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ON BEHAVIOR AT INFINITY OF SOLUTIONS OF PARABOLIC

DIFFERENTIAL EQUATIONS IN A BANACH SPACE

M. L. GORBACHUK AND V. I. GORBACHUK

Abstract. For a differential equation of the form y′(t) + Ay(t) = 0, t ∈ (0,∞),
where A is the generating operator of a C0-semigroup of linear operators on a Banach
space B, we give conditions on the operator A, under which this equation is uniformly

(uniformly exponentially) stable, that is, every its weak solution defined on the open
semiaxis (0,∞) tends (tends exponentially) to 0 as t → ∞. As distinguished from
the previous works dealing only with solutions continuous at 0, in this paper no

conditions on the behavior of a solution near 0 are imposed. In the case where the
equation is parabolic, there always exist weak solutions which have singularities of
any order. The criterions below not only generalize, but make more precise a number
of earlier results in this direction.

1. On extensions of differentiable semigroups of linear operators on a

Banach space

Let F be a locally convex Hausdorff space. Recall (see [1]) that a one-parameter family
{U(t)}t≥0 of continuous linear operators from F into F forms a semigroup in F if:

(i) U(0) = I (I is the identity operator in F) ;
(ii) ∀t, s > 0 : U(t+ s) = U(t)U(s).
In the sequel we consider only strongly continuous at the point 0 semigroups, that

is, C0-semigroups. A C0-semigroup is called equicontinuous if for any continuous semi-
norm p(x) on F, there exists another continuous semi-norm q(x) such that p(U(t)x) ≤
q(x) (∀t ≥ 0, ∀x ∈ F). The linear operator A defined as

Ax = lim
t→0

x− U(t)x

t
, D(A) =

{
x ∈ F

∣∣∣∣∃ lim
t→0

x− U(t)x

t

}
,

(D(·) denotes the domain of an operator) is called the generating operator or, simply,
the generator of {U(t)}t≥0. The fact that A is the generator of a semigroup {U(t)}t≥0

is written as U(t) = e−At.
As a rule we shall deal with C0-semigroups on a Banach space B. For any such a

semigroup {U(t)}t≥0, the value

ω0 = lim
t→∞

ln ‖U(t)‖

t

is finite (‖ · ‖ is the norm in B); it is called the type of {U(t)}t≥0. The resolvent set of
the operator −A contains the half-plane Reλ > ω0.
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A C0-semigroup {U(t) = e−At}t≥0 on B is called (strongly) differentiable if for any
x ∈ B, the B-valued function U(t)x is strongly differentiable on (0,∞). As is known
(see [2]), for such a semigroup

∀x ∈ B, ∀t > 0 : U(t)x ∈
⋂

n∈N

D(An),

the vector-valued function U(t)x is infinitely differentiable on (0,∞), and

∀x ∈ B, ∀t > 0, ∀n ∈ N :
dnU(t)x

dtn
= (−1)nAnU(t)x.

Let now θ ∈
(
0, π2

]
. A C0-semigroup {U(t)}t≥0 on B is called analytic with angle θ

if the operator-valued function U(·) is defined in the sector Sθ = {z : | arg z| < θ} and
possesses the following properties:

1) ∀z1, z2 ∈ Sθ : U(z1 + z2) = U(z1)U(z2);
2) ∀x ∈ B : U(z)x is analytic in Sθ;
3) ∀x ∈ B : ‖U(z)x− x‖ → 0 as z → 0 in any closed subsector of Sθ.

If in addition the family U(z) is bounded on every sector Sψ with ψ < θ, then U(t) is
called a bounded analytic semigroup with angle θ.

We shall say (see [3]) that an infinitely differentiable vector x of the operator A, that
is, x ∈

⋂
n∈N

D(An), is analytic (entire) for this operator if for some number α > 0 (for

any α > 0) there exists a constant c = c(x) > 0 (c = c(x, α) > 0) such that

∀n ∈ N : ‖Anx‖ ≤ cαnn!.

Denote by A(A) and Ac(A) the sets of all analytic and entire vectors of the operator A,

respectively. If the C0-semigroup {e−At}t≥0 is analytic, then (see [3]) Ac(A) = B, ∀x ∈
B, ∀t > 0 : e−Atx ∈ A(A), and

A(A) =
⋃

t>0

e−AtB, Ac(A) =
⋂

t≥0

e−AtB.

In what follows we may assume, without loss of generality, that A is the generator of
a contraction C0-semigroup on B and ker e−At = {0} as t > 0.

Let B−t(A), t > 0, be the completion of B in the norm

‖x‖B−t(A) = ‖e−Atx‖.

Since the norms ‖ · ‖B−t(A), t ∈ (0,∞), are coordinated and comparable on B, we have
for t < t′ the dense and continuous embedding B−t(A) ⊆ B−t′(A). Set

B−(A) = proj lim
t→0

B−t(A).

It should be noted that for obtaining B−(A), it suffices to be restricted to the spaces
B− 1

n
(A), n ∈ N. So, B−(A) is a complete countably normed space.

The operator e−At admits a continuous extension Ũ(t) to the space B−t(A). By virtue

of continuity of the embeddingB−t(A) ⊆ B−t′(A) as t < t′, we have Ũ(t′) ↾B−t(A)= Ũ(t).
On the space B−(A) we define the operators U(t), t ≥ 0, in the following way:

(1) ∀x ∈ B−(A) : U(t)x = Ũ(t)x if t > 0; U(0)x = x.

The following assertion was proved in [3].

Proposition 1. The family {U(t)}t≥0 forms an equicontinuous C0-semigroup on the
space B−(A), possessing such properties:

1) U(t)B−(A) ⊆ B as t > 0;

2) ∀x ∈ B : U(t)x = e−Atx;

3) ∀x ∈ B−(A), ∀t, s > 0 : U(t+ s)x = e−AtU(s)x = e−AsU(t)x.
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Denote by Â the generator of the semigroup {U(t)}t≥0.

Proposition 2. If the semigroup
{
e−At

}
t≥0

is differentiable on (0,∞), then B ⊂ B−(A)

strictly, the operator Â is continuous in B−(A), and the semigroup{
U(t) = e−Ât

}
t≥0

is infinitely differentiable in B−(A) on [0,∞). Moreover, for ar-

bitrary fixed x ∈ B−(A) and t > 0, U(t)x ∈
⋂
n∈N

D(An), the vector-valued function

U(t)x, t ∈ (0,∞), is infinitely differentiable in B, and if the semigroup {e−At}t≥0 is
analytic on (0,∞), then U(t)x ∈ A(A) and the function U(t)x is analytic on (0,∞).

2. On solutions of an abstract parabolic equation on (0,∞) in a Banach

space

Consider an equation of the form

(2)
dy(t)

dt
+Ay(t) = 0, t ∈ (0,∞),

where A is a closed linear operator on B. A vector-valued function y(t) : [0,∞) 7→ D(A)
is called a strong solution of equation (2) if it is continuously differentiable on [0,∞) and
satisfies this equation on [0,∞). By a weak solution of equation (2) on (0,∞) we mean
a vector-valued function y(t) ∈ C((0,∞),B) such that

∀s, t ∈ (0,∞) :

t∫

s

y(r) dr ∈ D(A)

and

y(t)− y(s) = −A

t∫

s

y(r) dr.

Since A is closed, a weak solution y(t) of equation (2) on (0,∞) is its strong one if and
only if y(t) ∈ C1([0,∞),B). If D(A) = B, then every weak solution is strong, and it
admits a continuation to an entire vector-valued function of exponential type.

In the case, where A is the generator of a C0-semigroup {e−At}t≥0 on B, the set of
all strong solutions of (2) is described (see [4]) by the formula

y(t) = e−Atx, x ∈ D(A).

It is not hard to see that the vector-valued function

(3) y(t) = e−Atx, x ∈ B,

is a continuous at 0 weak solution of (2). As was shown in [5], formula (3) gives all such
solutions when x runs over the whole B.

Our most urgent problem is to characterize all weak solutions of equation (2) on (0,∞)
and investigate their behavior near 0. Note that no condition on a weak solution at the
point 0 are preassigned. The following assertion holds true (see [3]).

Proposition 3. Let A be the generator of a differentiable semigroup {e−At}t≥0 on B.
Then each weak solution y(t) of equation (2) on (0,∞) has a boundary value y0 at the
point 0 in the space B−(A) (y(t) → y0 in the B−(A)-topology), and

(4) y(t) = U(t)y0 = e−Âty0,

where U(t) is determined in (1).
Conversely, for any element y0 ∈ B−(A), the vector-valued function (4) is a weak

solution of (2) on (0,∞).

The next statement follows directly from Propositions 1 and 3.
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Corollary 1. Let A be the generator of a differentiable (analytic) C0-semigroup on B.
Then every weak solution of equation (2) on (0,∞) is infinitely differentiable (analytic)
on (0,∞).

Corollary 1 implies a number of classical theorems on smoothness inside a domain of
weak solutions for parabolic partial differential equations.

Note also that sometimes B−(A) = B. For example, this will be the case if A is
the generator of a C0-group (partial differential equations of hyperbolic type). The
Proposition 3 shows that in this situation any weak solution of (2) is continuous at 0. If
A is the generator of a differentiable semigroup, then the space B−(A) is larger than B.

By the weak Cauchy problem for equation (2) we mean the problem of finding a weak
solution of (2) on (0,∞), which satisfies the condition

(5) lim
t→0

y(t) = y0 ∈ B−(A).

(The limit is taken in the B−(A)-topology).
The Propositions 1–3 imply

Corollary 2. Let a C0-semigroup {e−At}t≥0 on B is differentiable. Then whatever
vector y0 ∈ B−(A), the weak Cauchy problem (2), (5) is uniquely solvable. The solution
is represented in form (4).

As it follows from Proposition 3, every weak solution y(t) of equation (2) has a bound-
ary value at 0 in the space B−(A), that is, lim

t→0
y(t) exists in the B−(A)-topology. The

question arises of finding the weak solutions whose boundary values at 0 belong to the
initial space B. The following assertion is valid (see [3]).

Proposition 4. Suppose the space B to be reflexive. If A is the generator of a
C0-semigroup {e−At}t≥0 on B and y(t) is a weak solution of equation (2) on (0,∞),
then

y(t) → y0 in B as t→ 0 ⇐⇒ ‖y(t)‖ ≤ c <∞, 0 < c = const.

So, the boundedness in the norm of B of a weak solution of equation (2) in a neigh-
borhood of 0 is equivalent to its continuity at 0 in B (analog of the Fatou and Riesz
theorems for functions analytic in a disk or half-plane). It should be noted that the
reflexivity of B plays an essential role. There are examples of nonreflexive B for which
Proposition 4 is not correct. For instance, the L1-boundedness of a harmonic in a disk
or half-plane function on concentric circles or lines parallel to the real axis, respectively,
does not yet imply the existence of the L1-limit of such a function when approaching the
boundary of a domain (see [6]). Observe also that Propositions 3, 4 contain a number of
well-known results from the boundary values theory for solutions of partial differential
equations in various classical function spaces (see e.g. [3]).

3. On behavior at infinity of solutions of parabolic differential

equations in a Banach space

We say that equation (2) is:
1) uniformly stable if

(6) lim
t→∞

y(t) = 0

for any its weak solution y(t);
2) uniformly exponentially stable if

(7) ∃ω > 0 : lim
t→∞

eωty(t) = 0

for all weak solutions of this equation.
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If dimB <∞, both the definitions are equivalent. But this is, in general, not the case
if dimB = ∞.

Since no condition on behavior near 0 of a weak solution is imposed, it is possible
for such a solution to have a singularity when approaching to 0, that is, lim

t→0
y(t) = ∞;

moreover, the order of growth of y(t) as t→ 0 may be arbitrary.
In the case where the Cauchy problem for equation (2) is well-posed (A is the generator

of a C0-semigroup), it suffices in the definitions 1), 2) to require for equalities (6),(7) to
be fulfilled at least for all continuous weak solutions. More exactly, the following theorem
takes place.

Theorem 1. Let A be the generator of a contraction C0-semigroup {e−At}t≥0 on B such
that ker e−At = {0} for any t > 0. In order that equation (2) be uniformly (uniformly
exponentially) stable, it is necessary and sufficient that equality (6) (equality (7)) hold
true for all its weak solutions y(·) ∈ C([0,∞),B). If the semigroup {e−At}t≥0 is dif-
ferentiable (analytic) on (0,∞), it suffices for conditions (6) and (7) to be valid only for
all differentiable (analytic) on [0,∞) solutions of (2).

Proof. As has been noted above, under the conditions of the theorem on the operator A,
the set of all continuous at 0 weak solutions y(t) of equation (2) is described by formula
(3) where x goes through the whole space B. If the semigroup {e−At}t≥0 is differen-
tiable (analytic) and x passes through the set of all infinitely differentiable (analytic)
vectors of the operator A, that is, x ∈

⋂
n∈N

D(An) (x ∈ A(A)), then formula (3) gives all

differentiable (analytic) on [0,∞) solutions of (2).
Let y(t) be an arbitrary weak solution of (2) on (0,∞). Then, because of Proposi-

tions 1, 3,

(8) ∃y0 ∈ B−(A) : y(t) = U(t)y0 = e−A(t−t0)U(t0)y0, t > t0.

Since U(t0)y0 ∈ B and for an arbitrary fixed t0 > 0, t− t0 → ∞ as t→ ∞, formula (8)
implies that if relation (6) is fulfilled for all continuous at 0 weak solutions of equation
(2), then y(t) → 0 for any weak solution of this equation on (0,∞). The equality

(9) eωt‖y(t)‖ = eωt0eω(t−t0)‖e−A(t−t0)U(t0)y0‖

shows that if formula (7) is fulfilled for any continuous at 0 weak solution of (2), then it
is valid for an arbitrary weak solution on (0,∞).

Suppose now that the semigroup {e−At}t≥0 is differentiable (analytic). By Proposi-
tion 2,

∀t > 0, ∀y0 ∈ B−(A) : e
−Aty0 ∈

⋂

n∈N

D(An) (e−Aty0 ∈ A(A)).

It follows from (8) and (9) that if relations (6) and (7) are fulfilled for all infinitely
differentiable (analytic) on [0,∞) weak solution of (2), then they are valid for any weak
one on (0,∞). �

In accordance with [7], a C0-semigroup {U(t)}t≥0 on B is:
(i) uniformly stable if

∀x ∈ B : lim
t→∞

‖U(t)x‖ = 0;

(ii) uniformly exponentially stable if

∃M > 0, ∃ω > 0, ∀t ≥ 0 : ‖U(t)‖ ≤Me−ωt

(M and ω are constants).
As all continuous at 0 weak solutions y(t) of equation (2) are described by formula (3)

where x runs through the whole B, Theorem 1 may be reformulated in terms of stability
of a C0-semigroup. Namely, the following assertion holds.
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Corollary 3. Let A be the generator of a contraction C0-semigroup on B such that
ker e−At = {0} for any t > 0. Then for equation (2) to be uniformly (uniformly expo-
nentially) stable, it is sufficient that the semigroup {e−At}t≥0 be uniformly (uniformly
exponentially) stable. If the semigroup {e−At}t≥0 is differentiable (analytic), it is suffi-
cient in the relations

(10) ∀x ∈ B : e−Atx→ 0 as t→ 0 (eωte−Atx→ 0 as t→ 0)

confine ourselves to x ∈
⋂
n∈N

D(An) (x ∈ A(A)).

Note also that a number of works of various mathematicians were devoted to searching
uniform and uniform exponential stability criterions for C0-semigroups (see, for instance,
[7–9]). In what follows some new ones are given.

Denote by σ(·), σp(·), σc(·), σr(·), and ρ(·) the spectrum, the point, continuous, resid-
ual spectra, and the resolvent set of an operator, respectively.

Theorem 2. In order that a C0-semigroup {e−At}t≥0 be uniformly stable, it is necessary
that 0 ∈ σc(A)∪ρ(A). If the semigroup {e−At}t≥0 is uniformly exponentially stable, then
0 ∈ ρ(A). In order that {e−At}t≥0 be uniformly but not uniformly exponentially stable,
it is necessary that 0 ∈ σc(A). In the case where {e−At}t≥0 is bounded analytic, all
conditions mentioned above are sufficient, too.

Proof. Let the semigroup {e−At}t≥0 be uniformly stable. Assume that 0 ∈ σp(A). Then
there exists x ∈ D(A), x 6= 0, such that Ax = 0. It follows from this that lim

t→∞
e−Atx =

x 6= 0 contrary to the uniform stability of {e−At}t≥0.

Suppose now 0 ∈ σr(A). Then R(A) 6= B (R(·) is the range of an operator). This
implies that

(11) ∃f ∈ B∗ (f 6= 0), ∀x ∈ D(A) : f(Ax) = 0.

Consider the function ϕx(t) = f(e−Atx). Since e−AtD(A) ⊂ D(A) as t > 0, the function
ϕx(t) is continuously differentiable on [0,∞) and ϕ′

x(t) = −f(Ae−Atx) ≡ 0. So ϕx(t) =
cx = const on [0,∞). Because of ϕx(0) = f(x) = lim

t→0
f(e−Atx) = 0, we have f(x) = 0

for any x ∈ D(A). Taking into account that D(A) = B and the continuity of f , we may
conclude that f = 0 which contradicts to (11). Thus, in the case of uniform stability of
{e−At}t≥0, 0 ∈ σc(A) ∪ ρ(A).

Next, suppose {e−At}t≥0 to be uniformly exponentially stable. Then {λ ∈ C :Reλ >
ω} ⊂ ρ(A). As ω < 0, we have 0 ∈ ρ(A). It follows from this that if {e−At}t≥0 is
uniformly but not uniformly exponentially stable, then 0 ∈ σc(A).

Let now {e−At}t≥0 be bounded analytic and 0 ∈ σc(A) ∪ ρ(A), hence, R(A) = B.
Then for every g ∈ R(A), there exists x ∈ D(A) such that g = Ax. The boundedness
and analyticity of {e−At}t≥0 imply the relation

∥∥e−Atg
∥∥ =

∥∥e−AtAx
∥∥ ≤

cx‖x‖

t
→ 0 as t→ ∞ (0 < cx = const).

Since R(A) = B, we make sure, on the basis of the principle of uniform boundedness
(Banach-Steinhaus theorem), that e−Atg → 0 for any g ∈ B, that is, the semigroup
{e−At}t≥0 is uniformly stable. If {e−At}t≥0 is bounded analytic and 0 ∈ ρ(A), then the
spectrum σ(−A) of the operator −A lies in the sector S(ϕ, δ) = {λ ∈ C : | arg(λ+ δ)| <
π − ϕ} with some δ > 0 and ϕ ∈ (0, π]. For this reason, S(A) = inf

λ∈σ(A)
Reλ < 0.

Taking into account that, by virtue of analyticity of the semigroup {e−At}t≥0, S(A) =
ω(A), we arrive at the conclusion that this semigroup is uniformly exponentially stable.
This implies also that if a bounded analytic semigroup {e−At}t≥0 is uniformly but not
uniformly exponentially stable, then 0 ∈ σc(A). �
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Theorem 3. Let {e−At}t≥0 be a C0-semigroup on B, and γ(t) > 0 a continuous on
[0,∞) function such that γ(t) → 0 as t→ ∞. If

(12) ∀x ∈ B, ∃c = c(x) > 0 :
∥∥e−Atx

∥∥ ≤ cγ(t), t ∈ [0,∞),

then {e−At}t≥0 is uniformly exponentially stable. In the case where the semigroup
{e−At}t≥0 is differentiable (analytic) on (0,∞), it suffices for inequality (12) to fulfilled
at least for x ∈

⋂
n∈N

D(An) (x ∈ A(A)).

Proof. Denote by Cγ([0,∞),B) the Banach space of all continuous on [0,∞) vector-
valued functions y(t) for which

‖y‖γ = sup
t≥0

‖y(t)‖

γ(t)
<∞.

The operator

C : B 7→ Cγ([0,∞),B), Cx = e−Atx,

admits a closure. Really, suppose xn → 0 in B and e−Atxn → y(t) in Cγ([0,∞),B). As
e−Atxn → 0 uniformly on each compact set from [0,∞), we have y(t) ≡ 0. Since the
operator C is defined on the whole B we make sure, in view of Closed Graph Theorem,
that C is continuous. So,

∃d > 0 :
∥∥e−Atx

∥∥
γ
≤ d‖x‖,

whence ∥∥e−Atx
∥∥ ≤ dγ(t).

Taking into account that

ω0 = inf
t>0

ln
∥∥e−At

∥∥
t

< 0

(see [7]), we obtain
∥∥e−At

∥∥ ≤ cω0−εe
−(ω0−ε)t, 0 < cω0−ε = const, 0 < ε < ω0,

which means that the semigroup {e−At}t≥0 is uniformly exponentially stable.
Assume now that the semigroup {e−At}t≥0 is differentiable and inequality (12) holds

true only for x ∈
⋂
n∈N

D(An). Fix t0 > 0. By Proposition 2

∀x ∈ B : g = e−At0x ∈
⋂

n∈N

D(An).

So,

∀t ≥ t0 :
∥∥e−Atx

∥∥ =
∥∥∥e−A(t−t0)e−At0x

∥∥∥ ≤ cgγ(t− t0).

Putting

γ1(t) =

{
γ(0) as 0 ≤ t ≤ t0

γ(t− t0) as t > t0
, c̃x = max

{
1

γ(0)
max
t∈[0,t0]

∥∥e−Atx
∥∥ , cg

}
,

we obtain

∀x ∈ B, ∀t ∈ [0,∞) :
∥∥e−Atx

∥∥ ≤ c̃xγ1(t),

that is, {e−At}t≥0 is uniformly exponentially stable.
In the case when {e−At}t≥0 is analytic, the proof scheme is the same. �

Theorem 3 shows that if the semigroup {e−At}t≥0 is uniformly but not uniformly ex-
ponentially stable, then its orbits e−Atx may tend to 0 anyhow slowly when approaching
to infinity. But it is impossible for such a semigroup to have an exponential decrease for
all its orbits. Indeed, suppose that

∀x ∈ B, ∃c = c(x) > 0, ∃ωx > 0 :
∥∥e−Atx

∥∥ ≤ ce−ωxt.
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Then

∀x ∈ B :
∥∥e−Atx

∥∥ ≤ c1
1

1 + t
, 0 < c1 = c sup

t∈[0,∞)

{
(1 + t)e−ωxt

}
.

Setting in Theorem 3 γ(t) = 1
1+t , we conclude that {e

−At}t≥0 is uniformly exponentially
stable contrary to the above assumption.

The next theorem gives one more criterion of uniform exponential stability.

Theorem 4. Let {e−At}t≥0 be a C0-semigroup on B. If

(13) ∀x ∈ B, ∃px > 0 :

∞∫

0

∥∥e−Atx
∥∥px dt <∞,

then this semigroup is uniformly exponentially stable. If {e−At}t≥0 is differentiable (an-
alytic), it is sufficient that inequality (13) be valid at least for infinitely differentiable
(analytic) vectors of the operator A.

Proof. Consider first the case where the semigroup {e−At}t≥0 is bounded:
∥∥e−At

∥∥ ≤ c =
const, t ∈ (0,∞). We may assume, without restriction of generality, that c = 1 because
we can introduce in B the equivalent to ‖ · ‖ norm

‖x‖1 = sup
t∈[0,∞)

∥∥e−Atx
∥∥ ,

with respect to which {e−At}t≥0 is a contraction semigroup. Then
∥∥e−Atx

∥∥ does not
increase for any x ∈ B and, therefore, condition (13) implies

∀x ∈ B, ∃cx > 0 :
∥∥e−Atx

∥∥ ≤ cx(1 + t)−
1

px ,

whence

∀x ∈ B, ∃c̃x > 0 :
∥∥e−Atx

∥∥ ≤ c̃x
1

ln(2 + t)
,

where

c̃x = sup
t∈[0,∞)

ln(2 + t)

(1 + t)
1

px

cx.

By Theorem 3, the semigroup {e−At}t≥0 is uniformly exponentially stable.
Let now {e−At}t≥0 be not bounded on [0,∞). Since the growth of {e−At}t≥0 at

infinity is not higher than exponential, we have

∃ω > 0, ∃c > 0 :
∥∥e−At

∥∥ ≤ ceωt.

Suppose that for some x ∈ B relation (13) is fulfilled, but
∥∥e−Atx

∥∥ does not tend to 0 at

infinity. Then there exists a sequence ti → ∞ such that
∥∥e−Atix

∥∥ > δ with some δ > 0.

Choose this sequence so that ti+1− ti > ω−1. Then for s ∈ △i = [ti−ω
−1, ti], we obtain

δ ≤
∥∥e−Atix

∥∥ ≤
∥∥∥e−A(ti−s)

∥∥∥
∥∥e−Asx

∥∥ ≤ ceωω
−1 ∥∥e−Asx

∥∥ = ce
∥∥e−Asx

∥∥ .

It follows from this that

∀s ∈ △i :
∥∥e−Asx

∥∥ ≥ (ce)−1δ.

So,
∞∫

0

∥∥e−Atx
∥∥px dt ≥

∑

i∈N

∫

△i

∥∥e−Atx
∥∥px dt = ∞

contrary to (13). Thus, for an arbitrary x ∈ B,
∥∥e−Atx

∥∥ is nonincreasing and the
investigation amounts to the considered above case of a bounded semigroup.

The latter assertion of the theorem follows from the identity
∞∫

t0

∥∥e−Atx
∥∥q dt =

∞∫

t0

∥∥∥e−A(t−t0)e−At0x
∥∥∥
q

dt =

∞∫

0

∥∥e−Aξe−At0x
∥∥q dξ
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(t0 > 0 and q > 0 are arbitrary) and the fact that e−At0x ∈
⋂
n∈N

D(An) (e−At0x ∈ A(A))

if {e−At}t≥0 is differentiable (analytic). �

It should be noted that Theorem 4 is a generalization of the corresponding results of
Datko [10], Pazy [11], M. Krein [12] where it was required the existence of one the same
p in (13) for all x ∈ B. In Theorem 4 p may be different for different x. Moreover, if
{e−At}t≥0 is infinitely differentiable (analytic), it is sufficient for (13) to be fulfilled at
least for infinitely differentiable (analytic) vectors of the operator A.

Observe also that in the case where A is the generator of a uniformly exponentially
stable C0-semigroup, every solution y(t) of equation (2) tends to 0 exponentially at
infinity. Namely,

∀a < −ω0 : lim
t→∞

y(t)eat = 0.

As for uniformly but not uniformly exponentially stable semigroups, Theorem 3 shows
that this is not the case. The question arises of finding a connection between the order of
decrease to 0 of solutions y(t) when approaching to ∞ and the properties of their initial
data y(0). Taking into account [13], we arrive, by virtue of Theorems 2 and 3, at the
next assertion.

Theorem 5. Let A be the generator of a bounded analytic C0-semigroup {e−At}t≥0 on
B such that 0 ∈ σc(A). If y(t) is a continuous at 0 solution of equation (2), then the
following equivalence relations take place:

∀n ∈ N : lim
t→∞

tny(t) = 0 ⇐⇒ y(0) ∈
⋂

n∈N

D(A−n);

∃a > 0 : lim
t→∞

ea
√
ty(t) = 0 ⇐⇒ y(0) ∈ A(A−1);

∀a > 0 : lim
t→∞

ea
√
ty(t) = 0 ⇐⇒ y(0) ∈ Ac(A

−1).

If y(t) is exponentially decreasing at ∞, then

∃a > 0 : lim
t→∞

eaty(t) = 0 ⇐⇒ y(0) ∈ E(A−1),

where

E(A−1) =

{
x ∈

⋂

n∈N

D(A−n)
∣∣∃α > 0, ∃c = c(x), ∀n ∈ N : ‖A−nx‖ ≤ cαn

}

is the space of entire vectors of exponential type for the operator A−1.

If the semigroup {e−At}t≥0 is bounded analytic, then the operator A−1 generates an

analytic semigroup, too (see [14]), and, as was shown there, Ac(A−1) = B; moreover, the

set of solutions of equation (2) behaving like e−a
√
t when t → ∞, is dense in the set of

all its weak solutions. As for the set of weak solutions decreasing at ∞ exponentially, it
may consist only of the trivial one y(t) ≡ 0 even in the case where the analyticity angle
of {e−At}t≥0 is equal to π

2 . But if in the latter case

1∫

0

ln lnM(s) ds <∞, M(s) = sup
Imλ≥s

∥∥A(A− λI)−1
∥∥ ,

then E(A−1) = B, and the set of weak solutions decreasing exponentially to 0 when
approaching to ∞ is wide enough.
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