SPECTRAL GAPS OF THE HILL–SCHRÖDINGER OPERATORS WITH DISTRIBUTIONAL POTENTIALS

VLADIMIR MIKHAILETS AND VOLODYMYR MOLYBOGA

Dedicated to Professor V. M. Adamyan on the occasion of his 75 birthday

ABSTRACT. The paper studies the Hill–Schrödinger operators with potentials in the space $H^{\omega} \subset H^{-1}(\mathbb{T},\mathbb{R})$. The main results completely describe the sequences that arise as lengths of spectral gaps of these operators. The space H^{ω} coincides with the Hörmander space $H^{\omega}_2(\mathbb{T},\mathbb{R})$ with the weight function $\omega(\sqrt{1+\xi^2})$ if ω belongs to Avakumovich's class OR. In particular, if the functions ω are power, then these spaces coincide with the Sobolev spaces. The functions ω may be nonmonotonic.

1. Introduction

Let us consider the Hill-Schrödinger operator

(1)
$$S(q)u := -u'' + q(x)u, \quad x \in \mathbb{R},$$

with the 1-periodic real-valued potential

$$q(x) = \sum_{k \in \mathbb{Z}} \widehat{q}(k) e^{ik2\pi x} \in L^2(\mathbb{T}, \mathbb{R}), \quad \mathbb{T} := \mathbb{R}/\mathbb{Z}.$$

This condition means that

$$\sum_{k\in\mathbb{Z}}|\widehat{q}(k)|^2<\infty\quad\text{and}\quad \widehat{q}(k)=\overline{\widehat{q}(-k)},\quad k\in\mathbb{Z}.$$

It is well known that the operator S(q) is lower semibounded and self-adjoint in the Hilbert space $L^2(\mathbb{R})$. Its spectrum is absolutely continuous and has a zone structure [22].

Spectrum of the operator S(q) is completely defined by locations of the endpoints of the spectral gaps $\{\lambda_0(q), \lambda_n^{\pm}(q)\}_{n=1}^{\infty}$, which satisfy the inequalities

(2)
$$-\infty < \lambda_0(q) < \lambda_1^-(q) \le \lambda_1^+(q) < \lambda_2^-(q) \le \lambda_2^+(q) < \cdots$$

Some gaps may be degenerate, then the corresponding bands merge. For even/odd numbers $n \in \mathbb{Z}_+$, the endpoints of the spectral gaps $\{\lambda_0(q), \lambda_n^{\pm}(q)\}_{n=1}^{\infty}$ are eigenvalues of the periodic/semiperiodic problems on the interval (0,1).

The interiors of the spectral bands (the stability zones),

$$\mathcal{B}_0(q) := (\lambda_0(q), \lambda_1^-(q)), \quad \mathcal{B}_n(q) := (\lambda_n^+(q), \lambda_{n+1}^-(q)), \quad n \in \mathbb{N},$$

together with the collapsed gaps,

$$\lambda = \lambda_{n_i}^- = \lambda_{n_i}^+,$$

are characterized as the set of those $\lambda \in \mathbb{R}$ for which all solutions of the equation

$$-u'' + q(x)u = \lambda u, \quad x \in \mathbb{R},$$

²⁰¹⁰ Mathematics Subject Classification. Primary 34L40; Secondary 47A10, 47A75.

Key words and phrases. Hill-Schrödinger operator, singular potential, spectral gap, Hörmander space.

are bounded on \mathbb{R} . The open spectral gaps (the instability zones),

$$\mathcal{G}_0(q) := (-\infty, \lambda_0(q)), \quad \mathcal{G}_n(q) := (\lambda_n^-(q), \lambda_n^+(q)) \neq \emptyset, \quad n \in \mathbb{N},$$

form a set of those $\lambda \in \mathbb{R}$ for which any nontrivial solution of the equation (3) is unbounded on \mathbb{R} .

We study the behavior of the lengths of the spectral gaps,

$$\gamma_q(n) := \lambda_n^+(q) - \lambda_n^-(q), \quad n \in \mathbb{N},$$

of the operator S(q) in terms of behavior of the Fourier coefficients $\{\widehat{q}(n)\}_{n\in\mathbb{N}}$ of the potential q with respect to test sequence spaces, that is in terms of potential regularity.

Hochstadt [6, 7], Marchenko and Ostrovskii [14], McKean and Trubowitz [12, 23] proved that the potential q is an infinitely differentiable function if and only if the lengths of spectral gaps $\{\gamma_q(n)\}_{n=1}^{\infty}$ decrease faster than an arbitrary power of 1/n,

$$q \in C^{\infty}(\mathbb{T}) \Leftrightarrow \gamma_q(n) = O(n^{-k}), \quad n \to \infty, \quad k \in \mathbb{Z}_+.$$

However, the scale of spaces $\left\{C^k(\mathbb{T})\right\}_{k\in\mathbb{N}}$ turned out to be unsuitable to obtain precise quantitative results. Marchenko and Ostrovskii [14] (see also [13, 11]) found that

(4)
$$q \in H^s(\mathbb{T}) \Leftrightarrow \{\gamma_q(n)\}_{n \in \mathbb{N}} \in h^s(\mathbb{N}), \quad s \in \mathbb{Z}_+.$$

The Sobolev spaces $H^s(\mathbb{T})$, $s \in \mathbb{R}$, of 1-periodic functions/generalized functions may also be defined by means of their Fourier coefficients

$$H^s(\mathbb{T}) = \Big\{ f = \sum_{k \in \mathbb{T}} \widehat{f}(k) e^{ik2\pi x} \in \mathfrak{D}\left(\mathbb{T}\right) \, \Big| \, \|f\|_{H^s(\mathbb{T})}^2 := \sum_{k \in \mathbb{T}} (1 + |k|)^{2s} |\widehat{f}(k)|^2 < \infty \Big\}.$$

Here by $\mathfrak{D}(\mathbb{T})$ we denote the space of 1-periodic generalized functions on \mathbb{T} .

We define the weighted sequence spaces $h^s(\mathbb{N})$, $s \in \mathbb{R}$, in the following way:

$$h^{s}(\mathbb{N}) := \left\{ a = \{a(k)\}_{k \in \mathbb{N}} \mid ||a||_{h^{s}(\mathbb{N})}^{2} := \sum_{k \in \mathbb{N}} (1 + |k|)^{2s} |a(k)|^{2} < \infty \right\}.$$

Marchenko–Ostrovskii theorem (4) can be extended to a more general scale of Hörmander spaces $\{H^{\omega}(\mathbb{T})\}_{\omega}$ [1, 2, 21, 17, 18], where $\omega = \{\omega(k)\}_{k \in \mathbb{Z}}$ is a weighted sequence. Recall that a sequence $a = \{a(k)\}_{k \in \mathbb{Z}}$ is called a weight or weighted sequence if it is positive and even, i. e., $a(k) \geq 0$ a(-k) = a(k) for $k \in \mathbb{Z}_+$.

However, a complete description of the sequences that form lengths of the gaps with potentials from a given functional class, in particular the Hörmander space or the Sobolev space, remained an open question. This paper deals with this issue in a more general situation of distributional potentials.

2. Main results

Let us start with necessary notations. The spaces $H^{\omega}(\mathbb{T})$ and $h^{\omega}(\mathbb{N})$ are defined similarly to the spaces $H^{s}(\mathbb{T})$ and $h^{s}(\mathbb{N})$

$$\begin{split} H^{\omega}(\mathbb{T}) &:= \Big\{ f = \sum_{k \in \mathbb{Z}} \widehat{f}\left(k\right) e^{ik2\pi x} \in \mathfrak{D}\left(\mathbb{T}\right) \, \Big| \, \left\|f\right\|_{H^{\omega}(\mathbb{T})}^2 := \sum_{k \in \mathbb{Z}} \omega^2(k) |\widehat{f}(k)|^2 < \infty \Big\}, \\ h^{\omega}(\mathbb{N}) &:= \Big\{ a = \{a(k)\}_{k \in \mathbb{N}} \, \Big| \, \left\|a\right\|_{h^{\omega}(\mathbb{N})}^2 := \sum_{k \in \mathbb{N}} \omega^2(k) |a(k)|^2 < \infty \Big\}. \end{split}$$

We say that a weighted sequence $\omega = \{\omega(k)\}_{k \in \mathbb{Z}}$ belongs to the class I_0 , if it satisfies the following condition:

$$|k|^s \ll \omega(k) \ll |k|^{1+s}, \quad s \in [0, \infty).$$

The notation

$$b(k) \ll a(k) \ll c(k), \quad k \in \mathbb{N},$$

means that there are positive constants C_1 and C_2 such that the following inequalities hold:

$$C_1b(k) \le a(k) \le C_2c(k), \quad k \in \mathbb{N}.$$

We say that a weighted sequence $\omega = \{\omega(k)\}_{k \in \mathbb{Z}}$ belongs to the class M_0 , if it satisfies the following conditions:

- (i) $\omega(k) \uparrow \infty$, $k \in \mathbb{N}$ (monotonicity);
- $\mbox{(ii)} \ \ \omega(k+m) \leq \omega(k)\omega(m), \ k,m \in \mathbb{N} \quad \mbox{(submultiplicity)};$

(iii)
$$\frac{\log \omega(k)}{k} \downarrow 0, \ k \to \infty$$
 (subexponentiality).

Suppose that a weighted sequence $\omega = \{\omega(k)\}_{k \in \mathbb{Z}}$ belongs either to the class I_0 or to the class M_0 . Then

(5)
$$q \in H^{\omega}(\mathbb{T}) \Leftrightarrow \{\gamma_q(n)\}_{n \in \mathbb{N}} \in h^{\omega}(\mathbb{N}).$$

The statement (5) for the case where $\omega \in I_0$ was proved by the authors [18], and the case M_0 was closely studied in [1, 21].

The statement (5) may be strengthened. It is well-known that the sequence of lengths of spectral gaps $\{\gamma_q(n)\}_{n\in\mathbb{N}}$ of the Hill–Schrödinger operator S(q) with an $L^2(\mathbb{T})$ -potential q belongs to the space

$$h^0_+(\mathbb{N}) := \{ a = \{ a(k) \}_{k \in \mathbb{N}} \in l^2(\mathbb{N}) \mid a(k) \ge 0, \ k \in \mathbb{N} \}.$$

Let us consider the map

$$\gamma: L^2(\mathbb{T}) \ni q \mapsto \{\gamma_q(n)\}_{n \in \mathbb{N}} \in h^0_+(\mathbb{N}).$$

Then, due to Garnett and Trubowitz [4, 5],

$$\gamma\left(L^2(\mathbb{T})\right) = h^0_+(\mathbb{N}).$$

We introduce the following notations:

$$h_{+}^{\omega}(\mathbb{N}) := \{ a = \{ a(k) \}_{k \in \mathbb{N}} \in h^{\omega}(\mathbb{N}) \mid a(k) \ge 0, \ k \in \mathbb{N} \}.$$

Theorem 1. Suppose that $g \in L^2(\mathbb{T})$ and that either $\omega \in I_0$ or $\omega \in M_0$. Then the map

$$\gamma: L^2(\mathbb{T}) \ni q \mapsto \{\gamma_q(n)\}_{n \in \mathbb{N}} \in h^0_+(\mathbb{N})$$

satisfies the relations

(i)
$$\gamma(H^{\omega}(\mathbb{T})) = h^{\omega}_{+}(\mathbb{N}),$$

(ii)
$$\gamma^{-1}(h_+^{\omega}(\mathbb{N})) = H^{\omega}(\mathbb{T}).$$

Now let us consider the Hill-Schrödinger operator S(q) with a 1-periodic real-valued distribution potential q that belongs to the negative Sobolev space,

(6)
$$q = \sum_{k \in \mathbb{Z}} \widehat{q}(k) e^{ik2\pi x} \in H^{-1}(\mathbb{T}).$$

All real-valued pseudo-functions, measures, pseudo-measures and some more singular distributions on the circle satisfy this condition. For a more detailed discussion of operators with strongly singular potentials see [8] and references therein.

Under the assumption (6) the operator (1) may be well defined on the complex Hilbert space $L^2(\mathbb{R})$ in the following basic ways:

- as form-sum operator;
- as quasi-differential operators;
- as limit of operators with smooth 1-periodic potentials in the norm resolvent sense.

Equivalence of all these definitions was proved in the paper [15], a more general case was treated in [19].

The Hill–Schrödinger operator S(q) with strongly singular potential q is lower semi-bounded and self-adjoint, its spectrum is absolutely continuous and has a band and gap structure as in the classical case [9, 10, 15, 3, 20]. The endpoints of the spectral gaps satisfy inequalities (2). For even/odd numbers $n \in \mathbb{Z}_+$, they are eigenvalues of periodic/semiperiodic problems on the interval [0, 1] [15, Theorem C].

We say that a weighted sequence $\omega = \{\omega(k)\}_{k \in \mathbb{Z}}$ belongs to I_{-1} , if it satisfies the following conditions:

(i)
$$\omega(k) = (1+|k|)^{-1},$$
 $s=1$

(ii)
$$|k|^s \ll \omega(k) \ll |k|^{1+2s-\delta} \quad \forall \delta > 0, \qquad s \in (-1,0),$$

(iii)
$$|k|^s \ll \omega(k) \ll |k|^{1+s}$$
, $s \in [0, \infty)$.

We say that a weighted sequence $\omega = \{\omega(k)\}_{k \in \mathbb{Z}}$ belongs to \mathcal{M}_{-1} , if it can be represented as

$$\omega(k) = \frac{\omega^*(k)}{1+|k|}, \quad k \in \mathbb{Z}, \quad \omega^* = \{\omega^*(k)\}_{k \in \mathbb{Z}} \in \mathcal{M}_0.$$

Suppose that a weighted sequence $\omega = \{\omega(k)\}_{k \in \mathbb{Z}}$ belongs either to the class I_{-1} , or to the class M_{-1} . Then

(7)
$$q \in H^{\omega}(\mathbb{T}) \Leftrightarrow \{\gamma_q(n)\}_{n \in \mathbb{N}} \in h^{\omega}(\mathbb{N}).$$

The statement (7) for the case $\omega \in I_{-1}$ is proved below (in a weaker form, this assertion was proved earlier by the authors [17]), also for the case $\omega \in M_{-1}$ the statement (7) was proved in [2]. Note that I_0 and M_0 , as well as I_{-1} and M_{-1} , intersect, but do not cover each other.

Let us consider the map $\gamma: q \mapsto \{\gamma_q(n)\}_{n \in \mathbb{N}}$. Then, according to Korotyaev [10, Theorem 1.1], the map γ maps $H^{-1}(\mathbb{T})$ onto $h_+^{-1}(\mathbb{N})$,

(8)
$$\gamma(H^{-1}(\mathbb{T})) = h_+^{-1}(\mathbb{N}).$$

Theorem 2. Suppose that $q \in H^{-1}(\mathbb{T})$ and that either $\omega \in I_{-1}$ or $\omega \in M_{-1}$. Then the map

$$\gamma: H^{-1}(\mathbb{T}) \ni q \mapsto \{\gamma_q(n)\}_{n \in \mathbb{N}} \in h_+^{-1}(\mathbb{N})$$

satisfies following:

(i)
$$\gamma(H^{\omega}(\mathbb{T})) = h_{+}^{\omega}(\mathbb{N}),$$

(ii)
$$\gamma^{-1}(h^{\omega}_{+}(\mathbb{N})) = H^{\omega}(\mathbb{T}).$$

3. Proofs

Proof of Theorem 1. Due to Garnett and Trubowitz [4, 5] it occurs that for any sequence $\{\gamma(n)\}_{n\in\mathbb{N}}\in h^0_+(\mathbb{N})$ we can place open intervals I_n of lengths $\gamma(n)$ (to length 0 there corresponds a point) on the positive semi-axis $(0,\infty)$ in such a single way that there exists a potential $q\in L^2(\mathbb{T})$ for which the sequence $\{\gamma(n)\}_{n\in\mathbb{N}}$ is a sequence of the lengths of spectral gaps of the Hill-Schrödinger operator S(q), i.e., the map γ maps the space $L^2(\mathbb{T})$ onto the sequence space $h^0_+(\mathbb{N})$,

(9)
$$\gamma(L^2(\mathbb{T})) = h^0_+(\mathbb{N}).$$

And, as a consequence, we also have that

(10)
$$\gamma^{-1}\left(h_{+}^{0}(\mathbb{N})\right) = L^{2}(\mathbb{T}).$$

The case $\omega \in I_0$ was investigated by the authors in [18].

Let $\omega \in M_0$. From statement (5) we get

(11)
$$\gamma(H^{\omega}(\mathbb{T})) \subset h_{+}^{\omega}(\mathbb{N}).$$

To establish the equality (i) in Theorem 1 it is necessary to prove the inverse inclusion in formula (11). So, let $\{\gamma(n)\}_{n\in\mathbb{N}}$ be an arbitrary sequence in the space $h_+^{\omega}(\mathbb{N})$. Then $\{\gamma(n)\}_{n\in\mathbb{N}}\in h_+^0(\mathbb{N})$. Due to (9) there exists a potential $q\in L^2(\mathbb{T})$ such that the sequence $\{\gamma(n)\}_{n\in\mathbb{N}}\in h_+^0(\mathbb{N})$ is its sequence of lengths of spectral gaps. Since by assumption $\{\gamma(n)\}_{n\in\mathbb{N}}\in h_+^{\omega}(\mathbb{N})$ due to (5) we conclude that $q\in H^{\omega}(\mathbb{T})$ and, consequently, $\{\gamma(n)\}_{n\in\mathbb{N}}\in \gamma(H^{\omega}(\mathbb{T}))$. Therefore the inclusion

(12)
$$\gamma(H^{\omega}(\mathbb{T})) \supset h_{+}^{\omega}(\mathbb{N})$$

holds.

Inclusions (11) and (12) give the equality (i).

Now, let us prove the equality (ii) in Theorem 1. Let q be an arbitrary function in the space $H^{\omega}(\mathbb{T})$. Then, due to statement (5), we have $\gamma_q = \{\gamma_q(n)\}_{n \in \mathbb{N}} \in h_+^{\omega}(\mathbb{N})$ and, hence, $q \in \gamma^{-1}(h_+^{\omega}(\mathbb{N}))$. Therefore

(13)
$$\gamma^{-1}\left(h_{+}^{\omega}(\mathbb{N})\right) \supset H^{\omega}(\mathbb{T}).$$

Conversely, let $\{\gamma(n)\}_{n\in\mathbb{N}}$ be an arbitrary sequence in the space $h_+^{\omega}(\mathbb{N})$. Then due to (10) we have $\gamma^{-1}(\{\gamma(n)\}_{n\in\mathbb{N}}) \subset L^2(\mathbb{T})$. Taking into account (5) we conclude that $\gamma^{-1}(\{\gamma(n)\}_{n\in\mathbb{N}}) \subset H^{\omega}(\mathbb{T})$, that is,

(14)
$$\gamma^{-1}\left(h_{+}^{\omega}(\mathbb{N})\right) \subset H^{\omega}(\mathbb{T}).$$

Inclusions (13) and (14) give the equality (ii) in Theorem 1.

The proof of Theorem 1 is complete.

Proof of Formula (7). Notice that, if $\omega(k) = (1+|k|)^s$, $s \in [-1,\infty)$, relation (7) has the form

(15)
$$q \in H^s(\mathbb{T}) \Leftrightarrow \{\gamma_q(n)\}_{n \in \mathbb{N}} \in h^s(\mathbb{N}), \quad s \in [-1, \infty).$$

The limiting case s = -1 was treated by Korotyaev [10]. The proof of statement (15) was completed in [2]. Earlier (15) was established by the authors [16] under a stronger assumption $q \in H^{-1+}(\mathbb{T})$ and s > -1.

Furthermore, if $q \in H^s(\mathbb{T})$, $s \in [-1, \infty)$, then for the lengths of spectral gaps the following asymptotic formula hold [10, 16]:

(16)
$$\gamma_q(n) = 2|\widehat{q}(n)| + h^{-1}(n),$$
 if $s = -1,$

(17)
$$\gamma_q(n) = 2|\widehat{q}(n)| + h^{1+2s-\delta}(n) \quad \forall \delta > 0,$$
 if $s \in (-1,0),$

(18)
$$\gamma_q(n) = 2|\widehat{q}(n)| + h^{1+s}(n),$$
 if $s \in [0, \infty).$

Let us also recall that if $\omega_1 \gg \omega_2$, i. e., $\omega_1(k) \gg \omega_2(k)$, $k \in \mathbb{Z}$, then

(19)
$$H^{\omega_1}(\mathbb{T}) \hookrightarrow H^{\omega_2}(\mathbb{T}), \quad h^{\omega_1}(\mathbb{N}) \hookrightarrow h^{\omega_2}(\mathbb{N}).$$

Let $q \in H^{\omega}(\mathbb{T})$ and $\omega \in I_{-1}$, then taking into account (19) we have $q \in H^{s}(\mathbb{T})$, $s \in [-1, \infty)$, as $\omega(k) \gg |k|^{s}$. Taking into account that $\omega \in I_{-1}$, together with (19), from (16)–(18) we get

$$\gamma_q(n) = 2|\widehat{q}(n)| + h^{\omega}(n),$$

i. e., $\{\gamma_q(n)\}_{n\in\mathbb{N}}\in h^{\omega}(\mathbb{N})$.

Now, let $\{\gamma_q(n)\}_{n\in\mathbb{N}}\in h^{\omega}(\mathbb{N})$, then due to (19) we have $\{\gamma_q(n)\}_{n\in\mathbb{N}}\in h^s(\mathbb{N}), s\in [-1,\infty)$, and, consequently, from (15) we get $q\in H^s(\mathbb{T}), s\in [-1,\infty)$, and the asymptotics (16)–(18) hold. Taking into account that $\omega\in I_{-1}$ and (19) we have

$$\gamma_q(n) = 2|\widehat{q}(n)| + h^{\omega}(n),$$

from where we get the necessary result $q \in H^{\omega}(\mathbb{T})$.

The statement (7) for the case $\omega \in I_{-1}$ is completely proved.

Proof of Theorem 2. From statement (7) we get

(20)
$$\gamma(H^{\omega}(\mathbb{T})) \subset h_{+}^{\omega}(\mathbb{N}).$$

To establish the equality (i) in Theorem 2 it is necessary to prove the inverse inclusion in formula (20). So, let $\{\gamma(n)\}_{n\in\mathbb{N}}$ be an arbitrary sequence in the space $h_+^{\omega}(\mathbb{N})$. Then $\{\gamma(n)\}_{n\in\mathbb{N}}\in h_+^{-1}(\mathbb{N})$. Due to (8) there is a potential $q\in H^{-1}(\mathbb{T})$ such that the sequence $\{\gamma(n)\}_{n\in\mathbb{N}}\in h_+^{-1}(\mathbb{N})$ is its sequence of the lengths of spectral gaps. Since by assumption $\{\gamma(n)\}_{n\in\mathbb{N}}\in h_+^{\omega}(\mathbb{N})$ due to (7) we conclude that $q\in H^{\omega}(\mathbb{T})$ and, hence, $\{\gamma(n)\}_{n\in\mathbb{N}}\in \gamma(H^{\omega}(\mathbb{T}))$. Therefore the inclusion

(21)
$$\gamma(H^{\omega}(\mathbb{T})) \supset h_{+}^{\omega}(\mathbb{N})$$

holds.

Inclusions (20) and (21) give the equality (i).

Now, let us prove the equality (ii) in Theorem 2. Let q be an arbitrary function in the space $H^{\omega}(\mathbb{T})$. Then, due to statement (7), we have $\gamma_q = \{\gamma_q(n)\}_{n \in \mathbb{N}} \in h_+^{\omega}(\mathbb{N})$, i. e., $q \in \gamma^{-1}(h_+^{\omega}(\mathbb{N}))$. Therefore

(22)
$$\gamma^{-1}\left(h_{+}^{\omega}(\mathbb{N})\right) \supset H^{\omega}(\mathbb{T}).$$

Conversely, let $\{\gamma(n)\}_{n\in\mathbb{N}}$ be an arbitrary sequence in the space $h_+^{\omega}(\mathbb{N})$. Then due to (8) we have $\gamma^{-1}\left(h_+^{-1}(\mathbb{N})\right) = H^{-1}(\mathbb{T})$, and therefore $\gamma^{-1}\left(\{\gamma(n)\}_{n\in\mathbb{N}}\right) \subset H^{-1}(\mathbb{T})$. Taking into account (7) we conclude that $\gamma^{-1}\left(\{\gamma(n)\}_{n\in\mathbb{N}}\right) \subset H^{\omega}(\mathbb{T})$, that is,

(23)
$$\gamma^{-1}\left(h_{+}^{\omega}(\mathbb{N})\right) \subset H^{\omega}(\mathbb{T}).$$

Inclusions (22) and (23) give the equality (ii) in Theorem 2.

The proof of Theorem 2 is complete.

Acknowledgments. This work was partially supported by Project No. 03-01-12/2 of National Academy of Science of Ukraine.

REFERENCES

- P. Djakov, B. Mityagin, Instability zones of one-dimentional periodic Schrödinger and Dirac operators, Uspekhi Mat. Nauk 61 (2006), no. 4, 77–182. (Russian); English transl. Russian Math. Surveys 61 (2006), no. 4, 663–766.
- 2. P. Djakov, B. Mityagin, Spectral gaps of Schrödinger operators with periodic singular potentials, Dynamics of PDE 6 (2009), no. 2, 95–165.
- P. Djakov, B. Mityagin, Fourier method for one dimentional Schrödinger operators with singular periodic potentials, Topics in Operator Theory, Vol. 2: Systems and Mathematical Physics, Oper. Theory Adv. Appl., 203, Birkhäuser Verlag, Basel, 2010, pp. 195–236.
- J. Garnett, E. Trubowitz, Gaps and bands of one dimensional periodic Schrödinger operators, Comm. Math. Helv. 59 (1984), 258–312.
- J. Garnett, E. Trubowitz, Gaps and bands of one dimensional periodic Schrödinger operators, II, Comm. Math. Helv. 62 (1987), 18–37.
- H. Hochstadt, Estimates of the stability intervals for Hill's equation, Proc. Amer. Math. Soc. 14 (1963), 930–932.
- H. Hochstadt, On the determination of Hill's equation from its spectrum, Arch. Rational Mech. Anal. 19 (1965), 353–362.
- 8. J. Eckhardt, F. Gesztesy, R. Nichols, G. Teschl, Weyl-Titchmarsh theory for Sturm-Liouville operators with distributional potentials, Opuscula Math. 33 (2013), no. 3, 467–563.
- R. Hryniv, Ya. Mykytyuk, Schrödinger operators with periodic singular potentials, Methods Funct. Anal. Topology 7 (2001), no. 4, 31–42.
- E. Korotyaev, Characterization of the spectrum of Schrödinger operators with periodic distributions, Int. Math. Res. Not. 37 (2003), no. 2, 2019–2031.
- B. Levitan, Inverse Sturm-Liouville Problems, VSP, Zeist, 1987. (Russian edition: Nauka, Moscow, 1984)

- 12. H. McKean, E. Trubowitz, Hill's operators and hyperelliptic function theory in the presence of infinitely many branch points, Comm. Pure Appl. Math. 29 (1976), no. 2, 143–226.
- 13. V. Marchenko, Sturm-Liouville Operators and Their Applications, Birkhäuser Verlag, Basel, 1986. (Russian edition: Naukova Dumka, Kiev, 1977)
- V. Marchenko, I. Ostrovskii, A characterization of the spectrum of Hill's operator, Matem. Sbornik 97 (1975), no. 4, 540–606. (Russian); English transl. Math. USSR-Sb. 26 (1975), no. 4, 493–554.
- V. Mikhailets, V. Molyboga, One-dimensional Schrödinger operators with singular periodic potentials, Methods Funct. Anal. Topology 14 (2008), no. 2, 184–200.
- 16. V. Mikhailets, V. Molyboga, Spectral gaps of the one-dimensional Schrödinger operators with singular periodic potentials, Methods Funct. Anal. Topology 15 (2009), no. 1, 31–40.
- 17. V. Mikhailets, V. Molyboga, Hill's potentials in Hörmander spaces and their spectral gaps, Methods Funct. Anal. Topology 17 (2011), no. 3, 235–243.
- V. Mikhailets, V. Molyboga, Smoothness of Hill's potential and lengths of spectral gaps, Oper. Theory Adv. Appl. 221 (2012), 469–479.
- 19. V. Mikhailets, V. Molyboga, Schrödinger operators with complex singular potentials, Methods Funct. Anal. Topology 19 (2013), no. 1, 16–28.
- V. Mikhailets, A. Sobolev, Common eigenvalue problem and periodic Schrödinger operators,
 J. Funct. Anal. 165 (1999), no. 1, 150–172.
- J. Pöschel, Hill's potentials in weighted Sobolev spaces and their spectral gaps, Math. Ann. 349 (2011), no. 2, 433–458.
- 22. M. Reed, B. Simon, Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press, New York—London, 1978.
- E. Trubowitz, The inverse problem for periodic potentials, Comm. Pure Appl. Math. 30 (1977), 321–337.

Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs'ka, Kyiv, 01601, Ukraine; National Technical University of Ukraine "Kyiv Polytechnic Institute", 37 Peremogy ave., Kyiv, 03056, Ukraine

 $E ext{-}mail\ address: mikhailets@imath.kiev.ua}$

Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs'ka, Kyiv, 01601, Ukraine

 $E ext{-}mail\ address: molyboga@imath.kiev.ua}$

Received 08/09/2014