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COMMENT ON “A UNIFORM BOUNDEDNESS THEOREM FOR

LOCALLY CONVEX CONES” [W. ROTH, PROC. AMER. MATH.

SOC. 126 (1998), 1973–1982]

DAVOD SAEEDI, ISMAIL NIKOUFAR, AND HUSAIN SAIFLU

Abstract. In page 1975 of [W. Roth, A uniform boundedness theorem for locally

convex cones, Proc. Amer. Math. Soc. 126 (1998), no. 7, 1973–1982] we can see: In

a locally convex vector space E a barrel is defined to be an absolutely convex closed
and absorbing subset A of E. The set U = {(a, b) ∈ E2, a− b ∈ A} then is seen to
be a barrel in the sense of Roth’s definition. With a counterexample, we show that it

is not enough for U to be a barrel in the sense of Roth’s definition. Then we correct
this error with providing its converse and an application.

1. Introduction and Preliminaries

An ordered cone (cf. [1] and [2]) is a set P endowed with an addition (a, b) 7−→ a+ b

and a scalar multiplication (α, a) 7−→ αa for real numbers α ≥ 0. The addition is
supposed to be associative and commutative, and there is a neutral 0 ∈ P. For the scalar
multiplication the usual associative and distributive properties hold. Also, P carries a
(partial) order, i.e., a reflexive transitive relation ≤ such that a ≤ b implies a+ c ≤ b+ c

and αa ≤ αb for all a, b, c ∈ P and α ≥ 0. We will denote P+ the subcone of positive
elements of P.

Let P be an ordered cone. A subset V of P is called an (abstract) 0-neighborhood
system, if the following properties hold:

(1) 0 < v for all v ∈ V;
(2) for all u, v ∈ V there is w ∈ V with w ≤ u and w ≤ v;
(3) u+ v ∈ V and αv ∈ V whenever u, v ∈ V and α > 0.

For every a ∈ P and v ∈ V we define

v(a) = {b ∈ P : b ≤ a+ v}, respectively (a)v = {b ∈ P : a ≤ b+ v},

to be a neighborhood of a in the upper, respectively lower topologies on P. Their
common refinement is called symmetric topology which we show the neighborhoods in
this topology as v(a) ∩ (a)v or v(a)v for a ∈ P and v ∈ V.

We call (P,V) a full locally convex cone, and each subcone of P, not necessarily
containing V, is called a locally convex cone (L.C.C.). For technical reasons we require
the elements of a locally convex cone to be bounded below, i.e. for every a ∈ P and
v ∈ V we have 0 ≤ a+ ρv for some ρ > 0. An element a of (P,V) is called bounded if it
is also upper bounded, i.e. for every v ∈ V there is ρ > 0 such that a ≤ ρv.

The extended scalar field R = R ∪ {+∞} of real numbers with the usual order is an
example of an ordered cone. A functional on a L.C.C. P is a linear mapping µ : P −→ R.
µ is u-continuous if there is a v ∈ V such that µ(a) ≤ µ(b) + 1 whenever a ≤ b + v for
a, b ∈ P. The u-continuous linear functionals on a locally convex cone (P,V) (into R)
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form a cone with the usual addition and scalar multiplication of functions. This cone is
called the dual cone of P and is denoted by P∗.

2. The relation between barrels of a L.C.S. and a L.C.C.

In this section, we give a counterexample to show that the set U = {(a, b) ∈ E2 :
a− b ∈ A} is not a barrel where E is a L.C.S. and A is a barrel in E.

Definition 2.1. Let E be a locally convex vector space (L.C.S.). A barrel in E is an
absolutely convex closed and absorbing subset A of E.

Definition 2.2. Let (P,V) be a locally convex cone. A barrel in P is a convex subset
U of P2 with the following properties:

(U1) For every b ∈ P there is a v ∈ V such that for every a ∈ v(b)v there is a λ > 0
such that (a, b) ∈ λU .

(U2) For all a, b ∈ P such that (a, b) 6∈ U there is a µ ∈ P∗ such that µ(c) ≤ µ(d) + 1
for all (c, d) ∈ U and µ(a) > µ(b) + 1.

Lemma 2.3. Let (P,V) be a locally convex cone and U ⊂ P2 be a barrel.

(a) If a ≤ b for a, b ∈ P, then (a, b) ∈ U .

(b) If (a+ ǫb, b+ ǫb) ∈ U for a, b ∈ P and some ǫ ≥ 0, then (a, b) ∈ U .

(c) If (a, b) ∈ U , if a′ + c ≤ a + d and b′ + c ≥ b + d for a′, b′, c, d ∈ P and if c is

bounded, then (a′, b′) ∈ U .

Proof. ([3], Lemma 2.1). �

In [3] we can see the following statement:
In a locally convex vector space E a barrel is defined to be an absolutely convex closed

and absorbing subset A of E (cf. [4], II.7). The set U = {(a, b) ∈ E2 : a− b ∈ A} is seen
to be a barrel in the sense of definition 2.2, where E is a locally convex vector space and
A is a barrel in E.

We now show that it is not enough for U to be a barrel in the sense of definition 2.2, by
giving some counterexamples. Then we correct this error by adding an extra condition
to U .

Counterexample 2.4. Let (R,V) be the full locally convex cone with the usual order,
where V = {ǫ > 0 : ǫ ∈ R} is an (abstract) 0-neighborhood system, then (R,V) will be
a locally convex cone. Let A = [−ǫ, ǫ], ǫ > 0, then A is a barrel in the locally convex
vector space R. Suppose U = {(x, y) ∈ R

2 : x − y ∈ A} then by letting x = −2ǫ and
y = 2ǫ, we have x ≤ y but (x, y) 6∈ U . This contradicts with Lemma 2.3(a), hence U is
not a barrel in the sense of definition 2.2.

Now we are ready to correct this error and verify its converse,

Theorem 2.5. Suppose E is an ordered locally convex vector space.

(a) If A is a barrel in E, then

U = {(a, b) ∈ E2 : a− b ∈ A or b− a ∈ E+}

is a barrel in the sense of definition 2.2. Conversely,

(b) If U is a barrel in E in the sense of definition 2.2, then U ∩ U−1 ∩E is a barrel

in E.

Proof. (a) We first show that U is convex. Suppose (a, b), (c, d) ∈ U , 0 ≤ λ ≤ 1 and
λ(a, b) + (1− λ)(c, d) 6∈ U , then λa+ (1− λ)c− λb− (1− λ)d 6∈ A. Since A is absolutely
convex and closed set in the locally convex vector space E, by Hahn-Banach theorem,
there exists a µ ∈ E∗ such that µ(x) ≤ 1 for all x ∈ A. Hence,

λµ(a) + (1− λ)µ(c) > λµ(b) + (1− λ)µ(d) + 1.
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Assume that a − b ∈ A and d − c ∈ E+. In the other cases the convexity of U is clear.
We have λµ(a) ≤ λµ(b) + 1 and from the monotonicity of u-continuous functional µ it
follows that (1− λ)µ(c) ≤ (1− λ)µ(d). Therefore,

λµ(a) + (1− λ)µ(c) ≤ λµ(b) + (1− λ)µ(d) + 1.

This is a contradiction and so U is convex. Now we show U is a barrel for E:
(U1) It is obvious, because A is absorbing.
(U2) For a, b ∈ E such that (a, b) 6∈ U , we have a− b 6∈ A. By Hahn-Banach theorem,

there exists a µ ∈ E∗ such that µ(x) ≤ 1 for all x ∈ A. Thus µ(a) > µ(b) + 1. For
(c, d) ∈ U , we have c − d ∈ A or d − c ∈ E+. If c − d ∈ A, then µ(c) ≤ µ(d) + 1. If
d− c ∈ E+, then µ(d− c) ≥ µ(0) and therefore 1+µ(d) ≥ µ(c). From (U1) and (U2) we
conclude U is a barrel.

(b) Let A = U ∩ U−1 ∩ E. It is clear that A is convex. We show that A is balanced.
Suppose that b ∈ A, |λ| ≤ 1 and λb 6∈ U . Since U is a barrel for E, from (U2) it follows
that there exists a µ ∈ E∗ such that µ(λb) > 1. If λ = 0, then we obtain the contradiction
µ(0) > 1. If −1 ≤ λ < 0 or 0 < λ ≤ 1, we obtain the contradiction µ(λb) ≤ 1. In the
same manner we can see that λb ∈ U−1. We now show that A is absorbing. Suppose
that b ∈ E. Assume for every λ > 0, b 6∈ λA. Then b

λ
6∈ U or b

λ
6∈ U−1. If b

λ
6∈ U , then

from (U2), there exists a µ ∈ E∗ such that µ(b) > λ. This is a contradiction, because
µ(b) is finite. Similar arguments apply to the case b

λ
6∈ U−1. At the end, we prove that A

is closed. Suppose x ∈ Ac. Then x 6∈ U or x 6∈ U−1. Let x 6∈ U . From (U2), there exists

a µ ∈ E∗ such that µ(x) > 1. Choose ǫ = µ(x)−1
3 and V = µ−1((µ(x) − ǫ, µ(x) + ǫ)).

Hence x ∈ V ⊆ Ac. Similar arguments apply to the case x ∈ U−1. �

Definition 2.6. A locally convex vector space is said to be barreled if every barrel is a
neighborhood of the origin.

Definition 2.7. A locally convex cone (P,V) is said to be barreled if for every barrel
U ⊂ P2 and every element b ∈ P there are a neighborhood v ∈ V and a λ > 0 such that
(a, b) ∈ λU for all a ∈ v(b)v.

In the following corollary, we give an application of our result.

Corollary 2.8. Suppose that the locally convex cone (P,V) is also a locally convex
vector space. If P is a barreled locally convex cone, then P is also a barreled locally
convex vector space.

Proof. Let A be a barrel for the locally convex vector space P. From theorem 2.5(a) it
follows that U = {(a, 0) ∈ P2 : a ∈ A or −a ∈ P+} is a barrel for the locally convex cone
P. Since the locally convex cone P is barreled, there are a neighborhood v ∈ V and a
λ > 0 such that (a, 0) ∈ λU for all a ∈ v(0)v. It is impossible that a 6∈ λA and −a ∈ P+.
Thus a ∈ λA for all a ∈ v(0)v. This means A is a neighborhood of the origin. �
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