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Abstract. Let J be a monic generalized Jacobi matrix, i.e. a three-diagonal block
matrix of special form, introduced by M. Derevyagin and V. Derkach in 2004. We
find conditions for a monic generalized Jacobi matrix J to admit a factorization

J = LU with L and U being lower and upper triangular two-diagonal block matrices
of special form. In this case the Darboux transformation of J defined by J(p) = UL is
shown to be also a monic generalized Jacobi matrix. Analogues of Christoffel formu-
las for polynomials of the first and the second kind, corresponding to the Darboux

transformation J(p) are found.

1. Introduction

Let {sn}∞n=0 be a sequence of real moments and let a functional S be defined on the
linear space P = span {λn : n ∈ Z+ := N ∪ {0}} by the equality

(1.1) S(λn) = sn, n ∈ Z+.

The functionalS is called quasi − definite if all the principal submatrices of the Hankel
matrix (si+k)

n

i,k=0 are nonsingular for every n ∈ Z+. Associated with such functional is

a sequence of monic polynomials {Pn}∞n=0 which are orthogonal with respect to S and
satisfy a three-term recurrence equations

(1.2) λPn(λ) = Pn+1(λ) + cnPn(λ) + bnPn−1(λ), n ∈ Z+,

where bn, cn ∈ R, bn 6= 0, b0 = 1 and initial conditions P−1(λ) = 0 and P0(λ) = 1.
The matrix

(1.3) J =




c0 1
b1 c1 1

b2 c2
. . .

. . .
. . .




is called a monic Jacobi matrix associated with the functional S.
Let C[λ] be the set of all complex polynomials and let S̃1 = λS be a perturbed

functional defined by

(1.4) (λS)(p) = S(λp(λ)), p ∈ C[λ].

As is known (see [4]) the functional S̃1 is quasi − definite if and only if

(1.5) Pn(0) 6= 0 for all n ∈ N.
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A sequence of monic polynomials
{
P̃n

}
∞

n=0
associated with the functional S̃1 is called

the Christoffel transform of {Pn}∞n=0 (see [4], [21]). Relations between J and the monic

Jacobi matrix J (p) associated with S̃1 were studied in the quasi-definite case (see [3]).
As was shown in [3], every monic Jacobi matrix which satisfies (1.5) admits an LU–
factorization J = LU (see [3]), where L and U are lower-triangular and upper-triangular,
respectively, two-diagonal matrices and J (p) admits the representation J (p) = UL. The
monic Jacobi matrix J (p) is called the Darboux transformation of J without parameter.

Darboux transformations of monic Jacobi matrices which do not meet the condi-
tion (1.5) were studied in [10]. In this case it may happen that the perturbed functional

S̃1 = λS defined by (1.4) is not quasi-definite and as was shown in [10] the natural
candidate for the Darboux transformation J(p) ( without parameter) of such a matrix J

can be found in a class of generalized Jacobi matrices studied in [5], [9]).
In the present paper Darboux transformation of generalized Jacobi matrices associated

with not quasi-define functionals S are studied. It is shown that every generalized Jacobi
matrix J, which satisfies conditions similar to (1.5), admits an LU−factorization J = LU,
with lower-triangular and upper-triangular two-diagonal block matrices L and U. It turns

out that the monic generalized Jacobi matrix J(p), associated with the functional S̃1,
can be represented as J(p) = UL. This monic generalized Jacobi matrix J(p) is called the
Darboux transformation of J (without parameter).

The Darboux transformations for generalized Jacobi matrices considered in the present
paper turns out to be useful in the investigation of special Stieltjes type continued frac-
tions associated with non-quasi-definite functionals and the corresponding moment prob-
lem studied in [8]. The results related to this topic will be published elsewhere.

The paper is organized as follows. In Section 2 we expose some material from [5] and
[9] concerning generalized Jacobi matrices associated with non-quasi-definite functionals.
In Section 3 we study the Darboux transformation of generalized Jacobi matrices (without
parameter). Analogues of Christoffel transforms of orthogonal polynomials correspond-
ing to generalized Jacobi matrices are found. In Section 4 the results of Section 3 are
generalized to the case of Darboux transformation of generalized Jacobi matrices with
a shift. In Section 5 an example of Darboux transformation of the monic generalized
Jacobi matrix is considered.

2. Monic generalized Jacobi matrices associated with non-quasi-definite

functional

Let {sj}∞j=0 be a sequence of real moments and let S be a linear functional defined

on the linear space P = span
{
λj : j ∈ Z+

}
by the formula (1.1).

Definition 2.1. ([10]). Define a set N (s) of normal indices of the sequence s = {si}∞i=0

by

(2.1) N (s) = {nj : dnj
6= 0, j = 1, 2, . . .}, dnj

= det(si+k)
nj−1
i,k=0.

As follows from (2.1) nj is a normal index of s if and only if

(2.2) det




s0 · · · snj−1

· · · · · · · · ·
snj−1 · · · s2nj−2


 6= 0.

We denote the first nontrivial moment ε0 := sn1−1, i.e., sk = 0 for all k < n1 − 1. For
example, if n1 = 1, then s0 6= 0.
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Using moment sequence {sj}∞j=0, we can construct the polynomials of the first and
the second kind (see [1], [6]), defined by for all j ∈ N

(2.3) Pnj
(λ)=

1

dnj

det




s0 s1 · · · snj

· · · · · · · · · · · ·
snj−1 snj

· · · s2nj−1

1 λ · · · λnj


 , ε0Qnj

(λ)=St

(
Pnj

(λ)− Pnj
(t)

λ− t

)
.

The polynomials Pnj
(λ) and Qnj

(λ) are solutions of a system of difference equations
(see [9], [18])

(2.4) bjynj−1
(λ)− pj(λ)ynj

(λ) + ynj+1
(λ) = 0 (b0 = ε0)

subject to the initial conditions

(2.5) Pn
−1
(λ) ≡ 0, Pn0

(λ) ≡ 1, Qn
−1
(λ) ≡ − 1

b0
, Qn0

(λ) ≡ 0,

where bj ∈ R \ {0}, pj(λ) = λℓj + p
(j)
ℓj−1λ

ℓj−1 + . . .+ p
(j)
1 λ+ p

(j)
0 are monic polynomials

of degree ℓj = nj+1 − nj and generating polynomials of the following generalized Jacobi
matrix J, j ∈ Z+.

One can associate with the system (2.4) the so-called monic generalized Jacobi matrix
(GJM) (see [9], [10])

(2.6) J =




Cp0
D0

B1 Cp1
D1

B2 Cp2

. . .

. . .
. . .




,

where the diagonal entries are companion matrices associated with some real polynomials
pj(λ) (see [16])

(2.7) Cpj
=




0 1 0 · · · 0

0 0 1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 0 1

−p
(j)
0 −p

(j)
1 · · · −p

(j)
ℓj−2 −p

(j)
ℓj−1




are ℓj × ℓj matrices,

Dj and Bj+1 are ℓj × ℓj+1 and ℓj+1 × ℓj matrices, respectively, determined by

(2.8) Dj=




0 0 · · · 0
...

... · · ·
...

0 0 · · · 0
1 0 · · · 0


 and Bj+1=




0 0 · · · 0
...

... · · ·
...

0 0 · · · 0
bj+1 0 · · · 0


, bj+1 ∈R\{0} , j ∈ Z+.

The matrix J defined by (2.6)– (2.8) is called a GJM associated with the functional S.
Sometimes J is called a GJM associated with the sequence {sj}∞j=0 or the system (2.4)

to emphasize connection with polynomials pj(λ) and numbers bj+1, j ∈ Z+.
The shortened GJM J[i,j] is defined by

(2.9) J[i,j] =




Cpi
Di

Bi+1 Ci+1
. . .

. . .
. . . Dj−1

Bj Cpj




, i ≤ j and i, j ∈ Z+.
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The following connection between the polynomials of the first and the second kind
and the shortened GJM’s can be found in [9]

(2.10) Pnj
(λ) = det(λ− J[0,j−1]) and Qnj

(λ) = ε0det(λ− J[1,j−1]).

Next, we introduce the inner product in the space ℓ2[0,nj−1], by the formula

(2.11) [x, y] = (Gx, y)ℓ2
[0,nj−1]

,

where x, y ∈ ℓ2[0,nj−1] and the matrix G[0,j−1] is defined by the equality

(2.12) G[0,j−1]=diag(G0, G1, . . . Gj−1), Gi=




p
(i)
1 · · · p

(i)
ℓi−1 1

... ··· ···

p
(i)
ℓi−1 ···
1 0




−1

, i = 0, j − 1.

Let us set

P(λ) =
(
P0(λ), P1(λ), . . . , Pnj

(λ), . . .
)T

,

Q(λ) =
(
Q0(λ), Q1(λ), . . . , Qnj

(λ), . . .
)T

,
(2.13)

where Pnj+k(λ) = λkPnj
(λ) and Qnj+k(λ) = λkQnj

(λ), where 0 ≤ k < nj+1 − nj . Then
it follows from (2.4), (2.5) and (2.6)–(2.8), that

(2.14) (J− λI)P(λ) = 0 and (J− λI)Q(λ) = (0, . . . , 0, 1︸ ︷︷ ︸
ℓ0

, 0, . . .)T .

Definition 2.2. Let us define the m−function of the matrix J by equality

(2.15) m[0,j−1](λ) = [(JT[0,j−1] − λ)−1e0, e0],

where e0 =
(
1 0 · · · 0

)T
is nj × 1 vector.

As was shown in [9, Proposition 6.1]

(2.16) m[0,j−1](λ) = −ε0
det(λ− J[1,j−1])

det(λ− J[0,j−1])
= −Qnj

(λ)

Pnj
(λ)

and m[0,j−1](λ) admits the following asymptotic expansion:

(2.17) m[0,j−1](λ) = −s0

λ
− s1

λ2
− · · · − s2nj−2

λ2nj−1
+ o

(
1

λ2nj−1

)
,

where

(2.18) sk =

[(
JT[0,j−1]

)k
e0, e0

]
, k ≤ 2nj − 2.

Lemma 2.3. Let J be a GJM and let Pnj
(λ), Qnj

(λ) be the corresponding polynomials
of the first and the second kind. Then there exists a monic Jacobi matrix J , such that

(2.19) Pnj
(0) = P̂j(0) and Qnj

(0) = Q̂j(0),

where P̂j(λ) and Q̂j(λ) are polynomials of the first and the second kind, respectively,
associated with J for all j ∈ N.

Proof. First of all, we compute Pnj
(0) = det(−J[0,j−1]) and expand it along the rows,

which have only one element equal to −1 and others equal to 0. Then we get

(2.20) Pnj
(0) =

∣∣∣∣∣∣∣∣∣∣

−Cp0
−D0

−B1 −Cp1

. . .

. . .
. . . −Dj−2

−Bj−1 −Cpj−1

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

p
(0)
0 −1

−b1 p
(1)
0

. . .

. . .
. . . −1

−bj−1 p
(j−1)
0

∣∣∣∣∣∣∣∣∣∣∣

.
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We use this equality for the following construction of the Jacobi matrix, as a hint

(2.21) J =




−p
(0)
0 1

b1 −p
(1)
0 1

b2 −p
(2)
0

. . .

. . .
. . .




.

It follows from (2.10) and (2.20) that Pnj
(0) = P̂j(0) (j ∈ N). The proof of the second

equality in (2.19) is analogous. �

Corollary 2.4. Let J and J̃ be GJM’s associated with systems (2.4) and

(2.22) b̃j ỹñj−1
(λ)− p̃j(λ)ỹñj

(λ) + ỹñj+1
(λ) = 0 (b̃0 = ε̃0),

respectively and let Pnj
(λ), P̃ñj

(λ) and Qnj
(λ), Q̃ñj

(λ) be the corresponding polynomials

of the first and the second kind, respectively, associated with the matrices J and J̃, for

all j ∈ N. If p
(j−1)
0 = p̃

(j−1)
0 and bj = b̃j, then

(2.23) Pnj
(0) = P̃ñj

(0) and Qnj
(0) = Q̃ñj

(0), j ∈ N.

Proof. The proof is immediate from Lemma 2.3, due to (2.20) since Pnj
(0), P̃ñj

(0) are

completely determined by p
(j−1)
0 = p̃

(j−1)
0 and bj = b̃j , for all j ∈ N. Then we have

Pnj
(0) = P̃ñj

(0), for all j ∈ N. Similarly, the polynomials Qnj
(0), Q̃ñj

(0) are determined

by p
(j−1)
0 = p̃

(j−1)
0 and bj = b̃j , for all j ∈ N. Then Qnj

(0) = Q̃ñj
(0), for all j ∈ N. �

3. The Darboux transformation of monic generalized Jacobi matrices

In this section, we study the Darboux transformation of GJM J and prove some
properties for polynomials of the first kind associated with matrix J. We use the fac-
torization matrices L and U, where L and U are lower and upper triangular block matrices,
respectively, having the forms

(3.1) L =




A0 0
L1 A1 0

L2 A2
. . .

. . .
. . .




and U =




U0 D0

0 U1 D1

0 U2
. . .

. . .
. . .




,

the diagonal blocks Aj and Uj are ℓj × ℓj matrices

(3.2) Aj=




1 0 0 · · · 0
0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0

−p
(j)
1 · · · −p

(j)
ℓj−2 −p

(j)
ℓj−1 1




and Uj=




0 1 0 · · · 0

0 0 1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 0 1

−uj 0 · · · 0 0




, uj 6= 0,

the blocks Lj+1 and Dj are ℓj+1 × ℓj and ℓj × ℓj+1 matrices, respectively

(3.3) Lj+1 =




0 0 · · · 0
...

... · · ·
...

0 0 · · · 0
0 0 · · · lj+1


 , lj+1 6= 0, Dj =




0 0 · · · 0
...

... · · ·
...

0 0 · · · 0
1 0 · · · 0


 .

However, if ℓj = ℓj+1 = 1, then we suppose

(3.4) Uj = (−uj), Lj+1 = (lj+1), Dj = (1) and Aj = (1).
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Let us say that the GJM J admits LU−factorization if J can be represented in the
form J = LU, where L and U are given by (3.1)–(3.3).

Definition 3.1. Let a monic generalized Jacobi matrix J admit the LU−factorization
of the form (3.1)–(3.3). Then the transformation

(3.5) J = LU → UL = J(p)

is called the Darboux transformation of matrix J, where the matrix J(p) is a GJM.

3.1. LU−factorization of generalized Jacobi matrices.

Lemma 3.2. Let J be a monic generalized Jacobi matrix associated with the functional
S and let ℓj := nj+1 − nj ≥ 1, j ∈ Z+, where n0 = 0 and {nj}∞j=1 is the set of normal
indices of the sequence s = {sj}∞j=0. Let L and U be defined by (3.1)–(3.3). Then J

admits LU−factorization of the form (3.1)–(3.3) if and only if the system of equations

(3.6) u0 = p
(0)
0 , −uj + lj = −p

(j)
0 , j ∈ N; −uj lj+1 = bj+1, j ∈ Z+

is solvable.

Proof. Consider the product LU of the matrices L and U

(3.7) LU =




A0U0 A0D0

L1U0 L1D0 + A1U1 A1D1

L2U1 L2D1 + A2U2
. . .

. . .
. . .




,

where the blocks AjUj and Lj+1Dj are ℓj × ℓj and ℓj+1 × ℓj+1 matrices, respectively

(3.8) AjUj=




0 1 0 · · · 0

0 0 1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 0 1

−uj −p
(j)
1 · · · −p

(j)
ℓj−2 −p

(j)
ℓj−1



, LjDj=




0 0 · · · 0
...

... · · ·
...

0 0 · · · 0
lj+1 0 · · · 0


 ,

the blocks Lj+1Uj and AjDj are ℓj+1 × ℓj and ℓj × ℓj+1 matrices, respectively

(3.9) Lj+1Uj =




0 0 · · · 0
...

... · · ·
...

0 0 · · · 0
−lj+1uj 0 · · · 0


 , AjDj =




0 0 · · · 0
...

... · · ·
...

0 0 · · · 0
1 0 · · · 0


 = Dj .

Then Lj+1Dj + Aj+1Uj+1 has the following form:

(3.10) Lj+1Dj + Aj+1Uj+1 =




0 1 0 · · · 0

0 0 1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 0 1

−uj + lj −p
(j)
1 · · · −p

(j)
ℓj−2 −p

(j)
ℓj−1




, j ∈ Z+.

Comparing the product LU with the matrix J in (2.6), we obtain the system (3.6).
If the system (3.6) is solvable, then J admits the factorization J = LU of the form (3.1)–

(3.3), where L and U are found uniquely. Conversely, if J admit LU−factorization then
the system of equations (3.6) is solvable. �
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Lemma 3.3. Let J be a GJM associated with the functional S and let J = LU be its
LU−factorization of the form (3.1)–(3.3) and let Pnj+1

(λ) be polynomials of the first kind
associated with J. Then

(3.11) Pnj+1
(0) =

j∏

k=0

uk, for all j ∈ Z+ .

Proof. By Lemma 2.3 and Lemma 3.2 we obtain
(3.12)

Pnj+1
(0)=det

(
−J[0,j]

)
=

∣∣∣∣∣∣∣∣∣∣

−Cp0
−D0

−B1 −Cp1

. . .

. . .
. . . −Dj−1

−Bj −Cpj

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

p
(0)
0 −1

−b1 p
(1)
0

. . .

. . .
. . . −1

−bj p
(j)
0

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

u0 −1

u0l1 u1 − l1
. . .

. . .
. . . −1

uj−1lj uj − lj

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

u0 −1

0 u1
. . .

. . .
. . . −1
0 uj

∣∣∣∣∣∣∣∣∣∣

=

j∏

k=0

uk.

This completes the proof. �

Corollary 3.4. Let J be a GJM associated with the functional S and let J = LU be
its LU−factorization of the form (3.1)–(3.3) and let Pnj+1

(λ) be polynomials of the first
kind associated with J. Then we have

(3.13) Pnj+1
(0) = ujuj−1 . . . uj−kPnj−k

(0), k ≤ j and j, k ∈ Z+.

Theorem 3.5. Let J be a monic generalized Jacobi matrix associated with the functional
S and let ℓj := nj+1 − nj ≥ 1, j ∈ Z+, where n0 = 0 and {nj}∞j=1 is the set of nor-
mal indices of the sequence s = {sj}∞j=0 and let Pnj

(λ) be polynomials of the first kind
associated with the sequence s = {sj}∞j=0. Then J admits the LU−factorization of the
form (3.1)–(3.3) if and only if

(3.14) Pnj
(0) 6= 0, for all j ∈ Z+.

Furthermore

(3.15) lj+1 = −bj+1

uj
, uj =

Pnj+1
(0)

Pnj
(0)

, u0 = p
(0)
0 , for all j ∈ Z+ .

Proof. Let Pnj
(0) 6= 0 for all j ∈ Z+ then by Lemma 3.3 the equalities (3.15) are

equivalent to the system (3.6). Consequently, by Lemma 3.2 the matrix J admits the
LU−factorization of the form (3.1)–(3.3). Conversely, let J admit the LU−factorization
of the form (3.1)–(3.3). Then by Lemma 3.3 Pnj

(0) 6= 0 for all j ∈ Z+. �

Remark 3.6. If ℓj = 1 for each j ∈ Z+, then the factorization (3.1)–(3.3) coincides with
the factorization in [3], (see [3], section 2).

Remark 3.7. If ℓj = 1 or ℓj = 2 for each j ∈ Z+, then factorization (3.1)–(3.3) coincides
with the LU−factorization in [10], (see [10], section 4).

Remark 3.8. If n1 = 1 (i.e. ℓ0 = 1), then Pn1
(λ) = det(λ − J[0,0]) = p(0)(λ) = λ + p

(0)
0

and by (2.3)

(3.16) Pn1
(λ) =

1

s0

∣∣∣∣
s0 s1
1 λ

∣∣∣∣ = λ− s1

s0
.

Due to Pn1
(0) 6= 0 see (3.14), we have p

(0)
0 = − s1

s0
6= 0 and by Lemma 3.3 u0 = − s1

s0
.
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Proposition 3.9. Let J and J̃ be GJM’s associated with the difference systems (2.4)

and (2.22), respectively. If J admits LU−factorization of the form (3.1)–(3.3) and p
(j)
0 =

p̃
(j)
0 , bj+1 = b̃j+1 for all j ∈ Z+. Then the matrix J̃ also admits LU−factorization of the

form (3.1)–(3.3).

Proof. This proof is clear, because by Theorem 3.5, we know Pnj
(0) 6= 0 for all j ∈ Z+

and n0 = 0, where Pnj
(λ) are polynomials of the first kind associated with the J. Using

Corollary 2.4, we obtain P̃ñj
(0) 6= 0 for all j ∈ Z+, where P̃ñj

(λ) are polynomials of the

first kind associated with the GJM J̃. From here the matrix J̃ satisfies Theorem 3.5, i.e.

J̃ = L̃Ũ, where the matrices L̃ and Ũ are defined by (3.1)–(3.3). �

3.2. Some properties of the Darboux transformation.

Theorem 3.10. Let J be a GJM associated with the functional S and let J = LU be
its LU−factorization of the form (3.1)–(3.3). Then the matrix J(p) = UL is a monic
generalized Jacobi matrix.

Proof. Consider the product UL of the matrices U and L

(3.17) UL =




U0A0 +D0L1 D0A1

U1L1 U1A1 +D1L2 D1A2

U2L2 U2A2 +D2L3
. . .

. . .
. . .




.

(i) In this part, we consider the case, when ℓj ≥ 2 for all j ∈ Z+. And we have the
following:

(3.18) Uj+1Lj+1 =




0 · · · 0 0
...

. . .
...

...
0 · · · 0 0
0 · · · 0 lj+1

0 · · · 0 0




, DjAj+1 =




0 0 · · · 0
...

... · · ·
...

0 0 · · · 0
1 0 · · · 0


 ,

where Uj+1Lj+1 and DjAj+1 are ℓj+1 × ℓj and ℓj × ℓj+1 matrices, respectively. The
blocks UjAj and DjLj+1 are ℓj × ℓj matrices, such that

(3.19) UjAj =




0 1 0 · · · 0

0 0 1
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 1 0

−p
(j)
1 · · · −p

(j)
ℓj−2 −p

(j)
ℓj−1 1

−uj 0 · · · 0 0




and DjLj+1 =



0 · · · 0
...

. . .
...

0 · · · 0


 .

So, the matrix J(p) = UL has the following form:

(3.20) J(p) = UL =




C0
p0

D0,0

B1,0 C1
p0

D0,1

B1,1 C0
p1

D1,0

B2,0 C1
p1

. . .

. . .
. . .




,
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where the blocks C0
pj

are (ℓj − 1)× (ℓj − 1) matrices, such that

(3.21) C0
pj

=




0 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1

−p
(j)
1 · · · −p

(j)
ℓj−2 −p

(j)
ℓj−1




,

and the blocks Dj,0, Bj+1,0 and Bj+1,1 are (ℓj − 1) × 1, 1 × (ℓj − 1) and (ℓj − 1) × 1
matrices, respectively

(3.22) Dj,0 =




0
...
0
1


 , Bj+1,0 =

(
−uj 0 · · · 0

)
, Bj+1,1 =




0
...
0

lj+1


 ,

(3.23) C1
pj

=
(
0
)
, Dj,1 =

(
1 0 0 · · · 0

)
are 1× (ℓj − 1) matrices, j ∈ Z+.

(ii) In this part, we consider the case, when ℓk−1 ≥ 2, ℓk = 1 and ℓk+1 ≥ 2, k ∈ N.
Then matrix J(p) has the following representation:

(3.24) J(p) = UL =




C0
p0

D0,0

B1,0 C1
p0

D0,1

. . .
. . .

. . .

Bk,0 C1
pk−1

Dk−1,1

Bk+1,1 C0
pk

Dk,0

Bk+2,1 C0
pk+1

Dk+1,0

. . .
. . .

. . .




,

where

(3.25)

(
C1
pk−1

Dk−1,1

Bk+1,1 C0
pk

)
=

(
lk 1

−uklk −uk

)
.

(iii) Next, we consider the case, when ℓk−1 ≥ 2, ℓk = . . . = ℓk+h = 1 and ℓk+h+1 ≥ 2,
h, k ∈ N. Then we have




C1
pk−1

Dk−1,1

Bk+1,1 C0
pk

. . .

. . . Dk+h−1,1

Bk+h+1,1 C0
pk+h



=




lk 1
−uklk lk+1 − uk 1

−uk+1lk+1 −uk+1
. . .

. . .
. . . 1

−uk+hlk+h −uk+h



.

(iv) In this case, we suppose ℓ0 = · · · = ℓk = 1 and ℓk+1 ≥ 2, k ∈ Z+. We obtain




C0
p0

D0,0

B1,0 C0
p1

. . .

. . . Dk−1,0

Bk,0 C0
pk



=




l1 − u0 1

−u1l1 l2 − u1
. . .

. . .
. . . 1

−uk−1lk−1 lk − uk−1 1
−uklk −uk



.

So, we have shown J(p) = UL is a monic generalized Jacobi matrix. This completes
the proof. �
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Remark 3.11. Let the moment sequence s(p) =
{
s
(p)
j

}
∞

j=0
be associated with the matrix

J(p). Let n1 > 1 and n
(p)
1 be the first nontrivial normal indexes of the moment sequences

s and s(p), respectively. Then

(3.26) n
(p)
1 = n1 − 1.

Definition 3.12. Define a functional λS by the formula

(3.27) (λS)(p) := S(λp(λ)), p(λ) is a polynomial .

Theorem 3.13. Let J be a monic generalized Jacobi matrix associated with the functional
S, such that (3.14) holds and let J = LU be its LU−factorization of the form (3.1)–(3.3).
Then the matrix J(p) = UL is associated with the functional

(3.28) S(p) =

{
λS, n1 > 1,

s0
s1
λS, n1 = 1.

Proof. In this proof we follow the relations from [10] (see Section 4, Theorem 4.2). Note
that s1 6= 0 if n1 = 1, see Remark 3.8. We divide the proof into two cases

(i) First of all, we consider the case, when n1 > 1. We note that

(3.29) LT
[0,j−1]e0 = e0, U[0,j−1]G[0,j−1]e0 = eℓ0−2, j ∈ N,

where the shortened matrices L[0,j−1], U[0,j−1] and G[0,j−1] are defined analogously
to (3.1) and (2.12). Calculating sk, we get for j large enough

(3.30)

S(λk) = sk =

[(
Jk[0,j−1]

)T
e0, e0

]

ℓ2
[0,nj−1]

=

(
G[0,j−1]

(
Jk[0,j−1]

)T
e0, e0

)

= (e0,L[0,j−1]U[0,j−1] . . .L[0,j−1]U[0,j−1]︸ ︷︷ ︸
k times

G[0,j−1]e0)

= (LT
[0,j−1]e0,U[0,j−1]L[0,j−1] . . .U[0,j−1]L[0,j−1]︸ ︷︷ ︸

k−1 times

U[0,j−1]G[0,j−1]e0).

Let G̃[0,j+n−1] be associated with the matrix J
(p)
[0,j+n−1], where n is the number of ℓh,

such that ℓh ≥ 2, 0 ≤ h ≤ j − 1, as is defined by (2.12). Then G̃[0,j+n−1]e0 = eℓ0−2.
Substituting (3.29) into (3.30), we obtain

sk =
(
e0,
(
U[0,j−1]L[0,j−1]

)k−1
eℓ0−2

)
=

(((
J
(p)
[0,j+n−1]

)k−1
)T

e0, G̃[0,j+n−1]e0

)

=

[((
J
(p)
[0,j+n−1]

)k−1
)T

e0, e0

]

ℓ2
[0,ñj−1]

= s
(p)
k−1 = (λS) (λk−1) = S(p)(λk−1),

the moment sequence
{
s
(p)
j

}
∞

j=0
is associated with the matrix J(p). By definition (3.27),

we obtain that functional λS is associated with matrix J(p) = UL.
(ii) Now we consider the case when n1 = 1. We note that

(3.31) LT
[0,j−1]e0 = e0, U[0,j−1]G[0,j−1]e0 = −u0e0, j ∈ N,

Let G̃[0,j+n−1] be associated with the matrix J
(p)
[0,j+n−1], where n is the number of ℓh,

such that ℓh ≥ 2, 0 < h ≤ j − 1. The matrix G̃[0,j+n−1] is defined by (2.12). Then

G̃[0,j+n−1]e0 = e0. Calculating sk, from (3.16), (3.29) and (3.30), we get
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S(λk) =
s1

s0

(((
J
(p)
[0,j+n−1]

)k−1
)T

e0, G̃[0,j+n−1]e0

)

=
s1

s0

[((
J
(p)
[0,j+n−1]

)k−1
)T

e0, e0

]

ℓ2
[0,ñj−1]

=
s1

s0
s
(p)
k−1 =

s1

s0
S(p)(λk−1),

(3.32)

the moment sequence
{
s
(p)
j

}
∞

j=0
is associated with the matrix J(p).

Hence s
(p)
k−1 = S(p)(λk−1) = s0

s1
λS(λk−1) and consequently, the functional s0

s1
λS is

associated with the matrix J(p) = UL. This completes the proof. �

Remark 3.14. The transformation S → S(p) = λS is called the Christoffel transforma-
tion of the functional S.

By Theorem 3.13 we have that the matrix J(p) = UL is associated with the moment
sequence s(p) = {sj+1}∞j=0. Define a set N (s(p)) of normal indices of the sequence s(p) by

(3.33) N (s(p)) =

{
n
(p)
j : d

(p)

n
(p)
j

6= 0

}
, where d

(p)

n
(p)
j

= det




s1 · · · s
n
(p)
j

· · · · · · · · ·
s
n
(p)
j

· · · s
2n

(p)
j

−1


 .

Proposition 3.15. Let N (s) be a set of normal indices associated with the monic gene-
ralized Jacobi matrix J and let J = LU be its LU−factorization of the form (3.1)–(3.3).
Let

(3.34) Pj(0) =
(−1)nj+2

dnj

∣∣∣∣∣∣

s1 · · · snj

· · · · · · · · ·
snj

· · · s2nj−1

∣∣∣∣∣∣
6= 0, for each j ∈ Z+.

Then

(3.35) N (s(p)) = N (s) ∪ {nj − 1 : j ∈ N ℓj−1 ≥ 2} .

Proof. (i) If n = nj for some j ∈ N, i.e. n ∈ N (s), then by (3.33) and (3.34) d
(p)
n 6= 0.

Therefore

(3.36) N (s) ⊆ N (s(p)).

(ii) Assume that n ∈ N (s(p))\N (s). Then d
(p)
n 6= 0 and dn = 0 and by ([8], see

Lemma 5.1 [item 1]) dn+1 6= 0. Therefore n+1 = nj for some j ∈ N and thus n = nj − 1.
Moreover, ℓj−1 = nj − nj−1 ≥ 2. This proves that

(3.37) n ∈ N (s(p))\N (s) = {nj − 1 : j ∈ N, ℓj−1 ≥ 2} .
Conversely, if n = nj − 1 and ℓj−1 ≥ 2, then

dnj−1
6= 0, dnj−1+1 = 0, · · · dnj−1 = 0, dnj

6= 0

and hence nj − 1 6∈ N (s). Assuming that d
(p)
nj−1 = 0 one obtain from ([8], see Lemma 5.1

[item 2]) that d
(p)
nj−1 = 0, which contradicts to the inclusion (3.36). This completes the

proof. �

Remark 3.16. LetN (s) andN (s(p)) be sets of normal indices associated with the matrices
J = LU and J(p) = UL, respectively. If ℓj−1 = nj − nj−1 ≥ 2, n0 = 0 and j ∈ N, then

(3.38) N (s(p)) = {n1 − 1, n1, n2 − 1, n2, . . .} .
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Remark 3.17. LetN (s) andN (s(p)) be sets of normal indices associated with the matrices
J = LU and J(p) = UL, respectively. If ℓj−1 = nj − nj−1 = 1, n0 = 0 and j ∈ N, then

(3.39) N (s) = N (s(p)).

Proposition 3.18. Let J be a monic generalized Jacobi matrix satisfying (3.14) and let
J = LU be its LU−factorization of the form (3.1)–(3.3). Let m(λ) and m(p)(λ) be the
m−functions of matrices J and J(p), respectively. Then

(3.40) m
(p)
[0,j+n−1](λ) =

{
λm[0,j−1](λ), n1 > 1,

s0
s1

(
λm[0,j−1](λ) + s0

)
, n1 = 1,

where n is the number of ℓi of matrix J, such that ℓi ≥ 2 and i = 0, j − 1.

Proof. Let n be the number of ℓi ≥ 2, where i = 0, j − 1 and let G̃[0,j+n−1] be associated

with the matrix J
(p)
[0,j+n−1]. It is defined by (2.12).

(i) Let n1 > 1. Then s0 = 0, G̃[0,j+n−1]e0 = eℓ0−2 and the equalities (3.29) hold.
Calculating

λ

m[0,j−1](λ) = λ

[(
JT[0,j−1] − λ

)
−1

e0, e0

]
= −

[
(JT[0,j−1] − λ)

(
JT[0,j−1] − λ

)
−1

e0, e0

]

+

[
JT[0,j−1]

(
JT[0,j−1]−λ

)
−1

e0, e0

]
=−s0+

[(
JT[0,j−1]−λ

)
−1

e0, J[0,j−1]e0

]

=

((
JT[0,j−1] − λ

)
−1

e0,L[0,j−1]U[0,j−1]G[0,j−1]e0

)

=
(
e0,
(
L[0,j−1]U[0,j−1] − λ

)
−1

L[0,j−1]eℓ0−2

)

=
(
e0,L[0,j−1]

(
U[0,j−1]L[0,j−1] − λ

)
−1

eℓ0−2

)

=

(((
J
(p)
[0,j+n−1]

)T
− λ

)
−1

e0, G̃[0,j+n−1]e0

)
= m

(p)
[0,j+n−1](λ).

(ii) Now we consider the case when n1 = 1. Then G̃[0,j+n−1]e0 = e0 and the equalities
(3.31) hold. Computing

λm[0,j−1](λ) = λ

[(
JT[0,j−1] − λ

)
−1

e0, e0

]
= −s0+

[(
JT[0,j−1]−λ

)
−1

e0, J[0,j−1]e0

]

= −s0 +

((
JT[0,j−1] − λ

)
−1

e0,L[0,j−1]U[0,j−1]G[0,j−1]e0

)

= −s0 +
s1

s0

(
e0,
(
L[0,j−1]U[0,j−1] − λ

)
−1

L[0,j−1]e0

)

= −s0 +
s1

s0

(
e0,L[0,j−1]

(
U[0,j−1]L[0,j−1] − λ

)
−1

e0

)

= −s0 +
s1

s0

(((
J
(p)
[0,j+n−1]

)T
− λ

)
−1

e0, G̃[0,j+n−1]e0

)

= −s0 +
s1

s0
m

(p)
[0,j+n−1](λ).

Thus, we have

m
(p)
[0,j+n−1](λ) =

s0

s1

(
λm[0,j−1](λ) + s0

)
.

So, the formula (3.40) is proved. This competes the proof. �
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Theorem 3.19. Let J be a monic generalized Jacobi matrix satisfying (3.14) and let
J = LU be its LU−factorization of the form (3.1)–(3.3). Let J(p) = UL be its Darboux
transformation and let

(3.41) J(p)P(p)(λ) = λP(p)(λ),

where P(p)(λ) =
(
P

(p)
0 (λ), P

(p)
1 (λ), . . .

)T
. Then

P
(p)
nj−1(λ) =

1

λ

(
Pnj

(λ)− Pnj
(0)

Pnj−1
(0)

Pnj−1
(λ)

)
, j ∈ N,

P
(p)
nj+k(λ) = λkPnj

(λ), 0 ≤ k ≤ ℓj − 2 and j ∈ Z+.

(3.42)

Proof. First of all, we introduce the following polynomials:

P(p)(λ) =
1

λ
UP(λ) =

1

λ




P1(λ)
...

Pn1−1(λ)
Pn1

(λ)− u0Pn0
(λ)

Pn1+1(λ)
...

Pn2−1(λ)
Pn2

(λ)− u1Pn1
(λ)

...




=
1

λ




λP0(λ)
...

λℓ0−1P0(λ)

Pn1
(λ)− Pn1

(0)

Pn0
(0)Pn0

(λ)

λPn1
(λ)

...
λℓ1−1Pn1

(λ)

Pn2
(λ)− Pn2

(0)

Pn1
(0)Pn1

(λ)

...




.

Therefore
J(p)P(p)(λ) = λP(p)(λ),

because

J(p)P(p)(λ) = ULU
1

λ
P(λ) =

1

λ
UJP(λ) = λ(

1

λ
UP(λ)) = λP(p)(λ).

From here, we obtain that the polynomials P
(p)
i (λ) can be represented by the for-

mula (3.42), for all i ∈ Z+. This completes the proof. �

Remark 3.20. If ℓj = 1 for all j ∈ Z+, then

(3.43) P
(p)
nj

(λ) =
1

λ

(
Pnj+1

(λ)− Pnj+1
(0)

Pnj
(0)

Pnj
(λ)

)

is a Christoffel formula (see [22]).

Remark 3.21. If at least one ℓj ≥ 2, then the formula (3.42) is a special case of Christoffel
formula (see [22]).

Theorem 3.22. Let J be a monic generalized Jacobi matrix satisfying (3.14) and let
J = LU be its LU−factorization of the form (3.1)–(3.3). Let J(p) = UL be its Darboux
transformation and let

(3.44) (J(p) − λ)Q(p)(λ) = Θℓ0−1,

where Q(p)(λ) =
(
Q

(p)
0 (λ), Q

(p)
1 (λ), . . .

)T
, Θℓ0−1 = (0, . . . , 0, 1︸ ︷︷ ︸

ℓ0−1

, 0 . . .). Then

Q
(p)
nj−1(λ) = Qnj

(λ)− Pnj
(0)

Pnj−1
(0)

Qnj−1
(λ), j ∈ N,

Q
(p)
nj+k(λ) = λk+1Qnj

(λ), 0 ≤ k ≤ ℓj − 2 and j ∈ Z+.

(3.45)
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Proof. Setting

Q(p)(λ) = UQ(λ) =




Q1(λ)
...

λℓ0−1Q0(λ)(λ)

Qn1
(λ)− Pn1

(0)

Pn0
(0)Qn0

(λ)

λQn1
(λ)

...
λℓ1−1Qn1

(λ)

Qn2
(λ)− Pn2

(0)

Pn1
(0)Qn1

(λ)

...




.

Using (J− λ)Q(λ) = Θℓ0 , we obtain

U(LU− λ)Q(λ) = (ULU− λU)Q(λ) = (UL− λ)UQ(λ)

= (J(p) − λ)Q(p)(λ) = UΘℓ0 = Θℓ0−1.

So, the formula (3.45) is proved. This completes the proof. �

Definition 3.23. In the next theorem we use index κ(a), a ∈ N. It is defined by

(3.46) κ(a) =

{
1, a = 1,
2, a ≥ 2.

Proposition 3.24. Let J and J̃ be monic generalized Jacobi matrices associated with the

functionals S and S̃, respectively. Let J = LU be its LU−factorization of the form (3.1)–

(3.3). If κ(ℓj) = κ(ℓ̃j), p
(j)
0 = p̃

(j)
0 and bj+1 = b̃j+1, where p

(j)
0 , bj+1 and p̃

(j)
0 , b̃j+1 are

elements of matrices J and J̃, respectively, for all j ∈ Z+. Then P
(p)
nj

(0) = P̃
(p)
ñj

(0), where

P
(p)
nj

(λ) and P̃
(p)
ñj

(λ) are polynomials of the first kind associated with the matrices J(p)

and J̃(p), respectively, for all j ∈ Z+ and ñ0 = n0 = 0.

Proof. By Proposition 3.9, J̃ admits LU−factorization of the form (3.1)–(3.3) and by

Theorem 3.10, the matrix J̃(p) exists. Due to κ(ℓj) = κ(ℓ̃j) for all j ∈ Z+ and using

Corollary 2.4, we have P
(p)
nj

(0) = P̃
(p)
ñj

(0), where P
(p)
nj

(λ) and P̃
(p)
ñj

(λ) are polynomials of

the first kind associated with the matrices J(p) and J̃(p), respectively, for all j ∈ Z+ and
ñ0 = n0 = 0. This completes the proof. �

4. Darboux transformation with a shift

In this section we study the Darboux transformation with shift α, which may be
more comfortable for calculation. It helps us to construct factorization of GJM J, when
Pnj

(0) = 0 for some j ∈ N.
Setting λ := λ+α in (2.4) and (2.5), we obtain the system of difference equations for

all j ∈ Z+

(4.1) bjynj−1
(λ+ α)− pj(λ+ α)ynj

(λ+ α) + ynj+1
(λ+ α) = 0 (b0 = ε0).

The solutions of the system (4.1) are polynomials Pnj
(λ+α) and Qnj

(λ+α). The system
(4.1) is associated with the following initial conditions:

(4.2) Pn
−1
(λ+ α) ≡ 0, Pn0

(λ+ α) ≡ 1, Qn
−1
(λ+ α) ≡ − 1

b0
, Qn0

(λ+ α) ≡ 0.

Denote P̃nj
(λ) := Pnj

(λ+ α), Q̃nj
(λ) := Qnj

(λ+ α) and p̃j(λ) := pj(λ+ α).
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Lemma 4.1. Let J be a GJM corresponding to the functional S and let

(4.3) Aα = diag
(
Cp0

− Cp̃0
,Cp1

− Cp̃1
, . . .

)
,

where Cpj
and Cp̃j

are companion matrices associated with the polynomials pj(λ) and

p̃j(λ), respectively. Then the GJM J−Aα corresponds to the functional

(4.4) S̃(p(λ)) := S(p(λ− α)).

If s̃ is a moment sequence associated with S̃ via (1.1), then the corresponding set N (s̃) of

normal indices coincides with N (s) and
{
P̃nj

(λ)
}
∞

j=0
is the sequence of quasi - orthogonal

polynomials with respect to S̃.

Proof. It follows from (2.7) and (4.3) that the matrix J−Aα is the GJM,

(4.5) J−Aα =



Cp̃0

D0

B1 Cp̃1
D1

. . .
. . .

. . .




is associated with the sequence of polynomials p̃j and numbers bj . Thus, the system
(4.1) is associated with the matrix J−Aα. Consequently, (4.4) holds and N (s) = N (s̃).

Due to P̃nj
(λ) = Pnj

(λ+α) and (4.4),
{
P̃nj

(λ)
}
∞

j=0
is the sequence of quasi - orthogonal

polynomials with respect to S̃. This completes the proof. �

Note, if n1 = 1, then s0 = S(1) = S̃(1) = s̃0 and P̃n1
(λ) = Pn1

(λ+ α) = λ+ α − s1
s0
,

see Remark 3.8. On the other hand

(4.6) P̃n1
(λ) =

1

s0

∣∣∣∣
s0 s̃1
1 λ

∣∣∣∣ = λ− s̃1

s0
,

therefore P̃n1
(0) = − s̃1

s0
= α− s1

s0
. This implies s̃1 = s1 − αs0.

Theorem 4.2. Let α ∈ R be such that

(4.7) Pnj
(α) 6= 0, j ∈ Z+.

Then the GJM J−Aα admits the LU−factorization of the form (3.1)–(3.3)

(4.8) T = J−Aα = LU

and the corresponding Darboux transform T (p) = UL corresponds to the functional

(4.9) S̃(p) =

{
λS̃, n1 > 1,

s0
s1−αs0

λS̃, n1 = 1.

Furthermore, if ñ
(p)
j and p̃

(p)
j (λ) are normal indices and generating polynomials of T (p)

and

(4.10) A(p)
α = diag

(
C
p
(p)
0

− C
p̃
(p)
0

,C
p
(p)
1

− C
p̃
(p)
1

, . . .
)
,

where C
p̃
(p)
j

and C
p
(p)
j

are companion matrices associated with the polynomials p̃
(p)
j (λ) and

p
(p)
j (λ) := p̃

(p)
j (λ− α), respectively. Then

(4.11) J(p) = UL+A(p)
α

is a GJM corresponding to the functional

(4.12) S(p)(p(λ)) =

{
S((λ− α)p(λ)), n1 > 1,

s0
s1−αs0

S((λ− α)p(λ)), n1 = 1.
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Proof. By Theorem 3.5 T = J − Aα admits LU−factorization of the form (3.1)–(3.3)
and by Theorem 3.10 T (p) = UL is the GJM. The relation between functionals in (4.9)
follows from Theorem 3.13 and relation (4.12) follows from Lemma 4.1 and (4.9). �

Theorem 4.3. Suppose that the assumptions of Theorem 4.1 hold. Let Pnj
(λ), P

(p)

n
(p)
j

(λ)

and Qnj
(λ), Q

(p)

n
(p)
j

(λ) be polynomials of the first and the second kind of matrices J and

J(p) = UL+A
(p)
α , respectively. Then

(4.13)
P

(p)
nj−1(λ) =

1

λ− α

(
Pnj

(λ)− Pnj
(α)

Pnj−1
(α)

Pnj−1
(λ)

)
, j ∈ N,

P
(p)
nj+k(λ) = λkPnj

(λ), 0 ≤ k ≤ ℓj − 2 and j ∈ Z+.

(4.14)
Q

(p)
nj−1(λ) = Qnj

(λ)− Pnj
(α)

Pnj−1
(α)

Qnj−1
(λ), j ∈ N,

Q
(p)
nj+k(λ) = λk+1Qnj

(λ), 0 ≤ k ≤ ℓj − 2 and j ∈ Z+.

Proof. The matrix J is associated with the system of difference equations (2.4). By
Lemma 4.1 T = J−Aα = LU is associated with the system of difference equations (4.1)
and by Theorem 4.2 T (p) = UL is associated with the following system of difference
equations for all j ∈ Z+

(4.15) c
(p)
j y

n
(p)
j−1

(λ)− p̃
(p)
j (λ)y

n
(p)
j

(λ) + y
n
(p)
j+1

(λ) = 0 (c
(p)
0 = ε

(p)
0 ).

The solutions of the system (4.15) are polynomials P̃
(p)

n
(p)
j−1

(λ) and Q̃
(p)

n
(p)
j−1

(λ). By Theo-

rem 3.19 and Theorem 3.22

(4.16)

P̃
(p)
nj−1(λ) =

1

λ

(
Pnj

(λ+ α)− Pnj
(α)

Pnj−1
(α)

Pnj−1
(λ+ α)

)
, j ∈ N,

P
(p)
nj+k(λ) = λkPnj

(λ+ α), 0 ≤ k ≤ ℓj − 2 and j ∈ Z+,

Q̃
(p)
nj−1(λ) = Qnj

(λ+ α)− Pnj
(α)

Pnj−1
(α)

Qnj−1
(λ+ α), j ∈ N,

Q
(p)
nj+k(λ) = λk+1Qnj

(λ+ α), 0 ≤ k ≤ ℓj − 2 and j ∈ Z+.

On the other hand, the matrix J = UL+A
(p)
α is associated with the system of difference

equations for all j ∈ Z+

(4.17) c
(p)
j y

n
(p)
j−1

(λ− α)− p̃
(p)
j (λ− α)y

n
(p)
j

(λ− α) + y
n
(p)
j+1

(λ− α) = 0 (c
(p)
0 = ε

(p)
0 ),

where the solutions of system (4.17) are polynomials

(4.18) P
(p)

n
(p)
j−1

(λ) := P̃
(p)

n
(p)
j−1

(λ− α) and Q
(p)

n
(p)
j−1

(λ) := Q̃
(p)

n
(p)
j−1

(λ− α).

Substituting (4.18) into (4.16) we obtain (4.13) and (4.14). This completes the proof. �

5. Example

5.1. Example 1. Recall that the class N−∞ consists of holomorphic functions F on C+,
such that ImF (λ) ≥ 0 for all λ ∈ C+ and F admits the following asymptotic expansion:

(5.1) F (λ) = −s0

λ
− s1

λ2
· · · − s2n

λ2n+1
+ o

(
1

λ2n+1

)
, λ→̂∞,
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with sj ∈ R for all j ∈ Z+, where λ→̂∞ means that λ tends to ∞ nontangentially, that
is inside the sector ε < arg λ < π − ε for some ε > 0. Every function F ∈ N−∞ admits
the J–fraction expansion

(5.2) F (λ) ∼ − b0

λ− c0 −
b1

λ− c1 −
b2

. . .

= − b0

λ− c0

b1

λ− c1

b2

λ− c2
· · · .

Next, we construct the function F (λ3) with the following asymptotic expansion:

(5.3) F (λ3) = − s0

λ3
− s1

λ6
· · · − s2n

λ2n+1
− · · · = − s̃0

λ
− s̃1

λ2
· · · − s̃2n

λ2n+1
− · · · , λ→̂∞,

where s̃3j−1 = sj and s̃j = 0 otherwise. The expansion (5.3) can be rewritten as the
P−fraction (see [17])

(5.4) F (λ3) ∼ − b0

λ3 − c0

b1

λ3 − c1

b2

λ3 − c2
· · · .

The function F (λ3) is associated with the monic generalized Jacobi matrix J

(5.5) J =




Cp0
D0

B1 Cp1
D1

B2 Cp2

. . .

. . .
. . .




,

where

(5.6) Cpj
=




0 1 0
0 0 1
cj 0 0


 , Dj=



0 0 0
0 0 0
1 0 0


 and Bj+1=




0 0 0
0 0 0

bj+1 0 0


 , j ∈ Z+.

Let us assume that the polynomials of the first kind Pnj
(λ) associated with the matrix

J do not vanish at α, i.e. Pnj
(α) 6= 0 for all j ∈ Z+.

Next, we introduce the following diagonal block matrix:

(5.7) Aα = diag
(
Cp0

− Cp̃0
, Cp1

− Cp̃1
, . . .

)
,

where Cp̃j
is a companion matrix of the monic polynomial

(5.8) p̃j(λ) := pj(λ+ α) = λ3 + 3αλ2 + 3α2λ+ α3 + cj .

Then by Theorem 4.2 a GJM T = J − Aα admits the LU–factorization (T = LU),
where

(5.9) L =




A0 0

L1 A1
. . .

. . .
. . .


 and U =




U0 D0

0 U1
. . .

. . .
. . .


 ,

where the blocks Aj , Dj , Lj+1, Uj take the form (see (3.2)–(3.3))

(5.10) Aj=




1 0 0
0 1 0

−3α2 −3α 1


, Lj+1=



0 0 0
0 0 0

0 0 − bj+1

uj


, Dj=



0 0 0
0 0 0
1 0 0


, Uj=




0 1 0
0 0 1

−uj 0 0


,
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where −u0 = c0 − α3 and −ui − bi
ui−1

= ci − α3, i ∈ N, (see (3.6)). Then T (p) = UL and

(5.11) T (p) =




C̃0
0 D0,0

B1,0 C̃1
0 D0,1

B1,1 C̃0
1

. . .

. . .
. . .




,

where

C̃0
j =

(
0 1

−3α2 −3α

)
, Dj,0 =

(
0
1

)
, Bj+1,1 =

(
0

− bj+1

uj

)
,

Bj+1,0 =
(
−uj 0

)
, C̃1

j = (0), Dj,1 =
(
1 0

)
, j ∈ Z+.

(5.12)

Let ã0j , ã
1
j be polynomials associated with the matrices C̃0

j and C̃1
j , respectively, i.e.

ã0j (λ) = λ2 +3αλ+3α2 and ã1j (λ) = λ, for all j ∈ Z+. Let us introduce the polynomials

a0j (λ) := ã0j (λ− α) = λ2 + αλ+ α2 and a1j (λ) := ã1j (λ− α) = λ− α, j ∈ Z+. Denote the

companion matrices of a0j , a
1
j by

(5.13) C0
j =

(
0 1

−α2 −α

)
and C1

j =
(
α
)
, for all j ∈ Z+

and let the matrix A
(p)
α is given by

(5.14) A(p)
α = diag

(
C0
0 − C̃0

0, C1
0 − C̃1

0, . . .

)
.

Then the Darboux transformation of J with the shift α takes the form (see (4.11))

(5.15) J(p) = T (p) +A(p)
α =




C0
p0

D0,0

B1,0 C1
p0

D0,1

B1,1 C0
p1

. . .

. . .
. . .




.

By Theorem 4.2 see (4.12), the moment sequence s(p) =
{
s
(p)
j

}
∞

j=0
is associated with

the matrix J(p) and

(5.16) s
(p)
j = S(p)(λj) = S((λ− α)λj) = S(λj+1)− αS(λj) = s̃j+1 − αs̃j .

On the other hand, we can rewrite s
(p)
j as follows:

(5.17) s
(p)
3j = 0, s

(p)
3j+1 = sj , s

(p)
3j+2 = −αsj , j ∈ Z+.

Consequently, the function F (p)(λ) associated with the matrix J(p) has the following
representation:

(5.18) F (p)(λ) = (λ− α)F (λ3).

5.2. Example 2. This example is a special case of Example 1. We consider the monic
Chebyshev-Hermite polynomials {Hk(λ)}∞k=0 and study the Darboux transformation
with a shift of monic generalized Jacobi matrix J associated with {Hk(λ

3)}∞k=0.

Let s = {sj}∞j=0 be a moment sequence corresponding to the measure e−t2dt on R, i.e.

(5.19) s0 =
√
π, s2j =

√
π

2j
(2j − 1)!! and s2j−1 = 0, j ∈ N.

Then the corresponding recurrence relation takes the form

(5.20) λHj(λ) = Hj+1(λ) +
k

2
Hj−1(λ) for j ∈ Z+
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and the corresponding polynomials of the first kind coincide with the monic Chebyshev-
Hermite polynomials

(5.21) Hj(λ) =
(−1)j

2j
eλ

2 dj

dλj

(
e−λ2

)
for all j ∈ Z+,

where x ∈ (−∞,+∞) and these polynomials are orthogonal in L2(R, w(λ)) with the

weight function w(λ) = e−λ2

.
Consider the sequence of polynomials {Hj(λ

3)}∞j=0 which satisfy the recurrence rela-
tion

(5.22) λ3Hj(λ
3) = Hj+1(λ

3) +
k

2
Hj−1(λ

3) for j ∈ Z+.

The polynomials {Hj(λ
3)}∞j=0 are polynomials of the first kind associated with the monic

generalized Jacobi matrix J defined by (5.5)–(5.6).
Then the moment sequence s̃ = {s̃j}∞j=0 associated with the matrix J takes the form

(5.23) s̃3j = s̃3j+1 = 0, s̃3j+2 = sj , j ∈ Z+.

This GJM J does not admit the Darboux transformation of the form (3.1)–(3.3), since
H1(λ

3) = λ3 and hence the assumption (3.14) does not hold (H1(0) = 0). Let us choose
α ∈ R such that

(5.24) Hj(α
3) 6= 0, j ∈ Z+

and let Aα be a diagonal block matrix introduced in (5.7). Then the GJM J−Aα admits
the factorization J − Aα = LU (5.9)–(5.10). Consider the Darboux transformation J(p)

of J with the shift α

(5.25) J(p) −A(p)
α = UL

determined by (5.11)–(5.15).
Using Example 1, consider the Darboux transformation of J with a shift α, we obtain

the matrix J(p) which is defined by (5.15).

By Theorem 4.3 the polynomials
{
P

(p)
j (λ)

}
∞

j=0
of the first kind associated with the

matrix J(p) are given by

P
(p)
3j (λ) = Hj(λ

3), P
(p)
3j+1(λ) = λHj(λ

3),

P
(p)
3j+2(λ) =

1

λ− α

(
Hj+1(λ

3)− Hj+1(α)

Hj(α)
Hj(λ

3)

)
, j ∈ Z+.

(5.26)
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