DARBOUX TRANSFORMATION OF GENERALIZED JACOBI MATRICES

IVAN KOVALYOV

Dedicated to Professor V. M. Adamyan on His 75-th Birthday

ABSTRACT. Let \mathfrak{J} be a monic generalized Jacobi matrix, i.e. a three-diagonal block matrix of special form, introduced by M. Derevyagin and V. Derkach in 2004. We find conditions for a monic generalized Jacobi matrix \mathfrak{J} to admit a factorization $\mathfrak{J} = \mathfrak{L}\mathfrak{U}$ with \mathfrak{L} and \mathfrak{U} being lower and upper triangular two-diagonal block matrices of special form. In this case the Darboux transformation of \mathfrak{J} defined by $\mathfrak{J}^{(p)} = \mathfrak{U}\mathfrak{L}$ is shown to be also a monic generalized Jacobi matrix. Analogues of Christoffel formulas for polynomials of the first and the second kind, corresponding to the Darboux transformation $\mathfrak{J}^{(p)}$ are found.

1. INTRODUCTION

Let $\{\mathfrak{s}_n\}_{n=0}^{\infty}$ be a sequence of real moments and let a functional \mathfrak{S} be defined on the linear space $\mathcal{P} = \operatorname{span} \{\lambda^n : n \in \mathbb{Z}_+ := \mathbb{N} \cup \{0\}\}$ by the equality

(1.1)
$$\mathfrak{S}(\lambda^n) = \mathfrak{s}_n, \quad n \in \mathbb{Z}_+.$$

The functional \mathfrak{S} is called *quasi* – *definite* if all the principal submatrices of the Hankel matrix $(\mathfrak{s}_{i+k})_{i,k=0}^n$ are nonsingular for every $n \in \mathbb{Z}_+$. Associated with such functional is a sequence of monic polynomials $\{P_n\}_{n=0}^{\infty}$ which are orthogonal with respect to \mathfrak{S} and satisfy a three-term recurrence equations

(1.2)
$$\lambda P_n(\lambda) = P_{n+1}(\lambda) + c_n P_n(\lambda) + b_n P_{n-1}(\lambda), \quad n \in \mathbb{Z}_+,$$

where $b_n, c_n \in \mathbb{R}, b_n \neq 0, b_0 = 1$ and initial conditions $P_{-1}(\lambda) = 0$ and $P_0(\lambda) = 1$. The matrix

(1.3)
$$J = \begin{pmatrix} c_0 & 1 & & \\ b_1 & c_1 & 1 & \\ & b_2 & c_2 & \ddots \\ & & \ddots & \ddots \end{pmatrix}$$

is called a monic Jacobi matrix associated with the functional \mathfrak{S} .

Let $\mathbb{C}[\lambda]$ be the set of all complex polynomials and let $\mathfrak{S}_1 = \lambda \mathfrak{S}$ be a perturbed functional defined by

(1.4)
$$(\lambda \mathfrak{S})(p) = \mathfrak{S}(\lambda p(\lambda)), \quad p \in \mathbb{C}[\lambda].$$

As is known (see [4]) the functional $\widetilde{\mathfrak{S}}_1$ is *quasi* – *definite* if and only if

(1.5)
$$P_n(0) \neq 0 \text{ for all } n \in \mathbb{N}.$$

²⁰¹⁰ Mathematics Subject Classification. Primary 47B36; Secondary 47B50, 42C05, 15A23.

Key words and phrases. Darboux transformation, indefinite inner product, *m*-function, monic generalized Jacobi matrix, triangular factorization.

A sequence of monic polynomials $\left\{\widetilde{P}_n\right\}_{n=0}^{\infty}$ associated with the functional $\widetilde{\mathfrak{S}}_1$ is called the Christoffel transform of $\{P_n\}_{n=0}^{\infty}$ (see [4], [21]). Relations between J and the monic Jacobi matrix $J^{(p)}$ associated with $\widetilde{\mathfrak{S}}_1$ were studied in the quasi-definite case (see [3]). As was shown in [3], every monic Jacobi matrix which satisfies (1.5) admits an LUfactorization J = LU (see [3]), where L and U are lower-triangular and upper-triangular, respectively, two-diagonal matrices and $J^{(p)}$ admits the representation $J^{(p)} = UL$. The monic Jacobi matrix $J^{(p)}$ is called the Darboux transformation of J without parameter.

Darboux transformations of monic Jacobi matrices which do not meet the condition (1.5) were studied in [10]. In this case it may happen that the perturbed functional $\widetilde{\mathfrak{S}}_1 = \lambda \mathfrak{S}$ defined by (1.4) is not quasi-definite and as was shown in [10] the natural candidate for the Darboux transformation $\mathfrak{J}^{(p)}$ (without parameter) of such a matrix Jcan be found in a class of generalized Jacobi matrices studied in [5], [9]).

In the present paper Darboux transformation of generalized Jacobi matrices associated with not quasi-define functionals \mathfrak{S} are studied. It is shown that every generalized Jacobi matrix \mathfrak{J} , which satisfies conditions similar to (1.5), admits an \mathfrak{LU} -factorization $\mathfrak{J} = \mathfrak{LU}$, with lower-triangular and upper-triangular two-diagonal block matrices \mathfrak{L} and \mathfrak{U} . It turns out that the monic generalized Jacobi matrix $\mathfrak{J}^{(p)}$, associated with the functional $\widetilde{\mathfrak{S}}_1$, can be represented as $\mathfrak{J}^{(p)} = \mathfrak{UL}$. This monic generalized Jacobi matrix $\mathfrak{J}^{(p)}$ is called the Darboux transformation of \mathfrak{J} (without parameter).

The Darboux transformations for generalized Jacobi matrices considered in the present paper turns out to be useful in the investigation of special Stieltjes type continued fractions associated with *non-quasi-definite functionals* and the corresponding moment problem studied in [8]. The results related to this topic will be published elsewhere.

The paper is organized as follows. In Section 2 we expose some material from [5] and [9] concerning generalized Jacobi matrices associated with non-quasi-definite functionals. In Section 3 we study *the Darboux transformation* of generalized Jacobi matrices (without parameter). Analogues of Christoffel transforms of orthogonal polynomials corresponding to generalized Jacobi matrices are found. In Section 4 the results of Section 3 are generalized to the case of Darboux transformation of generalized Jacobi matrices with a shift. In Section 5 an example of Darboux transformation of the monic generalized Jacobi matrix is considered.

2. Monic generalized Jacobi matrices associated with non-quasi-definite functional

Let $\{\mathfrak{s}_j\}_{j=0}^{\infty}$ be a sequence of real moments and let \mathfrak{S} be a linear functional defined on the linear space $\mathcal{P} = \operatorname{span} \{\lambda^j : j \in \mathbb{Z}_+\}$ by the formula (1.1).

Definition 2.1. ([10]). Define a set $\mathcal{N}(\mathfrak{s})$ of normal indices of the sequence $\mathfrak{s} = {\mathfrak{s}_i}_{i=0}^{\infty}$ by

(2.1)
$$\mathcal{N}(\mathfrak{s}) = \{\mathfrak{n}_j : \mathbf{d}_{\mathfrak{n}_j} \neq 0, j = 1, 2, \ldots\}, \quad \mathbf{d}_{n_j} = \det(\mathfrak{s}_{i+k})_{i,k=0}^{n_j-1}$$

As follows from (2.1) \mathfrak{n}_i is a normal index of \mathfrak{s} if and only if

(2.2)
$$\det \begin{pmatrix} \mathfrak{s}_0 & \cdots & \mathfrak{s}_{\mathfrak{n}_j-1} \\ \cdots & \cdots & \ddots \\ \mathfrak{s}_{\mathfrak{n}_j-1} & \cdots & \mathfrak{s}_{2\mathfrak{n}_j-2} \end{pmatrix} \neq 0.$$

We denote the first nontrivial moment $\varepsilon_0 := \mathfrak{s}_{\mathfrak{n}_1-1}$, i.e., $\mathfrak{s}_k = 0$ for all $k < \mathfrak{n}_1 - 1$. For example, if $\mathfrak{n}_1 = 1$, then $\mathfrak{s}_0 \neq 0$.

Using moment sequence $\{\mathfrak{s}_j\}_{j=0}^{\infty}$, we can construct the polynomials of the first and the second kind (see [1], [6]), defined by for all $j \in \mathbb{N}$

(2.3)
$$P_{\mathfrak{n}_{j}}(\lambda) = \frac{1}{\mathbf{d}_{\mathfrak{n}_{j}}} \det \begin{pmatrix} \mathfrak{s}_{0} & \mathfrak{s}_{1} & \cdots & \mathfrak{s}_{\mathfrak{n}_{j}} \\ \cdots & \cdots & \cdots \\ \mathfrak{s}_{\mathfrak{n}_{j}-1} & \mathfrak{s}_{\mathfrak{n}_{j}} & \cdots & \mathfrak{s}_{2\mathfrak{n}_{j}-1} \\ 1 & \lambda & \cdots & \lambda^{\mathfrak{n}_{j}} \end{pmatrix}, \quad \varepsilon_{0}Q_{\mathfrak{n}_{j}}(\lambda) = \mathfrak{S}_{t}\left(\frac{P_{\mathfrak{n}_{j}}(\lambda) - P_{\mathfrak{n}_{j}}(t)}{\lambda - t}\right).$$

The polynomials $P_{n_j}(\lambda)$ and $Q_{n_j}(\lambda)$ are solutions of a system of difference equations (see [9], [18])

(2.4)
$$\mathfrak{b}_{j}y_{\mathfrak{n}_{j-1}}(\lambda) - \mathfrak{p}_{j}(\lambda)y_{\mathfrak{n}_{j}}(\lambda) + y_{\mathfrak{n}_{j+1}}(\lambda) = 0 \quad (\mathfrak{b}_{0} = \varepsilon_{0})$$

subject to the initial conditions

(2.5)
$$P_{\mathfrak{n}_{-1}}(\lambda) \equiv 0, \quad P_{\mathfrak{n}_{0}}(\lambda) \equiv 1, \quad Q_{\mathfrak{n}_{-1}}(\lambda) \equiv -\frac{1}{\mathfrak{b}_{0}}, \quad Q_{\mathfrak{n}_{0}}(\lambda) \equiv 0,$$

where $\mathfrak{b}_j \in \mathbb{R} \setminus \{0\}$, $\mathfrak{p}_j(\lambda) = \lambda^{\ell_j} + \mathfrak{p}_{\ell_j-1}^{(j)} \lambda^{\ell_j-1} + \ldots + \mathfrak{p}_1^{(j)} \lambda + \mathfrak{p}_0^{(j)}$ are monic polynomials of degree $\ell_j = \mathfrak{n}_{j+1} - \mathfrak{n}_j$ and generating polynomials of the following generalized Jacobi matrix $\mathfrak{J}, j \in \mathbb{Z}_+$.

One can associate with the system (2.4) the so-called monic generalized Jacobi matrix (GJM) (see [9], [10])

(2.6)
$$\mathfrak{J} = \begin{pmatrix} \mathfrak{C}_{\mathfrak{p}_0} & \mathfrak{D}_0 & & \\ \mathfrak{B}_1 & \mathfrak{C}_{\mathfrak{p}_1} & \mathfrak{D}_1 & \\ & \mathfrak{B}_2 & \mathfrak{C}_{\mathfrak{p}_2} & \ddots \\ & & \ddots & \ddots \end{pmatrix},$$

where the diagonal entries are companion matrices associated with some real polynomials $\mathfrak{p}_j(\lambda)$ (see [16])

(2.7)
$$\mathfrak{C}_{\mathfrak{p}_{j}} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 0 & 1 \\ -\mathfrak{p}_{0}^{(j)} & -\mathfrak{p}_{1}^{(j)} & \cdots & -\mathfrak{p}_{\ell_{j}-2}^{(j)} & -\mathfrak{p}_{\ell_{j}-1}^{(j)} \end{pmatrix} \quad \text{are } \ell_{j} \times \ell_{j} \text{ matrices,}$$

 \mathfrak{D}_j and \mathfrak{B}_{j+1} are $\ell_j \times \ell_{j+1}$ and $\ell_{j+1} \times \ell_j$ matrices, respectively, determined by

(2.8)
$$\mathfrak{D}_{j} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \end{pmatrix}$$
 and $\mathfrak{B}_{j+1} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 0 \\ \mathfrak{b}_{j+1} & 0 & \cdots & 0 \end{pmatrix}$, $\mathfrak{b}_{j+1} \in \mathbb{R} \setminus \{0\}, j \in \mathbb{Z}_{+}$.

The matrix \mathfrak{J} defined by (2.6)– (2.8) is called a GJM associated with the functional \mathfrak{S} . Sometimes \mathfrak{J} is called a GJM associated with the sequence $\{\mathfrak{s}_j\}_{j=0}^{\infty}$ or the system (2.4) to emphasize connection with polynomials $\mathfrak{p}_j(\lambda)$ and numbers $\mathfrak{b}_{j+1}, j \in \mathbb{Z}_+$.

The shortened $GJM \mathfrak{J}_{[i,j]}$ is defined by

(2.9)
$$\mathfrak{J}_{[i,j]} = \begin{pmatrix} \mathfrak{C}_{\mathfrak{p}_i} & \mathfrak{D}_i & & \\ \mathfrak{B}_{i+1} & \mathfrak{C}_{i+1} & \ddots & \\ & \ddots & \ddots & \mathfrak{D}_{j-1} \\ & & \mathfrak{B}_j & \mathfrak{C}_{\mathfrak{p}_j} \end{pmatrix}, \quad i \leq j \quad \text{and} \quad i, j \in \mathbb{Z}_+.$$

The following connection between the polynomials of the first and the second kind and the shortened GJM's can be found in [9]

(2.10)
$$P_{\mathfrak{n}_j}(\lambda) = \det(\lambda - \mathfrak{J}_{[0,j-1]}) \text{ and } Q_{\mathfrak{n}_j}(\lambda) = \varepsilon_0 \det(\lambda - \mathfrak{J}_{[1,j-1]}).$$

Next, we introduce the inner product in the space $\ell^2_{[0,n_i-1]}$, by the formula

(2.11)
$$[x,y] = (Gx,y)_{\ell^2_{[0,n_j-1]}},$$

where $x, y \in \ell^2_{[0,n_j-1]}$ and the matrix $G_{[0,j-1]}$ is defined by the equality

(2.12)
$$G_{[0,j-1]} = \operatorname{diag}(G_0, G_1, \dots, G_{j-1}), \ G_i = \begin{pmatrix} \mathfrak{p}_1^{(i)} & \cdots & \mathfrak{p}_{\ell_i-1}^{(i)} & 1 \\ \vdots & \ddots & \ddots & \\ \mathfrak{p}_{\ell_i-1}^{(i)} & \ddots & & \\ 1 & & & 0 \end{pmatrix}^{-1}, \ i = \overline{0, j-1}.$$

Let us set

(2.13)
$$\mathbf{P}(\lambda) = \left(P_0(\lambda), P_1(\lambda), \dots, P_{\mathfrak{n}_j}(\lambda), \dots\right)^T, \\ \mathbf{Q}(\lambda) = \left(Q_0(\lambda), Q_1(\lambda), \dots, Q_{\mathfrak{n}_j}(\lambda), \dots\right)^T,$$

where $P_{\mathfrak{n}_j+k}(\lambda) = \lambda^k P_{\mathfrak{n}_j}(\lambda)$ and $Q_{\mathfrak{n}_j+k}(\lambda) = \lambda^k Q_{\mathfrak{n}_j}(\lambda)$, where $0 \leq k < \mathfrak{n}_{j+1} - \mathfrak{n}_j$. Then it follows from (2.4), (2.5) and (2.6)–(2.8), that

(2.14)
$$(\mathfrak{J} - \lambda I)\mathbf{P}(\lambda) = 0$$
 and $(\mathfrak{J} - \lambda I)\mathbf{Q}(\lambda) = (\underbrace{0, \dots, 0, 1}_{\ell_0}, 0, \dots)^T$

Definition 2.2. Let us define the m-function of the matrix \mathfrak{J} by equality

(2.15)
$$m_{[0,j-1]}(\lambda) = [(\mathfrak{J}_{[0,j-1]}^T - \lambda)^{-1} e_0, e_0]$$

where $e_0 = \begin{pmatrix} 1 & 0 & \cdots & 0 \end{pmatrix}^T$ is $\mathfrak{n}_j \times 1$ vector.

As was shown in [9, Proposition 6.1]

(2.16)
$$m_{[0,j-1]}(\lambda) = -\varepsilon_0 \frac{\det(\lambda - \mathfrak{J}_{[1,j-1]})}{\det(\lambda - \mathfrak{J}_{[0,j-1]})} = -\frac{Q_{\mathfrak{n}_j}(\lambda)}{P_{\mathfrak{n}_j}(\lambda)}$$

and $m_{[0,j-1]}(\lambda)$ admits the following asymptotic expansion:

(2.17)
$$m_{[0,j-1]}(\lambda) = -\frac{\mathfrak{s}_0}{\lambda} - \frac{\mathfrak{s}_1}{\lambda^2} - \dots - \frac{\mathfrak{s}_{2\mathfrak{n}_j-2}}{\lambda^{2\mathfrak{n}_j-1}} + o\left(\frac{1}{\lambda^{2\mathfrak{n}_j-1}}\right),$$

where

(2.18)
$$\mathfrak{s}_k = \left[\left(\mathfrak{J}_{[0,j-1]}^T \right)^k e_0, e_0 \right], \quad k \le 2\mathfrak{n}_j - 2.$$

Lemma 2.3. Let \mathfrak{J} be a GJM and let $P_{\mathfrak{n}_j}(\lambda)$, $Q_{\mathfrak{n}_j}(\lambda)$ be the corresponding polynomials of the first and the second kind. Then there exists a monic Jacobi matrix J, such that

(2.19)
$$P_{\mathfrak{n}_j}(0) = \widehat{P}_j(0) \quad and \quad Q_{\mathfrak{n}_j}(0) = \widehat{Q}_j(0)$$

where $\widehat{P}_j(\lambda)$ and $\widehat{Q}_j(\lambda)$ are polynomials of the first and the second kind, respectively, associated with J for all $j \in \mathbb{N}$.

Proof. First of all, we compute $P_{\mathfrak{n}_j}(0) = \det(-\mathfrak{J}_{[0,j-1]})$ and expand it along the rows, which have only one element equal to -1 and others equal to 0. Then we get

$$(2.20) P_{\mathbf{n}_{j}}(0) = \begin{vmatrix} -\mathfrak{C}_{\mathbf{p}_{0}} & -\mathfrak{D}_{0} & & \\ -\mathfrak{B}_{1} & -\mathfrak{C}_{\mathbf{p}_{1}} & \ddots & \\ & \ddots & \ddots & -\mathfrak{D}_{j-2} \\ & & -\mathfrak{B}_{j-1} & -\mathfrak{C}_{\mathbf{p}_{j-1}} \end{vmatrix} = \begin{vmatrix} \mathfrak{p}_{0}^{(0)} & -1 & & \\ -\mathfrak{b}_{1} & \mathfrak{p}_{0}^{(1)} & \ddots & \\ & \ddots & \ddots & -1 \\ & & & -\mathfrak{b}_{j-1} & \mathfrak{p}_{0}^{(j-1)} \end{vmatrix}.$$

We use this equality for the following construction of the Jacobi matrix, as a hint

(2.21)
$$J = \begin{pmatrix} -\mathfrak{p}_0^{(0)} & 1 & & \\ \mathfrak{b}_1 & -\mathfrak{p}_0^{(1)} & 1 & \\ & \mathfrak{b}_2 & -\mathfrak{p}_0^{(2)} & \ddots \\ & & \ddots & \ddots \end{pmatrix}.$$

It follows from (2.10) and (2.20) that $P_{\mathfrak{n}_j}(0) = \widehat{P}_j(0)$ $(j \in \mathbb{N})$. The proof of the second equality in (2.19) is analogous.

Corollary 2.4. Let \mathfrak{J} and $\widetilde{\mathfrak{J}}$ be GJM's associated with systems (2.4) and

(2.22)
$$\widetilde{\mathfrak{b}}_{j}\widetilde{y}_{\widetilde{\mathfrak{n}}_{j-1}}(\lambda) - \widetilde{\mathfrak{p}}_{j}(\lambda)\widetilde{y}_{\widetilde{\mathfrak{n}}_{j}}(\lambda) + \widetilde{y}_{\widetilde{\mathfrak{n}}_{j+1}}(\lambda) = 0 \quad (\widetilde{\mathfrak{b}}_{0} = \widetilde{\varepsilon}_{0}),$$

respectively and let $P_{\mathfrak{n}_j}(\lambda)$, $\widetilde{P}_{\widetilde{\mathfrak{n}}_j}(\lambda)$ and $Q_{\mathfrak{n}_j}(\lambda)$, $\widetilde{Q}_{\widetilde{\mathfrak{n}}_j}(\lambda)$ be the corresponding polynomials of the first and the second kind, respectively, associated with the matrices \mathfrak{J} and $\widetilde{\mathfrak{J}}$, for all $j \in \mathbb{N}$. If $\mathfrak{p}_0^{(j-1)} = \widetilde{\mathfrak{p}}_0^{(j-1)}$ and $\mathfrak{b}_j = \widetilde{\mathfrak{b}}_j$, then

(2.23)
$$P_{\mathfrak{n}_j}(0) = \widetilde{P}_{\widetilde{\mathfrak{n}}_j}(0) \quad and \quad Q_{\mathfrak{n}_j}(0) = \widetilde{Q}_{\widetilde{\mathfrak{n}}_j}(0), \quad j \in \mathbb{N}.$$

Proof. The proof is immediate from Lemma 2.3, due to (2.20) since $P_{\mathfrak{n}_j}(0)$, $\widetilde{P}_{\widetilde{\mathfrak{n}}_j}(0)$ are completely determined by $\mathfrak{p}_0^{(j-1)} = \widetilde{\mathfrak{p}}_0^{(j-1)}$ and $\mathfrak{b}_j = \widetilde{\mathfrak{b}}_j$, for all $j \in \mathbb{N}$. Then we have $P_{\mathfrak{n}_j}(0) = \widetilde{P}_{\widetilde{\mathfrak{n}}_j}(0)$, for all $j \in \mathbb{N}$. Similarly, the polynomials $Q_{\mathfrak{n}_j}(0)$, $\widetilde{Q}_{\widetilde{\mathfrak{n}}_j}(0)$ are determined by $\mathfrak{p}_0^{(j-1)} = \widetilde{\mathfrak{p}}_0^{(j-1)}$ and $\mathfrak{b}_j = \widetilde{\mathfrak{b}}_j$, for all $j \in \mathbb{N}$. Then $Q_{\mathfrak{n}_j}(0) = \widetilde{Q}_{\widetilde{\mathfrak{n}}_j}(0)$, for all $j \in \mathbb{N}$.

3. The Darboux transformation of monic generalized Jacobi matrices

In this section, we study the Darboux transformation of GJM \mathfrak{J} and prove some properties for polynomials of the first kind associated with matrix \mathfrak{J} . We use the factorization matrices \mathfrak{L} and \mathfrak{U} , where \mathfrak{L} and \mathfrak{U} are lower and upper triangular block matrices, respectively, having the forms

(3.1)
$$\mathfrak{L} = \begin{pmatrix} \mathfrak{A}_0 & 0 & \\ \mathfrak{L}_1 & \mathfrak{A}_1 & 0 & \\ & \mathfrak{L}_2 & \mathfrak{A}_2 & \ddots \\ & & \ddots & \ddots \end{pmatrix} \quad \text{and} \quad \mathfrak{U} = \begin{pmatrix} \mathfrak{U}_0 & \mathfrak{D}_0 & & \\ 0 & \mathfrak{U}_1 & \mathfrak{D}_1 & \\ & 0 & \mathfrak{U}_2 & \ddots \\ & & \ddots & \ddots \end{pmatrix},$$

the diagonal blocks \mathfrak{A}_j and \mathfrak{U}_j are $\ell_j \times \ell_j$ matrices

$$(3.2) \quad \mathfrak{A}_{j} = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \\ -\mathfrak{p}_{1}^{(j)} & \cdots & -\mathfrak{p}_{\ell_{j}-2}^{(j)} - \mathfrak{p}_{\ell_{j}-1}^{(j)} & 1 \end{pmatrix} \quad \text{and} \quad \mathfrak{U}_{j} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 0 & 1 \\ -\mathfrak{u}_{j} & 0 & \cdots & 0 & 0 \end{pmatrix}, \quad \mathfrak{u}_{j} \neq 0,$$

the blocks \mathfrak{L}_{j+1} and \mathfrak{D}_j are $\ell_{j+1} \times \ell_j$ and $\ell_j \times \ell_{j+1}$ matrices, respectively

(3.3)
$$\mathfrak{L}_{j+1} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & \mathfrak{l}_{j+1} \end{pmatrix}, \quad \mathfrak{l}_{j+1} \neq 0, \quad \mathfrak{D}_j = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \end{pmatrix}.$$

However, if $\ell_j = \ell_{j+1} = 1$, then we suppose

(3.4) $\mathfrak{U}_j = (-\mathfrak{u}_j), \quad \mathfrak{L}_{j+1} = (\mathfrak{l}_{j+1}), \quad \mathfrak{D}_j = (1) \quad \text{and} \quad \mathfrak{A}_j = (1).$

Let us say that the GJM \mathfrak{J} admits \mathfrak{LU} -factorization if \mathfrak{J} can be represented in the form $\mathfrak{J} = \mathfrak{LU}$, where \mathfrak{L} and \mathfrak{U} are given by (3.1)–(3.3).

Definition 3.1. Let a monic generalized Jacobi matrix \mathfrak{J} admit the \mathfrak{LU} -factorization of the form (3.1)–(3.3). Then the transformation

(3.5)
$$\mathfrak{J} = \mathfrak{LU} \to \mathfrak{UL} = \mathfrak{J}^{(p)}$$

is called the Darboux transformation of matrix \mathfrak{J} , where the matrix $\mathfrak{J}^{(p)}$ is a GJM.

3.1. £U-factorization of generalized Jacobi matrices.

Lemma 3.2. Let \mathfrak{J} be a monic generalized Jacobi matrix associated with the functional \mathfrak{S} and let $\ell_j := \mathfrak{n}_{j+1} - \mathfrak{n}_j \geq 1$, $j \in \mathbb{Z}_+$, where $\mathfrak{n}_0 = 0$ and $\{\mathfrak{n}_j\}_{j=1}^{\infty}$ is the set of normal indices of the sequence $\mathfrak{s} = \{\mathfrak{s}_j\}_{j=0}^{\infty}$. Let \mathfrak{L} and \mathfrak{U} be defined by (3.1)–(3.3). Then \mathfrak{J} admits \mathfrak{LU} -factorization of the form (3.1)–(3.3) if and only if the system of equations

(3.6)
$$\mathfrak{u}_0 = \mathfrak{p}_0^{(0)}, -\mathfrak{u}_j + \mathfrak{l}_j = -\mathfrak{p}_0^{(j)}, j \in \mathbb{N}; -\mathfrak{u}_j \mathfrak{l}_{j+1} = \mathfrak{b}_{j+1}, j \in \mathbb{Z}_+$$

is solvable.

Proof. Consider the product $\mathfrak{L}\mathfrak{U}$ of the matrices \mathfrak{L} and \mathfrak{U}

(3.7)
$$\mathfrak{L}\mathfrak{U} = \begin{pmatrix} \mathfrak{A}_0\mathfrak{U}_0 & \mathfrak{A}_0\mathfrak{D}_0 \\ \mathfrak{L}_1\mathfrak{U}_0 & \mathfrak{L}_1\mathfrak{D}_0 + \mathfrak{A}_1\mathfrak{U}_1 & \mathfrak{A}_1\mathfrak{D}_1 \\ & \mathfrak{L}_2\mathfrak{U}_1 & \mathfrak{L}_2\mathfrak{D}_1 + \mathfrak{A}_2\mathfrak{U}_2 & \ddots \\ & & \ddots & \ddots \end{pmatrix},$$

where the blocks $\mathfrak{A}_{j}\mathfrak{U}_{j}$ and $\mathfrak{L}_{j+1}\mathfrak{D}_{j}$ are $\ell_{j} \times \ell_{j}$ and $\ell_{j+1} \times \ell_{j+1}$ matrices, respectively

$$(3.8) \quad \mathfrak{A}_{j}\mathfrak{U}_{j} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 0 & 1 \\ -\mathfrak{u}_{j} & -\mathfrak{p}_{1}^{(j)} & \cdots & -\mathfrak{p}_{\ell_{j}-2}^{(j)} & -\mathfrak{p}_{\ell_{j}-1}^{(j)} \end{pmatrix}, \quad \mathfrak{L}_{j}\mathfrak{D}_{j} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 0 \\ \mathfrak{l}_{j+1} & 0 & \cdots & 0 \end{pmatrix},$$

the blocks $\mathfrak{L}_{j+1}\mathfrak{U}_j$ and $\mathfrak{A}_j\mathfrak{D}_j$ are $\ell_{j+1} \times \ell_j$ and $\ell_j \times \ell_{j+1}$ matrices, respectively

(3.9)
$$\mathfrak{L}_{j+1}\mathfrak{U}_{j} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 0 \\ -\mathfrak{l}_{j+1}\mathfrak{u}_{j} & 0 & \cdots & 0 \end{pmatrix}, \quad \mathfrak{A}_{j}\mathfrak{D}_{j} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \end{pmatrix} = \mathfrak{D}_{j}.$$

Then $\mathfrak{L}_{j+1}\mathfrak{D}_j + \mathfrak{A}_{j+1}\mathfrak{U}_{j+1}$ has the following form:

$$(3.10) \quad \mathfrak{L}_{j+1}\mathfrak{D}_{j} + \mathfrak{A}_{j+1}\mathfrak{U}_{j+1} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 0 & 1 \\ -\mathfrak{u}_{j} + \mathfrak{l}_{j} & -\mathfrak{p}_{1}^{(j)} & \cdots & -\mathfrak{p}_{\ell_{j}-2}^{(j)} & -\mathfrak{p}_{\ell_{j}-1}^{(j)} \end{pmatrix}, \quad j \in \mathbb{Z}_{+}.$$

Comparing the product $\mathfrak{L}\mathfrak{U}$ with the matrix \mathfrak{J} in (2.6), we obtain the system (3.6).

If the system (3.6) is solvable, then \mathfrak{J} admits the factorization $\mathfrak{J} = \mathfrak{L}\mathfrak{U}$ of the form (3.1)–(3.3), where \mathfrak{L} and \mathfrak{U} are found uniquely. Conversely, if \mathfrak{J} admit $\mathfrak{L}\mathfrak{U}$ -factorization then the system of equations (3.6) is solvable.

Lemma 3.3. Let \mathfrak{J} be a GJM associated with the functional \mathfrak{S} and let $\mathfrak{J} = \mathfrak{L}\mathfrak{U}$ be its $\mathfrak{L}\mathfrak{U}$ -factorization of the form (3.1)-(3.3) and let $P_{\mathfrak{n}_{i+1}}(\lambda)$ be polynomials of the first kind associated with \mathfrak{J} . Then

(3.11)
$$P_{\mathfrak{n}_{j+1}}(0) = \prod_{k=0}^{j} \mathfrak{u}_{k}, \quad for \ all \quad j \in \mathbb{Z}_{+}$$

Proof. By Lemma 2.3 and Lemma 3.2 we obtain (3.12)

$$\begin{split} P_{\mathfrak{n}_{j+1}}(0) &= \det\left(-\mathfrak{J}_{[0,j]}\right) = \begin{vmatrix} -\mathfrak{C}_{\mathfrak{p}_{0}} & -\mathfrak{D}_{0} \\ -\mathfrak{B}_{1} & -\mathfrak{C}_{\mathfrak{p}_{1}} & \ddots \\ & \ddots & \ddots & -\mathfrak{D}_{j-1} \\ & & -\mathfrak{B}_{j} & -\mathfrak{C}_{\mathfrak{p}_{j}} \end{vmatrix} = \begin{vmatrix} \mathfrak{p}_{0}^{(0)} & -1 \\ -\mathfrak{b}_{1} & \mathfrak{p}_{0}^{(1)} & \ddots \\ & \ddots & \ddots & -1 \\ & & -\mathfrak{b}_{j} & \mathfrak{p}_{0}^{(j)} \end{vmatrix} \\ &= \begin{vmatrix} \mathfrak{u}_{0} & -1 \\ \mathfrak{u}_{0}\mathfrak{l}_{1} & \mathfrak{u}_{1} - \mathfrak{l}_{1} & \ddots \\ & \ddots & \ddots & -1 \\ \mathfrak{u}_{j-1}\mathfrak{l}_{j} & \mathfrak{u}_{j} - \mathfrak{l}_{j} \end{vmatrix} = \begin{vmatrix} \mathfrak{u}_{0} & -1 \\ \mathfrak{u}_{0} & -1 \\ \mathfrak{u}_{1} & \ddots \\ & \ddots & \ddots & -1 \\ \mathfrak{u}_{j} \end{vmatrix} = \begin{vmatrix} \mathfrak{u}_{0} & -1 \\ \mathfrak{u}_{1} & \ddots \\ \mathfrak{v}_{1} & \ddots \\ \mathfrak{v}_{1} & \mathfrak{v}_{1} \end{vmatrix} = \begin{vmatrix} \mathfrak{u}_{0} & -1 \\ \mathfrak{u}_{1} & \ddots \\ \mathfrak{v}_{1} & \ddots \\ \mathfrak{v}_{1} & \mathfrak{v}_{1} \end{vmatrix} = \begin{vmatrix} \mathfrak{u}_{0} & \mathfrak{u}_{1} & \ddots \\ \mathfrak{v}_{1} & \mathfrak{v}_{2} & \mathfrak{v}_{1} \end{vmatrix}$$
This completes the proof.

This completes the proof.

Corollary 3.4. Let \mathfrak{J} be a GJM associated with the functional \mathfrak{S} and let $\mathfrak{J} = \mathfrak{LI}$ be its $\mathfrak{L}\mathfrak{U}$ -factorization of the form (3.1)-(3.3) and let $P_{\mathfrak{n}_{i+1}}(\lambda)$ be polynomials of the first kind associated with \mathfrak{J} . Then we have

$$(3.13) P_{\mathfrak{n}_{j+1}}(0) = \mathfrak{u}_j \mathfrak{u}_{j-1} \dots \mathfrak{u}_{j-k} P_{\mathfrak{n}_{j-k}}(0), \quad k \le j \quad and \quad j,k \in \mathbb{Z}_+.$$

Theorem 3.5. Let \mathfrak{J} be a monic generalized Jacobi matrix associated with the functional \mathfrak{S} and let $\ell_j := \mathfrak{n}_{j+1} - \mathfrak{n}_j \geq 1, j \in \mathbb{Z}_+$, where $\mathfrak{n}_0 = 0$ and $\{\mathfrak{n}_j\}_{j=1}^\infty$ is the set of normal indices of the sequence $\mathfrak{s} = {\mathfrak{s}_j}_{j=0}^{\infty}$ and let $P_{\mathfrak{n}_j}(\lambda)$ be polynomials of the first kind associated with the sequence $\mathfrak{s} = {\mathfrak{s}_j}_{j=0}^{\infty}$. Then \mathfrak{J} admits the \mathfrak{LU} -factorization of the form (3.1)–(3.3) if and only if

$$P_{\mathbf{n}_i}(0) \neq 0, \quad for \ all \quad j \in \mathbb{Z}_+.$$

Furthermore

(3.14)

(3.15)
$$\mathfrak{l}_{j+1} = -\frac{\mathfrak{b}_{j+1}}{\mathfrak{u}_j}, \quad \mathfrak{u}_j = \frac{P_{\mathfrak{n}_{j+1}}(0)}{P_{\mathfrak{n}_j}(0)}, \quad \mathfrak{u}_0 = \mathfrak{p}_0^{(0)}, \quad \text{for all} \quad j \in \mathbb{Z}_+$$

Proof. Let $P_{\mathbf{n}_i}(0) \neq 0$ for all $j \in \mathbb{Z}_+$ then by Lemma 3.3 the equalities (3.15) are equivalent to the system (3.6). Consequently, by Lemma 3.2 the matrix \mathfrak{J} admits the $\mathfrak{L}\mathfrak{U}$ -factorization of the form (3.1)-(3.3). Conversely, let \mathfrak{J} admit the $\mathfrak{L}\mathfrak{U}$ -factorization of the form (3.1)–(3.3). Then by Lemma 3.3 $P_{\mathfrak{n}_j}(0) \neq 0$ for all $j \in \mathbb{Z}_+$. \square

Remark 3.6. If $\ell_i = 1$ for each $j \in \mathbb{Z}_+$, then the factorization (3.1)–(3.3) coincides with the factorization in [3], (see [3], section 2).

Remark 3.7. If $\ell_j = 1$ or $\ell_j = 2$ for each $j \in \mathbb{Z}_+$, then factorization (3.1)–(3.3) coincides with the $\mathfrak{L}\mathfrak{U}$ -factorization in [10], (see [10], section 4).

Remark 3.8. If $\mathfrak{n}_1 = 1$ (i.e. $\ell_0 = 1$), then $P_{\mathfrak{n}_1}(\lambda) = \det(\lambda - \mathfrak{J}_{[0,0]}) = \mathfrak{p}^{(0)}(\lambda) = \lambda + \mathfrak{p}_0^{(0)}(\lambda)$ and by (2.3)

(3.16)
$$P_{\mathfrak{n}_1}(\lambda) = \frac{1}{\mathfrak{s}_0} \begin{vmatrix} \mathfrak{s}_0 & \mathfrak{s}_1 \\ 1 & \lambda \end{vmatrix} = \lambda - \frac{\mathfrak{s}_1}{\mathfrak{s}_0}.$$

Due to $P_{\mathfrak{n}_1}(0) \neq 0$ see (3.14), we have $\mathfrak{p}_0^{(0)} = -\frac{\mathfrak{s}_1}{\mathfrak{s}_0} \neq 0$ and by Lemma 3.3 $\mathfrak{u}_0 = -\frac{\mathfrak{s}_1}{\mathfrak{s}_0}$.

Proposition 3.9. Let \mathfrak{J} and $\tilde{\mathfrak{J}}$ be GJM's associated with the difference systems (2.4) and (2.22), respectively. If \mathfrak{J} admits \mathfrak{LU} -factorization of the form (3.1)-(3.3) and $\mathfrak{p}_0^{(j)} = \widetilde{\mathfrak{p}}_0^{(j)}$, $\mathfrak{b}_{j+1} = \widetilde{\mathfrak{b}}_{j+1}$ for all $j \in \mathbb{Z}_+$. Then the matrix $\widetilde{\mathfrak{J}}$ also admits \mathfrak{LU} -factorization of the form (3.1)-(3.3).

Proof. This proof is clear, because by Theorem 3.5, we know $P_{\mathfrak{n}_j}(0) \neq 0$ for all $j \in \mathbb{Z}_+$ and $\mathfrak{n}_0 = 0$, where $P_{\mathfrak{n}_j}(\lambda)$ are polynomials of the first kind associated with the \mathfrak{J} . Using Corollary 2.4, we obtain $\widetilde{P}_{\widetilde{\mathfrak{n}}_j}(0) \neq 0$ for all $j \in \mathbb{Z}_+$, where $\widetilde{P}_{\widetilde{\mathfrak{n}}_j}(\lambda)$ are polynomials of the first kind associated with the GJM $\widetilde{\mathfrak{J}}$. From here the matrix $\widetilde{\mathfrak{J}}$ satisfies Theorem 3.5, i.e. $\widetilde{\mathfrak{J}} = \widetilde{\mathfrak{L}}\widetilde{\mathfrak{U}}$, where the matrices $\widetilde{\mathfrak{L}}$ and $\widetilde{\mathfrak{U}}$ are defined by (3.1)–(3.3).

3.2. Some properties of the Darboux transformation.

Theorem 3.10. Let \mathfrak{J} be a GJM associated with the functional \mathfrak{S} and let $\mathfrak{J} = \mathfrak{LU}$ be its \mathfrak{LU} -factorization of the form (3.1)-(3.3). Then the matrix $\mathfrak{J}^{(p)} = \mathfrak{UL}$ is a monic generalized Jacobi matrix.

Proof. Consider the product \mathfrak{UL} of the matrices \mathfrak{U} and \mathfrak{L}

(3.17)
$$\mathfrak{U}\mathfrak{L} = \begin{pmatrix} \mathfrak{U}_0\mathfrak{A}_0 + \mathfrak{D}_0\mathfrak{L}_1 & \mathfrak{D}_0\mathfrak{A}_1 & & \\ \mathfrak{U}_1\mathfrak{L}_1 & \mathfrak{U}_1\mathfrak{A}_1 + \mathfrak{D}_1\mathfrak{L}_2 & \mathfrak{D}_1\mathfrak{A}_2 & \\ & \mathfrak{U}_2\mathfrak{L}_2 & \mathfrak{U}_2\mathfrak{A}_2 + \mathfrak{D}_2\mathfrak{L}_3 & \ddots \\ & & \ddots & \ddots \end{pmatrix}.$$

(i) In this part, we consider the case, when $\ell_j \geq 2$ for all $j \in \mathbb{Z}_+$. And we have the following:

(3.18)
$$\mathfrak{U}_{j+1}\mathfrak{L}_{j+1} = \begin{pmatrix} 0 & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 0 & 0 \\ 0 & \cdots & 0 & \mathfrak{l}_{j+1} \\ 0 & \cdots & 0 & 0 \end{pmatrix}, \quad \mathfrak{D}_{j}\mathfrak{A}_{j+1} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \end{pmatrix},$$

where $\mathfrak{U}_{j+1}\mathfrak{L}_{j+1}$ and $\mathfrak{D}_{j}\mathfrak{A}_{j+1}$ are $\ell_{j+1} \times \ell_{j}$ and $\ell_{j} \times \ell_{j+1}$ matrices, respectively. The blocks $\mathfrak{U}_{j}\mathfrak{A}_{j}$ and $\mathfrak{D}_{j}\mathfrak{L}_{j+1}$ are $\ell_{j} \times \ell_{j}$ matrices, such that

$$(3.19) \ \mathfrak{U}_{j}\mathfrak{A}_{j} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \\ -\mathfrak{p}_{1}^{(j)} & \cdots & -\mathfrak{p}_{\ell_{j}-2}^{(j)} & -\mathfrak{p}_{\ell_{j}-1}^{(j)} & 1 \\ -\mathfrak{u}_{j} & 0 & \cdots & 0 & 0 \end{pmatrix} \quad \text{and} \quad \mathfrak{D}_{j}\mathfrak{L}_{j+1} = \begin{pmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix}.$$

So, the matrix $\mathfrak{J}^{(p)}=\mathfrak{UL}$ has the following form:

(3.20)
$$\mathfrak{J}^{(p)} = \mathfrak{UL} = \begin{pmatrix} \mathfrak{C}^{0}_{\mathfrak{p}_{0}} & \mathfrak{D}_{0,0} & & \\ \mathfrak{B}_{1,0} & \mathfrak{C}^{1}_{\mathfrak{p}_{0}} & \mathfrak{D}_{0,1} & & \\ & \mathfrak{B}_{1,1} & \mathfrak{C}^{0}_{\mathfrak{p}_{1}} & \mathfrak{D}_{1,0} & \\ & & \mathfrak{B}_{2,0} & \mathfrak{C}^{1}_{\mathfrak{p}_{1}} & \ddots \\ & & & \ddots & \ddots \end{pmatrix},$$

where the blocks $\mathfrak{C}^{0}_{\mathfrak{p}_{j}}$ are $(\ell_{j}-1) \times (\ell_{j}-1)$ matrices, such that

(3.21)
$$\mathfrak{C}^{0}_{\mathfrak{p}_{j}} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \\ -\mathfrak{p}^{(j)}_{1} & \cdots & -\mathfrak{p}^{(j)}_{\ell_{j}-2} & -\mathfrak{p}^{(j)}_{\ell_{j}-1} \end{pmatrix},$$

and the blocks $\mathfrak{D}_{j,0}$, $\mathfrak{B}_{j+1,0}$ and $\mathfrak{B}_{j+1,1}$ are $(\ell_j - 1) \times 1$, $1 \times (\ell_j - 1)$ and $(\ell_j - 1) \times 1$ matrices, respectively

(3.22)
$$\mathfrak{D}_{j,0} = \begin{pmatrix} 0\\ \vdots\\ 0\\ 1 \end{pmatrix}, \quad \mathfrak{B}_{j+1,0} = \begin{pmatrix} -\mathfrak{u}_j & 0 & \cdots & 0 \end{pmatrix}, \quad \mathfrak{B}_{j+1,1} = \begin{pmatrix} 0\\ \vdots\\ 0\\ \mathfrak{l}_{j+1} \end{pmatrix},$$

(3.23) $\mathfrak{C}^{1}_{\mathfrak{p}_{j}} = (0), \quad \mathfrak{D}_{j,1} = (1 \quad 0 \quad 0 \quad \cdots \quad 0) \quad \text{are } 1 \times (\ell_{j} - 1) \quad \text{matrices}, \quad j \in \mathbb{Z}_{+}.$

(*ii*) In this part, we consider the case, when $\ell_{k-1} \ge 2$, $\ell_k = 1$ and $\ell_{k+1} \ge 2$, $k \in \mathbb{N}$. Then matrix $\mathfrak{J}^{(p)}$ has the following representation: (m)

$$(3.24) \quad \mathfrak{J}^{(p)} = \mathfrak{U}\mathfrak{L} = \begin{pmatrix} \mathfrak{C}^{0}_{\mathfrak{p}_{0}} & \mathfrak{D}_{0,0} \\ \mathfrak{B}_{1,0} & \mathfrak{C}^{1}_{\mathfrak{p}_{0}} & \mathfrak{D}_{0,1} \\ & \ddots & \ddots & \ddots \\ & & \mathfrak{B}_{k,0} & \mathfrak{C}^{1}_{\mathfrak{p}_{k-1}} & \mathfrak{D}_{k-1,1} \\ & & & \mathfrak{B}_{k+1,1} & \mathfrak{C}^{0}_{\mathfrak{p}_{k}} & \mathfrak{D}_{k,0} \\ & & & & \mathfrak{B}_{k+2,1} & \mathfrak{C}^{0}_{\mathfrak{p}_{k+1}} & \mathfrak{D}_{k+1,0} \\ & & & & \ddots & \ddots & \ddots \end{pmatrix},$$

where

(3.25)
$$\begin{pmatrix} \mathfrak{C}^{\mathfrak{p}}_{\mathfrak{p}_{k-1}} & \mathfrak{D}_{k-1,1} \\ \mathfrak{B}_{k+1,1} & \mathfrak{C}^{\mathfrak{0}}_{\mathfrak{p}_{k}} \end{pmatrix} = \begin{pmatrix} \mathfrak{l}_{k} & 1 \\ -\mathfrak{u}_{k}\mathfrak{l}_{k} & -\mathfrak{u}_{k} \end{pmatrix}.$$

(*iii*) Next, we consider the case, when $\ell_{k-1} \ge 2$, $\ell_k = \ldots = \ell_{k+h} = 1$ and $\ell_{k+h+1} \ge 2$, $h, k \in \mathbb{N}$. Then we have

$$\begin{pmatrix} \mathfrak{C}_{\mathfrak{p}_{k-1}}^{1} & \mathfrak{D}_{k-1,1} & & \\ \mathfrak{B}_{k+1,1} & \mathfrak{C}_{\mathfrak{p}_{k}}^{0} & \ddots & \\ & & \ddots & \mathfrak{D}_{k+h-1,1} \\ & & \mathfrak{B}_{k+h+1,1} & \mathfrak{C}_{\mathfrak{p}_{k+h}}^{0} \end{pmatrix} \! = \! \begin{pmatrix} \mathfrak{l}_{k} & 1 & & \\ -\mathfrak{u}_{k}\mathfrak{l}_{k} & \mathfrak{l}_{k+1} - \mathfrak{u}_{k} & 1 & & \\ -\mathfrak{u}_{k+1}\mathfrak{l}_{k+1} - \mathfrak{u}_{k+1} & \ddots & & \\ & & \ddots & \ddots & 1 \\ & & & -\mathfrak{u}_{k+h}\mathfrak{l}_{k+h} - \mathfrak{u}_{k+h} \end{pmatrix}$$

(*iv*) In this case, we suppose $\ell_0 = \cdots = \ell_k = 1$ and $\ell_{k+1} \ge 2, k \in \mathbb{Z}_+$. We obtain

$$\begin{pmatrix} \mathfrak{C}_{\mathfrak{p}_{0}}^{0} & \mathfrak{D}_{0,0} & & \\ \mathfrak{B}_{1,0} & \mathfrak{C}_{\mathfrak{p}_{1}}^{0} & \ddots & \\ & & \ddots & \mathfrak{D}_{k-1,0} \\ & & \mathfrak{B}_{k,0} & \mathfrak{C}_{\mathfrak{p}_{k}}^{0} \end{pmatrix} = \begin{pmatrix} \mathfrak{l}_{1} - \mathfrak{u}_{0} & 1 & & \\ -\mathfrak{u}_{1}\mathfrak{l}_{1} & \mathfrak{l}_{2} - \mathfrak{u}_{1} & \ddots & \\ & \ddots & \ddots & 1 \\ & & -\mathfrak{u}_{k-1}\mathfrak{l}_{k-1} & \mathfrak{l}_{k} - \mathfrak{u}_{k-1} & 1 \\ & & -\mathfrak{u}_{k}\mathfrak{l}_{k} & -\mathfrak{u}_{k} \end{pmatrix} .$$

So, we have shown $\mathfrak{J}^{(p)} = \mathfrak{UL}$ is a monic generalized Jacobi matrix. This completes the proof.

`

Remark 3.11. Let the moment sequence $\mathfrak{s}^{(p)} = \left\{\mathfrak{s}_{j}^{(p)}\right\}_{j=0}^{\infty}$ be associated with the matrix $\mathfrak{J}^{(p)}$. Let $\mathfrak{n}_{1} > 1$ and $\mathfrak{n}_{1}^{(p)}$ be the first nontrivial normal indexes of the moment sequences \mathfrak{s} and $\mathfrak{s}^{(p)}$, respectively. Then

$$\mathfrak{n}_1^{(p)} = \mathfrak{n}_1 - 1$$

Definition 3.12. Define a functional $\lambda \mathfrak{S}$ by the formula

(3.27)
$$(\lambda \mathfrak{S})(p) := \mathfrak{S}(\lambda p(\lambda)), \quad p(\lambda) \text{ is a polynomial}$$

Theorem 3.13. Let \mathfrak{J} be a monic generalized Jacobi matrix associated with the functional \mathfrak{S} , such that (3.14) holds and let $\mathfrak{J} = \mathfrak{L}\mathfrak{U}$ be its $\mathfrak{L}\mathfrak{U}$ -factorization of the form (3.1)–(3.3). Then the matrix $\mathfrak{J}^{(p)} = \mathfrak{U}\mathfrak{L}$ is associated with the functional

(3.28)
$$\mathfrak{S}^{(p)} = \begin{cases} \lambda \mathfrak{S}, & \mathfrak{n}_1 > 1, \\ \frac{\mathfrak{s}_0}{\mathfrak{s}_1} \lambda \mathfrak{S}, & \mathfrak{n}_1 = 1. \end{cases}$$

Proof. In this proof we follow the relations from [10] (see Section 4, Theorem 4.2). Note that $\mathfrak{s}_1 \neq 0$ if $\mathfrak{n}_1 = 1$, see Remark 3.8. We divide the proof into two cases

(i) First of all, we consider the case, when $n_1 > 1$. We note that

(3.29)
$$\mathfrak{L}^{T}_{[0,j-1]}e_{0} = e_{0}, \quad \mathfrak{U}_{[0,j-1]}G_{[0,j-1]}e_{0} = e_{\ell_{0}-2}, \quad j \in \mathbb{N},$$

where the shortened matrices $\mathfrak{L}_{[0,j-1]}$, $\mathfrak{U}_{[0,j-1]}$ and $G_{[0,j-1]}$ are defined analogously to (3.1) and (2.12). Calculating \mathfrak{s}_k , we get for j large enough

$$\mathfrak{S}(\lambda^{k}) = \mathfrak{s}_{k} = \left[\left(\mathfrak{J}_{[0,j-1]}^{k} \right)^{T} e_{0}, e_{0} \right]_{\ell^{2}_{[0,n_{j}-1]}} = \left(G_{[0,j-1]} \left(\mathfrak{J}_{[0,j-1]}^{k} \right)^{T} e_{0}, e_{0} \right)$$

$$(3.30) = \underbrace{(e_{0}, \underbrace{\mathfrak{L}_{[0,j-1]}^{0} \mathfrak{U}_{[0,j-1]} \dots \mathfrak{L}_{[0,j-1]}^{0} \mathfrak{U}_{[0,j-1]}}_{k \text{ times}} G_{[0,j-1]} e_{0})$$

$$= \underbrace{(\mathfrak{L}_{[0,j-1]}^{T} e_{0}, \underbrace{\mathfrak{U}_{[0,j-1]}^{0} \mathfrak{L}_{[0,j-1]} \dots \mathfrak{U}_{[0,j-1]}^{0} \mathfrak{L}_{[0,j-1]}}_{k-1 \text{ times}} \mathfrak{U}_{[0,j-1]} G_{[0,j-1]} G_{[0,j-1]} e_{0}).$$

Let $\widetilde{G}_{[0,j+n-1]}$ be associated with the matrix $\mathfrak{J}_{[0,j+n-1]}^{(p)}$, where *n* is the number of ℓ_h , such that $\ell_h \geq 2, \ 0 \leq h \leq j-1$, as is defined by (2.12). Then $\widetilde{G}_{[0,j+n-1]}e_0 = e_{\ell_0-2}$. Substituting (3.29) into (3.30), we obtain

$$\mathfrak{s}_{k} = \left(e_{0}, \left(\mathfrak{U}_{[0,j-1]}\mathfrak{L}_{[0,j-1]}\right)^{k-1} e_{\ell_{0}-2}\right) = \left(\left(\left(\mathfrak{J}_{[0,j+n-1]}^{(p)}\right)^{k-1}\right)^{T} e_{0}, \widetilde{G}_{[0,j+n-1]} e_{0}\right)$$
$$= \left[\left(\left(\mathfrak{J}_{[0,j+n-1]}^{(p)}\right)^{k-1}\right)^{T} e_{0}, e_{0}\right]_{\ell^{2}_{[0,\tilde{n}_{j}-1]}} = \mathfrak{s}_{k-1}^{(p)} = (\lambda\mathfrak{S}) \left(\lambda^{k-1}\right) = \mathfrak{S}^{(p)}(\lambda^{k-1}),$$

the moment sequence $\left\{\mathfrak{s}_{j}^{(p)}\right\}_{j=0}^{\infty}$ is associated with the matrix $\mathfrak{J}^{(p)}$. By definition (3.27), we obtain that functional $\lambda\mathfrak{S}$ is associated with matrix $\mathfrak{J}^{(p)} = \mathfrak{U}\mathfrak{L}$.

(*ii*) Now we consider the case when $n_1 = 1$. We note that

(3.31)
$$\mathfrak{L}^{T}_{[0,j-1]}e_{0} = e_{0}, \quad \mathfrak{U}_{[0,j-1]}G_{[0,j-1]}e_{0} = -\mathfrak{u}_{0}e_{0}, \quad j \in \mathbb{N},$$

Let $\widetilde{G}_{[0,j+n-1]}$ be associated with the matrix $\mathfrak{J}_{[0,j+n-1]}^{(p)}$, where *n* is the number of ℓ_h , such that $\ell_h \geq 2$, $0 < h \leq j-1$. The matrix $\widetilde{G}_{[0,j+n-1]}$ is defined by (2.12). Then $\widetilde{G}_{[0,j+n-1]}e_0 = e_0$. Calculating \mathfrak{s}_k , from (3.16), (3.29) and (3.30), we get

(3.32)
$$\mathfrak{S}(\lambda^{k}) = \frac{\mathfrak{s}_{1}}{\mathfrak{s}_{0}} \left(\left(\left(\mathfrak{J}_{[0,j+n-1]}^{(p)} \right)^{k-1} \right)^{T} e_{0}, \widetilde{G}_{[0,j+n-1]} e_{0} \right) \\ = \frac{\mathfrak{s}_{1}}{\mathfrak{s}_{0}} \left[\left(\left(\mathfrak{J}_{[0,j+n-1]}^{(p)} \right)^{k-1} \right)^{T} e_{0}, e_{0} \right]_{\ell^{2}_{[0,\tilde{n}_{j}-1]}} = \frac{\mathfrak{s}_{1}}{\mathfrak{s}_{0}} \mathfrak{s}_{k-1}^{(p)} = \frac{\mathfrak{s}_{1}}{\mathfrak{s}_{0}} \mathfrak{S}^{(p)}(\lambda^{k-1}),$$

the moment sequence $\left\{\mathfrak{s}_{j}^{(p)}\right\}_{j=0}^{\infty}$ is associated with the matrix $\mathfrak{J}^{(p)}$.

Hence $\mathfrak{s}_{k-1}^{(p)} = \mathfrak{S}^{(p)}(\lambda^{k-1}) = \frac{\mathfrak{s}_0}{\mathfrak{s}_1} \lambda \mathfrak{S}(\lambda^{k-1})$ and consequently, the functional $\frac{\mathfrak{s}_0}{\mathfrak{s}_1} \lambda \mathfrak{S}$ is associated with the matrix $\mathfrak{J}^{(p)} = \mathfrak{UL}$. This completes the proof.

Remark 3.14. The transformation $\mathfrak{S} \to \mathfrak{S}^{(p)} = \lambda \mathfrak{S}$ is called the Christoffel transformation of the functional \mathfrak{S} .

By Theorem 3.13 we have that the matrix $\mathfrak{J}^{(p)} = \mathfrak{UL}$ is associated with the moment sequence $\mathfrak{s}^{(p)} = {\mathfrak{s}_{j+1}}_{j=0}^{\infty}$. Define a set $\mathcal{N}(\mathfrak{s}^{(p)})$ of normal indices of the sequence $\mathfrak{s}^{(p)}$ by

$$(3.33) \quad \mathcal{N}(\mathfrak{s}^{(p)}) = \left\{ \mathfrak{n}_{j}^{(p)} : \mathbf{d}_{\mathfrak{n}_{j}^{(p)}}^{(p)} \neq 0 \right\}, \quad \text{where} \quad \mathbf{d}_{\mathfrak{n}_{j}^{(p)}}^{(p)} = \det \begin{pmatrix} \mathfrak{s}_{1} & \cdots & \mathfrak{s}_{\mathfrak{n}_{j}^{(p)}} \\ \cdots & \cdots \\ \mathfrak{s}_{\mathfrak{n}_{j}^{(p)}} & \cdots & \mathfrak{s}_{\mathfrak{2}\mathfrak{n}_{j}^{(p)}-1} \end{pmatrix}.$$

Proposition 3.15. Let $\mathcal{N}(\mathfrak{s})$ be a set of normal indices associated with the monic generalized Jacobi matrix \mathfrak{J} and let $\mathfrak{J} = \mathfrak{LU}$ be its \mathfrak{LU} -factorization of the form (3.1)-(3.3). Let

(3.34)
$$\mathfrak{P}_{j}(0) = \frac{(-1)^{\mathfrak{n}_{j}+2}}{\mathbf{d}_{\mathfrak{n}_{j}}} \begin{vmatrix} \mathfrak{s}_{1} & \cdots & \mathfrak{s}_{\mathfrak{n}_{j}} \\ \cdots & \cdots & \cdots \\ \mathfrak{s}_{\mathfrak{n}_{j}} & \cdots & \mathfrak{s}_{\mathfrak{2n}_{j}-1} \end{vmatrix} \neq 0, \quad for \; each \quad j \in \mathbb{Z}_{+}.$$

Then

(3.35)
$$\mathcal{N}(\mathfrak{s}^{(p)}) = \mathcal{N}(\mathfrak{s}) \cup \{\mathfrak{n}_j - 1 : j \in \mathbb{N} \ \ell_{j-1} \ge 2\}.$$

Proof. (i) If $\mathfrak{n} = \mathfrak{n}_j$ for some $j \in \mathbb{N}$, i.e. $\mathfrak{n} \in \mathcal{N}(\mathfrak{s})$, then by (3.33) and (3.34) $\mathbf{d}_{\mathfrak{n}}^{(p)} \neq 0$. Therefore

(3.36)
$$\mathcal{N}(\mathfrak{s}) \subseteq \mathcal{N}(\mathfrak{s}^{(p)})$$

(*ii*) Assume that $\mathfrak{n} \in \mathcal{N}(\mathfrak{s}^{(p)}) \setminus \mathcal{N}(\mathfrak{s})$. Then $\mathbf{d}_{\mathfrak{n}}^{(p)} \neq 0$ and $\mathbf{d}_{\mathfrak{n}} = 0$ and by ([8], see Lemma 5.1 [item 1]) $\mathbf{d}_{\mathfrak{n}+1} \neq 0$. Therefore $\mathfrak{n}+1=\mathfrak{n}_j$ for some $j \in \mathbb{N}$ and thus $\mathfrak{n}=\mathfrak{n}_j-1$. Moreover, $\ell_{j-1}=\mathfrak{n}_j-\mathfrak{n}_{j-1}\geq 2$. This proves that

(3.37)
$$\mathfrak{n} \in \mathcal{N}(\mathfrak{s}^{(p)}) \setminus \mathcal{N}(\mathfrak{s}) = \{\mathfrak{n}_j - 1 : j \in \mathbb{N}, \ \ell_{j-1} \ge 2\}.$$

Conversely, if $n = n_j - 1$ and $\ell_{j-1} \ge 2$, then

$$\mathbf{d}_{\mathfrak{n}_{j-1}} \neq 0, \quad \mathbf{d}_{\mathfrak{n}_{j-1}+1} = 0, \quad \cdots \quad \mathbf{d}_{\mathfrak{n}_j-1} = 0, \quad \mathbf{d}_{\mathfrak{n}_j} \neq 0$$

and hence $\mathbf{n}_j - 1 \notin \mathcal{N}(\mathbf{s})$. Assuming that $\mathbf{d}_{\mathbf{n}_j-1}^{(p)} = 0$ one obtain from ([8], see Lemma 5.1 [item 2]) that $\mathbf{d}_{\mathbf{n}_{j-1}}^{(p)} = 0$, which contradicts to the inclusion (3.36). This completes the proof.

Remark 3.16. Let $\mathcal{N}(\mathfrak{s})$ and $\mathcal{N}(\mathfrak{s}^{(p)})$ be sets of normal indices associated with the matrices $\mathfrak{J} = \mathfrak{L}\mathfrak{U}$ and $\mathfrak{J}^{(p)} = \mathfrak{U}\mathfrak{L}$, respectively. If $\ell_{j-1} = \mathfrak{n}_j - \mathfrak{n}_{j-1} \ge 2$, $\mathfrak{n}_0 = 0$ and $j \in \mathbb{N}$, then

(3.38)
$$\mathcal{N}(\mathfrak{s}^{(p)}) = \{\mathfrak{n}_1 - 1, \mathfrak{n}_1, \mathfrak{n}_2 - 1, \mathfrak{n}_2, \ldots\}.$$

Remark 3.17. Let $\mathcal{N}(\mathfrak{s})$ and $\mathcal{N}(\mathfrak{s}^{(p)})$ be sets of normal indices associated with the matrices $\mathfrak{J} = \mathfrak{L}\mathfrak{U}$ and $\mathfrak{J}^{(p)} = \mathfrak{U}\mathfrak{L}$, respectively. If $\ell_{j-1} = \mathfrak{n}_j - \mathfrak{n}_{j-1} = 1$, $\mathfrak{n}_0 = 0$ and $j \in \mathbb{N}$, then

(3.39)
$$\mathcal{N}(\mathfrak{s}) = \mathcal{N}(\mathfrak{s}^{(p)}).$$

Proposition 3.18. Let \mathfrak{J} be a monic generalized Jacobi matrix satisfying (3.14) and let $\mathfrak{J} = \mathfrak{L}\mathfrak{U}$ be its $\mathfrak{L}\mathfrak{U}$ -factorization of the form (3.1)-(3.3). Let $m(\lambda)$ and $m^{(p)}(\lambda)$ be the *m*-functions of matrices \mathfrak{J} and $\mathfrak{J}^{(p)}$, respectively. Then

(3.40)
$$m_{[0,j+n-1]}^{(p)}(\lambda) = \begin{cases} \lambda m_{[0,j-1]}(\lambda), & \mathfrak{n}_1 > 1, \\ \frac{\mathfrak{s}_0}{\mathfrak{s}_1} \left(\lambda m_{[0,j-1]}(\lambda) + \mathfrak{s}_0\right), & \mathfrak{n}_1 = 1, \end{cases}$$

where n is the number of ℓ_i of matrix \mathfrak{J} , such that $\ell_i \geq 2$ and $i = \overline{0, j-1}$.

Proof. Let n be the number of $\ell_i \geq 2$, where $i = \overline{0, j-1}$ and let $\widetilde{G}_{[0,j+n-1]}$ be associated with the matrix $\mathfrak{J}_{[0,j+n-1]}^{(p)}$. It is defined by (2.12).

(i) Let $\mathfrak{n}_1 > 1$. Then $\mathfrak{s}_0 = 0$, $\widetilde{G}_{[0,j+n-1]}e_0 = e_{\ell_0-2}$ and the equalities (3.29) hold. Calculating

$$\begin{split} m_{[0,j-1]}(\lambda) &= \lambda \left[\left(\mathfrak{J}_{[0,j-1]}^{T} - \lambda \right)^{-1} e_{0}, e_{0} \right] = - \left[(\mathfrak{J}_{[0,j-1]}^{T} - \lambda) \left(\mathfrak{J}_{[0,j-1]}^{T} - \lambda \right)^{-1} e_{0}, e_{0} \right] \\ &+ \left[\mathfrak{J}_{[0,j-1]}^{T} \left(\mathfrak{J}_{[0,j-1]}^{T} - \lambda \right)^{-1} e_{0}, e_{0} \right] = -\mathfrak{s}_{0} + \left[\left(\mathfrak{J}_{[0,j-1]}^{T} - \lambda \right)^{-1} e_{0}, \mathfrak{J}_{[0,j-1]} e_{0} \right) \\ &= \left(\left(\left(\mathfrak{J}_{[0,j-1]}^{T} - \lambda \right)^{-1} e_{0}, \mathfrak{L}_{[0,j-1]} \mathfrak{U}_{[0,j-1]} G_{[0,j-1]} e_{0} \right) \\ &= \left(e_{0}, \left(\mathfrak{L}_{[0,j-1]} \mathfrak{U}_{[0,j-1]} - \overline{\lambda} \right)^{-1} \mathfrak{L}_{[0,j-1]} e_{\ell_{0}-2} \right) \\ &= \left(e_{0}, \mathfrak{L}_{[0,j-1]} \left(\mathfrak{U}_{[0,j-1]} \mathfrak{L}_{[0,j-1]} - \overline{\lambda} \right)^{-1} e_{\ell_{0}-2} \right) \\ &= \left(\left(\left(\mathfrak{J}_{[0,j+n-1]}^{(p)} \right)^{T} - \lambda \right)^{-1} e_{0}, \widetilde{G}_{[0,j+n-1]} e_{0} \right) = m_{[0,j+n-1]}^{(p)} (\lambda). \end{split}$$

(*ii*) Now we consider the case when $\mathfrak{n}_1 = 1$. Then $\widetilde{G}_{[0,j+n-1]}e_0 = e_0$ and the equalities (3.31) hold. Computing

$$\begin{split} \lambda m_{[0,j-1]}(\lambda) &= \lambda \left[\left(\mathfrak{J}_{[0,j-1]}^{T} - \lambda \right)^{-1} e_{0}, e_{0} \right] = -\mathfrak{s}_{0} + \left[\left(\mathfrak{J}_{[0,j-1]}^{T} - \lambda \right)^{-1} e_{0}, \mathfrak{J}_{[0,j-1]} e_{0} \right) \\ &= -\mathfrak{s}_{0} + \left(\left(\mathfrak{J}_{[0,j-1]}^{T} - \lambda \right)^{-1} e_{0}, \mathfrak{L}_{[0,j-1]} \mathfrak{U}_{[0,j-1]} G_{[0,j-1]} e_{0} \right) \\ &= -\mathfrak{s}_{0} + \frac{\mathfrak{s}_{1}}{\mathfrak{s}_{0}} \left(e_{0}, \left(\mathfrak{L}_{[0,j-1]} \mathfrak{U}_{[0,j-1]} - \overline{\lambda} \right)^{-1} \mathfrak{L}_{[0,j-1]} e_{0} \right) \\ &= -\mathfrak{s}_{0} + \frac{\mathfrak{s}_{1}}{\mathfrak{s}_{0}} \left(e_{0}, \mathfrak{L}_{[0,j-1]} \left(\mathfrak{U}_{[0,j-1]} \mathfrak{L}_{[0,j-1]} - \overline{\lambda} \right)^{-1} e_{0} \right) \\ &= -\mathfrak{s}_{0} + \frac{\mathfrak{s}_{1}}{\mathfrak{s}_{0}} \left(\left(\left(\mathfrak{J}_{[0,j+n-1]}^{(p)} \right)^{T} - \lambda \right)^{-1} e_{0}, \widetilde{G}_{[0,j+n-1]} e_{0} \right) \\ &= -\mathfrak{s}_{0} + \frac{\mathfrak{s}_{1}}{\mathfrak{s}_{0}} m_{[0,j+n-1]}^{(p)} (\lambda). \end{split}$$

Thus, we have

$$m_{[0,j+n-1]}^{(p)}(\lambda) = \frac{\mathfrak{s}_0}{\mathfrak{s}_1} \left(\lambda m_{[0,j-1]}(\lambda) + \mathfrak{s}_0 \right).$$

So, the formula (3.40) is proved. This competes the proof.

Theorem 3.19. Let \mathfrak{J} be a monic generalized Jacobi matrix satisfying (3.14) and let $\mathfrak{J} = \mathfrak{L}\mathfrak{U}$ be its $\mathfrak{L}\mathfrak{U}$ -factorization of the form (3.1)-(3.3). Let $\mathfrak{J}^{(p)} = \mathfrak{U}\mathfrak{L}$ be its Darboux transformation and let

(3.41)
$$\mathfrak{J}^{(p)}\mathbf{P}^{(p)}(\lambda) = \lambda \mathbf{P}^{(p)}(\lambda),$$

where $\mathbf{P}^{(p)}(\lambda) = \left(P_0^{(p)}(\lambda), P_1^{(p)}(\lambda), \ldots\right)^T$. Then

(3.42)
$$P_{\mathfrak{n}_{j}-1}^{(p)}(\lambda) = \frac{1}{\lambda} \left(P_{\mathfrak{n}_{j}}(\lambda) - \frac{P_{\mathfrak{n}_{j}}(0)}{P_{\mathfrak{n}_{j-1}}(0)} P_{\mathfrak{n}_{j-1}}(\lambda) \right), \quad j \in \mathbb{N},$$
$$P_{\mathfrak{n}_{j}+k}^{(p)}(\lambda) = \lambda^{k} P_{\mathfrak{n}_{j}}(\lambda), \quad 0 \leq k \leq \ell_{j} - 2 \quad and \quad j \in \mathbb{Z}_{+}.$$

Proof. First of all, we introduce the following polynomials:

1 7 $D(\lambda)$ \

$$\mathbf{P}^{(p)}(\lambda) = \frac{1}{\lambda} \mathfrak{U} \mathbf{P}(\lambda) = \frac{1}{\lambda} \begin{pmatrix} P_{1}(\lambda) \\ \vdots \\ P_{\mathfrak{n}_{1}-1}(\lambda) \\ P_{\mathfrak{n}_{1}}(\lambda) - \mathfrak{u}_{0} P_{\mathfrak{n}_{0}}(\lambda) \\ P_{\mathfrak{n}_{1}+1}(\lambda) \\ \vdots \\ P_{\mathfrak{n}_{2}-1}(\lambda) \\ P_{\mathfrak{n}_{2}}(\lambda) - \mathfrak{u}_{1} P_{\mathfrak{n}_{1}}(\lambda) \\ \vdots \end{pmatrix} = \frac{1}{\lambda} \begin{pmatrix} \lambda P_{0}(\lambda) \\ \vdots \\ \lambda^{\ell_{0}-1} P_{0}(\lambda) \\ P_{\mathfrak{n}_{1}}(\lambda) - \frac{P_{\mathfrak{n}_{1}}(0)}{P_{\mathfrak{n}_{0}}(0)} P_{\mathfrak{n}_{0}}(\lambda) \\ \vdots \\ \lambda^{\ell_{1}-1} P_{\mathfrak{n}_{1}}(\lambda) \\ P_{\mathfrak{n}_{2}}(\lambda) - \frac{P_{\mathfrak{n}_{2}}(0)}{P_{\mathfrak{n}_{1}}(0)} P_{\mathfrak{n}_{1}}(\lambda) \\ \vdots \end{pmatrix}.$$

Therefore

$$\mathfrak{J}^{(p)}\mathbf{P}^{(p)}(\lambda) = \lambda \mathbf{P}^{(p)}(\lambda),$$

because

$$\mathfrak{J}^{(p)}\mathbf{P}^{(p)}(\lambda) = \mathfrak{U}\mathfrak{U}\mathfrak{U}\frac{1}{\lambda}\mathbf{P}(\lambda) = \frac{1}{\lambda}\mathfrak{U}\mathfrak{J}\mathbf{P}(\lambda) = \lambda(\frac{1}{\lambda}\mathfrak{U}\mathbf{P}(\lambda)) = \lambda\mathbf{P}^{(p)}(\lambda).$$

From here, we obtain that the polynomials $P_i^{(p)}(\lambda)$ can be represented by the formula (3.42), for all $i \in \mathbb{Z}_+$. This completes the proof.

Remark 3.20. If $\ell_j = 1$ for all $j \in \mathbb{Z}_+$, then

(3.43)
$$P_{\mathfrak{n}_{j}}^{(p)}(\lambda) = \frac{1}{\lambda} \left(P_{\mathfrak{n}_{j+1}}(\lambda) - \frac{P_{\mathfrak{n}_{j+1}}(0)}{P_{\mathfrak{n}_{j}}(0)} P_{\mathfrak{n}_{j}}(\lambda) \right)$$

is a Christoffel formula (see [22]).

Remark 3.21. If at least one $\ell_j \geq 2$, then the formula (3.42) is a special case of Christoffel formula (see [22]).

Theorem 3.22. Let \mathfrak{J} be a monic generalized Jacobi matrix satisfying (3.14) and let $\mathfrak{J} = \mathfrak{L}\mathfrak{U}$ be its $\mathfrak{L}\mathfrak{U}$ -factorization of the form (3.1)-(3.3). Let $\mathfrak{J}^{(p)} = \mathfrak{U}\mathfrak{L}$ be its Darboux transformation and let

(3.44)
$$(\mathfrak{J}^{(p)} - \lambda) \mathbf{Q}^{(p)}(\lambda) = \Theta_{\ell_0 - 1},$$

where
$$\mathbf{Q}^{(p)}(\lambda) = \left(Q_0^{(p)}(\lambda), \quad Q_1^{(p)}(\lambda), \quad \dots\right)^r$$
, $\Theta_{\ell_0-1} = (\underbrace{0, \dots, 0, 1}_{\ell_0-1}, 0 \dots)$. Then
(3.45)
 $Q_{\mathfrak{n}_j-1}^{(p)}(\lambda) = Q_{\mathfrak{n}_j}(\lambda) - \frac{P_{\mathfrak{n}_j}(0)}{P_{\mathfrak{n}_{j-1}}(0)}Q_{\mathfrak{n}_{j-1}}(\lambda), \quad j \in \mathbb{N},$
 $Q_{\mathfrak{n}_j+k}^{(p)}(\lambda) = \lambda^{k+1}Q_{\mathfrak{n}_j}(\lambda), \quad 0 \le k \le \ell_j - 2 \quad and \quad j \in \mathbb{Z}_+.$

Proof. Setting

$$\mathbf{Q}^{(p)}(\lambda) = \mathfrak{U}\mathbf{Q}(\lambda) = \begin{pmatrix} Q_1(\lambda) \\ \vdots \\ \lambda^{\ell_0 - 1}Q_0(\lambda)(\lambda) \\ Q_{\mathfrak{n}_1}(\lambda) - \frac{P_{\mathfrak{n}_1}(0)}{P_{\mathfrak{n}_0}(0)}Q_{\mathfrak{n}_0}(\lambda) \\ \lambda Q_{\mathfrak{n}_1}(\lambda) \\ \vdots \\ \lambda^{\ell_1 - 1}Q_{\mathfrak{n}_1}(\lambda) \\ Q_{\mathfrak{n}_2}(\lambda) - \frac{P_{\mathfrak{n}_2}(0)}{P_{\mathfrak{n}_1}(0)}Q_{\mathfrak{n}_1}(\lambda) \\ \vdots \end{pmatrix}.$$

Using $(\mathfrak{J} - \lambda)\mathbf{Q}(\lambda) = \Theta_{\ell_0}$, we obtain

$$\begin{aligned} \mathfrak{U}(\mathfrak{L}\mathfrak{U}-\lambda)\mathbf{Q}(\lambda) &= (\mathfrak{U}\mathfrak{L}\mathfrak{U}-\lambda\mathfrak{U})\mathbf{Q}(\lambda) = (\mathfrak{U}\mathfrak{L}-\lambda)\mathfrak{U}\mathbf{Q}(\lambda) \\ &= (\mathfrak{J}^{(p)}-\lambda)\mathbf{Q}^{(p)}(\lambda) = \mathfrak{U}\Theta_{\ell_0} = \Theta_{\ell_0-1}. \end{aligned}$$

So, the formula (3.45) is proved. This completes the proof.

Definition 3.23. In the next theorem we use index $\kappa(a), a \in \mathbb{N}$. It is defined by

(3.46)
$$\kappa(a) = \begin{cases} 1, & a = 1, \\ 2, & a \ge 2. \end{cases}$$

Proposition 3.24. Let \mathfrak{J} and \mathfrak{J} be monic generalized Jacobi matrices associated with the functionals \mathfrak{S} and \mathfrak{S} , respectively. Let $\mathfrak{J} = \mathfrak{L}\mathfrak{U}$ be its $\mathfrak{L}\mathfrak{U}$ -factorization of the form (3.1)-(3.3). If $\kappa(\ell_j) = \kappa(\tilde{\ell}_j)$, $\mathfrak{p}_0^{(j)} = \mathfrak{\widetilde{p}}_0^{(j)}$ and $\mathfrak{b}_{j+1} = \mathfrak{\widetilde{b}}_{j+1}$, where $\mathfrak{p}_0^{(j)}$, \mathfrak{b}_{j+1} and $\mathfrak{\widetilde{p}}_0^{(j)}$, $\mathfrak{\widetilde{b}}_{j+1}$ are elements of matrices \mathfrak{J} and $\mathfrak{\widetilde{J}}$, respectively, for all $j \in \mathbb{Z}_+$. Then $P_{\mathfrak{n}_j}^{(p)}(0) = \widetilde{P}_{\mathfrak{n}_j}^{(p)}(0)$, where $P_{\mathfrak{n}_j}^{(p)}(\lambda)$ and $\widetilde{P}_{\mathfrak{\widetilde{n}}_j}^{(p)}(\lambda)$ are polynomials of the first kind associated with the matrices $\mathfrak{J}^{(p)}$ and $\mathfrak{\widetilde{J}}^{(p)}$, respectively, for all $j \in \mathbb{Z}_+$ and $\mathfrak{\widetilde{n}}_0 = \mathfrak{n}_0 = 0$.

Proof. By Proposition 3.9, $\tilde{\mathfrak{J}}$ admits \mathfrak{LU} -factorization of the form (3.1)–(3.3) and by Theorem 3.10, the matrix $\tilde{\mathfrak{J}}^{(p)}$ exists. Due to $\kappa(\ell_j) = \kappa(\tilde{\ell}_j)$ for all $j \in \mathbb{Z}_+$ and using Corollary 2.4, we have $P_{\mathfrak{n}_j}^{(p)}(0) = \tilde{P}_{\tilde{\mathfrak{n}}_j}^{(p)}(0)$, where $P_{\mathfrak{n}_j}^{(p)}(\lambda)$ and $\tilde{P}_{\tilde{\mathfrak{n}}_j}^{(p)}(\lambda)$ are polynomials of the first kind associated with the matrices $\mathfrak{J}^{(p)}$ and $\tilde{\mathfrak{J}}^{(p)}$, respectively, for all $j \in \mathbb{Z}_+$ and $\tilde{\mathfrak{n}}_0 = \mathfrak{n}_0 = 0$. This completes the proof.

4. DARBOUX TRANSFORMATION WITH A SHIFT

In this section we study the Darboux transformation with shift α , which may be more comfortable for calculation. It helps us to construct factorization of GJM \mathfrak{J} , when $P_{\mathfrak{n}_j}(0) = 0$ for some $j \in \mathbb{N}$.

Setting $\lambda := \lambda + \alpha$ in (2.4) and (2.5), we obtain the system of difference equations for all $j \in \mathbb{Z}_+$

(4.1)
$$\mathfrak{b}_{j}y_{\mathfrak{n}_{j-1}}(\lambda+\alpha) - \mathfrak{p}_{j}(\lambda+\alpha)y_{\mathfrak{n}_{j}}(\lambda+\alpha) + y_{\mathfrak{n}_{j+1}}(\lambda+\alpha) = 0 \quad (\mathfrak{b}_{0}=\varepsilon_{0}).$$

The solutions of the system (4.1) are polynomials $P_{n_j}(\lambda + \alpha)$ and $Q_{n_j}(\lambda + \alpha)$. The system (4.1) is associated with the following initial conditions:

(4.2)
$$P_{\mathfrak{n}_{-1}}(\lambda+\alpha) \equiv 0, \quad P_{\mathfrak{n}_0}(\lambda+\alpha) \equiv 1, \quad Q_{\mathfrak{n}_{-1}}(\lambda+\alpha) \equiv -\frac{1}{\mathfrak{b}_0}, \quad Q_{\mathfrak{n}_0}(\lambda+\alpha) \equiv 0.$$

Denote $\widetilde{P}_{\mathfrak{n}_j}(\lambda) := P_{\mathfrak{n}_j}(\lambda + \alpha), \ \widetilde{Q}_{\mathfrak{n}_j}(\lambda) := Q_{\mathfrak{n}_j}(\lambda + \alpha) \text{ and } \widetilde{\mathfrak{p}}_j(\lambda) := \mathfrak{p}_j(\lambda + \alpha).$

314

Lemma 4.1. Let \mathfrak{J} be a GJM corresponding to the functional \mathfrak{S} and let

(4.3)
$$A_{\alpha} = \operatorname{diag}\left(\mathfrak{C}_{\mathfrak{p}_{0}} - \mathfrak{C}_{\widetilde{\mathfrak{p}}_{0}}, \mathfrak{C}_{\mathfrak{p}_{1}} - \mathfrak{C}_{\widetilde{\mathfrak{p}}_{1}}, \ldots\right)$$

where $\mathfrak{C}_{\mathfrak{p}_j}$ and $\mathfrak{C}_{\tilde{\mathfrak{p}}_j}$ are companion matrices associated with the polynomials $\mathfrak{p}_j(\lambda)$ and $\tilde{\mathfrak{p}}_j(\lambda)$, respectively. Then the GJM $\mathfrak{J} - A_\alpha$ corresponds to the functional

(4.4)
$$\widetilde{\mathfrak{S}}(p(\lambda)) := \mathfrak{S}(p(\lambda - \alpha)).$$

If $\tilde{\mathfrak{s}}$ is a moment sequence associated with $\widetilde{\mathfrak{S}}$ via (1.1), then the corresponding set $\mathcal{N}(\tilde{\mathfrak{s}})$ of normal indices coincides with $\mathcal{N}(\mathfrak{s})$ and $\left\{\widetilde{P}_{\mathfrak{n}_j}(\lambda)\right\}_{j=0}^{\infty}$ is the sequence of quasi - orthogonal polynomials with respect to $\widetilde{\mathfrak{S}}$.

Proof. It follows from (2.7) and (4.3) that the matrix $\mathfrak{J} - A_{\alpha}$ is the GJM,

(4.5)
$$\mathfrak{J} - A_{\alpha} = \begin{pmatrix} \mathfrak{C}_{\widetilde{\mathfrak{p}}_{0}} & \mathfrak{D}_{0} \\ \mathfrak{B}_{1} & \mathfrak{C}_{\widetilde{\mathfrak{p}}_{1}} & \mathfrak{D}_{1} \\ & \ddots & \ddots & \ddots \end{pmatrix}$$

is associated with the sequence of polynomials $\widetilde{\mathfrak{p}}_j$ and numbers \mathfrak{b}_j . Thus, the system (4.1) is associated with the matrix $\mathfrak{J} - A_\alpha$. Consequently, (4.4) holds and $\mathcal{N}(\mathfrak{s}) = \mathcal{N}(\widetilde{\mathfrak{s}})$. Due to $\widetilde{P}_{\mathfrak{n}_j}(\lambda) = P_{\mathfrak{n}_j}(\lambda + \alpha)$ and (4.4), $\left\{\widetilde{P}_{\mathfrak{n}_j}(\lambda)\right\}_{j=0}^{\infty}$ is the sequence of quasi - orthogonal polynomials with respect to $\widetilde{\mathfrak{S}}$. This completes the proof.

Note, if $\mathfrak{n}_1 = 1$, then $\mathfrak{s}_0 = \mathfrak{S}(1) = \widetilde{\mathfrak{S}}(1) = \widetilde{\mathfrak{s}}_0$ and $\widetilde{P}_{\mathfrak{n}_1}(\lambda) = P_{\mathfrak{n}_1}(\lambda + \alpha) = \lambda + \alpha - \frac{\mathfrak{s}_1}{\mathfrak{s}_0}$, see Remark 3.8. On the other hand

(4.6)
$$\widetilde{P}_{\mathfrak{n}_1}(\lambda) = \frac{1}{\mathfrak{s}_0} \begin{vmatrix} \mathfrak{s}_0 & \widetilde{\mathfrak{s}}_1 \\ 1 & \lambda \end{vmatrix} = \lambda - \frac{\widetilde{\mathfrak{s}}_1}{\mathfrak{s}_0}$$

therefore $\widetilde{P}_{\mathfrak{n}_1}(0) = -\frac{\widetilde{\mathfrak{s}}_1}{\mathfrak{s}_0} = \alpha - \frac{\mathfrak{s}_1}{\mathfrak{s}_0}$. This implies $\widetilde{\mathfrak{s}}_1 = \mathfrak{s}_1 - \alpha \mathfrak{s}_0$.

Theorem 4.2. Let $\alpha \in \mathbb{R}$ be such that

$$(4.7) P_{\mathfrak{n}_j}(\alpha) \neq 0, \quad j \in \mathbb{Z}_+$$

Then the GJM $\mathfrak{J} - A_{\alpha}$ admits the \mathfrak{LU} -factorization of the form (3.1)-(3.3)

(4.8)
$$T = \mathfrak{J} - A_{\alpha} = \mathfrak{LU}$$

and the corresponding Darboux transform $T^{(p)} = \mathfrak{UL}$ corresponds to the functional

(4.9)
$$\widetilde{\mathfrak{S}}^{(p)} = \begin{cases} \lambda \widetilde{\mathfrak{S}}, & \mathfrak{n}_1 > 1, \\ \frac{\mathfrak{s}_0}{\mathfrak{s}_1 - \alpha \mathfrak{s}_0} \lambda \widetilde{\mathfrak{S}}, & \mathfrak{n}_1 = 1. \end{cases}$$

Furthermore, if $\tilde{\mathfrak{n}}_{j}^{(p)}$ and $\tilde{\mathfrak{p}}_{j}^{(p)}(\lambda)$ are normal indices and generating polynomials of $T^{(p)}$ and

(4.10)
$$A_{\alpha}^{(p)} = \operatorname{diag}\left(\mathfrak{C}_{\mathfrak{p}_{0}^{(p)}} - \mathfrak{C}_{\widetilde{\mathfrak{p}}_{0}^{(p)}}, \mathfrak{C}_{\mathfrak{p}_{1}^{(p)}} - \mathfrak{C}_{\widetilde{\mathfrak{p}}_{1}^{(p)}}, \ldots\right),$$

where $\mathfrak{C}_{\widetilde{\mathfrak{p}}_{j}^{(p)}}$ and $\mathfrak{C}_{\mathfrak{p}_{j}^{(p)}}$ are companion matrices associated with the polynomials $\widetilde{\mathfrak{p}}_{j}^{(p)}(\lambda)$ and $\mathfrak{p}_{j}^{(p)}(\lambda) := \widetilde{\mathfrak{p}}_{j}^{(p)}(\lambda - \alpha)$, respectively. Then

(4.11)
$$\mathfrak{J}^{(p)} = \mathfrak{U}\mathfrak{L} + A^{(p)}_{\alpha}$$

is a GJM corresponding to the functional

(4.12)
$$\mathfrak{S}^{(p)}(p(\lambda)) = \begin{cases} \mathfrak{S}((\lambda - \alpha)p(\lambda)), & \mathfrak{n}_1 > 1, \\ \frac{\mathfrak{s}_0}{\mathfrak{s}_1 - \alpha\mathfrak{s}_0}\mathfrak{S}((\lambda - \alpha)p(\lambda)), & \mathfrak{n}_1 = 1. \end{cases}$$

Proof. By Theorem 3.5 $T = \mathfrak{J} - A_{\alpha}$ admits \mathfrak{LU} -factorization of the form (3.1)–(3.3) and by Theorem 3.10 $T^{(p)} = \mathfrak{U}\mathfrak{L}$ is the GJM. The relation between functionals in (4.9) follows from Theorem 3.13 and relation (4.12) follows from Lemma 4.1 and (4.9).

Theorem 4.3. Suppose that the assumptions of Theorem 4.1 hold. Let $P_{\mathfrak{n}_j}(\lambda)$, $P_{\mathfrak{n}_j^{(p)}}^{(p)}(\lambda)$ and $Q_{\mathfrak{n}_j}(\lambda)$, $Q_{\mathfrak{n}_j^{(p)}}^{(p)}(\lambda)$ be polynomials of the first and the second kind of matrices \mathfrak{J} and $\mathfrak{J}^{(p)} = \mathfrak{UL} + A_{\alpha}^{(p)}$, respectively. Then

(4.13)
$$P_{\mathfrak{n}_{j-1}}^{(p)}(\lambda) = \frac{1}{\lambda - \alpha} \left(P_{\mathfrak{n}_{j}}(\lambda) - \frac{P_{\mathfrak{n}_{j}}(\alpha)}{P_{\mathfrak{n}_{j-1}}(\alpha)} P_{\mathfrak{n}_{j-1}}(\lambda) \right), \quad j \in \mathbb{N},$$
$$P_{\mathfrak{n}_{j}+k}^{(p)}(\lambda) = \lambda^{k} P_{\mathfrak{n}_{j}}(\lambda), \quad 0 \le k \le \ell_{j} - 2 \quad and \quad j \in \mathbb{Z}_{+}.$$

(4.14)
$$Q_{\mathfrak{n}_{j}-1}^{(p)}(\lambda) = Q_{\mathfrak{n}_{j}}(\lambda) - \frac{P_{\mathfrak{n}_{j}}(\alpha)}{P_{\mathfrak{n}_{j-1}}(\alpha)}Q_{\mathfrak{n}_{j-1}}(\lambda), \quad j \in \mathbb{N},$$
$$Q_{\mathfrak{n}_{j}+k}^{(p)}(\lambda) = \lambda^{k+1}Q_{\mathfrak{n}_{j}}(\lambda), \quad 0 \le k \le \ell_{j} - 2 \quad and \quad j \in \mathbb{Z}_{+}$$

Proof. The matrix \mathfrak{J} is associated with the system of difference equations (2.4). By Lemma 4.1 $T = \mathfrak{J} - A_{\alpha} = \mathfrak{L}\mathfrak{U}$ is associated with the system of difference equations (4.1) and by Theorem 4.2 $T^{(p)} = \mathfrak{U}\mathfrak{L}$ is associated with the following system of difference equations for all $j \in \mathbb{Z}_+$

(4.15)
$$\mathfrak{c}_{j}^{(p)}y_{\mathfrak{n}_{j-1}^{(p)}}(\lambda) - \widetilde{\mathfrak{p}}_{j}^{(p)}(\lambda)y_{\mathfrak{n}_{j}^{(p)}}(\lambda) + y_{\mathfrak{n}_{j+1}^{(p)}}(\lambda) = 0 \quad (\mathfrak{c}_{0}^{(p)} = \varepsilon_{0}^{(p)}).$$

The solutions of the system (4.15) are polynomials $\widetilde{P}_{\mathfrak{n}_{j-1}^{(p)}}^{(p)}(\lambda)$ and $\widetilde{Q}_{\mathfrak{n}_{j-1}^{(p)}}^{(p)}(\lambda)$. By Theorem 3.19 and Theorem 3.22

$$\widetilde{P}_{\mathfrak{n}_{j}-1}^{(p)}(\lambda) = \frac{1}{\lambda} \left(P_{\mathfrak{n}_{j}}(\lambda+\alpha) - \frac{P_{\mathfrak{n}_{j}}(\alpha)}{P_{\mathfrak{n}_{j-1}}(\alpha)} P_{\mathfrak{n}_{j-1}}(\lambda+\alpha) \right), \quad j \in \mathbb{N},$$

$$P_{\mathfrak{n}_{j}+k}^{(p)}(\lambda) = \lambda^{k} P_{\mathfrak{n}_{j}}(\lambda+\alpha), \quad 0 \leq k \leq \ell_{j}-2 \quad \text{and} \quad j \in \mathbb{Z}_{+},$$

$$\widetilde{Q}_{\mathfrak{n}_{j}-1}^{(p)}(\lambda) = Q_{\mathfrak{n}_{j}}(\lambda+\alpha) - \frac{P_{\mathfrak{n}_{j}}(\alpha)}{P_{\mathfrak{n}_{j-1}}(\alpha)} Q_{\mathfrak{n}_{j-1}}(\lambda+\alpha), \quad j \in \mathbb{N},$$

$$Q_{\mathfrak{n}_{j}+k}^{(p)}(\lambda) = \lambda^{k+1} Q_{\mathfrak{n}_{j}}(\lambda+\alpha), \quad 0 \leq k \leq \ell_{j}-2 \quad \text{and} \quad j \in \mathbb{Z}_{+}.$$

On the other hand, the matrix $\mathfrak{J} = \mathfrak{UL} + A_{\alpha}^{(p)}$ is associated with the system of difference equations for all $j \in \mathbb{Z}_+$

$$(4.17) \quad \mathfrak{c}_{j}^{(p)}y_{\mathfrak{n}_{j-1}^{(p)}}(\lambda-\alpha) - \widetilde{\mathfrak{p}}_{j}^{(p)}(\lambda-\alpha)y_{\mathfrak{n}_{j}^{(p)}}(\lambda-\alpha) + y_{\mathfrak{n}_{j+1}^{(p)}}(\lambda-\alpha) = 0 \quad (\mathfrak{c}_{0}^{(p)} = \varepsilon_{0}^{(p)}),$$

where the solutions of system (4.17) are polynomials

(4.18)
$$P_{\mathfrak{n}_{j-1}^{(p)}}^{(p)}(\lambda) := \widetilde{P}_{\mathfrak{n}_{j-1}^{(p)}}^{(p)}(\lambda - \alpha) \quad \text{and} \quad Q_{\mathfrak{n}_{j-1}^{(p)}}^{(p)}(\lambda) := \widetilde{Q}_{\mathfrak{n}_{j-1}^{(p)}}^{(p)}(\lambda - \alpha)$$

Substituting (4.18) into (4.16) we obtain (4.13) and (4.14). This completes the proof. \Box

5. Example

5.1. Example 1. Recall that the class $\mathbf{N}_{-\infty}$ consists of holomorphic functions F on \mathbb{C}_+ , such that $ImF(\lambda) \geq 0$ for all $\lambda \in \mathbb{C}_+$ and F admits the following asymptotic expansion:

(5.1)
$$F(\lambda) = -\frac{\mathfrak{s}_0}{\lambda} - \frac{\mathfrak{s}_1}{\lambda^2} \cdots - \frac{\mathfrak{s}_{2n}}{\lambda^{2n+1}} + o\left(\frac{1}{\lambda^{2n+1}}\right), \quad \lambda \widehat{\to} \infty,$$

with $\mathfrak{s}_j \in \mathbb{R}$ for all $j \in \mathbb{Z}_+$, where $\lambda \widehat{\to} \infty$ means that λ tends to ∞ nontangentially, that is inside the sector $\varepsilon < \arg \lambda < \pi - \varepsilon$ for some $\varepsilon > 0$. Every function $F \in \mathbf{N}_{-\infty}$ admits the *J*-fraction expansion

(5.2)
$$F(\lambda) \sim -\frac{b_0}{\lambda - c_0 - \frac{b_1}{\lambda - c_1 - \frac{b_2}{\ddots}}} = -\frac{b_0}{\lambda - c_0} - \frac{b_1}{\lambda - c_1} - \frac{b_2}{\lambda - c_2} - \cdots$$

Next, we construct the function $F(\lambda^3)$ with the following asymptotic expansion:

(5.3)
$$F(\lambda^3) = -\frac{\mathfrak{s}_0}{\lambda^3} - \frac{\mathfrak{s}_1}{\lambda^6} \cdots - \frac{\mathfrak{s}_{2n}}{\lambda^{2n+1}} - \cdots = -\frac{\mathfrak{s}_0}{\lambda} - \frac{\mathfrak{s}_1}{\lambda^2} \cdots - \frac{\mathfrak{s}_{2n}}{\lambda^{2n+1}} - \cdots, \quad \lambda \widehat{\to} \infty,$$

where $\tilde{\mathfrak{s}}_{3j-1} = \mathfrak{s}_j$ and $\tilde{\mathfrak{s}}_j = 0$ otherwise. The expansion (5.3) can be rewritten as the P-fraction (see [17])

(5.4)
$$F(\lambda^3) \sim -\frac{b_0}{\lambda^3 - c_0} - \frac{b_1}{\lambda^3 - c_1} - \frac{b_2}{\lambda^3 - c_2} - \cdots$$

The function $F(\lambda^3)$ is associated with the monic generalized Jacobi matrix \mathfrak{J}

(5.5)
$$\mathfrak{J} = \begin{pmatrix} \mathfrak{C}_{\mathfrak{p}_0} & \mathfrak{D}_0 & & \\ \mathfrak{B}_1 & \mathfrak{C}_{\mathfrak{p}_1} & \mathfrak{D}_1 & \\ & \mathfrak{B}_2 & \mathfrak{C}_{\mathfrak{p}_2} & \ddots \\ & & \ddots & \ddots \end{pmatrix},$$

where

(5.6)
$$\mathfrak{C}_{\mathfrak{p}_{j}} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ c_{j} & 0 & 0 \end{pmatrix}, \quad \mathfrak{D}_{j} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad \text{and} \quad \mathfrak{B}_{j+1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ b_{j+1} & 0 & 0 \end{pmatrix}, \quad j \in \mathbb{Z}_{+}.$$

Let us assume that the polynomials of the first kind $P_{\mathfrak{n}_j}(\lambda)$ associated with the matrix \mathfrak{J} do not vanish at α , i.e. $P_{\mathfrak{n}_j}(\alpha) \neq 0$ for all $j \in \mathbb{Z}_+$.

Next, we introduce the following diagonal block matrix:

(5.7)
$$A_{\alpha} = \operatorname{diag} \left(\mathfrak{C}_{\mathfrak{p}_{0}} - \mathfrak{C}_{\widetilde{\mathfrak{p}}_{0}}, \quad \mathfrak{C}_{\mathfrak{p}_{1}} - \mathfrak{C}_{\widetilde{\mathfrak{p}}_{1}}, \quad \ldots \right),$$

where $\mathfrak{C}_{\widetilde{\mathfrak{p}}_j}$ is a companion matrix of the monic polynomial

(5.8)
$$\widetilde{\mathfrak{p}}_j(\lambda) := \mathfrak{p}_j(\lambda + \alpha) = \lambda^3 + 3\alpha\lambda^2 + 3\alpha^2\lambda + \alpha^3 + c_j.$$

Then by Theorem 4.2 a GJM $T = \mathfrak{J} - A_{\alpha}$ admits the \mathfrak{L} -factorization $(T = \mathfrak{L}\mathfrak{U})$, where

(5.9)
$$\mathfrak{L} = \begin{pmatrix} \mathfrak{A}_0 & 0 \\ \mathfrak{L}_1 & \mathfrak{A}_1 & \ddots \\ & \ddots & \ddots \end{pmatrix} \quad \text{and} \quad \mathfrak{U} = \begin{pmatrix} \mathfrak{U}_0 & \mathfrak{D}_0 \\ 0 & \mathfrak{U}_1 & \ddots \\ & \ddots & \ddots \end{pmatrix},$$

where the blocks \mathfrak{A}_j , \mathfrak{D}_j , \mathfrak{L}_{j+1} , \mathfrak{U}_j take the form (see (3.2)–(3.3))

$$(5.10) \quad \mathfrak{A}_{j} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3\alpha^{2} & -3\alpha & 1 \end{pmatrix}, \quad \mathfrak{L}_{j+1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -\frac{b_{j+1}}{\mathfrak{u}_{j}} \end{pmatrix}, \quad \mathfrak{D}_{j} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \mathfrak{U}_{j} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -\mathfrak{u}_{j} & 0 & 0 \end{pmatrix},$$

where $-\mathfrak{u}_0 = c_0 - \alpha^3$ and $-\mathfrak{u}_i - \frac{b_i}{\mathfrak{u}_{i-1}} = c_i - \alpha^3$, $i \in \mathbb{N}$, (see (3.6)). Then $T^{(p)} = \mathfrak{U}\mathfrak{L}$ and $\begin{pmatrix} \widetilde{\mathfrak{C}}_0^0 & \mathfrak{D}_{0,0} \\ \mathfrak{B}_{i,0} & \widetilde{\mathfrak{C}}_1^1 & \mathfrak{D}_{0,0} \end{pmatrix}$

(5.11)
$$T^{(p)} = \begin{pmatrix} \mathfrak{B}_{1,0} & \mathfrak{C}_0^1 & \mathfrak{D}_{0,1} \\ & \mathfrak{B}_{1,1} & \widetilde{\mathfrak{C}}_1^0 & \ddots \\ & & \ddots & \ddots \end{pmatrix},$$

where

(5.12)
$$\widetilde{\mathfrak{C}}_{j}^{0} = \begin{pmatrix} 0 & 1 \\ -3\alpha^{2} & -3\alpha \end{pmatrix}, \quad \mathfrak{D}_{j,0} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad \mathfrak{B}_{j+1,1} = \begin{pmatrix} 0 \\ -\frac{b_{j+1}}{\mathfrak{u}_{j}} \end{pmatrix}, \\ \mathfrak{B}_{j+1,0} = \begin{pmatrix} -\mathfrak{u}_{j} & 0 \end{pmatrix}, \quad \widetilde{\mathfrak{C}}_{j}^{1} = (0), \quad \mathfrak{D}_{j,1} = \begin{pmatrix} 1 & 0 \end{pmatrix}, \quad j \in \mathbb{Z}_{+}.$$

Let \widetilde{a}_{j}^{0} , \widetilde{a}_{j}^{1} be polynomials associated with the matrices $\widetilde{\mathfrak{C}}_{j}^{0}$ and $\widetilde{\mathfrak{C}}_{j}^{1}$, respectively, i.e. $\widetilde{a}_{j}^{0}(\lambda) = \lambda^{2} + 3\alpha\lambda + 3\alpha^{2}$ and $\widetilde{a}_{j}^{1}(\lambda) = \lambda$, for all $j \in \mathbb{Z}_{+}$. Let us introduce the polynomials $a_{j}^{0}(\lambda) := \widetilde{a}_{j}^{0}(\lambda - \alpha) = \lambda^{2} + \alpha\lambda + \alpha^{2}$ and $a_{j}^{1}(\lambda) := \widetilde{a}_{j}^{1}(\lambda - \alpha) = \lambda - \alpha$, $j \in \mathbb{Z}_{+}$. Denote the companion matrices of a_{j}^{0} , a_{j}^{1} by

(5.13)
$$\mathfrak{C}_{j}^{0} = \begin{pmatrix} 0 & 1 \\ -\alpha^{2} & -\alpha \end{pmatrix} \text{ and } \mathfrak{C}_{j}^{1} = (\alpha), \text{ for all } j \in \mathbb{Z}_{+}$$

and let the matrix $A_{\alpha}^{(p)}$ is given by

(5.14)
$$A_{\alpha}^{(p)} = \operatorname{diag}\left(\mathfrak{C}_{0}^{0} - \widetilde{\mathfrak{C}}_{0}^{0}, \quad \mathfrak{C}_{0}^{1} - \widetilde{\mathfrak{C}}_{0}^{1}, \quad \ldots\right)$$

Then the Darboux transformation of \mathfrak{J} with the shift α takes the form (see (4.11))

(5.15)
$$\mathfrak{J}^{(p)} = T^{(p)} + A^{(p)}_{\alpha} = \begin{pmatrix} \mathfrak{C}^{0}_{\mathfrak{p}_{0}} & \mathfrak{D}_{0,0} & \\ \mathfrak{B}_{1,0} & \mathfrak{C}^{1}_{\mathfrak{p}_{0}} & \mathfrak{D}_{0,1} \\ & \mathfrak{B}_{1,1} & \mathfrak{C}^{0}_{\mathfrak{p}_{1}} & \ddots \\ & & \ddots & \ddots \end{pmatrix}.$$

By Theorem 4.2 see (4.12), the moment sequence $\mathfrak{s}^{(p)} = \left\{\mathfrak{s}_{j}^{(p)}\right\}_{j=0}^{\infty}$ is associated with the matrix $\mathfrak{J}^{(p)}$ and

(5.16)
$$\mathfrak{s}_{j}^{(p)} = \mathfrak{S}^{(p)}(\lambda^{j}) = \mathfrak{S}((\lambda - \alpha)\lambda^{j}) = \mathfrak{S}(\lambda^{j+1}) - \alpha\mathfrak{S}(\lambda^{j}) = \widetilde{\mathfrak{s}}_{j+1} - \alpha\widetilde{\mathfrak{s}}_{j}.$$

On the other hand, we can rewrite $\mathfrak{s}_{i}^{(p)}$ as follows:

(5.17)
$$\mathfrak{s}_{3j}^{(p)} = 0, \quad \mathfrak{s}_{3j+1}^{(p)} = \mathfrak{s}_j, \quad \mathfrak{s}_{3j+2}^{(p)} = -\alpha \mathfrak{s}_j, \quad j \in \mathbb{Z}_+.$$

Consequently, the function $F^{(p)}(\lambda)$ associated with the matrix $\mathfrak{J}^{(p)}$ has the following representation:

(5.18)
$$F^{(p)}(\lambda) = (\lambda - \alpha)F(\lambda^3).$$

5.2. **Example 2.** This example is a special case of Example 1. We consider the monic Chebyshev-Hermite polynomials $\{H_k(\lambda)\}_{k=0}^{\infty}$ and study the Darboux transformation with a shift of monic generalized Jacobi matrix \mathfrak{J} associated with $\{H_k(\lambda^3)\}_{k=0}^{\infty}$.

Let $\mathfrak{s} = {\mathfrak{s}_j}_{j=0}^{\infty}$ be a moment sequence corresponding to the measure $e^{-t^2} dt$ on \mathbb{R} , i.e.

(5.19)
$$\mathfrak{s}_0 = \sqrt{\pi}, \quad \mathfrak{s}_{2j} = \frac{\sqrt{\pi}}{2^j} (2j-1)!! \quad \text{and} \quad \mathfrak{s}_{2j-1} = 0, \quad j \in \mathbb{N}.$$

Then the corresponding recurrence relation takes the form

(5.20)
$$\lambda H_j(\lambda) = H_{j+1}(\lambda) + \frac{k}{2}H_{j-1}(\lambda) \quad \text{for} \quad j \in \mathbb{Z}_+$$

and the corresponding polynomials of the first kind coincide with the monic Chebyshev-Hermite polynomials

(5.21)
$$H_j(\lambda) = \frac{(-1)^j}{2^j} e^{\lambda^2} \frac{\mathrm{d}^j}{\mathrm{d}\lambda^j} \left(e^{-\lambda^2}\right) \quad \text{for all} \quad j \in \mathbb{Z}_+,$$

where $x \in (-\infty, +\infty)$ and these polynomials are orthogonal in $L_2(\mathbb{R}, w(\lambda))$ with the weight function $w(\lambda) = e^{-\lambda^2}$.

Consider the sequence of polynomials $\{H_j(\lambda^3)\}_{j=0}^{\infty}$ which satisfy the recurrence relation

(5.22)
$$\lambda^3 H_j(\lambda^3) = H_{j+1}(\lambda^3) + \frac{k}{2} H_{j-1}(\lambda^3) \quad \text{for} \quad j \in \mathbb{Z}_+.$$

The polynomials $\{H_j(\lambda^3)\}_{j=0}^{\infty}$ are polynomials of the first kind associated with the monic generalized Jacobi matrix \mathfrak{J} defined by (5.5)–(5.6).

Then the moment sequence $\tilde{\mathfrak{s}} = {\{\tilde{\mathfrak{s}}_j\}}_{j=0}^{\infty}$ associated with the matrix \mathfrak{J} takes the form

(5.23)
$$\widetilde{\mathfrak{s}}_{3j} = \widetilde{\mathfrak{s}}_{3j+1} = 0, \quad \widetilde{\mathfrak{s}}_{3j+2} = \mathfrak{s}_j, \quad j \in \mathbb{Z}_+$$

This GJM \mathfrak{J} does not admit the Darboux transformation of the form (3.1)–(3.3), since $H_1(\lambda^3) = \lambda^3$ and hence the assumption (3.14) does not hold $(H_1(0) = 0)$. Let us choose $\alpha \in \mathbb{R}$ such that

(5.24)
$$H_j(\alpha^3) \neq 0, \quad j \in \mathbb{Z}.$$

and let A_{α} be a diagonal block matrix introduced in (5.7). Then the GJM $\mathfrak{J} - A_{\alpha}$ admits the factorization $\mathfrak{J} - A_{\alpha} = \mathfrak{L}\mathfrak{U}$ (5.9)–(5.10). Consider the Darboux transformation $\mathfrak{J}^{(p)}$ of \mathfrak{J} with the shift α

(5.25)
$$\mathfrak{J}^{(p)} - A^{(p)}_{\alpha} = \mathfrak{U}\mathfrak{L}$$

determined by (5.11) - (5.15).

Using Example 1, consider the Darboux transformation of \mathfrak{J} with a shift α , we obtain the matrix $\mathfrak{J}^{(p)}$ which is defined by (5.15).

By Theorem 4.3 the polynomials $\left\{P_j^{(p)}(\lambda)\right\}_{j=0}^{\infty}$ of the first kind associated with the matrix $\mathfrak{J}^{(p)}$ are given by

(5.26)
$$P_{3j}^{(p)}(\lambda) = H_j(\lambda^3), \quad P_{3j+1}^{(p)}(\lambda) = \lambda H_j(\lambda^3),$$
$$P_{3j+2}^{(p)}(\lambda) = \frac{1}{\lambda - \alpha} \left(H_{j+1}(\lambda^3) - \frac{H_{j+1}(\alpha)}{H_j(\alpha)} H_j(\lambda^3) \right), \quad j \in \mathbb{Z}_+$$

Acknowledgments. The author thanks V. A. Derkach for many suggestions and observations.

References

- 1. N. I. Akhiezer, The Classical Moment Problem, Oliver and Boyd, Edinburgh, 1965.
- T. Ya. Azizov, I. S. Iokhvidov, Foundation of the Theory of Linear Operators in Spaces with an Indefinite Metric, Nauka, Moscow, 1986. (Russian); English transl. Linear Operators in Spaces with an Indefinite Metric, John Wiley & Sons, New York, 1989.
- M. I. Bueno, F. Marcellán, Darboux transformation and perturbation of linear functionals, Linear Algebra Appl. 384 (2004), 215–242.
- T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
- M. Derevyagin, On the Schur algorithm for indefinite moment problem, Methods Funct. Anal. Topology 9 (2003), no. 2, 133–145.
- M. Derevyagin, Generalized Jacobi operators in Krein spaces, J. Math. Annal. Appl. 349 (2009), 568–582.
- M. Derevyagin, On the relation between Darboux transformations and polynomial mappings, J. Approx. Theory 172 (2013), 4–22.

- V. Derkach, On indefinite moment problem and resolvent matrices of Hermitian operators in Krein spaces, Math. Nachr. 184 (1997), 135–166.
- M. Derevyagin, V. Derkach, Spectral problems for generalized Jacobi matrices, Linear Algebra Appl. 382 (2004), 1–24.
- M. Derevyagin, V. Derkach, Darboux transformations of Jacobi matrices and Páde approximation, Linear Algebra Appl. 435 (2011), no. 12, 3056–3084.
- F. R. Gantmakher, *The Theory of Matrices*, GITTL, Moscow, 1953. (Russian); English transl. Chelsea, New York, 1959.
- F. Gesztesy, B. Simon, m-functions and inverse spectral analysis for finite and semi-infinite Jacobi matrices, J. d'Analyse Math. 73 (1997), 267–297.
- F. A. Grünbaum, L. Haine, Bispectral Darboux transformation: an extension of the Krall polynomials, Internat. Math. Res. Notices 8 (1997), 359–392.
- F. A. Grünbaum, L. Haine, E. Horozov, Some functions that generalize the Krall-Laguerre polynomials, J. Comput. Appl. Math. 106 (1999), 271–297.
- R. Killip and B. Simon, Sum rules for Jacobi matrices and their applications to spectral theory, Annals of Math. 158 (2003), 253–321.
- 16. P. Lancaster, Theory of Matrices, Academic Press, New York, 1969.
- A. Magnus, Certain continued fractions associated with the Padé table, Math. Z. 78 (1962), 361–374.
- F. Peherstorfer, Finite perturbations of orthogonal polynomials, J. Comput. Appl. Math. 44 (1992), 275–302.
- B. Simon, The classical moment problem as a self-adjoint finite difference operator, Advances Math. 137 (1998), 82–203.
- V. Spiridonov, A. Zhedanov, Discrete Darboux transformations, the discrete-time Toda lattice, and the Askey-Wilson polynomials, Methods Appl. Anal. 2 (1995), 369–398.
- V. Spiridonov, A. Zhedanov, Self-similarity, spectral transformations and orthogonal and biorthogonal polynomials in self-similar systems, (Eds. V. B. Priezzhev, V. P. Spiridonov) Proc. Internat. Workshop JINR, Dubna, 1999, pp. 349–361.
- 22. G. Szegö, Orthogonal Polynomials, 4th ed., AMS, Providence, RI, 1975.
- A. Zhedanov, Rational spectral transformations and orthogonal polynomials, J. Comput. Appl. Math. 85 (1997), 67–86.

Department of Mathematics, Donetsk National University, 24 Universytetska, Donetsk, 83055, Ukraine

 $E\text{-}mail \ address: \texttt{i.m.kovalyov@gmail.com}$

Received 11/03/2014