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HYPERCYCLIC COMPOSITION OPERATORS ON HILBERT SPACES

OF ANALYTIC FUNCTIONS

Z. H. MOZHYROVSKA AND A. V. ZAGORODNYUK

Abstract. In the paper we consider composition operators on Hilbert spaces of
analytic functions of infinitely many variables. In particular, we establish some con-

ditions under which composition operators are hypercyclic and construct some exam-
ples of Hilbert spaces of analytic functions which do not admit hypercyclic operators
of composition with linear operators.

Introduction

A sequence {Tn : E → E : n ∈ N} of operators on a Fréchet space E is called universal
provided there exists some vector x ∈ E, called a universal vector, for which

{Tnx : n ∈ N} = E.

An operator T on E is said to be hypercyclic if the sequence of its iterates {Tn : n ∈ N}
is universal.

The study of hypercyclic operators started after Birkhoff’s result [5] that the operator
of composition with translation x 7→ x+ a, a 6= 0, Ta : f(x) 7→ f(x+ a) is hypercyclic in
the space of entire functions H(C) on the complex plane C. Godefroy and Shapiro in [11]
generalized this result for the translation operator on a Fréchet space H(Cn) of entire
functions on C

n, endowed with the topology of uniform convergence on compact subsets.
Aron and Bès in [2] proved that the operator of composition with translation Ta is hyper-
cyclic in the space of entire functions which are weakly continuous on all bounded subsets
of a separable Banach space X. In [19] the authors considered hypercyclic operators on
H(Cn) which are composition with more complicated analytic maps on C

n and proved
the hypercyclicity of a “symmetric” translation operator on the space of symmetric ana-
lytic functions of bounded type on ℓ1. Detailed information about hypercyclic operators
is given in [3, 12].

Let {Tn : E → E : n ∈ N} be a sequence of (continuous and linear) operators on a
separable Fréchet space E. There is a general sufficient condition for universality. This
condition is inspired in the so-called Hypercyclicity Criterion given by Kitai [14] in her
unpublished Ph.D. thesis and rediscovered by Gethner and Shapiro [10]. We use the
general form of this Criterion as given in [4].

Definition 0.1. We say that {Tn : n ∈ N} satisfies the Universality Criterion (UC)
provided there exist X and Y dense subsets of E and maps Sn : Y → E, n ∈ N, such
that

(i) Tnx → 0, n → ∞ for all x ∈ X,
(ii) Sny → 0, n → ∞ for all y ∈ Y ,
(iii) (Tn ◦ Sn)y → y, n → ∞ for all y ∈ Y .
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An operator T on E is said to satisfy the Hypercyclicity Criterion (HC) with respect to
an increasing sequence of positive integers (nk), if the sequence of iterates {Tnk : k ∈ N}
satisfies the Universality Criterion.

Note that according to [8] there are hypercyclic operators which do not satisfy the HC.
Shapiro [21] gave an another useful condition, known as the Hypercyclicity Comparison

Principle (HCP):
If T : (E, τ) → (E, τ) is such that there is a dense subspace F ⊂ E and a finer

topology τ ′ on F such that T |F : (F, τ ′) → (F, τ ′) is hypercyclic, then T is hypercyclic.
In [17] Mart̀ınez-Gimènez and Peris generalized this result in the following form.

Lemma 0.2. Let Ti,n : Ei → Ei : n ∈ N be a sequence of operators on a separable
Fréchet space Ei, i = 1, 2, let φ : E1 → E2 be a continuous map with dense range such
that T2,n ◦ φ = φ ◦ T1,n, for all n ∈ N. That is, the diagram

E1
T1,n−→ E1

φ ↓ ↓ φ

E2
T2,n−→ E2

commutes for all n ∈ N. If {T1,n : n ∈ N} is universal sequence (satisfies the UC),
then {T2,n : n ∈ N} is also a universal sequence (satisfies the UC). For single operators
Ti : Ei → Ei, i = 1, 2, such that T2 ◦ φ = φ ◦ T1 we have

(1) If T1 is hypercyclic, then T2 is also hypercyclic.
(2) If T1 satisfies the HC, then T2 also satisfies the HC.

Now we consider conditions under which tensor products of operators are hypercyclic.

Definition 0.3. ([18]). We say that a sequence {Tn : n ∈ N} of operators on E satisfies
the Tensor Universality Criterion (TUC) if there exist dense subsets X and Y of E, and
maps Sn : Y → E, n ∈ N, such that

(i) {Tnx}∞n=1 is bounded for each x ∈ X,
(ii) {Sny}∞n=1 is bounded for each y ∈ Y ,
(iii) (Tn ◦ Sn)y → y, n → ∞ for all y ∈ Y .

An operator T on E satisfies the Tensor Hypercyclicity Criterion (THC) with respect
to an increasing sequence of positive integers (nk), provided the sequence of iterates
{Tnk : k ∈ N} satisfies the TUC.

Full presentation of tensor products of normed spaces we can find in [9]. A tensor
norm ”α” on the algebraic tensor product E⊗F of normed spaces E and F (shorthand:
E⊗α F and E⊗̃αF for the completion) is defined such that the following two conditions
are satisfied:

(1) α is a crossnorm, that is ‖x⊗ y‖α = ‖x‖‖y‖, x ∈ E, y ∈ F .
(2) α satisfies the metric mapping property: If T1 : E1 → F1 and T2 : E2 → F2 are

continuous linear operators, then

‖T1 ⊗ T2 : E1 ⊗α E2 → F1 ⊗α F2‖ ≤ ‖T1‖‖T2‖.
This definition goes back to Schatten [20] in 1943 (who called such as α a uniform

crossnorm).
Since every Fréchet space is a projective limit of a countable family seminormed spaces,

for given a tensor norm ”α”, we have the corresponding locally convex topology on the
tensor product E ⊗ F of two Fréchet spaces E and F. The metric mapping property for
tensor norms yields that the operator T1 ⊗ T2 : E1 ⊗α E2 → F1 ⊗α F2 is continuous
whenever T1 : E1 → F1 and T2 : E2 → F2 are continuous operators between Fréchet
spaces (see [9, 35.2]).
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We will need a theorem, which was proved by Mart̀ınez-Gimènez and Peris in [18].

Theorem 0.4. Let E and F be separable Fréchet spaces. If the sequence of linear
operators {T 1

n : E → E : n ∈ N} satisfies the UC, and the sequence of operators {T 2
n :

F → F : n ∈ N} satisfies the TUC, then {T 1
n⊗̃T 2

n : E⊗̃αF → E⊗̃αF : n ∈ N} satisfies
the UC, and therefore is universal, for any tensor norm α.

In the paper we prove the hypercyclicity of composition operator CT on a direct
topological sum of tensor powers of a Hilbert space E∗ providing CT is continuous,
where T is a linear operator on E such that T ∗ is hypercyclic. Also, we consider some
special examples of Hilbert spaces of analytic functions which can be presented by dual
to abstract symmetric Fock space over E and do not admit hypercyclic operators of
composition with a linear operator and with a translation.

1. The case of abstract Hilbert spaces

Let E be a Hilbert space and E∗ be its Hermitian adjoint space. We denote by ⊗n
sE

the n-fold symmetric algebraic tensor power of space E. Every element from ⊗n
sE can

be approached by a linear span of elements

x1 ⊗s · · · ⊗s xn :=
1

n!

∑

σ∈Sn

xσ(1) ⊗ · · · ⊗ xσ(n),

where x1, . . . , xn ∈ E and Sn is the group of permutations on the set {1, . . . , n}.
Let ⊗n

s,hE be the completion ⊗n
sE with respect to a Hilbert norm h. Then space

⊗n
s,hE

∗ consists of n-homogeneous polynomials on E endowed with the Hilbert norm h.

We denote by

W =
{
f =

∞⊕

n=1

Pn : Pn ∈ ⊗n
s,hE

∗ ∀n ∈ N

}

the completion of space of the direct sums ⊕n ⊗n
s,h E∗ with respect to some Hilbert

topology τh such that all subspaces ⊗n
s,hE

∗ are closed in W. For a given f ∈ W, Pn(f)
could be a projection from W onto ⊗n

s,hE
∗.

Let T : E → E be a linear operator on Hilbert space E. Let us introduce the compo-
sition operator CT (P ) := P ◦ T on the subspace of all polynomials in W. If this operator
is continuous, we can extend it to the whole space (preserving the same notation).

Theorem 1.1. Let E be a separable Hilbert space and T : E → E an operator such that
its adjoint T ∗ : E∗ → E∗ satisfies the Hypercyclicity Criterion. Then, if composition
operator

CT : (W, τh) → (W, τh), f 7→ f ◦ T
is continuous on W, then CT is hypercyclic on W.

Proof. Since T is continuous, then we note that f ◦T ∈ ⊗n
sE

∗ if f ∈ ⊗n
sE

∗. So CT maps
⊗n

sE
∗ to itself.

For every f ∈ W, Pn(CT (f)) = Pn(f) ◦T = (T ∗ ⊗ · · ·⊗T ∗)(Pn(f)) ∈ ⊗n
sE

∗, ∀n ∈ N.

By Theorem 0.4 the extension ⊗̃n

s,hT
∗ =: T ∗

n from E∗ ⊗ · · · ⊗ E∗ to ⊗̃n

s,hE
∗ = ⊗n

sE
∗τh

satisfies the HC with respect to a sequence (mk) (independent on n). Consequently there

are dense subspaces Xn, Yn ⊂ ⊗̃n

s,hE
∗ and Sn,mk

: Yn → ⊗̃n

s,hE
∗, k ∈ N such that T ∗

n ,

Xn, Yn and {Sn,mk
}∞k=1 satisfy the UC, n ∈ N. Define now

X :=
⋃

n∈N

(⊕n
k=1Xk), Y :=

⋃

n∈N

(⊕n
k=1Yk)

dense subspaces of W and map

Smk
: Y → W, Smk

:= ⊕n∈NSn,mk
, k ∈ N.
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It easily follows that CT , X, Y and {Smk
}∞k=1 satisfy the conditions of the HC, therefore

CT is hypercyclic on W. �

2. The case of special Hilbert spaces

Let E be a Hilbert space with an orthonormal basis (ei)
∞
i=1 and the inner product

(· | ·). We denote e⊗k
i = ei ⊗ · · · ⊗ ei︸ ︷︷ ︸

k

for any k ∈ N and i = 1, 2, . . . . For a fixed m ∈ N

we denote by [i] a multi-index (i1, . . . , im) ∈ N
m such that i1 < · · · < im and by (k) an

arbitrary multi-index (k1, . . . , km) ∈ Z
m
+ , |(k)| = k1 + k2 + · · ·+ km. The vectors

{
e
⊗s(k)
[i] := e⊗k1

i1
⊗s · · · ⊗s e

⊗kn

in
: |(k)| = n

}

form a topological basis in ⊗n
sE. Here we assume that zero tensor power of a basis vector

is equal to 1. We say that a Hilbert space F = F(E) with a norm ‖ · ‖η is an (abstract)

symmetric Fock space over a given Hilbert space E if vectors 1, e
⊗s(k)
[i] = e⊗k1

i1
⊗s· · ·⊗se

⊗kn

in
,

( k1 + · · ·+ kn = n, n ∈ N, i1 < · · · < in) form an orthogonal basis in F .

Evidently, the norm ‖ · ‖η is completely defined by its value on the basis vectors.

Hence, setting
∥∥∥e⊗s(k)

[i]

∥∥∥
η
by arbitrary positive numbers, we can get various symmetric

Fock spaces over E. In other words, F is a completion of

C⊕ E ⊕⊗2
sE ⊕ · · · ⊕ ⊗n

sE ⊕ · · ·
by ‖ · ‖η. We will use notation Fη for (F , ‖ · ‖η). Let 〈· | ·〉 be the inner product in Fη.

Put c
(k)
[i] :=

∥∥∥e⊗s(k)
[i]

∥∥∥
−2

η
and c0 = 1. Let us consider the following power series:

η(x) =
∞∑

k1+···+kn=0

∑

i1<···<in

ck1...kn

i1...in
xk1

i1
. . . xkn

in
e⊗k1

i1
⊗s · · · ⊗s e

⊗kn

in

=
∞∑

|(k)|=0

∑

[i]

c
(k)
[i] x

(k)
[i] e

⊗s(k)
[i]

for any x =
∞∑

i=1

xiei ∈ E. It is known [15], [16, p. 130] that under some conditions on

{c(k)[i] } the series converges in Fη for every x in an open set U ∈ E and the Hermitian

dual F∗
η is isomorphic to a Hilbert space of analytic functions on U (which we denote by

Hη) of the form fφ = 〈η(·) | φ〉, φ ∈ Fη. In this paper we consider two special cases of
Hη.

Hilbert space HηE
(E). Let us consider the case when a map η = ηE : E → Fη = FηE

is defined by

ηE(x) = 1 + x+
1

2!
x⊗2 + · · ·+ 1

n!
x⊗n + · · · ,

x ∈ E and x⊗n the tensor power x⊗ · · · ⊗ x︸ ︷︷ ︸
n

. Clearly, U = E and so Hη = HηE
(E)

consists of analytic functions on E. Let ⊗̃n

sE be the completion of ⊗n
sE with respect to

‖ · ‖ηE
. Then Fη = FηE

is the direct topological sum of ⊗̃n

sE and
∥∥∥e⊗s(k)

[i]

∥∥∥
2

ηE

= k1! . . . kn!.

Let w ∈ FηE
, w =

∞∑

n=0

wn, where wn ∈ ⊗̃n
sE. Then
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Pn(x) = 〈ηE(x) | wn〉 =
1

n!
〈x⊗n | wn〉

is an n-homogeneous polynomial on E and the series

f(x) =
∞∑

n=0

Pn(x)

is the Taylor series expansion of f. So

‖f‖2 =
∞∑

n=0

‖Pn ‖2 :=
∞∑

n=0

‖wn‖2ηE
< ∞.

We need the following definition.

Definition 2.1. Let Z be an abstract set and H a Hilbert space of complex valued
functions f on Z equipped with inner product 〈· | ·〉H. A function K(x | z) defined on
Z × Z is called reproducing kernel of a closed subspace HK ⊂ H if

(i) for any fixed z ∈ Z, K(x | z) belongs to HK as a function in x ∈ Z;
(ii) for any f ∈ HK and for any z ∈ Z, f(z) = 〈f | K(· | z)〉H.

The space HK is called a Hilbert space with reproducing kernel.

From the definition of HηE
(E) it follows that the reproducing kernel of HηE

(E) is

K(x | z) = e(x|z) =

∞∑

n=0

(x | z)n
n!

=

∞∑

n=0

〈x⊗n | z⊗n〉
n!

.

The following theorem is an infinite-dimensional analogue of the result in [6].

Theorem 2.2. Let T : E → E be an analytical map. If the operator CT is continuous on
HηE

(E), then T (x) = Ax+Q, where A : E → E is a linear operator, Q ∈ E. Moreover,
‖ A ‖≤ 1 and, if ‖ Aζ ‖=‖ ζ ‖ for some ζ ∈ E then (Aζ | Q) = 0.

Proof. If CT is bounded on HηE
(E), then

(1) sup
z∈E

‖ C∗
T (K(· | z)) ‖
‖ K(· | z) ‖ = sup

z∈E

‖ K(· | T (z)) ‖
‖ K(· | z) ‖ = sup

z∈E
exp(‖ T (z) ‖2 − ‖ z ‖2) < ∞,

where the first equality follows from easily verified property (see, for example [13])
C∗

T (K(· | z)) = K(· | T (z)). From (1) it follows that

(2) lim sup
‖z‖→∞

‖ T (z) ‖
‖ z ‖ ≤ 1.

For each ζ ∈ ∂B, where ∂B is boundary of unit ball B, we define the analytic function
F

j
ζ by the equation F

j
ζ (λ) = (T (λζ) | ej), λ ∈ C. By (2) we must have

lim sup
|λ|→∞

‖ F
j
ζ (λ) ‖
| λ | ≤ 1.

Let F j
ζ (x) =

∞∑

n=0

Pn(x) be the homogeneous expansion of F j
ζ . Since

F
j
ζ (λ) =

∞∑

n=0

λnPn(ζ),

we must have Pn(ζ) = 0 for all n ≥ 2 and ζ ∈ ∂B; that is Pn ≡ 0 for n ≥ 2 and each

coordinate function F
j
ζ is linear. This proves that T (x) = Ax+Q as desired.
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If ‖ Aζ ‖>‖ ζ ‖ for some ζ, ‖ ζ ‖= 1, then setting z = tζ, t > 0 in (2) and letting
t → ∞, we obtain a contradiction. Thus we must have ‖ A ‖≤ 1.

Next we show that if ‖ Aζ ‖=‖ ζ ‖, then (Aζ | Q) = 0. As a special case of this,
suppose Aζ = λζ, where λ is a complex number of modulus 1. If (Aζ | Q) 6= 0, we may
choose ρ ∈ C, | ρ |= 1, so that ρ(Aζ | Q) > 0. Considering z = tρζ as t → ∞, we obtain
a contradiction to (1). Now suppose Aζ = β, where ‖ ζ ‖=‖ β ‖= 1. Let U be a unitary
map of E such that U(β) = ζ. Then for τ(x) ≡ T ◦ U(x) = A ◦ U(x) + Q we have Cτ

bounded on HηE
(E) and, since A(U(β)) = β, by the special case just considered, we

have (AUβ | Q) = 0 or (Aζ | Q) = 0 as desired. �

Note that if T (x) = Ax + Q and A is a linear operator with ‖A‖ < 1, then T has a
fixed point x0 = (I − A)−1Q and so CT can not to be hypercyclic on HηE

(E) (see e.g.
[12, p. 112]). Hence, we have the following corollary.

Corollary 2.3. If CT is a composition hypercyclic operator on HηE
(E), then T (x) =

Ax+Q, where A is linear, ‖A‖ = 1 and if ‖Aζ‖ = ‖ζ‖, ζ ∈ E, then (Aζ | Q) = 0.

In particular, we have that the translation operator f(x) 7→ f(x+a) is not hypercyclic
in HηE

(E) because it is discontinuous by Theorem 2.2. Note that in [7] it is constructed
a class of Hilbert spaces of analytic functions of the complex variable for which the
translation operator is hypercyclic.

Let H0
ηE

(E) be the subspace of functions f ∈ HηE
(E) with f(0) = 0.

Proposition 2.4. There is no hypercyclic composition operator with a linear operator
on the space H0

ηE
(E).

Proof. If there is such a hypercyclic operator CT with a linear operator T, then by
Theorem 2.2 ‖T‖ ≤ 1. From this it follows that ‖CT ‖ ≤ 1. Indeed, if f ∈ H0

ηE
(E) and

f =

∞∑

n=1

Pn, then

‖CT (f)‖2 =
∞∑

n=1

‖Pn ◦ T‖2 ≤
∞∑

n=1

‖Pn‖2‖T‖2 ≤
∞∑

n=1

‖Pn‖2 = ‖f‖2.

But it is impossible because the norm of a hypercyclic operator must be greater than 1.
�

Hilbert space HηB
(B). Now let us consider a Hilbert space of analytic functions on

the unit ball B ⊂ E.

Let us define a norm on ⊗n
sE by its value on the basis vectors e

⊗s(k)
[i] setting

∥∥∥e⊗s(k)
[i]

∥∥∥
2

ηB

=
k1! . . . kn!

(k1 + · · ·+ kn)!
.

Hence, (see [15]) for any w ∈ FηB
there is an analytic function f on the unit ball

B ⊂ E such that

(3) f(x) = 〈ηB(x) | w〉,
where

ηB(x) = 1 + x+ · · ·+ x⊗n + · · · ,
‖x‖ < 1. We denote the space of all such functions by HηB

(B).
If B ⊂ C

n, then this space is called Drury-Arveson-Hardy space [1]. Also this space

has an alternative description as a Besov-Sobolev space B
1

2

2 of analytic functions on open
unit ball in C

n. Note that if dimE = 1, the space HηB
(B) coincides with the classical

Hardy space.
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Since HηE
(E) and HηB

(B) are the spaces with orthonormal bases

{(√
k1! . . . kn!

)−1

e
∗⊗s(k)
[i]

}
and

{(√ k1! . . . kn!

(k1 + · · ·+ kn)!

)−1

e
∗⊗s(k)
[i]

}

respectively, where e
∗⊗s(k)
[i] (x) = (x | e⊗k1

i1
) · · · (x | e⊗kn

in
), x ∈ E, the operator A defined

on HηE
(E) by

A
(
(k1! . . . kn!)

−1/2e
∗⊗s(k)
[i]

)
=

√
(k1 + · · ·+ kn)!

k1! . . . kn!
e
∗⊗s(k)
[i]

is an isometric isomorphism onto HηB
(B) and

A(e
∗⊗s(k)
[i] ) =

√
(k1 + · · ·+ kn)!e

∗⊗s(k)
[i] =

√
n!e

∗⊗s(k)
[i] .

So, for an arbitrary function f ∈ HηE
(E) with the Taylor series expansion f =

∞∑

n=0

fn:

A(f) =

∞∑

n=0

√
n!fn.

Let T : E → E be a linear operator. We denote by CB
T : HηB

(B) → HηB
(B) the

operator which makes the following diagram commutative:

HηE
(E)

CT−→ HηE
(E)

A ↓ ↓ A
HηB

(B)
CB

T−→ HηB
(B).

So, CB
T = ACTA−1.

Let g ∈ HηB
(B), g(x) =

∞∑

n=0

gn(x), x ∈ B. Then

A−1(g(x)) =
∞∑

n=0

1√
n!
gn(x),

CTA−1(g(x)) =

∞∑

n=0

1√
n!
gn(T (x)),

CB
T = ACTA−1(g(x)) =

∞∑

n=0

√
n! · 1√

n!
gn(T (x)) =

∞∑

n=0

gn(T (x)).

We can see that CB
T is a composition operator.

From Proposition 2.4 and Lemma 0.2 it easily follows the next corollary.

Corollary 2.5. There is no hypercyclic composition operator with a linear operator on
the space HηB

(B).
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