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EXISTENCE THEOREMS OF THE ω-LIMIT STATES FOR CONFLICT

DYNAMICAL SYSTEMS

VOLODYMYR KOSHMANENKO

Abstract. We introduce a notion of the conflict dynamical system in terms of
probability measures, study the behavior of trajectories of such systems, and prove

the existence theorems of the ω-limit states.

1. Introduction

The notion of a conflict dynamical system takes its beginning in [16, 17] and was used
in [18, 19] for construction of abstract models describing the behavior of complex systems
with internal conflict interactions. In fact a big collection of dynamical systems with the
conflict phenomenon have been investigated by a number of authors both on abstract
level (see, for example, [15, 27, 28]) and in various applications [3, 7, 11, 24, 14, 23] (see
also [9, 10, 26] and references therein). The mostly known dynamical system with various
variants of conflict interactions are named as the pray-predator model. Its study has a
long and rich history (for more details see, for example, [10, 26]). In the mathematical
setting this model is described by a system of Lotka–Volttera equations.

In our approach presented in a series of publications [1, 2, 6, 16, 17, 18, 19, 20] we
pass to the probability interpretation of the conflict interaction for complex dynamical
systems with arbitrary many regions. We assume that opposite sides of a conflict are
alternative and non-annihilating. Our main result states the existence of a limit fixed
point (a limit compromise, equilibrium state) for each trajectory of the system.

The simplest version of our model of the conflict dynamical system may be written
in terms of coordinates of the stochastic vectors p, r ∈ R

d
+, d ≥ 2, corresponding to the

opponent sides:

d

dt
pi = piΘ− τi,

d

dt
ri = riΘ− τi, i = 1, . . . , d,

where Θ = Θ(t) describes a power of conflict interaction and τi corresponds to the local
confrontation. In the standard sample we set θ = (p, r) be the inner product between
vectors p, r, and τi = piri. Then it was proved in [16, 17] that each trajectory {p(t), r(t)}
starting with any couple of stochastic vectors {p, r} converges with t→ ∞ to an ω-limit
fixed point {p∞, r∞}. That is, the limit state {p∞, r∞} is a compromise in the sense
that p∞ ⊥ r∞. This state is uniquely determined by the starting couple {p, r} and has
an explicit representation in its terms. In the subsequent publications [12, 18, 19, 21, 22]
we generalized our construction to the cases of piece-wise uniformly distributed measures
and structural-similar, in particular, self-similar measures.

The problem of getting an appropriate general formulae of conflict interaction in terms
of arbitrary probability measures was open up to now.
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In this paper we propose a variant of the required formulae without any additional
restrictions on measures. The general structure of these formulae is actually the same
and, in the case of discrete time N = 0, 1, . . . , has the form

µN+1(A) = µN (A) + µN (A)ΘN − τN (A),

νN+1(A) = νN (A) + νN (A)ΘN − τN (A),

where we omit a normalization denominator and where A stands for a measurable subset.
It is important to make the right choice of forms for a power of the global conflict
interaction ΘN = Θ(µN , νN ) and for the local confrontation τN (A).

In the present paper we find general appropriate requirements on Θ and τ which allows
us to prove the existence theorems for ω-limit points for trajectories starting with any
couple of probability measures µ, ν. Besides we are able to describe the limiting measures
in terms of the Hahn–Jordan decomposition of the starting signed measure ω = µ− ν.

To be more specific, let the evolution of the dynamical system in terms of measures
be governed by a nonlinear law of the conflict dynamic as follows:

d

dt
µ =

µΘ− τ

z
,

d

dt
ν =

νΘ− τ

z
,

(cf. with [7, 11]) where µ, ν denote an initial couple of probability measures on a compact
Ω. Here Θ = Θ(µ, ν) is a positive quadratic form which fixes a so-called conflict exponent
of the global conflict interaction, the measure τ = τ(µ, ν) has a sense of the occupation
exponent, and finally z stands for a normalization. Then our main result states the
existence of the fixed points µ∞ = limt→∞ µ(t), ν∞ = limt→∞ ν(t) which coincide
with normalized components of the classical Hanh–Jordan decomposition of the signed
measure ω = µ− ν = ω+ − ω−, i.e.,

µ∞ =
ω+

ω+(Ω)
, ν∞ =

ω−

ω−(Ω)
.

2. Notations and definitions

Let Ω be some metric space and R be a σ-algebra of Borel subsets of Ω. And let λ
be a fixed σ-additive measure on R. One can think that Ω ⊂ R is compact and λ is the
usual Lebesgue measure.

We denote by M(Ω) the family of all σ-additive finite signed measures on Ω. The
subset of positive measures on Ω we denote by M+(Ω). If µ is probability then we write
µ ∈ M+

1 (Ω).
Let us fix a couple of measures µ, ν ∈ M+

1 (Ω), µ 6= ν, and consider the signed measure
ω := µ− ν ∈ M(Ω), which we call sometimes a charge.

According to classical results of measure theory (see, for example, [29, 8]), each charge
ω determines the Hahn decomposition of Ω onto two subsets

(1) Ω = Ω+

⋃

Ω−, Ω+

⋂

Ω− = ∅, Ω+,Ω− ∈ R,
such that

(2) ω(A+) ≥ 0, ∀A+ ⊆ Ω+; ω(A−) ≤ 0, ∀A− ⊆ Ω−, (A+, A− ∈ R)

or, equivalently,

(3) µ(A+) ≥ ν(A+), µ(A−) ≤ ν(A−), A+ ⊆ Ω+, A− ⊆ Ω−.

Thus, one can define a new couple of positive measures on R setting

(4) ω+ = ω ↾ Ω+, ω− = −ω ↾ Ω−

with ω+(Ω−) = ω−(Ω+) = 0. Clearly the Hahn decomposition (1) is non-unique, if
there exists a nontrivial set A0 such that µ(A0) = ν(A0) = 0. However the measures
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ω+, ω− in (4) are uniquely defined and their sum provides the Jordan decomposition of
the signed measure ω

ω = ω+ + ω−.

In the sequel instead of ω+, ω− we use the normalized probability measures

(5) µ+ :=
ω+

ω+(Ω)
, ν− :=

ω−

ω−(Ω)
.

We want to show that this couple of measures, µ+, ν−, appears in another natural way,
namely, as the ω-limit state (a fixed point) of the conflict dynamical system. Before our
constructions we need in some definitions and preparations.

At first we introduce the conflict exponent Θ = Θ(µ, ν) for a couple of measures
µ, ν ∈ M+

1 (Ω). It is a non-negative real-valued function which characterizes the power
of the conflict interaction between µ and ν. There are several variants for definition of
Θ (see [2, 6]). Here we present one of them.

Assume the measures µ, ν are absolutely continuous with respect to λ

µ(A) =

∫

A

ρ(x) dλ(x), ν(A) =

∫

A

σ(x) dλ(x), A ∈ R,

where the densities ρ(x), σ(x) ≥ 0 are defined as the Radon–Nikodym derivatives of µ, ν
with respect to λ. Then Θ may be defined as

(6) Θ(µ, ν) :=

∫

Ω

√

ρ(x)σ(x) dλ(x) =

∫

Ω

ϕ(x)ψ(x) dλ(x) = (ϕ,ψ)L2(Ω, dλ).

Here the positive functions ϕ(x) =
√

ρ(x), ψ(x) =
√

σ(x) belong to L2(Ω, dλ) since
obviously

(7) ‖ϕ‖2L2(Ω, dλ) = µ(Ω) = 1 = ν(Ω) = ‖ψ‖2L2(Ω, dλ).

Besides we introduce a notion of (local) occupation exponent τ . It is a suitable positive
measure, such that τ(A) ≤ inf{µ(A), ν(A)}, A ∈ R. Below we define

(8) τ(A) := ν(F ) + µ(G), F,G ∈ R,
where F , G are such that ω(F ) = supE⊆A ω(E), −ω(G) = supE⊆A(−ω(E)). In fact,

(9) τ(A) := ν(A+) + µ(A−), A+ = A ∩ Ω+, A− = A ∩ Ω−.

In any case we suppose that

0 ≤ τ(A) < 1, A ∈ R.
In particular, the global meaning of the occupation exponent, W := τ(Ω), satisfies the
inequalities

(10) 0 < W < 1, W := τ(Ω) = ν(Ω+) + µ(Ω−).

We also recall a well-known notion of the total variation distance between µ, ν

(11) D = D(µ, ν) := sup
A∈R

|µ(A)− ν(A)|.

It admits the representation by the densities ρ, σ in the form

(12) D = 1/2

∫

Ω

|ρ(λ)− σ(λ)|dλ = 1/2

∫

Ω

|h(λ)|dλ, h = ρ− σ.

Proposition 1.

(13) 1−D ≤ Θ ≤
√

1−D2.
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Proof. Let H denotes the Hellinger distance [13] between µ, ν

H = H(µ, ν) :=
1√
2

(

∫

Ω

|
√

ρ(λ)−
√

σ(λ) |2dλ
)1/2

=
1√
2
‖ϕ− ψ‖L2

.

Obviously

(14) H2(µ, ν) = 1−Θ(µ, ν),

where we used (7). Besides we have

H2 =
1

2

∫

Ω

|ϕ(λ)− ψ(λ)|2dλ ≤ 1

2

∫

Ω

|(ϕ(λ)− ψ(λ))(ϕ(λ) + ψ(λ))| dλ

=
1

2

∫

Ω

|(ϕ2(λ)− ψ2(λ))| dλ = 1/2

∫

Ω

|ρ(λ)− σ(λ)| dλ = D.

Thus, by (14) we get H2 = 1 − Θ ≤ D. That proves the left part of (13). Further,
according to (12),

D = 1/2

∫

Ω

|ϕ2(λ)− ψ2(λ)| dλ = 1/2(f, g)L2
, f =| ϕ− ψ |, g = ϕ+ ψ.

Now by the Cauchy–Schwarz inequality

D2 ≤ 1/4 ‖ f ‖2L2
‖ g ‖2L2

= H2(1 + Θ) = (1−Θ)(1 + Θ) = 1−Θ2,

where we take into account that H2 = 1/2 ‖ f ‖2L2
and ‖ g ‖2L2

= 2+2Θ. This proves the
right part of (13). �

Finally we define the local difference between µ, ν,

∆(A) = ∆(µ, ν;A) := µ(A)− ν(A) ≡ ω(A), A ∈ R.
Proposition 2.

(15) D = ∆(Ω+) = −∆(Ω−) = ω(Ω+) = −ω(Ω−).

Proof. Due to (12) we have

D =
1

2

[

∫

Ω+

(ρ(λ)− σ(λ)) dλ−
∫

Ω−

(ρ(λ)− σ(λ)) dλ
]

=
1

2

[

µ(Ω+)− ν(Ω+)− µ(Ω−) + ν(Ω−)
]

.

Now using µ(Ω+) + µ(Ω−) = 1 = ν(Ω+) + ν(Ω−) we obtain

D = µ(Ω+)− ν(Ω+) = ∆(Ω+) = ν(Ω−)− µ(Ω−) = −∆(Ω−).

�

3. CDS in terms of measures

Now we are ready to introduce in M+
1 (Ω) the non-commutative composition >

µ1 = µ> ν, ν1 = ν > µ,

which determines a rule of the conflict interactions between µ, ν and which we call the
law of conflict dynamic. We define

µ1(A) =
1

z
[µ(A)

(

Θ+ 1
)

− τ(A)],(16)

ν1(A) =
1

z
[ν(A)

(

Θ+ 1
)

− τ(A)], A ∈ R(17)

with z = Θ+ 1−W where Θ,W are given by (6) and (10) resp. Recall our assumption
that µ, ν are absolutely continuous with respect to λ. By (16), (17) it follows that
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µ1, ν1 are also absolutely continuous and probability, i.e., µ1, ν1 ∈ M+
1 (Ω). The triple

{Ω,M+
1 (Ω),>} we call the Conflict Dynamical System (CDS).

A consecutive iteration of the non-linear transformation > generates a trajectory of
CDS in terms of couples of probability measures

(18)

{

µN

νN

}

>−→
{

µN+1

νN+1

}

, N = 0, 1, . . . ,

where µ0 = µ, ν0 = ν and

(19)

µN+1(A) =
1

zN
[µN (A)

(

ΘN + 1
)

− τN (A)],

νN+1(A) =
1

zN
[νN (A)

(

ΘN + 1
)

− τN (A)], A ∈ R,

where, in according with (6), (9),

(20) τN (A) = νN (A+) + µN (A−),

(21) ΘN =

∫

Ω

√

ρN (x)σN (x) dλ(x)

and

zN = ΘN + 1−WN , WN = µN (Ω−) + νN (Ω+).

Here ρN (x), σN (x) denote as above the Radon-Nikodym derivatives of µN , νN with re-
spect to λ. Therefore

(22) ΘN =

∫

Ω

ϕN (x)ψN (x) dλ(x) = (ϕN , ψN )L2(Ω, dλ),

if we denote

ϕN (x) =
√

ρN (x), ψN (x) =
√

σN (x).

We remark that CDS defined by (19) has two separate sets of fixed points. The first
set contains all couples of measures µ, ν ∈ M+

1 (Ω) which is identical, µ = ν. Then
Θ = 1, D = 0 and therefore µN = µ = νN = ν for all N . The second set is composed
by measures µ, ν ∈ M+

1 (Ω) which are orthogonal, µ ⊥ ν. In the later case Θ = 0, D = 1
and it is easy to see that µN = µ = νN = ν too.

Theorem 1. Each trajectory (18) of the conflict dynamical system starting with a couple
of probability measures µ0 = µ, ν0 = ν ∈ M+

1 (Ω) (µ 6= ν) converges to the ω-limit state
{

µ∞

ν∞

}

(23) µ∞(A) = lim
N→∞

µN (A), ν∞(A) = lim
N→∞

νN (A), A ∈ R.

That is the measures µ∞, ν∞ ∈ M+
1 (Ω) coincide with the normalized components of the

Hanh-Jordan decomposition of the charge ω = µ − ν (see (5)). It means that for each
A ∈ R

(24) µ∞(A) =
(µ− ν)(A ∩ Ω+)

D
= µ+(A), ν∞(A) = − (µ− ν)(A ∩ Ω−)

D
= ν−(A),

where D stands for the total difference for an initial couple of measures µ, ν.

Before proving of the theorem we state several propositions.
Naturally we assume that the measures µ, ν are not orthogonal. Then clearly

0 < τ(Ω) =W = µ(Ω−) + ν(Ω+) < 1, 0 < Θ < 1.
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Proposition 3. Assume that for some A ∈ R the local difference ∆(A) is strongly
positive, µ(A)−ν(A) > 0. Then the sequence ∆N (A) = µN (A)−νN (A) is monotonically
increasing

∆N+1(A) > ∆N (A), N ≥ 0.

Proof. By (19)

∆N+1(A) = ∆N (A)
ΘN + 1

ΘN + 1−WN
> ∆N (A),

since 0 < WN < 1 for all N . �

Corollary 1. Under the same condition, µ(A)− ν(A) > 0, there exist the limit

∆∞(A) = lim
N→∞

∆N (A) ≤ 1.

In particular, for A = Ω+ and for A = Ω− we obtain due to µ(Ω+) > ν(Ω+) and
µ(Ω−) < ν(Ω−) the existence of the limits

∆∞(Ω+) = lim
N→∞

∆N (Ω+) ≤ 1, −∆∞(Ω−) = lim
N→∞

−∆N (Ω−) ≤ 1.

Moreover it is easy to see that

∆∞(Ω+) = 1 = −∆∞(Ω−).

Proposition 4.

(25) µN (Ω+) → 1, µN (Ω−) → 0, νN (Ω+) → 0, νN (Ω−) → 1, N → ∞,

and therefore

(26) WN → 0, τN (Ω) → 0, N → ∞.

Proof. By the Hahn–Jordan decomposition, µ(Ω+) > ν(Ω+). Moreover, the similar
inequality µN (Ω+) > νN (Ω+) is true for all N since from (19) by induction we have

(27) ∆N+1(Ω+) = ∆N (Ω+)
ΘN + 1

ΘN + 1−WN
> ∆N (Ω+)

due to 0 < W = τN = µN (Ω−) + νN (Ω+) < 1. Similarly,

µN+1(Ω−) =
1

zN
[µN (Ω−)(ΘN + 1)− τN (Ω−)]

= µN (Ω−)
ΘN + 1− τN (Ω−)/µN (Ω−)

ΘN + 1−WN
= µN (Ω−)

ΘN

ΘN + 1−WN
< µN (Ω−),

since τN (Ω−) = µN (Ω−) and 0 < WN < 1. In the same way we find that νN+1(Ω+) <
νN (Ω+). It follows thatWN decreases as N → ∞. Therefore µN (Ω−), νN (Ω+) converge
to zero, and µN (Ω+), νN (Ω−) converge to 1. So we prove the convergence of all terms
in (25). Now (25) implies (26). �

Proposition 5.

(28) DN+1 ≥ DN

for all N .

Proof. Recall that by definition ∆(A) = ∆(µ, ν;A) = µ(A)− ν(A) = ω(A). Therefore

∆N (Ω+) = µN (Ω+)− νN (Ω+) = DN , N ≥ 0.

Now the inequality (28) follows from (27). �

Proposition 6. There is at last a subsequence of time moments such that

(29) ΘN ′′ ≤ ΘN ′ , N ′′ > N ′.

Proof. By (28) and (25) DN → 1. Therefore (29) follows from (13). �



EXISTENCE THEOREMS OF THE ω-LIMIT STATES 385

In what follows without lost of generality we assume that (29) is fulfilled for all N .

Proof of Theorem. Let A ∈ Ω+∨Ω−. In the general case we decompose each A onto the
union of A+ = A∩Ω+ and A− = A∩Ω− and take into account the additive property of
measures. So in what follows we shall consider A+ and A− separately.

Let A = A+ ⊆ Ω+. Then µ(A+) ≥ ν(A+).
If µ(A+) = ν(A+) 6= 0, then µN (A+) = νN (A+) → 0 as N → ∞. Indeed by induction

for all N ≥ 0 we have

µN+1(A+) = νN+1(A+)

=
1

zN
[νN (A+)(ΘN + 1)− τ(A+)] = νN (A+)

ΘN + 1− τ(A+)/νN (A+)

ΘN + 1−WN

= νN (A+)
ΘN

ΘN + 1−WN
< µN (A+),

since τN (A+) = νN (A+) and 0 < WN < 1. Thus µN (A+) = νN (A+) → 0, because of
ΘN

ΘN+1−WN

→ 0 due to WN → 0 by (26).

Let now µ(A+) > ν(A+). Then from (19) it easily follows for all N ≥ 0:

(30) ∆N+1(A+) =
1

zN
[µN (A+)− νN (A+)] = ∆N (A+)

ΘN + 1

ΘN + 1−WN
> ∆N (A+),

due to WN > 0. It means that the difference ∆N (A+) monotonically increases with
N → ∞. Obviously this sequence is bounded, ∆N (A+) ≤ 1. Therefore it is convergent.
Thus there exist a limit

(31) ∆∞(A+) = lim
N→∞

∆N (A+) ≤ 1.

Further, by µ(A+) > ν(A+) > 0 it follows that the relation RN (A+) = µN (A+)/νN (A+)
creates a monotonically increasing sequence, RN+1(A+) > RN (A+). Indeed,

(32)

RN+1(A+) =
µN+1(A+)

νN+1(A+)
=
µN (A+)(ΘN + 1− νN (A+)/µN (A+))

νN (A+)(ΘN + 1)− νN (A+)

=
µN (A+)(ΘN + 1− νN (A+)/µN (A+))

νN (A+)ΘN

= RN (A+)kN = R(A+) · k · k1 · · · kN ,
where

kN =
1 + ΘN − νN (A+)/µN (A+)

ΘN
> 1,

since νN (A+) < µN (A+) and therefore νN (A+)/µN (A+) < 1.
Let us show now that

(33) 1 < k < k1 < · · · < kN < · · ·
At first we observe that

k =
1 + Θ− ν(A+)/µ(A+)

Θ
> 1.

Therefore

R1(A+) > R(A+) > 1.

Let us show that at least k < k1. By construction we have

(34) k1 =
1 +Θ1 − ν1(A+)/µ1(A+)

θ1
=

Θ1 + ε1
Θ1

,

where ε1 = 1− ν1(A+)/µ1(A+) = 1− (R1(A+))
−1 satisfies the inequality

(35) 1 > ε1 > 0.
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This implies

k1 = 1 + ε1/Θ1 > 1 + ε/Θ1 ≥ 1 + ε/Θ = k,

where ε = 1−(R(A+))
−1, and where we used the obvious inequalities ε1 > ε and Θ1 ≤ Θ.

By the way, the latter one follows from Proposition 5. Now (33) we get by induction.
Thus, we proved that RN (A+) → ∞, as N → ∞. Then, with necessity νN (A+) → 0,

and for the sequence µN (A+) there exists a limit

µ∞(A+) = lim
N→∞

µN (A+) = ∆∞(A+) > 0,

where we take into account that ν∞(A+) = 0.
In a similar way we prove that µN (A−) → 0 for each A− ⊂ Ω−, and that

ν∞(A−) = lim
N→∞

νN (A−) = −∆∞(A−) > 0.

We have to prove else that the limiting measures µ∞, ν∞ coincide with µ+, ν−. To this
end consider a couple of subsets A1, A2 ⊆ Ω+ such that ω(A1) 6= 0 6= ω(A2). Then we
observe that thanks to (19), the ratio ∆N (A1)/∆N (A2) does not depend on N . Indeed

∆1(A1)

∆1(A2)
=

(

µ(A1)− ν(A1)
)(

Θ+ 1
)

(

µ(A2)− ν(A2)
)(

Θ+ 1
) =

∆(A1)

∆(A2)
.

And by the same construction,

∆(A1)

∆(A2)
=

∆N (A1)

∆N (A2)
.

So we can go to infinity and get for N −→ ∞ that

∆(A1)

∆(A2)
=

∆∞(A1)

∆∞(A2)
.

Further, due to µ∞(A+) = ∆∞(A+), we obtain

(36)
µ∞(A1)

µ∞(A2)
=

∆(A1)

∆(A2)
.

From (36) we conclude that the values µ∞(A+) for A+ ⊆ Ω+ are proportional to ∆(A+).
Therefore µ∞(A+) = kµ∆(A+), where the coefficient kµ is independent of A+ ⊆ Ω+.
From this and due to suppµ∞ ⊆ Ω+ and µ∞(Ω+) = 1 we find

kµ = 1/∆(Ω+) = 1/ω+(Ω).

Thus

µ∞(A+) =
µ(A+)− ν(A+)

ω+(Ω)
= µ+(A+), A+ ⊆ Ω+.

Similarly, for B1, B2 ⊆ Ω−, ω(B1) 6= 0 6= ω(B2) we prove that

(37)
ν∞(B1)

ν∞(B2)
=

∆(B1)

∆(B2)

and that ν∞(B) = kν∆(B), where the coefficient kν is independent of B ⊆ Ω−. As above
we show that kν = −1/∆(Ω−) = −1/ω−(Ω). Therefore

ν∞(B) =
ν(B)− µ(B)

ω−(Ω)
= ν−(B), B ⊆ Ω−.

This proves (24) since suppµ∞, suppµ+ ⊆ Ω+ and supp ν∞, supp ν− ⊆ Ω−. By the same
reason the limiting measures µ∞, ν∞ compose the ω-limit state. This concludes the proof
of the theorem. �
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4. On axiomatic approach

In this section we study the conflict dynamical system in terms of abstract signed
measures:

(38) {ωN} >−→ {ωN+1}, N = 0, 1, . . .

Here the starting point ω0 ≡ ω = µ − ν is given by a couple of various measures µ, ν ∈
M+

1 (Ω). The signed measures ωN+1 are defined as ωN+1 = µN+1 − νN+1, where the
measures µN+1, νN+1 are constructed by an iterative procedure,

(39)

µN+1(A) =
1

zN
[µN (A)

(

ΘN + 1
)

− τN (A)],

νN+1(A) =
1

zN
[νN (A)

(

ΘN + 1
)

− τN (A)], A ∈ R.

In (39) we suppose that the measures τN (A) ∈ M+(Ω) are constructed as some linear
combination of µN , νN . For instance,

τN (A) = c · [µN (A ∩ Ω−) + νN (A ∩ Ω+)], c > 0,

where Ω−,Ω+ correspond to the Hahn decomposition of Ω generated by ω. In particular,
below for simplicity we put c = 1. Thus, in what follows

(40) τN (A) = µN (A ∩ Ω−) + νN (A ∩ Ω+).

Further, ΘN in (39) is defined as ΘN = Θ(ωN , ωN ), where Θ is a strongly positive
quadratic form on M(Ω). Now by our assumptions it is easy to see that µN (A), νN (A)
in (39) are σ−additive functions of A ∈ R. Moreover, we require for µN , νN to be
probability measures. To ensure this condition it is sufficient to put

(41) zN := ΘN + 1−WN , WN := τN (Ω).

In this section we will show that our main result is true without any additional specific
conditions on ΘN and τN .

Theorem 2. Each trajectory of the conflict dynamical system (38) starting with a signed
measure ω0 = ω = µ − ν, where µ, ν ∈ M+

1 (Ω), µ 6= ν, converges to the ω-limit state
ω∞ = µ∞ − ν∞ with µ∞, ν∞ ∈ M+

1 (Ω). In addition,

(42) µ∞ = µ+, ν∞ = ν−,

where µ+, ν− are the normalized components of the Hanh-Jordan decomposition of ω.

Proof. Let ω0(A) = µ(A)− ν(A) > 0 for some A ∈ R. Then ωN+1(A) > ωN (A) for all
N ≥ 0. Indeed, by (39) we have

ωN+1(A) = kNωN (A), kN =
ΘN + 1

ΘN + 1−WN
.

By the construction (see (40), (41)), the sequence WN = τ(Ω) = µN (Ω−) + νN (Ω+)
satisfies the inequality 0 < WN < 1. Thus, kN > 1 for all N ≥ 0. This proves that the
values ωN (A) are monotonically increasing when N → ∞. Since ωN (A) ≤ 1, there exists
the limit

lim
N→∞

ωN (A) = ω∞(A), 0 < ω∞(A) ≤ 1.

Consequently, we get kN → 1, and WN → 0. That is, W∞ = 0.
In a similar way we prove the existence of the limiting values −1 ≤ ω∞(A) < 0 for all

A ∈ R such that ω(A) < 0.
In fact, there exist all limits

lim
N→∞

µN (A) = µ∞(A), lim
N→∞

νN (A) = ν∞(A), A ∈ R.
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To prove this we begin with A = Ω+ or A = Ω−. So, by (39)

(43) νN+1(Ω+) = νN (Ω+)
ΘN

ΘN + 1−WN
< νN (Ω+),

where we used two facts: τN (Ω+) = νN (Ω+) and 0 < WN < 1. Let ν∞(Ω+) denotes
the limiting value of the decreasing sequence νN (Ω+). We assert that ν∞(Ω+) = 0
because the assumption ν∞(Ω+) > 0 leads to a contradiction. Indeed, in this case
the equality Θ∞

Θ∞+1−W∞

= 1 have to take place due to (43). However it is impossible

since W∞ = 0. Therefore µN (Ω−) converges to zero, i.e., µ∞(Ω−) = 0. This implies
limN→∞ µN (Ω+) = µ∞(Ω+) = 1 since all above measures are probability.

Similarly we get limN→∞ νN (Ω+) = 0 and ν∞(Ω−) = 1.
Let now A+ ⊆ Ω+ and ν(A+) > 0. Then as above by (39) we have

νN+1(A+) = νN (A+)
ΘN + 1− τN (A+)/νN (A+)

ΘN + 1−WN

= νN (A+)
ΘN

ΘN + 1−WN
< νN (A+),

where we used that τN (A+) = νN (A+). This shows that the sequence νN (A+) is mono-
tonically decreasing. So there exists the limiting value

ν∞(A+) = lim
N→∞

νN (A+).

Obviously this value is zero since by construction ν∞ is an additive function and we
already proved that ν∞(Ω+) = 0. This implies that µ∞(A+) = ω∞(A+) > 0 since now
ω(A+) > 0 and ω∞(A+) = µ∞(A+) + ν∞(A+). Repeating the same way for A− ⊆ Ω−

with µ(A−) > 0 we get µ∞(A−) = 0 and the existence ν∞(A−) = −ω(A−) > 0.
In the general case we decompose each A ∈ R into A = A+∪A+, A+ ⊆ Ω+, A− ⊆ Ω−

and use the additivity property.
If for A0 ∈ R the equality µ(A0) = ν(A0) 6= 0 is fulfilled, then µN (A0) = νN (A0) → 0

as N → ∞. Indeed

µN+1(A0) = νN+1(A0) =
1

zN
[νN (A0)(ΘN + 1)− τ(A0)]

= νN (A0)
ΘN + 1− τ(A0)/νN (A0)

ΘN + 1−WN
= νN (A0)

ΘN

ΘN + 1−WN
< µN (A0),

since now τN (A0) = νN (A0) = µN (A0). Thus µN (A0) = νN (A0) → 0.
Let ω(A) 6= 0, ω(A′) 6= 0 for A,A′ ∈ R. Then obviously for any N

ωN (A)

ωN (A′)
=

ω(A)

ω(A′)

and therefore
ω(A)

ω(A′)
=

ω∞(A)

ω∞(A′)
.

This implies that ω∞ = k · ω with some k > 0. In particular, taking into account that
ν∞(Ω+) = 0 = µ∞(Ω−) and ω(Ω+) = D = ω(Ω−) we have

ω∞(Ω+) = µ∞(Ω+) = 1 = k · ω(Ω+) = k ·D.
Thus k = 1/D and for any A ∈ R and A+ = A ∩ Ω+, A− = A ∩ Ω−

µ∞(A) =
ω(A+)

D
= µ+(A), ν∞(A) = −ω(A−)

D
= ν+(A).

�

Finally we remark, that proven theorem is valid for any strongly positive quadratic
form Θ, so, it is possible that Θ∞ 6= 0.
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