore ψ = 0 since we assume that
N− ∩H0 = {0}.

Let us prove (3) in the other direction. Assume that M+ is dense in H0 and take
ω ∈ N− ∩H0. Then

〈ω,M+〉−,+ = (ω,M+)0 = (I+,−ω,M+)+ = 0

due to ω ∈ N− and I+,−ω ∈ N+. Thus ω ⊥ M+ in H0 and therefore ω = 0. This proves
that N− ∩H0 = {0}. �

Theorem 2. Let us have two rigged Hilbert spaces, i.e., (2) and

(4) H̃− ❂ H0 ❂ H̃+,

such that
H− ❂ H̃− ❂ H0 ❂ H̃+ ❂ H+.

And let H+ = M+ ⊕N+, N+ 6= {0}. Then the subspace M+ is dense in H̃+ if and only

if the subspace N− := D−,+N+ has a trivial intersection with H̃−,

(5) H̃+ ❂ M+ ⇐⇒ N− ∩ H̃− = {0}.

Proof. Let M+ be dense in H̃+. Then for ω ∈ N− ∩ H̃− we have

〈ω,M+〉−,+ = 〈ω,M+〉−,+ = (I+,−ω,M+)+ = 0

due to ω ∈ N− and I+,−ω ∈ N+. But with Ĩ+,−, there corresponds to (4)

0 = 〈ω,M+〉−,+ = (Ĩ+,−ω,M+)+,

which implies that Ĩ+,−ω = 0 since M+ ❁ H̃+. Thus ω = 0 and N− ∩ H̃− = {0}.
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Conversely, let N− ∩ H̃− = {0}. Assume for a moment that M+ is not dense in H̃+.

Then there exists a vector 0 6= ϕ ∈ H̃+ such that

0 = (ϕ,M+)+ = 〈D̃−,+ϕ,M+〉−,+ = 〈ω,M+〉−,+.

This means that 0 6= ω = D̃−,+ϕ ∈ N− ∩ H̃− which is a contradiction. �

In the present paper we develop and apply the above abstract results in the case where
the spaces H−, H̃−, H̃+, H+ are taken from the Sobolev scale of spaces and the subspace
N− is generated by distributions supported on a set of zero capacity.

2. On dense subspaces in the Sobolev scale of spaces

The above general results have applications to the problem of constructing dense
subspaces in scales of functional spaces, in particular, for a scale of Sobolev spaces.

Let us consider the scale of the Sobolev spaces (see [1, 4, 5, 15])

W−k,2
❂ L2(Rn, dx) ❂W k,2 ≡W k,2(Rn), k > 0.

Let K ⊂ R
n be a compact set. In what follows we denote the complement Kc = R

n \K
by Ω. We are interested in the following question corresponding to the previous abstract

problem. Under what condition is the set
◦

W k,2(Ω) dense in Wm,2, m ≤ k−1? We recall

that by definition (see, for example, [4]), the Sobolev space
◦

W k,2(Ω) is the closure of the
set C∞

0 (Ω) in W k,2. The answer we will give using the notion of capacity for a compact
set K which is a fruitful tool in such kind of problems. So, we need some preparations.

At first we recall the notion of capacity for sets which are small in some sense (for
more details and generalizations see [1, 15, 17, 16]).

Definition 1. The positive value

(6) Cα(K) := capα(K) = inf{‖ϕ‖2Wα,2 | ϕ ∈ C∞

0 , ϕ ≥ 1 on K}

is called α-capacity of a compact set K ⊂ R
n.

In (6) the set C∞
0 can be replaced by the Schwartz space S(Rn), and ϕ ≥ 1 can be

replaced with the condition ϕ(x) = 1 for x ∈ K.
Denote

(7)
M−k(Ω) :={ω ∈W−k,2|〈ω, ϕ〉−k,k = 0, ∀ϕ ∈W k,2, suppϕ ⊆ K}

={ω ∈W−k,2 | suppω ⊂ Ω}

and define

(8) Mk(Ω) = (Ik,−kM−k(Ω))
cl,k,

where Ik,−k : W−k,2 −→ W k,2 stands for the Berezansky canonical isomorphism (see
[14]). By construction Mk(Ω) is a subspace in W k,2(Rn). Let us remark that in [11] the
abstract version of the capacity concept is presented using [8, 16, 17].

As a first step of our investigation we discuss the following question. Under which
condition is the subspace Mk(Ω) a strict one in W k,2, i.e., Mk(Ω) 6=W k,2, and is dense
in L2(R

n)? The next theorem gives a simple answer to this question.

Theorem 3. Let k > n/2. Then for each compact set K ⊂ R
n of zero Lebesgue measure,

(9) λ(K) = 0,

such that

(10) Ck(K) > 0,

the subspace Mk(Ω), Ω = R
n \K is a strict one in W k,2(Rn) and dense in L2(R

n).
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Proof. By the well-known Sobolev embedding theorem, W k,2(Rn) ⊂ C(Rn) if k > n/2.
Hence for each point y ∈ K the linear functional lδy (ϕ) := 〈δy, ϕ〉−k,k = ϕ(y), ϕ ∈W k,2

is continuous. Thus all distributions spanned by the set {ω = δy|y ∈ K} belong to the
space W−k,2 and moreover due to (9) the subspace

N−k = (span{ω = δy | y ∈ K})cl,−k

has a zero intersection with L2(R
n) (cl,-k denotes the closure in W−k,2 ). Even more,

from (7) it follows that the subspace Nk(K) = Ik,−kN−k is orthogonal to Mk(Ω),

Nk(K) ⊥ Mk(Ω).

Therefore one can use Theorem 1. �

Let us denote
Φ(K) = {ϕ ∈ S(Rn) | ϕ ≥ 1 on K}, α ≥ 1.

Let Φcl,α(K) be the closure of Φ(K) in Wα,2. The next result is well-known in potential
theory (see, for example, [1], theorem 2.2.7).

Theorem 4. Let K ⊂ R
n be compact. Assume that for some α ≥ 1 the α-capacity

of K is strictly positive, Cα(K) > 0. Then there exists a unique extremal element
ϕK ∈ Φcl,α(K) such that

Cα(K) = ‖ϕK‖2Wα,2 .

Moreover, there exists an α-capacity measure µK ∈W−α,2 supported on K such that

µK(K) = Cα(K).

Clearly µK = D−k,kϕK , and therefore

ϕK = Ik,−kµK = Gα ∗ (Gα ∗ µK),

where Gα denotes the Bessel integral operator, and

(Gα ∗ µK)(x) =

∫
Gα(x− y) dµK(y) ∈ L2(R

n).

It is easy to see that the extremal element ϕK is orthogonal to the subspace
◦

Wα,2(Ω)
in Wα,2,

ϕK ⊥
◦

Wα,2(Ω).

Indeed, let ϕn ∈ Φ(K) be a minimizing sequence in (6) which converges to ϕK . Then,
obviously

(ϕK , ϕ)Wα,2 = lim
n→∞

(ϕn, ϕ) = 0, ∀ϕ ∈ C∞

0 (Ω).

Therefore in our case, when Cα(K) > 0, the orthogonal compliment to
◦

Wα,2(Ω) in Wα,2

consists of a nontrivial subspace which we denote by Nα(K). Surely the extremal element
ϕK belongs to Nα(K). Thus, we can write

Wα,2 = Mα(Ω)⊕Nα(K), Mα(Ω) ≡
◦

Wα,2(Ω).

Denote by N−α(K) the dual subspace to Nα(K) in W−α,2. This subspace is connected
with Nα(K) by the Beresansky canonical isomorphism D−α,α :Wα,2 −→W−α,2,

N−α(K) = D−α,αNα(K).

The next proposition gives a deeper description of this subspace.

Proposition 1. Let Cα(K) > 0. Then the subspace N−α(K) consists of the distributions
ω ∈W−α,2 supported by K,

N−α(K) = {ω ∈W−α,2 | suppω ⊆ K}.
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Proof. The statement is based on and follows from Theorem 9.1.3 and its Corollary 9.1.6

in [1]. So Theorem 9.1.3 says that
◦

Wα,2(Ω) coincides with a set of functions ϕ ∈ Wα,2

such that

(11) (Dβϕ) ↾ K = 0, 0 ≤ |β| ≤ α− 1.

Hence for ω ∈W−α,2 with suppω ⊆ K we have

(12) 〈ω, ϕ〉−α,α = 0,

for all ϕ ∈ Wα,2 with condition (11) since all such functions admit an approximation
with sequences ϕn ∈ C∞

0 (Ω). Certainly, if ω ∈ W−α,2 and satisfies (12), then obviously
suppω ⊆ K. �

For a deeper understanding of the above result we remark that the subspace Mα(Ω) =
◦

Wα,2(Ω) can be described in terms of the vector-valued operators TrαK defined on Wα,2

by the expression

TrαKϕ = {Dβϕ ↾ K | ϕ ∈Wα,2 for |β| ≤ α− 1},

where β is a multi-index. Clearly, from (12) it follows that

(13)
◦

Wα,2(Ω) = Ker(TrαK).

Now we can formulate our main result, which is similar to Theorem 3.

Theorem 5. Let K ⊂ R
n be a compact set of nonzero α-capacity, Cα(K) > 0, where

α ≥ 1 is integer. Then Mα(Ω) =
◦

Wα,2(Ω), Ω = R
n \K is dense in Wm,2, m ≤ α− 1 if

and only if the m-capacity of K is zero,

(14) Wm,2
❂

◦

Wα
2 (Ω) ⇐⇒ Cm(K) = 0.

Proof. At first we remark that by the Sobolev embedding theorem the m-capacity of a
single point x ∈ R

n is strictly positive, Cm({x}) > 0, if m > n/2. Hence, the condition
Cm(K) = 0 is possible only if m ≤ n/2. Thus, let m ≤ n/2 and Cm(K) = 0. Then the
following statement is true (see Theorem 9.9.1 [1]). For each h ∈ Wm,2, any ε > 0, and
every neighborhood V of a compact K there exists a function

ϕ ∈ C∞

0 (V ), 0 ≤ ϕ ≤ 1, ϕ(x) = 1, x ∈ K,

such that ‖ϕh‖Wm,2 < ε. Consider now a sequence of functions ϕn satisfying the above
condition with εn → 0, n→ ∞,

(15) ‖ϕnh‖Wm,2 < εn.

By (15) for the sequence ȟn := ϕnh we have that ȟn −→ 0 in Wm,2. Then the sequence
hn = (1− ϕn)h ∈Wm,2 converges to h as well as for h = hn + ȟn. In fact, each element

hn ∈
◦

Wm,2(Ω), since by the construction TrmKhn = 0, i.e., hn ∈ KerTrmK (see (13)).
Take now a sequence of functions ψn ∈ C∞

0 (Ω) such that ‖ψn − hn‖ ◦

Wm,2

< εn. Since

ψn ∈
◦

Wm
α (Ω), due to ȟn −→ 0, we obtain that ‖ψn−hn‖Wm,2 → 0, n→ ∞. This proves

the density
◦

Wα,2(Ω) in Wm,2, that is, the implication from (14) in one direction is true.

Let us prove the inverse implication. Let
◦

Wα,2(Ω) ❁Wm,2. Assume that Cm(K) > 0.
Then by Theorem 4, in Wm,2, there exists an element ϕK belonging to the subspace

Nm(K) which is orthogonal to Mm(K) =
◦

Wm,2(Ω). This gives (ϕK ,
◦

Wα,2(Ω))m = 0

since
◦

Wα,2(Ω) ⊂ Wm,2(Ω). However for ϕK 6= 0 this is impossible due to density of
◦

Wm,2(Ω) in Wm,2. Thus we obtain a contradiction and therefore Cm(K) = 0. �
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In applications to mathematical physics (see, for example, [12, 13]) the reduced variant
of Theorem 5 is usually used.

Example. Let K = {yi ∈ R
n}li=1, l < ∞. Then Cα(K) > 0 for all α > n/2. In this

case the subspace
◦

Wα,2(Rn \K) is dense in
◦

Wm,2(Rn), m ≤ α− 1 if m < n/2.
We refer to [9, 10] and also [7, 11] for similar results connected with the notion of

capacity.
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