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WITH DISTRIBUTIONAL POTENTIALS

VLADIMIR MIKHAILETS AND VOLODYMYR MOLYBOGA

Dedicated to Professor V. M. Adamyan on the occasion of his 75 birthday

Abstract. The paper studies the Hill–Schrödinger operators with potentials in the

space Hω
⊂ H−1 (T,R). The main results completely describe the sequences that

arise as lengths of spectral gaps of these operators. The space Hω coincides with

the Hörmander space Hω

2 (T,R) with the weight function ω(
√

1 + ξ2) if ω belongs
to Avakumovich’s class OR. In particular, if the functions ω are power, then these
spaces coincide with the Sobolev spaces. The functions ω may be nonmonotonic.

1. Introduction

Let us consider the Hill–Schrödinger operator

(1) S(q)u := −u′′ + q(x)u, x ∈ R,

with the 1-periodic real-valued potential

q(x) =
∑

k∈Z

q̂(k)eik2πx ∈ L2(T,R), T := R/Z.

This condition means that
∑

k∈Z

|q̂(k)|2 < ∞ and q̂(k) = q̂(−k), k ∈ Z.

It is well known that the operator S(q) is lower semibounded and self-adjoint in the
Hilbert space L2(R). Its spectrum is absolutely continuous and has a zone structure [22].

Spectrum of the operator S(q) is completely defined by locations of the endpoints of
the spectral gaps {λ0(q), λ

±
n (q)}

∞
n=1, which satisfy the inequalities

(2) −∞ < λ0(q) < λ−

1 (q) ≤ λ+
1 (q) < λ−

2 (q) ≤ λ+
2 (q) < · · ·

Some gaps may be degenerate, then the corresponding bands merge. For even/odd
numbers n ∈ Z+, the endpoints of the spectral gaps {λ0(q), λ

±
n (q)}

∞
n=1 are eigenvalues of

the periodic/semiperiodic problems on the interval (0, 1).
The interiors of the spectral bands (the stability zones),

B0(q) := (λ0(q), λ
−

1 (q)), Bn(q) := (λ+
n (q), λ

−

n+1(q)), n ∈ N,

together with the collapsed gaps,

λ = λ−
ni

= λ+
ni
,

are characterized as the set of those λ ∈ R for which all solutions of the equation

(3) −u′′ + q(x)u = λu, x ∈ R,

2010 Mathematics Subject Classification. Primary 34L40; Secondary 47A10, 47A75.
Key words and phrases. Hill–Schrödinger operator, singular potential, spectral gap, Hörmander
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are bounded on R. The open spectral gaps (the instability zones),

G0(q) := (−∞, λ0(q)), Gn(q) := (λ−
n (q), λ

+
n (q)) 6= ∅, n ∈ N,

form a set of those λ ∈ R for which any nontrivial solution of the equation (3) is un-
bounded on R.

We study the behavior of the lengths of the spectral gaps,

γq(n) := λ+
n (q)− λ−

n (q), n ∈ N,

of the operator S(q) in terms of behavior of the Fourier coefficients {q̂(n)}n∈N of the
potential q with respect to test sequence spaces, that is in terms of potential regularity.

Hochstadt [6, 7], Marchenko and Ostrovskii [14], McKean and Trubowitz [12, 23]
proved that the potential q is an infinitely differentiable function if and only if the lengths
of spectral gaps {γq(n)}

∞
n=1 decrease faster than an arbitrary power of 1/n,

q ∈ C∞(T) ⇔ γq(n) = O(n−k), n → ∞, k ∈ Z+.

However, the scale of spaces
{
Ck(T)

}
k∈N

turned out to be unsuitable to obtain precise

quantitative results. Marchenko and Ostrovskii [14] (see also [13, 11]) found that

(4) q ∈ Hs(T) ⇔ {γq(n)}n∈N ∈ hs(N), s ∈ Z+.

The Sobolev spaces Hs(T), s ∈ R, of 1-periodic functions/generalized functions may
also be defined by means of their Fourier coefficients

Hs(T) =
{
f =

∑

k∈Z

f̂ (k)eik2πx ∈ D (T)
∣∣∣ ‖f‖2Hs(T) :=

∑

k∈Z

(1 + |k|)2s|f̂(k)|2 < ∞
}
.

Here by D(T) we denote the space of 1-periodic generalized functions on T.
We define the weighted sequence spaces hs(N), s ∈ R, in the following way:

hs(N) :=
{
a = {a(k)}k∈N

∣∣∣ ‖a‖2hs(N) :=
∑

k∈N

(1 + |k|)2s|a(k)|2 < ∞
}
.

Marchenko–Ostrovskii theorem (4) can be extended to a more general scale of Hör-
mander spaces {Hω(T)}ω [1, 2, 21, 17, 18], where ω = {ω(k)}k∈Z is a weighted sequence.
Recall that a sequence a = {a(k)}k∈Z is called a weight or weighted sequence if it is
positive and even, i. e., a(k) ≥ 0 a(−k) = a(k) for k ∈ Z+.

However, a complete description of the sequences that form lengths of the gaps with
potentials from a given functional class, in particular the Hörmander space or the Sobolev
space, remained an open question. This paper deals with this issue in a more general
situation of distributional potentials.

2. Main results

Let us start with necessary notations. The spaces Hω(T) and hω(N) are defined
similarly to the spaces Hs(T) and hs(N)

Hω(T) :=
{
f =

∑

k∈Z

f̂ (k)eik2πx ∈ D (T)
∣∣∣ ‖f‖2Hω(T) :=

∑

k∈Z

ω2(k)|f̂(k)|2 < ∞
}
,

hω(N) :=
{
a = {a(k)}k∈N

∣∣∣ ‖a‖2hω(N) :=
∑

k∈N

ω2(k)|a(k)|2 < ∞
}
.

We say that a weighted sequence ω = {ω(k)}k∈Z belongs to the class I0, if it satisfies
the following condition:

|k|s ≪ ω(k) ≪ |k|1+s, s ∈ [0,∞).

The notation

b(k) ≪ a(k) ≪ c(k), k ∈ N,
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means that there are positive constants C1 and C2 such that the following inequalities
hold:

C1b(k) ≤ a(k) ≤ C2c(k), k ∈ N.

We say that a weighted sequence ω = {ω(k)}k∈Z belongs to the class M0, if it satisfies
the following conditions:

(i) ω(k) ↑ ∞, k ∈ N (monotonicity);

(ii) ω(k +m) ≤ ω(k)ω(m), k,m ∈ N (submultiplicity);

(iii)
logω(k)

k
↓ 0, k → ∞ (subexponentiality).

Suppose that a weighted sequence ω = {ω(k)}k∈Z belongs either to the class I0 or to
the class M0. Then

(5) q ∈ Hω(T) ⇔ {γq(n)}n∈N ∈ hω(N).

The statement (5) for the case where ω ∈ I0 was proved by the authors [18], and the case
M0 was closely studied in [1, 21].

The statement (5) may be strengthened. It is well-known that the sequence of lengths
of spectral gaps {γq(n)}n∈N of the Hill–Schrödinger operator S(q) with an L2(T)-potential
q belongs to the space

h0
+(N) :=

{
a = {a(k)}k∈N ∈ l2(N) | a(k) ≥ 0, k ∈ N

}
.

Let us consider the map

γ : L2(T) ∋ q 7→ {γq(n)}n∈N ∈ h0
+(N).

Then, due to Garnett and Trubowitz [4, 5],

γ
(
L2(T)

)
= h0

+(N).

We introduce the following notations:

hω
+(N) := {a = {a(k)}k∈N ∈ hω(N) | a(k) ≥ 0, k ∈ N} .

Theorem 1. Suppose that q ∈ L2(T) and that either ω ∈ I0 or ω ∈ M0. Then the map

γ : L2(T) ∋ q 7→ {γq(n)}n∈N ∈ h0
+(N)

satisfies the relations

(i) γ (Hω(T)) = hω
+(N),

(ii) γ−1
(
hω
+(N)

)
= Hω(T).

Now let us consider the Hill–Schrödinger operator S(q) with a 1-periodic real-valued
distribution potential q that belongs to the negative Sobolev space,

(6) q =
∑

k∈Z

q̂(k)eik2πx ∈ H−1(T).

All real-valued pseudo-functions, measures, pseudo-measures and some more singular dis-
tributions on the circle satisfy this condition. For a more detailed discussion of operators
with strongly singular potentials see [8] and references therein.

Under the assumption (6) the operator (1) may be well defined on the complex Hilbert
space L2(R) in the following basic ways:

• as form-sum operator;
• as quasi-differential operators;
• as limit of operators with smooth 1-periodic potentials in the norm resolvent
sense.
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Equivalence of all these definitions was proved in the paper [15], a more general case was
treated in [19].

The Hill–Schrödinger operator S(q) with strongly singular potential q is lower semi-
bounded and self-adjoint, its spectrum is absolutely continuous and has a band and
gap structure as in the classical case [9, 10, 15, 3, 20]. The endpoints of the spectral
gaps satisfy inequalities (2). For even/odd numbers n ∈ Z+, they are eigenvalues of
periodic/semiperiodic problems on the interval [0, 1] [15, Theorem C].

We say that a weighted sequence ω = {ω(k)}k∈Z belongs to I−1, if it satisfies the
following conditions:

(i) ω(k) = (1 + |k|)−1, s = 1,

(ii) |k|s ≪ ω(k) ≪ |k|1+2s−δ ∀δ > 0, s ∈ (−1, 0),

(iii) |k|s ≪ ω(k) ≪ |k|1+s, s ∈ [0,∞).

We say that a weighted sequence ω = {ω(k)}k∈Z belongs to M−1, if it can be repre-
sented as

ω(k) =
ω∗(k)

1 + |k|
, k ∈ Z, ω∗ = {ω∗(k)}k∈Z ∈ M0.

Suppose that a weighted sequence ω = {ω(k)}k∈Z belongs either to the class I−1, or
to the class M−1. Then

(7) q ∈ Hω(T) ⇔ {γq(n)}n∈N ∈ hω(N).

The statement (7) for the case ω ∈ I−1 is proved below (in a weaker form, this assertion
was proved earlier by the authors [17]), also for the case ω ∈ M−1 the statement (7) was
proved in [2]. Note that I0 and M0, as well as I−1 and M−1, intersect, but do not cover
each other.

Let us consider the map γ : q 7→ {γq(n)}n∈N. Then, according to Korotyaev [10,

Theorem 1.1], the map γ maps H−1(T) onto h−1
+ (N),

(8) γ(H−1(T)) = h−1
+ (N).

Theorem 2. Suppose that q ∈ H−1(T) and that either ω ∈ I−1 or ω ∈ M−1. Then the

map

γ : H−1(T) ∋ q 7→ {γq(n)}n∈N ∈ h−1
+ (N)

satisfies following:

(i) γ (Hω(T)) = hω
+(N),

(ii) γ−1
(
hω
+(N)

)
= Hω(T).

3. Proofs

Proof of Theorem 1. Due to Garnett and Trubowitz [4, 5] it occurs that for any sequence
{γ(n)}n∈N ∈ h0

+(N) we can place open intervals In of lengths γ(n) (to length 0 there
corresponds a point) on the positive semi-axis (0,∞) in such a single way that there exists
a potential q ∈ L2(T) for which the sequence {γ(n)}n∈N is a sequence of the lengths of
spectral gaps of the Hill–Schrödinger operator S(q), i.e., the map γ maps the space L2(T)
onto the sequence space h0

+(N),

(9) γ(L2(T)) = h0
+(N).

And, as a consequence, we also have that

(10) γ−1
(
h0
+(N)

)
= L2(T).

The case ω ∈ I0 was investigated by the authors in [18].
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Let ω ∈ M0. From statement (5) we get

(11) γ (Hω(T)) ⊂ hω
+(N).

To establish the equality (i) in Theorem 1 it is necessary to prove the inverse inclu-
sion in formula (11). So, let {γ(n)}n∈N be an arbitrary sequence in the space hω

+(N).
Then {γ(n)}n∈N ∈ h0

+(N). Due to (9) there exists a potential q ∈ L2(T) such that the
sequence {γ(n)}n∈N ∈ h0

+(N) is its sequence of lengths of spectral gaps. Since by as-
sumption {γ(n)}n∈N ∈ hω

+(N) due to (5) we conclude that q ∈ Hω(T) and, consequently,
{γ(n)}n∈N ∈ γ (Hω(T)). Therefore the inclusion

(12) γ (Hω(T)) ⊃ hω
+(N)

holds.
Inclusions (11) and (12) give the equality (i).
Now, let us prove the equality (ii) in Theorem 1. Let q be an arbitrary function in

the space Hω(T). Then, due to statement (5), we have γq = {γq(n)}n∈N ∈ hω
+(N) and,

hence, q ∈ γ−1
(
hω
+(N)

)
. Therefore

(13) γ−1
(
hω
+(N)

)
⊃ Hω(T).

Conversely, let {γ(n)}n∈N be an arbitrary sequence in the space hω
+(N). Then due

to (10) we have γ−1 ({γ(n)}n∈N) ⊂ L2(T). Taking into account (5) we conclude that
γ−1 ({γ(n)}n∈N) ⊂ Hω(T), that is,

(14) γ−1
(
hω
+(N)

)
⊂ Hω(T).

Inclusions (13) and (14) give the equality (ii) in Theorem 1.
The proof of Theorem 1 is complete. �

Proof of Formula (7). Notice that, if ω(k) = (1+ |k|)s, s ∈ [−1,∞), relation (7) has the
form

(15) q ∈ Hs(T) ⇔ {γq(n)}n∈N ∈ hs(N), s ∈ [−1,∞).

The limiting case s = −1 was treated by Korotyaev [10]. The proof of statement (15)
was completed in [2]. Earlier (15) was established by the authors [16] under a stronger
assumption q ∈ H−1+(T) and s > −1.

Furthermore, if q ∈ Hs(T), s ∈ [−1,∞), then for the lengths of spectral gaps the
following asymptotic formula hold [10, 16]:

γq(n) = 2|q̂(n)|+ h−1(n), if s = −1,(16)

γq(n) = 2|q̂(n)|+ h1+2s−δ(n) ∀δ > 0, if s ∈ (−1, 0),(17)

γq(n) = 2|q̂(n)|+ h1+s(n), if s ∈ [0,∞).(18)

Let us also recall that if ω1 ≫ ω2, i. e., ω1(k) ≫ ω2(k), k ∈ Z, then

(19) Hω1(T) →֒ Hω2(T), hω1(N) →֒ hω2(N).

Let q ∈ Hω(T) and ω ∈ I−1, then taking into account (19) we have q ∈ Hs(T),
s ∈ [−1,∞), as ω(k) ≫ |k|s. Taking into account that ω ∈ I−1, together with (19), from
(16)–(18) we get

γq(n) = 2|q̂(n)|+ hω(n),

i. e., {γq(n)}n∈N ∈ hω(N).
Now, let {γq(n)}n∈N ∈ hω(N), then due to (19) we have {γq(n)}n∈N ∈ hs(N), s ∈

[−1,∞), and, consequently, from (15) we get q ∈ Hs(T), s ∈ [−1,∞), and the asymp-
totics (16)–(18) hold. Taking into account that ω ∈ I−1 and (19) we have

γq(n) = 2|q̂(n)|+ hω(n),

from where we get the necessary result q ∈ Hω(T).
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The statement (7) for the case ω ∈ I−1 is completely proved. �

Proof of Theorem 2. From statement (7) we get

(20) γ (Hω(T)) ⊂ hω
+(N).

To establish the equality (i) in Theorem 2 it is necessary to prove the inverse inclusion
in formula (20). So, let {γ(n)}n∈N be an arbitrary sequence in the space hω

+(N). Then

{γ(n)}n∈N ∈ h−1
+ (N). Due to (8) there is a potential q ∈ H−1(T) such that the sequence

{γ(n)}n∈N ∈ h−1
+ (N) is its sequence of the lengths of spectral gaps. Since by assumption

{γ(n)}n∈N ∈ hω
+(N) due to (7) we conclude that q ∈ Hω(T) and, hence, {γ(n)}n∈N ∈

γ (Hω(T)). Therefore the inclusion

(21) γ (Hω(T)) ⊃ hω
+(N)

holds.
Inclusions (20) and (21) give the equality (i).
Now, let us prove the equality (ii) in Theorem 2. Let q be an arbitrary function in

the space Hω(T). Then, due to statement (7), we have γq = {γq(n)}n∈N ∈ hω
+(N), i. e.,

q ∈ γ−1
(
hω
+(N)

)
. Therefore

(22) γ−1
(
hω
+(N)

)
⊃ Hω(T).

Conversely, let {γ(n)}n∈N be an arbitrary sequence in the space hω
+(N). Then due to

(8) we have γ−1
(
h−1
+ (N)

)
= H−1(T), and therefore γ−1 ({γ(n)}n∈N) ⊂ H−1(T). Taking

into account (7) we conclude that γ−1 ({γ(n)}n∈N) ⊂ Hω(T), that is,

(23) γ−1
(
hω
+(N)

)
⊂ Hω(T).

Inclusions (22) and (23) give the equality (ii) in Theorem 2.
The proof of Theorem 2 is complete. �

Acknowledgments. This work was partially supported by Project No. 03-01-12/2 of
National Academy of Science of Ukraine.

References

1. P. Djakov, B. Mityagin, Instability zones of one-dimentional periodic Schrödinger and Dirac

operators, Uspekhi Mat. Nauk 61 (2006), no. 4, 77–182. (Russian); English transl. Russian
Math. Surveys 61 (2006), no. 4, 663–766.

2. P. Djakov, B. Mityagin, Spectral gaps of Schrödinger operators with periodic singular potentials,

Dynamics of PDE 6 (2009), no. 2, 95–165.
3. P. Djakov, B. Mityagin, Fourier method for one dimentional Schrödinger operators with singular

periodic potentials, Topics in Operator Theory, Vol. 2: Systems and Mathematical Physics,
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