
Methods of Functional Analysis and Topology
Vol. 20 (2014), no. 4, pp. 328–348

ON GENERALIZED RESOLVENTS AND CHARACTERISTIC

MATRICES OF FIRST-ORDER SYMMETRIC SYSTEMS

VADIM MOGILEVSKII

Dedicated with respect to D. Z. Arov and V. M. Adamyan on the occasion of their anniversaries

Abstract. We study general (not necessarily Hamiltonian) first-order symmetric
system Jy′ − B(t)y = ∆(t)f(t) on an interval I = [a, b) with the regular endpoint
a and singular endpoint b. It is assumed that the deficiency indices n±(Tmin) of

the corresponding minimal relation Tmin in L2
∆(I) satisfy n−(Tmin) ≤ n+(Tmin).

We describe all generalized resolvents y = R(λ)f, f ∈ L2
∆(I), of Tmin in terms

of boundary problems with λ-depending boundary conditions imposed on regular
and singular boundary values of a function y at the endpoints a and b respectively.
We also parametrize all characteristic matrices Ω(λ) of the system immediately in

terms of boundary conditions. Such a parametrization is given both by the block
representation of Ω(λ) and by the formula similar to the well-known Krein formula

for resolvents. These results develop the S̆traus’ results on generalized resolvents and
characteristic matrices of differential operators.

1. Introduction

Let H and Ĥ be finite dimensional Hilbert spaces and let H := H ⊕ Ĥ ⊕H. Denote
also by [H] the set of all linear operators in H. We study first-order symmetric systems
of differential equations defined on an interval I = [a, b),−∞ < a < b ≤ ∞, with the
regular endpoint a and regular or singular endpoint b. Such a system is of the form [3, 13]

(1.1) Jy′ −B(t)y = ∆(t)f(t), t ∈ I,

where B(t) = B∗(t) and ∆(t) ≥ 0 are [H]-valued functions on I and

(1.2) J =




0 0 −IH
0 iI

Ĥ
0

IH 0 0


 : H ⊕ Ĥ ⊕H → H ⊕ Ĥ ⊕H.

With (1.1) one associates the homogeneous system

(1.3) Jy′ −B(t)y = λ∆(t)y, λ ∈ C.

We assume that system (1.1) is definite (see Definition 3.1). Recall also that system

(1.1) is called a Hamiltonian system if Ĥ = {0} and hence

(1.4) J =

(
0 −IH
IH 0

)
: H ⊕H → H ⊕H.

A function-theoretic approach to systems (1.1) can be found in the works of Kogan
and Rofe-Beketov [18], Krall [19], Arov and Dym [2]. Another approach is based on the
extension theory of symmetric linear relations (see [4, 9, 10, 17, 20, 27] and references
therein). According to [17, 20, 27] the system (1.1) generates the minimal linear relation
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Tmin and the maximal linear relation Tmax in the Hilbert space L2
∆(I) of all functions

f(·) : I → H satisfying ||f ||2∆ :=
∫
I

(∆(t)f(t), f(t))H dt < ∞. It turns out that Tmin is a

closed symmetric relation and Tmax = T ∗
min. Moreover, the deficiency indices n±(Tmin)

of Tmin satisfy dimH ≤ n±(Tmin) ≤ dimH.
According to [6, 9, 29] each generalized resolvent R(λ) of Tmin admits the representa-

tion

(R(λ)f)(x) =

∫

I

Y0(x, λ)(Ω(λ) +
1

2
sgn(t− x)J)Y ∗

0 (t, λ)∆(t)f(t) dt, f = f(·) ∈ L2
∆(I).

Here Y0(·, λ) is an [H]-valued operator solution of Eq. (1.3) satisfying 0(a, λ) = IH and
Ω(·) : C \R → [H] is a Nevanlinna operator function called a characteristic matrix of the
system (1.1) corresponding to R(λ). By using the matrix Ω(·) one constructs a spectral
function generating an eigenfunction expansion of the system (1.1) (see e.g. [10]).

A somewhat other approach in the theory of generalized resolvents of Tmin is based on
an application of boundary problems for the system (1.1). Namely, assume that (1.1) is
a Hamiltonian system and that Tmin has minimal deficiency indices n±(Tmin) = dimH.
Then for each λ ∈ C \R there exists a unique operator solution v(t, λ)(∈ [H,H ⊕H]) of
Eq. (1.3) such that v(·, λ)h ∈ L2

∆(I), h ∈ H, and

(1.5) v(a, λ) =

(
m(λ)
−IH

)
: H → H ⊕H, λ ∈ C \ R.

Equality (1.5) defines a Nevanlinna operator function m(·) : C \ R → [H] called the
Titchmarsh-Weyl coefficient (see e.g. [16]). Moreover, the following holds: (1) for each
generalized resolvent R(λ) of Tmin there exists a unique holomorphic operator function
Ca(·) : C \ R → [H ⊕H,H] satisfying

(1.6) ranCa(λ) = H, iImλ · Ca(λ)JC
∗
a(λ) ≥ 0, Ca(λ)JC

∗
a(λ) = 0, λ ∈ C \ R

and such that a function y(t) = (R(λ)f)(t), f = f(·) ∈ L2
∆(I), is an L2

∆-solution of the
following boundary problem with λ-depending boundary condition:

Jy′ −B(t)y = λ∆(t)y +∆(t)f(t), t ∈ I,(1.7)

Ca(λ)y(a) = 0, λ ∈ C \ R.(1.8)

(2) The characteristic matrix Ω(·) corresponding to R(λ) is of the form

(1.9) Ω(λ) =

(
m(λ)−m(λ)(τ(λ) +m(λ))−1m(λ) − 1

2
I +m(λ)(τλ) +m(λ))−1

− 1

2
I + (τ(λ) +m(λ))−1m(λ) −(τ(λ) +m(λ))−1

)
,

where τ(λ) := kerCa(λ), λ ∈ C \ R, is a Nevanlinna family of linear relations in H.
Statement (1) readily follows from the results of [11, 30], while statement (2) was

proved in [9] (for the Sturm-Liouville operator see [28]).
Note that the case n+(Tmin) = n−(Tmin) > dimH is more complicated, because in this

case only one boundary condition (1.8) at the endpoint a is not sufficient for construction
of a spectral function of the system (1.1).

In the present paper we extend the above statements to general (not necessarily Hamil-
tonian) symmetric systems (1.1) with n−(Tmin) ≤ n+(Tmin). Our main result is a descrip-
tion of all generalized resolvents and characteristic matrices of such systems immediately
in terms of boundary conditions. We describe all characteristic matrices by analogy
with formula (1.9) and also by the formula similar to the well known Krein formula for
resolvents.

To simplify the presentation of our results we assume within this section that system
(1.1) satisfies n+(Tmin) = n−(Tmin). We show that in this case there exist a finite-
dimensional Hilbert space Hb and a surjective linear mapping Γb : domTmax → Hb such
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that

[y, z]b(= lim
t↑b

(Jy(t), z(t))) = (JbΓby,Γbz), y, z ∈ domTmax.

Here Hb = Hb ⊕ Ĥ ⊕Hb and Jb is an operator in Hb given by

(1.10) Jb =




0 0 −IHb

0 iI
Ĥ

0
IHb

0 0


 : Hb ⊕ Ĥ ⊕Hb︸ ︷︷ ︸

Hb

→ Hb ⊕ Ĥ ⊕Hb︸ ︷︷ ︸
Hb

.

In fact, Γby is a singular boundary value of a function y in the sense of [12, Chapter 13.2]
(for more details see Remark 3.5 in [1]).

Assume that Hb and Γb are fixed and let H = H ⊕ Ĥ ⊕ Hb. With each Nevanlinna
family of linear relations (in particular operators) τ = τ(λ) in H we associate a pair
of holomorphic operator functions Ca(λ) = Cτ,a(λ)(∈ [H,H]) and Cb(λ) = Cτ,b(λ)(∈
[Hb,H]) satisfying for all λ ∈ C \ R the relations (cf. (1.6))

ran (Ca(λ), Cb(λ)) = H,(1.11)

iImλ · (Ca(λ)JC
∗
a(λ)− Cb(λ)JbC

∗
b (λ)) ≥ 0, Ca(λ)JC

∗
a(λ) = Cb(λ)JbC

∗
b (λ).(1.12)

We show that for each generalized resolvent R(λ) of Tmin there exists a unique Nevanlinna
family of linear relations τ = τ(λ) in H such that a function y(t) = (R(λ)f)(t), f =
f(·) ∈ L2

∆(I), is an L2
∆-solution of the following boundary problem (cf. (1.7), (1.8))

Jy′ −B(t)y = λ∆(t)y +∆(t)f(t), t ∈ I,(1.13)

Cτ,a(λ)y(a) + Cτ,b(λ)Γby = 0, λ ∈ C \ R.(1.14)

Note, that (1.14) is a boundary condition imposed on boundary values of a function
y ∈ domTmax (more precisely, on the regular value y(a) and singular value Γby). One
may consider τ = τ(λ) as a (Nevanlinna) boundary parameter, since R(λ) runs over the
set of all generalized resolvents of Tmin when τ runs over the set of all Nevanlinna families
of linear relations in H. To indicate this fact explicitly we write R(λ) = Rτ (λ) and
Ω(λ) = Ωτ (λ) for the generalized resolvent of Tmin and the corresponding characteristic
matrix respectively.

The boundary problem (1.13), (1.14) defines a canonical resolvent Rτ (λ) of Tmin if
and only if τ = τ∗. In this case Cτ,a(λ) ≡ Ca, Cτ,b(λ) ≡ Cb and the operators Ca and
Cb satisfy

(1.15) ran (Ca, Cb) = H and CaJC
∗
a = CbJC

∗
b .

Moreover, Rτ (λ) = (T̃ τ − λ)−1 with T̃ τ = (T̃ τ )∗ given by the boundary conditions

(1.16) T̃ τ = {{y, f} ∈ Tmax : Cay(a) + CbΓby = 0}.

Thus, the equalities (1.16) and (1.15) gives a parametrization of all self-adjoint extensions

T̃ = T̃ τ of Tmin in terms of boundary conditions. Note that in the case of the regular
endpoint b (1.15) and (1.16) take the form of self-adjoint boundary conditions from
[3, 13]. Moreover, for Hamiltonian systems with singular endpoint b the description of

all extensions T̃ = T̃ ∗ of Tmin in the form (1.15), (1.16) was obtained in [19].
It turns out that for each boundary parameter τ there exists a unique [H]-valued

operator solution Zτ (·, λ), λ ∈ C \ R, of Eq. (1.3) such that Zτ (·, λ)h ∈ L2
∆(I), h ∈ H,

and the following boundary condition is satisfied:

Cτ,a(λ)(Zτ (a, λ) + J)h+ Cτ,b(λ)Γb(Zτ (·, λ)h) = 0, h ∈ H, λ ∈ C \ R.

Moreover, the characteristic matrix Ωτ (·) is

(1.17) Ωτ (λ) = Zτ (a, λ) +
1

2
J, λ ∈ C \ R
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and the following inequality holds:

(1.18) (Imλ)−1 · ImΩτ (λ) ≥

∫

I

Z∗
τ (t, λ)∆(t)Zτ (t, λ) dt, λ ∈ C \ R.

Note that definition of the characteristic matrix Ωτ (·) by means of (1.17) is similar to that
of the Titchmarsh-Weyl coefficient m(·) by means of (1.5). Observe also that formula
(1.18) is similar to well-known formulas for various classes of boundary problems (see
e.g. [14, 5]).

The main result of the paper is a parametrization of all characteristic matrices Ω(·)
of the system (1.1) immediately in terms of the boundary parameter τ . This result can
be formulated in the form of the following theorem.

Theorem 1.1. There exist operator functions Ω0(λ)(∈ [H]), S(λ)(∈ [H,H]) and a
Nevanlinna operator function M(λ)(∈ [H]), λ ∈ C \ R, such that the equality

(1.19) Ω(λ) = Ωτ (λ) = Ω0(λ)− S(λ)(τ(λ) +M(λ))−1S∗(λ), λ ∈ C \ R

establishes a bijective correspondence between all (Nevanlinna) boundary parameters τ =
τ(λ) and all characteristic matrices Ω(·) of the system (1.1). Moreover, for each boundary
parameter τ the corresponding characteristic matrix Ω(λ) = Ωτ (λ) admits the represen-
tation

(1.20) Ω(λ) = XΩ̃τ (λ)X
∗, λ ∈ C \ R,

where X ∈ [H⊕H,H] is a certain operator (see (4.84)) and Ω̃τ (·) : C \ R → [H⊕H] is
a Nevanlinna operator function given by the block matrix representation (cf. (1.9))

(1.21) Ω̃τ (λ)=

(
M(λ)−M(λ)(τ(λ)+M(λ))−1M(λ) − 1

2
IH+M(λ)(τλ)+M(λ))−1

− 1

2
IH + (τ(λ) +M(λ))−1M(λ) −(τ(λ) +M(λ))−1

)

Note that the operator functions Ω0(·), S(·) and M(·) in (1.19) are defined in terms
of the boundary values of respective L2

∆-operator solutions of Eq. (1.3) at the endpoints
a and b. Observe also that in the case of the Hamiltonian system (1.1) with n±(Tmin) =

dimH one has H = H, X = IH, M(λ) = m(λ) and hence Ω(λ)(= Ωτ (λ)) = Ω̃τ (λ). This
implies that equality (1.9) is a particular case of (1.20), (1.21).

In conclusion note that an analog of Theorem 1.1 for differential operators of an even
order was proved in our paper [25].

2. Preliminaries

2.1. Notations. The following notations will be used throughout the paper: H, H de-
note Hilbert spaces; [H1,H2] is the set of all bounded linear operators defined on the
Hilbert space H1 with values in the Hilbert space H2; [H] := [H,H]; C+ (C−) is the
upper (lower) half-plane of the complex plane.

Let H̃ be a Hilbert space and let H be a subspace in H̃. We denote by P
H̃,H

(∈ [H̃,H])

the orthoprojection in H̃ onto H. Moreover, we denote by I
H,H̃

(∈ [H, H̃]) the embedding

operator of the subspace H into H̃. It is clear that P ∗

H̃,H
= I

H,H̃
.

Recall that a closed linear relation from H0 to H1 is a closed linear subspace in
H0 ⊕H1. The set of all closed linear relations from H0 to H1 (in H) will be denoted by

C̃(H0,H1) (C̃(H)). A closed linear operator T from H0 to H1 is identified with its graph

grT ∈ C̃(H0,H1).

For a linear relation T ∈ C̃(H0,H1) we denote by domT, ranT, kerT and mulT the
domain, range, kernel and the multi-valued part of T respectively. Recall that mulT is
a linear manifold in H1 defined by

mulT := {h1 ∈ H1 : {0, h1} ∈ T}.
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Recall also that the inverse and adjoint linear relations of T are the relations T−1 ∈
C̃(H1,H0) and T ∗ ∈ C̃(H1,H0) defined by

(2.1)
T−1 = {{h1, h0} ∈ H1 ⊕H0 : {h0, h1} ∈ T},

T ∗ = {{k1, k0} ∈ H1 ⊕H0 : (k0, h0)− (k1, h1) = 0, {h0, h1} ∈ T}.

For a linear relation T ∈ C̃(H) we denote by ρ(T ) := {λ ∈ C : (T − λ)−1 ∈ [H]} the
resolvent set of T .

Recall also that an operator function Φ(·) : C\R → [H] is called a Nevanlinna function
if it is holomorphic and satisfies Imλ · ImΦ(λ) ≥ 0 and Φ∗(λ) = Φ(λ), λ ∈ C \ R.

2.2. The classes R̃+(H0,H1) and R̃(H). Let H0 be a Hilbert space, let H1 be a
subspace in H0 and let τ = {τ+, τ−} be a collection of holomorphic functions τ±(·) :

C± → C̃(H0,H1). In the paper we systematically deal with collections τ = {τ+, τ−}

of the special class R̃+(H0,H1). Definition and detailed characterization of this class

can be found in our paper [26] (see also [23, 25, 1], where the notation R̃(H0,H1) were

used instead of R̃+(H0,H1)). If dimH1 < ∞, then according to [26] the collection

τ = {τ+, τ−} ∈ R̃+(H0,H1) admits the representation

(2.2) τ+(λ)={(C0(λ), C1(λ));H0}, λ ∈ C+; τ−(λ)={(D0(λ), D1(λ));H1}, λ ∈ C−

by means of two pairs of holomorphic operator functions

(C0(λ), C1(λ)) : H0⊕H1 → H0, λ ∈ C+, and (D0(λ), D1(λ)) : H0⊕H1 → H1, λ ∈ C−

(more precisely, by equivalence classes of such pairs). The equalities (2.2) mean that

(2.3)
τ+(λ) = {{h0, h1} ∈ H0 ⊕H1 : C0(λ)h0 + C1(λ)h1 = 0}, λ ∈ C+,

τ−(λ) = {{h0, h1} ∈ H0 ⊕H1 : D0(λ)h0 +D1(λ)h1 = 0}, λ ∈ C−.

In [26] the class R̃+(H0,H1) is characterized both in terms of C̃(H0,H1)-valued functions
τ±(·) and in terms of operator functions Cj(·) and Dj(·), j ∈ {0, 1}, from (2.2).

If H1 = H0 =: H, then the class R̃(H) := R̃+(H,H) coincides with the well-known

class of Nevanlinna C̃(H)-valued functions τ(·) (see, for instance, [7]). In this case the
collection (2.2) turns into the Nevanlinna pair

(2.4) τ(λ) = {(C0(λ), C1(λ));H}, λ ∈ C \ R,

with C0(λ), C1(λ) ∈ [H]. Recall also that the subclass R̃0(H) ⊂ R̃(H) is defined as

the set of all τ(·) ∈ R̃(H) such that τ(λ) ≡ θ(= θ∗), λ ∈ C \ R. This implies that

τ(·) ∈ R̃0(H) if and only if

(2.5) τ(λ) ≡ {(C0, C1);H}, λ ∈ C \ R,

with some operators C0, C1 ∈ [H] satisfying Im(C1C
∗
0 ) = 0 and 0 ∈ ρ(C0 ± iC1) (for

more details see e.g. [1, Remark 2.5]).

2.3. Boundary triplets and Weyl functions for symmetric relations. Recall that

a linear relation A ∈ C̃(H) is called symmetric (self-adjoint) if A ⊂ A∗ (resp. A = A∗).
Let A be a closed symmetric linear relation in the Hilbert space H, let Nλ(A) =

ker (A∗ − λ) (λ ∈ C) be a defect subspace of A, let N̂λ(A) = {{f, λf} : f ∈ Nλ(A)} and
let n±(A) := dimNλ(A) ≤ ∞, λ ∈ C±, be deficiency indices of A.

The following definitions are well known.
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Definition 2.1. The operator function R(·) : C\R → [H] is called a generalized resolvent

of A if there exist a Hilbert space H̃ ⊃ H and a self-adjoint relation Ã ∈ C̃(H̃) such that

A ⊂ Ã and the following equality holds:

R(λ) = PH(Ã− λ)−1 ↾ H, λ ∈ C \ R.(2.6)

The relation Ã in (2.6) is called an exit space extension of A.

Definition 2.2. The generalized resolvent (2.6) is called canonical if H̃ = H, i.e., if

R(λ) = (Ã− λ)−1, λ ∈ C \ R, is the resolvent of Ã = Ã∗ ∈ C̃(H), Ã ⊃ A.

Clearly, canonical resolvents exist if and only if n+(A) = n−(A).
Next we recall definitions of boundary triplets, the corresponding Weyl functions, and

γ-fields following [8, 21, 24, 26].
Assume that H0 is a Hilbert space, H1 is a subspace in H0 and H2 := H0 ⊖ H1, so

that H0 = H1 ⊕H2. Denote by Pj the orthoprojection in H0 onto Hj , j ∈ {1, 2}.

Definition 2.3. A collection Π+ = {H0 ⊕ H1,Γ0,Γ1}, where Γj : A∗ → Hj , j ∈

{0, 1}, are linear mappings, is called a boundary triplet for A∗, if the mapping Γ : f̂ →

{Γ0f̂ ,Γ1f̂}, f̂ ∈ A∗, from A∗ into H0⊕H1 is surjective and the following Green’s identity

(f ′, g)− (f, g′) = (Γ1f̂ ,Γ0ĝ)H0
− (Γ0f̂ ,Γ1ĝ)H0

+ i(P2Γ0f̂ , P2Γ0ĝ)H2

holds for all f̂ = {f, f ′}, ĝ = {g, g′} ∈ A∗.

Proposition 2.4. ([24]). Let Π+ = {H0 ⊕ H1,Γ0,Γ1} be a boundary triplet for A∗.
Then

(1) dimH1 = n−(A) ≤ n+(A) = dimH0.
(2) ker Γ0 ∩ ker Γ1 = A and Γj is a bounded operator from A∗ onto Hj.

(3) The equality A0 := ker Γ0 = {f̂ ∈ A∗ : Γ0f̂ = 0} defines a maximal symmetric
extension A0 of A such that C+ ⊂ ρ(A0).

Proposition 2.5. ([24]). Let Π+ = {H0 ⊕ H1,Γ0,Γ1} be a boundary triplet for A∗.
Denote also by π1 the orthoprojection in H ⊕ H onto H ⊕ {0}. Then the operators Γ0 ↾

N̂λ(A), λ ∈ C+, and P1Γ0 ↾ N̂z(A), z ∈ C−, isomorphically map N̂λ(A) onto H0 and

N̂z(A) onto H1 respectively. Therefore the equalities

(2.7)
γ+(λ) = π1(Γ0 ↾ N̂λ(A))

−1, λ ∈ C+,

γ−(z) = π1(P1Γ0 ↾ N̂z(A))
−1, z ∈ C−,

M+(λ)h0 = Γ1{γ+(λ)h0, λγ+(λ)h0}, h0 ∈ H0, λ ∈ C+(2.8)

correctly define the operator functions γ+(·) : C+ → [H0,H], γ−(·) : C− → [H1,H] and
M+(·) : C+ → [H0,H1], which are holomorphic on their domains. Moreover,

(2.9) M+(µ)−M∗
+(λ)P1 + iP2 = (µ− λ)γ∗

+(λ)γ+(µ), µ, λ ∈ C+,

where M+(µ) is considered as an operator in H0 (it is possible in view of the inclusion
H1 ⊂ H0).

It follows from (2.7) that

(2.10) Γ0{γ+(λ)h0, λγ+(λ)h0} = h0, h0 ∈ H0.

Definition 2.6. ([24]). The operator functions γ±(·) and M+(·) defined in Proposi-
tion 2.5 are called the γ-fields and the Weyl function, respectively, corresponding to the
boundary triplet Π+.
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Remark 2.7. (1) If H0 = H1 := H, then the boundary triplet in the sense of Definition
2.3 turns into the boundary triplet Π = {H,Γ0,Γ1} for A∗ in the sense of [15, 21]. In
this case n+(A) = n−(A)(= dimH), A0(= ker Γ0) is a self-adjoint extension of A and the
functions γ±(·) and M+(·) turn into the γ-field γ(·) : ρ(A0) → [H,H] and Weyl function
M(·) : ρ(A0) → [H] respectively introduced in [8, 21]. Moreover, in this case M(·) is a
Nevanlinna operator function.

To avoid misleading with using other definitions, a boundary triplet Π = {H,Γ0,Γ1}
in the sense of [15, 21] will be called an ordinary boundary triplet for A∗.

(2) Along with Π+ we define in [26] a boundary triplet Π− = {H0 ⊕ H1,Γ0,Γ1} for
A∗. Such a triplet is applicable to symmetric relations A with n+(A) ≤ n−(A).

3. Decomposing boundary triplets for symmetric systems

3.1. Notations. Let I = [a, b〉 (−∞ < a < b ≤ ∞) be an interval of the real line
(the symbol 〉 means that the endpoint b < ∞ might be either included to I or not).
For a given finite-dimensional Hilbert space H denote by AC(I;H) the set of functions
f(·) : I → H which are absolutely continuous on each segment [a, β] ⊂ I and let
AC(I) := AC(I;C).

Next assume that ∆(·) is an [H]-valued Borel measurable functions on I integrable
on each compact interval [a, β] ⊂ I and such that ∆(t) ≥ 0. Denote by L2

∆(I) the
semi-Hilbert space of Borel measurable functions f(·) : I → H satisfying ||f ||2∆ :=∫
I

(∆(t)f(t), f(t))H dt < ∞ (see e.g. [12, Chapter 13.5]). The semi-definite inner product

(·, ·)∆ in L2
∆(I) is defined by (f, g)∆ =

∫
I

(∆(t)f(t), g(t))H dt, f, g ∈ L2
∆(I). Moreover,

let L2
∆(I) be the Hilbert space of the equivalence classes in L2

∆(I) with respect to the
semi-norm || · ||∆ and let π be the quotient map from L2

∆(I) onto L2
∆(I).

For a given finite-dimensional Hilbert space K denote by L2
∆[K,H] the set of all Borel

measurable operator-functions F (·) : I → [K,H] such that F (t)h ∈ L2
∆(I) for each h ∈ K

(this condition is equivalent to
∫
I

||∆
1

2 (t)F (t)||2 dt < ∞). Moreover, we let L2
∆[H] :=

L2
∆[H,H].

3.2. Symmetric systems. In this subsection we provide some known results on sym-
metric systems of differential equations following [13, 17, 20, 27].

Let H and Ĥ be finite-dimensional Hilbert spaces and let

(3.1) H0 = H ⊕ Ĥ, H = H0 ⊕H = H ⊕ Ĥ ⊕H.

In the following we denote by P0, P̂ and P1 the orthoprojections in H onto the first,

second and third component in the decomposition H = H ⊕ Ĥ ⊕H respectively.
Let as above I = [a, b〉 (−∞ < a < b ≤ ∞) be an interval in R . Moreover, let

B(·) and ∆(·) be [H]-valued Borel measurable functions on I integrable on each compact
interval [a, β] ⊂ I and satisfying B(t) = B∗(t) and ∆(t) ≥ 0 a.e. on I and let J ∈ [H]
be operator (1.2).

A first-order symmetric system on an interval I (with the regular endpoint a) is a
system of differential equations of the form

(3.2) Jy′ −B(t)y = ∆(t)f(t), t ∈ I,

where f(·) ∈ L2
∆(I). Together with (3.2) we consider also the homogeneous system

(3.3) Jy′(t)−B(t)y(t) = λ∆(t)y(t), t ∈ I, λ ∈ C.

A function y ∈ AC(I;H) is a solution of (3.2) (resp. (3.3)) if equality (3.2) (resp. (3.3)
holds a.e. on I. A function Y (·, λ) : I → [K,H] is an operator solution of equation (3.3)
if y(t) = Y (t, λ)h is a (vector) solution of this equation for every h ∈ K (here K is a
Hilbert space with dimK < ∞).
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As is known there exists a unique [H]-valued operator solution Y0(·, λ) of Eq. (3.3)
satisfying Y0(a, λ) = IH. Moreover, each operator solution Y (·, λ) of Eq. (3.3) admits
the representation

(3.4) Y (t, λ) = Y0(t, λ)Y (a, λ), t ∈ I.

In what follows we always assume that system (3.2) is definite in the sense of the
following definition.

Definition 3.1. ([13]). Symmetric system (3.2) is called definite if for each λ ∈ C and
each solution y of (3.3) the equality ∆(t)y(t) = 0 (a.e. on I) implies y(t) = 0, t ∈ I.

As it is known [27, 17, 20] definite system (3.2) gives rise to themaximal linear relations
Tmax and Tmax in L2

∆(I) and L2
∆(I), respectively. They are given by

(3.5)
Tmax = {{y, f} ∈ (L2

∆(I))
2 : y ∈ AC(I;H) and
Jy′(t)−B(t)y(t) = ∆(t)f(t) a.e. on I}

and Tmax = {{πy, πf} : {y, f} ∈ Tmax}. Moreover the Lagrange’s identity

(3.6) (f, z)∆ − (y, g)∆ = [y, z]b − (Jy(a), z(a)), {y, f}, {z, g} ∈ Tmax

holds with

(3.7) [y, z]b := lim
t↑b

(Jy(t), z(t)), y, z ∈ dom Tmax.

Formula (3.7) defines the skew-Hermitian bilinear form [·, ·]b on dom Tmax. By using this
form one defines the minimal relations Tmin in L2

∆(I) and Tmin in L2
∆(I) via

Tmin = {{y, f} ∈ Tmax : y(a) = 0 and [y, z]b = 0 for each z ∈ dom Tmax}

and Tmin = {{πy, πf} : {y, f} ∈ Tmin}. According to [27, 17, 20] Tmin is a closed
symmetric linear relation in L2

∆(I) and T ∗
min = Tmax.

Remark 3.2. It is known (see e.g. [20]) that the maximal relation Tmax induced by the

definite symmetric system (3.2) possesses the following property: for any {ỹ, f̃} ∈ Tmax

there exists a unique function y ∈ AC(I;H) ∩ L2
∆(I) such that y ∈ ỹ and {y, f} ∈ Tmax

for any f ∈ f̃ . Below we associate such a function y ∈ AC(I;H)∩L2
∆(I) with each pair

{ỹ, f̃} ∈ Tmax.

Denote by Nλ, λ ∈ C, the linear space of solutions of the homogeneous system (3.3)
belonging to L2

∆(I). Definition (3.5) of Tmax implies

Nλ = ker (Tmax − λ) = {y ∈ L2
∆(I) : {y, λy} ∈ Tmax}, λ ∈ C,

and hence Nλ ⊂ dom Tmax. As usual, denote by n±(Tmin) := dimNλ(Tmin), λ ∈ C±,

the deficiency indices of Tmin. Since the system (3.2) is definite, πNλ = Nλ(Tmin) and
ker (π ↾ Nλ) = {0}, λ ∈ C. This implies that n±(Tmin) = dimNλ ≤ dimH, λ ∈ C±.

The following lemma will be useful in the sequel.

Lemma 3.3. ([1]). For each operator solution Y (·, λ) ∈ L2
∆[K,H] of Eq. (3.3) the

relation

(3.8) K ∋ h → (Y (λ)h)(t) = Y (t, λ)h ∈ Nλ

defines the linear mapping Y (λ) : K → Nλ. Moreover, if F (λ) := πY (λ)(∈ [K, L2
∆(I)]),

then

(3.9) F ∗(λ)f̃ =

∫

I

Y ∗(t, λ)∆(t)f(t) dt, f̃ ∈ L2
∆(I), f ∈ f̃ .
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3.3. Decomposing boundary triplets. We start this subsection with the following
lemma.

Lemma 3.4. ([1]). If n−(Tmin) ≤ n+(Tmin), then there exist a finite dimensional Hilbert

space H̃b, a subspace Hb ⊂ H̃b and a surjective linear mapping

Γb =



Γ0b

Γ̂b

Γ1b


 : dom Tmax → H̃b ⊕ Ĥ ⊕Hb(3.10)

such that for all y, z ∈ dom Tmax the following identity is valid:

(3.11) [y, z]b=(Γ0by,Γ1bz)H̃b
− (Γ1by,Γ0bz)H̃b

+ i(PH⊥

b
Γ0by, PH⊥

b
Γ0bz)H̃b

+ i(Γ̂by, Γ̂bz)Ĥ

(here H⊥
b = H̃b ⊖ Hb). Moreover, in the case n+(Tmin) = n−(Tmin) (and only in this

case) one has H̃b = Hb and the identity (3.11) takes the form

[y, z]b = (Γ0by,Γ1bz)Hb
− (Γ1by,Γ0bz)Hb

+ i(Γ̂by, Γ̂bz)Ĥ .

The following proposition is immediate from [1, Proposition 3.6].

Proposition 3.5. Assume that n−(Tmin) ≤ n+(Tmin). Moreover, let

(3.12) y(t) = {y0(t), ŷ(t), y1(t)}(∈ H ⊕ Ĥ ⊕H︸ ︷︷ ︸
H

), t ∈ I,

be the representation of a function y ∈ dom Tmax in accordance with the decomposition
(3.1) of H and let Γb be the surjective linear mapping (3.10) satisfying the identity (3.11).
Assume also that H0 and H1(⊂ H0) are finite dimensional Hilbert spaces defined by

(3.13) H0 = H ⊕ Ĥ︸ ︷︷ ︸
H0

⊕H̃b = H0 ⊕ H̃b, H1 = H ⊕ Ĥ︸ ︷︷ ︸
H0

⊕Hb = H0 ⊕Hb

and Γj : Tmax → Hj , j ∈ {0, 1}, are the operators given by

Γ0{ỹ, f̃} = {−y1(a), i(ŷ(a)− Γ̂by), Γ0by}(∈ H ⊕ Ĥ ⊕ H̃b),(3.14)

Γ1{ỹ, f̃} = {y0(a),
1

2
(ŷ(a) + Γ̂by), −Γ1by}(∈ H ⊕ Ĥ ⊕Hb), {ỹ, f̃} ∈ Tmax(3.15)

(here y0(a), ŷ(a) and y1(a) are taken from the representation (3.12) of a function y ∈

dom Tmax, which corresponds to {ỹ, f̃} ∈ Tmax according to Remark 3.2). Then the
collection Π+ = {H0 ⊕ H1,Γ0,Γ1} is a boundary triplet for Tmax and the (maximal
symmetric) relation A0(= ker Γ0) is

(3.16) A0 = {{ỹ, f̃} ∈ Tmax : y1(a) = 0, ŷ(a) = Γ̂by, Γ0by = 0}.

If in addition n+(Tmin) = n−(Tmin), then Π+ turns into an ordinary boundary triplet
Π = {H,Γ0,Γ1} for Tmax, with H = H0⊕Hb and the mappings Γ0,Γ1 : Tmax → H, given

by (3.14) and (3.15) with H̃b = Hb. Moreover, in this case A0 = A∗
0.

Definition 3.6. The boundary triplet Π+ = {H0 ⊕H1,Γ0,Γ1} constructed in Proposi-
tion 3.5 is called a decomposing boundary triplet for Tmax.

In the sequel we suppose (unless otherwise stated) that the following assumptions are
fulfilled:

(A1) The system (3.2) satisfies n−(Tmin) ≤ n+(Tmin);

(A2) H̃b and Hb(⊂ H̃b) are finite dimensional Hilbert spaces and Γb is a surjective
linear mapping (3.10) such that (3.11) holds.

The following two propositions directly follows from [1, Propositions 4.4 and 4.5].



ON GENERALIZED RESOLVENTS AND CHARACTERISTIC MATRICES 337

Proposition 3.7. (1) For every λ ∈ C \ R there exists a unique operator solution
v0(·, λ) ∈ L2

∆[H0,H] of Eq. (3.3) such that

(3.17)
P1v0(a, λ) = −PH0,H , i(P̂v0(a, λ)− Γ̂bv0(λ)) = P

H0,Ĥ
, λ ∈ C \ R;

Γ0bv0(λ) = 0, λ ∈ C+; PHb
Γ0bv0(λ) = 0, λ ∈ C−.

(2) For every λ ∈ C+ (λ ∈ C−) there exists a unique operator solution u+(·, λ) ∈

L2
∆[H̃b,H] (resp. u−(·, λ) ∈ L2

∆[Hb,H]) of Eq. (3.3) such that

(3.18)
P1u±(a, λ) = 0, i(P̂u±(a, λ)− Γ̂bu±(λ)) = 0, λ ∈ C±;

Γ0bu+(λ) = I
H̃b

, λ ∈ C+; PHb
Γ0bu−(λ) = IHb

, λ ∈ C−.

Here v0(λ) and u±(λ) denote linear mappings from Lemma 3.3 for the solutions v0(·, λ)
and u±(·, λ), respectively.

Proposition 3.8. Let v0(·, λ) and u±(·, λ) be the operator solutions from Proposition
3.7, let Z+(·, λ) ∈ L2

∆[H0,H] and Z−(·, λ) ∈ L2
∆[H1,H] be the operator solutions of Eq.

(3.3) given by

Z+(t, λ) = (v0(t, λ), u+(t, λ)) : H0 ⊕ H̃b → H, λ ∈ C+;(3.19)

Z−(t, λ) = (v0(t, λ), u−(t, λ)) : H0 ⊕Hb → H, λ ∈ C−(3.20)

and let Z±(λ) be the linear mappings from Lemma 3.3 for the solutions Z±(·, λ). More-
over, let Π+ = {H0 ⊕ H1,Γ0,Γ1} be a decomposing boundary triplet (3.13)–(3.15) for
Tmax. Then the γ-fields γ±(·) of the triplet Π+ are

(3.21) γ+(λ) = πZ+(λ), λ ∈ C+; γ−(λ) = πZ−(λ), λ ∈ C−

and the corresponding Weyl function M+(·) admits the block-matrix representation

M+(λ) =

(
m0(λ) M2+(λ)
M3+(λ) M4+(λ)

)
: H0 ⊕ H̃b︸ ︷︷ ︸

H0

→ H0 ⊕Hb︸ ︷︷ ︸
H1

, λ ∈ C+(3.22)

with the entries defined by

m0(λ) = (P0 + P̂)v0(a, λ) +
i
2
P
Ĥ
, M2+(λ) = (P0 + P̂)u+(a, λ),(3.23)

M3+(λ) = −Γ1bv0(λ), M4+(λ) = −Γ1bu+(λ).(3.24)

Moreover, for each λ ∈ C− the following equalities hold:

(3.25) m∗
0(λ) = (P0 + P̂)v0(a, λ) +

i
2
P
Ĥ
, M∗

3+(λ) = (P0 + P̂)u−(a, λ).

In (3.23) and (3.25) P
Ĥ

∈ [H0] is the orthoprojection in H0 onto Ĥ.

Corollary 3.9. ([1]). Let n+(Tmin) = n−(Tmin) and let A0 = A∗
0 be the extension (3.16)

of Tmin. Then for every λ ∈ ρ(A0) there exists a unique pair of operator-valued solutions
v0(·, λ) ∈ L2

∆[H0,H] and u(·, λ) ∈ L2
∆[Hb,H] of Eq. (3.3) satisfying

P1v0(a, λ) = −PH0,H , i(P̂v0(a, λ)− Γ̂bv0(λ)) = P
H0,Ĥ

, Γ0bv0(λ) = 0, λ ∈ ρ(A0);

P1u(a, λ) = 0, i(P̂u(a, λ)− Γ̂bu(λ)) = 0, Γ0bu(λ) = IHb
, λ ∈ ρ(A0).

Assume, in addition, that Π = {H,Γ0,Γ1} is an ordinary decomposing boundary triplet
(3.13)–(3.15) for Tmax. Then the corresponding Weyl function M(·) is

M(λ) =

(
m0(λ) M2(λ)
M3(λ) M4(λ)

)
: H0 ⊕Hb → H0 ⊕Hb, λ ∈ ρ(A0);(3.26)

m0(λ) = (P0 + P̂)v0(a, λ) +
i
2
P
Ĥ
, M2(λ) = (P0 + P̂)u(a, λ),(3.27)

M3(λ) = −Γ1bv0(λ), M4(λ) = −Γ1bu(λ), λ ∈ ρ(A0).(3.28)
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4. Generalized resolvents and characteristic matrices of symmetric

systems

4.1. Generalized resolvents.

Definition 4.1. Let H0 and H1 be finite dimensional Hilbert spaces (3.13). Then a

boundary parameter τ is a collection τ = {τ+, τ−} ∈ R̃+(H0,H1) of the form (2.2).

In the case of equal deficiency indices n+(Tmin) = n−(Tmin) one has H̃b = Hb, H0 =

H1 =: H and a boundary parameter is an operator pair τ ∈ R̃(H) defined by (2.4). If

in addition τ ∈ R̃0(H), then a boundary parameter will be called self-adjoint. Such a
boundary parameter τ admits the representation as a self-adjoint operator pair (2.5).

For each boundary parameter τ = {τ+, τ−} of the form (2.2) we assume that

C0(λ) = (C0a(λ), Ĉ0(λ), C0b(λ)) : H ⊕ Ĥ ⊕ H̃b → H0, λ ∈ C+,(4.1)

C1(λ) = (C1a(λ), Ĉ1(λ), C1b(λ)) : H ⊕ Ĥ ⊕Hb → H0, λ ∈ C+,(4.2)

D0(λ) = (D0a(λ), D̂0(λ), D0b(λ)) : H ⊕ Ĥ ⊕ H̃b → H1, λ ∈ C−,(4.3)

D1(λ) = (D1a(λ), D̂1(λ), D1b(λ)) : H ⊕ Ĥ ⊕Hb → H1, λ ∈ C−(4.4)

are the block matrix representations of Cj(λ) and Dj(λ), j ∈ {0, 1}.
If n+(Tmin) = n−(Tmin), then for each boundary parameter (2.4) we assume that

C0(λ) = (C0a(λ), Ĉ0(λ), C0b(λ)) : H ⊕ Ĥ ⊕Hb → H, λ ∈ C \ R,(4.5)

C1(λ) = (C1a(λ), Ĉ1(λ), C1b(λ)) : H ⊕ Ĥ ⊕Hb → H, λ ∈ C \ R(4.6)

are the block matrix representations of C0(λ) and C1(λ).
In the case of a self-adjoint boundary parameter (2.5) the equalities (4.5) and (4.6)

take the form

(4.7) C0=(C0a, Ĉ0, C0b) : H⊕Ĥ⊕Hb → H, C1=(C1a, Ĉ1, C1b) : H⊕Ĥ⊕Hb → H.

Lemma 4.2. Let H̃b be decomposed as H̃b = Hb ⊕H⊥
b and let

Hb := H̃b ⊕ Ĥ ⊕Hb = Hb ⊕ (H⊥
b ⊕ Ĥ)⊕Hb,

(4.8) Jb =




0 0 −IHb

0 iI
H⊥

b
⊕Ĥ

0

IHb
0 0


 : Hb ⊕ (H⊥

b ⊕ Ĥ)⊕Hb︸ ︷︷ ︸
Hb

→ Hb ⊕ (H⊥
b ⊕ Ĥ)⊕Hb︸ ︷︷ ︸
Hb

.

Then the equalities

Ca(λ) = (−C1a(λ), iĈ0(λ)−
1

2
Ĉ1(λ), −C0a(λ)) : H ⊕ Ĥ ⊕H → H0, λ ∈ C+,(4.9)

Cb(λ) = (C0b(λ), −iĈ0(λ)−
1

2
Ĉ1(λ), C1b(λ)) : H̃b ⊕ Ĥ ⊕Hb → H0, λ ∈ C+,(4.10)

Da(λ)=(−D1a(λ), iD̂0(λ)−
1

2
D̂1(λ), −D0a(λ)) : H ⊕ Ĥ ⊕H → H1, λ ∈ C−,(4.11)

Db(λ) = (D0b(λ), −iD̂0(λ)−
1

2
D̂1(λ), D1b(λ)) : H̃b ⊕ Ĥ ⊕Hb → H1, λ ∈ C−(4.12)

establish a bijective correspondence between all boundary parameters τ = {τ+, τ−} of the
form (2.2) and (4.1)–(4.4) and all collections of holomorphic operator functions

(4.13) (Ca(λ), Cb(λ)) : H⊕Hb→H0, λ ∈ C+; (Da(λ), Db(λ)) : H⊕Hb→H1, λ ∈ C−

satisfying

ran (Ca(λ), Cb(λ)) = H0, λ ∈ C+; ran (Da(λ), Db(λ)) = H1, λ ∈ C−;(4.14)

i(Ca(λ)JC
∗
a(λ)− Cb(λ)JbC

∗
b (λ)) ≥ 0, i(Da(λ)JD

∗
a(λ)−Db(λ)JbD

∗
b (λ)) ≤ 0,(4.15)

Ca(λ)JD
∗
a(λ) = Cb(λ)JbD

∗
b (λ), λ ∈ C+.(4.16)
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If in addition n+(Tmin) = n−(Tmin), then H⊥
b = {0}, Hb = Hb ⊕ Ĥ ⊕ Hb, Jb takes the

form (1.10) and the equalities

Ca(λ)=(−C1a(λ), iĈ0(λ)−
1

2
Ĉ1(λ), −C0a(λ)) : H ⊕ Ĥ ⊕H → H, λ ∈ C \ R,(4.17)

Cb(λ)=(C0b(λ), −iĈ0(λ)−
1

2
Ĉ1(λ), C1b(λ)) : Hb ⊕ Ĥ ⊕Hb → H, λ ∈ C \ R(4.18)

establish a bijective correspondence between all boundary parameters τ of the form (2.4)
and (4.5), (4.6) and all holomorphic operator functions

(4.19) (Ca(λ), Cb(λ)) : H⊕Hb → H, λ ∈ C \ R

satisfying for all λ ∈ C \ R the relations (1.11) and (1.12). Moreover, in the case
n+(Tmin) = n−(Tmin) the equalities

Ca = (−C1a, iĈ0 −
1

2
Ĉ1, −C0a) : H ⊕ Ĥ ⊕H → H,(4.20)

Cb = (C0b, −iĈ0 −
1

2
Ĉ1, C1b) : Hb ⊕ Ĥ ⊕Hb → H(4.21)

give a bijective correspondence between all self-adjoint boundary parameters τ of the form
(2.5) and (4.7) and all operators (Ca, Cb) : H⊕Hb → H satisfying (1.15).

Proof. It follow from (3.13) that H2(= H0 ⊖H1) = H⊥
b . Therefore by (4.1) and (4.3)

C01(λ) := C0(λ) ↾ H1 = (C0a(λ), Ĉ0(λ), C0b(λ) ↾ Hb),

C02(λ) := C0(λ) ↾ H2 = C0b(λ) ↾ H
⊥
b ,

D01(λ) := D0(λ) ↾ H1 = (D0a(λ), D̂0(λ), D0b(λ) ↾ Hb),

D02(λ) := D0(λ) ↾ H2 = D0b(λ) ↾ H
⊥
b

and the immediate calculations give

2Im(C1(λ)C
∗
01(λ)) + C02(λ)C

∗
02(λ) = i(Ca(λ)JC

∗
a(λ)− Cb(λ)JbC

∗
b (λ)), λ ∈ C+,

2Im(D1(λ)D
∗
01(λ)) +D02(λ)D

∗
02(λ) = i(Da(λ)JD

∗
a(λ)−Db(λ)JbD

∗
b (λ)), λ ∈ C−,

C1(λ)D
∗
01(λ)−C01(λ)D

∗
1(λ)+iC02(λ)D

∗
02(λ)=Cb(λ)JbD

∗
b (λ)−Ca(λ)JD

∗
a(λ), λ ∈ C+.

Moreover, the following equivalences are obvious:

ran (C0(λ), C1(λ)) = H0 ⇐⇒ ran (Ca(λ), Cb(λ)) = H0,

ran (D0(λ), D1(λ)) = H1 ⇐⇒ ran (Da(λ), Db(λ)) = H1.

This and [1, Proposition 2.5] yield the desired statements. �

Let τ = {τ+, τ−} be a boundary parameter defined by (2.2) and (4.1)–(4.4) and
let Ca(λ), Cb(λ) and Da(λ), Db(λ) be the operator-functions (4.9)–(4.12) (hence the
relations (4.14)–(4.16) hold). For a given function f ∈ L2

∆(I) consider the boundary
problem

Jy′ −B(t)y = λ∆(t)y +∆(t)f(t), t ∈ I;(4.22)

Ca(λ)y(a) + Cb(λ)Γby = 0, λ ∈ C+; Da(λ)y(a) +Db(λ)Γby = 0, λ ∈ C−.(4.23)

A function y(·, ·) : I×(C\R) → H is called a solution of this problem if for each λ ∈ C\R
the function y(·, λ) belongs to AC(I;H) ∩ L2

∆(I) and satisfies the equation (4.22) a.e.
on I (so that y ∈ dom Tmax) and the boundary conditions (4.23).

If n+(Tmin) = n−(Tmin) and τ is a boundary parameter defined by (2.4) and (4.5),
(4.6), then the boundary conditions (4.23) take the form

Ca(λ)y(a) + Cb(λ)Γby = 0, λ ∈ C \ R,(4.24)
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with Ca(λ) and Cb(λ) given by (4.17) and (4.18). Moreover, if τ is a self-adjoint boundary
parameter (2.5), (4.7), then (4.24) becomes a self-adjoint boundary condition

Cay(a) + CbΓby = 0,(4.25)

where Ca and Cb are the operators (4.20) and (4.21) (hence they satisfy (1.15)).
In the following theorem we describe all generalized resolvents (and, consequently, all

exit space self-adjoint extensions) of Tmin in terms of λ-depending boundary conditions.

Theorem 4.3. Let τ = {τ+, τ−} be a boundary parameter defined by (2.2) and (4.1)–
(4.4) and let Ca(λ), Cb(λ) and Da(λ), Db(λ) be given by (4.9)–(4.12). Then for every
f ∈ L2

∆(I) the boundary problem (4.22), (4.23) has a unique solution y(t, λ) = yf (t, λ)
and the equality

R(λ)f̃ = π(yf (·, λ)), f̃ ∈ L2
∆(I), f ∈ f̃ , λ ∈ C \ R

defines a generalized resolvent R(λ) =: Rτ (λ) of Tmin. Conversely, for each generalized
resolvent R(λ) of Tmin there exists a unique boundary parameter τ such that R(λ) =
Rτ (λ).

If in addition n+(Tmin) = n−(Tmin), then the above statements hold with the boundary
parameter τ of the form (2.4), (4.5), (4.6) and the boundary condition (4.24) in place of
(4.23). Moreover, Rτ (λ) is a canonical resolvent of Tmin if and only if τ is a self-adjoint

boundary parameter (2.5), (4.7). In this case Rτ (λ) = (T̃ τ − λ)−1, where T̃ τ is given by
(1.16) with the operators Ca and Cb of the form (4.20), (4.21).

Proof. Let Π+ = {H0 ⊕ H1,Γ0,Γ1} be the decomposing boundary triplet (3.13)–(3.15)
for Tmax. Then the immediate checking shows that

(4.26) C0(λ)Γ0{ỹ, f̃} − C1(λ)Γ1{ỹ, f̃} = Ca(λ)y(a) + Cb(λ)Γb(y), {ỹ, f̃} ∈ Tmax.

Hence the boundary problem (4.22), (4.23) is equivalent to the following one:

{ỹ, λỹ + f̃} ∈ Tmax,(4.27)

C0(λ)Γ0{ỹ, λỹ + f̃} − C1(λ)Γ1{ỹ, λỹ + f̃} = 0, λ ∈ C+,(4.28)

D0(λ)Γ0{ỹ, λỹ + f̃} −D1(λ)Γ1{ỹ, λỹ + f̃} = 0, λ ∈ C−.(4.29)

Now application of [26, Theorem 3.11] gives the required statement. �

4.2. Characteristic matrices. The following theorem is well known (see e.g. [6, 10,
29]).

Theorem 4.4. Let Y0(·, λ) be the [H]-valued operator solution of Eq. (3.3) satisfying
Y0(a, λ) = IH. Then for each generalized resolvent R(λ) of Tmin there exists a unique

operator function Ω(·) : C \ R → [H] such that for each f̃ ∈ L2
∆(I) and λ ∈ C \ R

R(λ)f̃ = π

(∫

I

Y0(·, λ)(Ω(λ) +
1

2
sgn(t− x)J)Y ∗

0 (t, λ)∆(t)f(t) dt

)
, f ∈ f̃ .

Moreover, Ω(·) is a Nevanlinna operator function.

Definition 4.5. ([6, 29]). The operator function Ω(·) is called the characteristic matrix
of the symmetric system (3.2) corresponding to the generalized resolvent R(λ).

In the following the characteristic matrix Ω(·) will be called canonical if it corresponds
to the canonical resolvent R(λ) of Tmin.

Since Ω∗(λ) = Ω(λ), λ ∈ C\R, it follows that the characteristic matrix Ω(·) is uniquely
defined, in fact, by its restriction onto C+.

Let the assumptions (A1) and (A2) from Subsection 3.3 be satisfied, let H0 and H1

be finite dimensional Hilbert spaces (3.13), let τ be a boundary parameter and let Rτ (λ)
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be the corresponding generalized resolvent of Tmin (see Theorem 4.3). In the following
we denote by Ωτ (·) the characteristic matrix corresponding to Rτ (·).

It follows from Theorem 4.3 that the equality Ω(λ) = Ωτ (λ) gives a parametrization
of all characteristic matrices of the system (3.2) in terms of the boundary parameter τ .
In the following theorem we represent this parametrization in the explicit form.

Theorem 4.6. Let A0 be the maximal symmetric extension (3.16) of Tmax and let M+(·)
be the operator function (3.22)–(3.24). Moreover, let P

Ĥ
∈ [H0] be the orthoprojection

in H0 onto Ĥ (see (3.1)) and let

Ω0(λ) =

(
m0(λ) − 1

2
IH,H0

− 1

2
PH0,H 0

)
: H0 ⊕H︸ ︷︷ ︸

H

→ H0 ⊕H︸ ︷︷ ︸
H

, λ ∈ C \ R,(4.30)

S1(λ) =

(
m0(λ)−

i
2
P
Ĥ

M2+(λ)
−PH0,H 0

)
: H0 ⊕ H̃b︸ ︷︷ ︸

H0

→ H0 ⊕H︸ ︷︷ ︸
H

, λ ∈ C+,(4.31)

S2(λ) =

(
m0(λ) +

i
2
P
Ĥ

−IH,H0

M3+(λ) 0

)
: H0 ⊕H︸ ︷︷ ︸

H

→ H0 ⊕Hb︸ ︷︷ ︸
H1

, λ ∈ C+.(4.32)

Then: (1) Ω0(·) is the characteristic matrix corresponding to the generalized resolvent
R(λ) = (A0 − λ)−1, λ ∈ C+, of Tmin.

(2) For each boundary parameter τ = {τ+, τ−} of the form (2.2) the operator C0(λ)−
C1(λ)M+(λ), λ ∈ C+, is boundedly invertible.

(3) The equality

(4.33) Ω(λ) = Ωτ (λ) = Ω0(λ) + S1(λ)(C0(λ)− C1(λ)M+(λ))
−1C1(λ)S2(λ), λ ∈ C+

establishes a bijective correspondence between all boundary parameters τ = {τ+, τ−} de-
fined by (2.2) and all characteristic matrices Ω(·) of the system (3.2).

Proof. Let τ = {τ+, τ−} be a boundary parameter (2.2). Since by Proposition 3.8 M+(·)
is the Weyl function of the decomposing boundary triplet Π = {H0 ⊕ H1,Γ0,Γ1} for
Tmax, it follows from [26, Theorem 3.11] that (τ+(λ) + M+(λ))

−1 ∈ [H1,H0], λ ∈ C+.
Hence by [22, Lemma 2.1] the operator C0(λ)−C1(λ)M+(λ) is boundedly invertible and

(4.34) Tτ (λ) := −(τ+(λ) +M+(λ))
−1 = (C0(λ)− C1(λ)M+(λ))

−1C1(λ), λ ∈ C+.

Next assume that A0(= ker Γ0) is the extension (3.16) of Tmin and that γ±(·) are the γ-
fields of the triplet Π+. As it was mentioned in the proof of Theorem 4.3 the generalized
resolvent Rτ (λ) is generated in fact by the boundary problem (4.27)–(4.29). Therefore
according to [26, Theorem 3.11] the following Krein formula for generalized resolvents
holds:

(4.35) Rτ (λ) = (A0 − λ)−1 + γ+(λ)Tτ (λ)γ
∗
−(λ), λ ∈ C+.

Let us show that for each f̃ ∈ L2
∆(I) and λ ∈ C+

(4.36) (A0−λ)−1f̃=π

(∫

I

Y0(·, λ)(Ω0(λ)+
1

2
sgn(t−x)J)Y ∗

0 (t, λ)∆(t)f(t) dt

)
, f ∈ f̃ .

It follows from [1, Theorem 6.2] that the equality

(4.37) (A0 − λ)−1f̃ = π

(∫

I

G0(·, t, λ)∆(t)f(t) dt

)
, f̃ ∈ L2

∆(I), f ∈ f̃ , λ ∈ C+

holds with the Green function G0(·, ·, λ) of the form

(4.38) G0(x, t, λ) =

{
v0(x, λ)ϕ

∗(t, λ), x > t

ϕ(x, λ) v∗0(t, λ), x < t
, λ ∈ C+.
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Here ϕ(·, λ) is the [H0,H]-valued operator solution of Eq. (3.3) satisfying

ϕ(a, λ) =

(
IH0

0

)
: H0 → H0 ⊕H, λ ∈ C

and v0(·, λ) ∈ L2
∆[H0,H] is the operator solution from Proposition 3.7. Let

Y+(t, λ) := (ϕ(t, λ), 0) : H0 ⊕Hb → H, λ ∈ C+,(4.39)

Y−(t, λ) := (ϕ(t, λ), 0) : H0 ⊕ H̃b → H, λ ∈ C−(4.40)

and let Z±(t, λ) be given by (3.19) and (3.20). Then (4.38) can be represented as

(4.41) G0(x, t, λ) =

{
Z+(x, λ)Y

∗
−(t, λ), x > t

Y+(x, λ)Z
∗
−(t, λ), x < t

, λ ∈ C+.

Since

Z±(a, λ) =

(
(P0 + P̂)v0(a, λ) (P0 + P̂)u±(a, λ)

P1v0(a, λ) P1u±(a, λ)

)
, λ ∈ C±,

it follows from (3.23), (3.25) and the first equalities in (3.17) and (3.18) that

(4.42)

Z+(a, λ) =

(
m0(λ)−

i
2
P
Ĥ

M2+(λ)
−PH0,H 0

)
: H0 ⊕ H̃b → H0 ⊕H, λ ∈ C+,

Z−(a, λ) =

(
m∗

0(λ)−
i
2
P
Ĥ

M∗
3+(λ)

−PH0,H 0

)
: H0 ⊕Hb → H0 ⊕H, λ ∈ C−.

Therefore

(4.43) Z+(a, λ) = S1(λ), Z−(a, λ) = S∗
2 (λ)

and (3.4) yields

(4.44) Z+(t, λ) = Y0(t, λ)S1(λ), λ ∈ C+; Z−(t, λ) = Y0(t, λ)S
∗
2 (λ), λ ∈ C−.

Moreover, by (4.39) and (4.40)

Y+(a, λ) =

(
IH0

0
0 0

)
: H0⊕Hb → H0⊕H, Y−(a, λ) =

(
IH0

0
0 0

)
: H0⊕H̃b → H0⊕H

and (3.4) gives Y+(t, λ) = Y0(t, λ)Y+(a, λ) and Y−(t, λ) = Y0(t, λ)Y−(a, λ). This and
(4.41) imply that

(4.45) G0(x, t, λ) =

{
Y0(x, λ)(S1(λ)Y

∗
−(a, λ))Y

∗
0 (t, λ), x > t

Y0(x, λ)(Y+(a, λ)S2(λ))Y
∗
0 (t, λ), x < t

, λ ∈ C+.

Observe also that the operator J can be represented as

(4.46) J =

(
iP

Ĥ
−IH,H0

PH0,H 0

)
: H0 ⊕H → H0 ⊕H

and the direct calculations with taking (4.30) into account give

S1(λ)Y
∗
−(a, λ) = Ω0(λ)−

1

2
J, Y+(a, λ)S2(λ) = Ω0(λ) +

1

2
J, λ ∈ C+.

Combining these equalities with (4.45) and (4.37) one gets (4.36). Hence statement (1)
holds.

Next in view of (3.21) and (4.44) γ−(λ) = πZ−(λ). Therefore, by Lemma 3.3 and the

second equality in (4.44), for each f̃ ∈ L2
∆(I) and λ ∈ C+ one has

γ∗
−(λ)f̃ =

∫

I

Z∗
−(t, λ)∆(t)f(t) dt =

∫

I

S2(λ)Y
∗
0 (t, λ)∆(t)f(t) dt, f ∈ f̃ .
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This and the first equalities in (3.21) and (4.44) imply that for each f̃ ∈ L2
∆(I) and

λ ∈ C+

(4.47) γ+(λ)Tτ (λ)γ
∗
−(λ)f̃=π

(∫

I

Y0(·, λ)S1(λ)Tτ (λ)S2(λ)Y
∗
0 (t, λ)∆(t)f(t) dt

)
, f ∈ f̃ .

Now combining (4.35) with (4.36) and (4.47) we obtain the equality

Rτ (λ)f̃=π

(∫

I

Y0(·, λ)(Ωτ (λ)+
1

2
sgn(t−x)J)Y ∗

0 (t, λ)∆(t)f(t) dt

)
, f̃ ∈ L2

∆(I), λ ∈ C+,

where Ωτ (·) is the operator function (4.33). Thus Ωτ (·) is the characteristic matrix of
the generalized resolvent Rτ (λ), which in view of Theorem 4.3 yields statement (3) of
the theorem. �

Let as before M+(λ), λ ∈ C+, be given by (3.22)–(3.24). With each boundary pa-
rameter τ = {τ+, τ−} of the form (2.2) we associate a holomorphic operator function

Ω̃τ (·) : C+ → [H0 ⊕H1,H1 ⊕H0] given by

Ω̃τ (λ) =

(
ω̃1(λ) ω̃2(λ)
ω̃3(λ) ω̃4(λ)

)
: H0 ⊕H1 → H1 ⊕H0, λ ∈ C+,(4.48)

ω̃1(λ) = M+(λ)−M+(λ)(τ+(λ) +M+(λ))
−1M+(λ),(4.49)

ω̃2(λ) = − 1

2
IH1

+M+(λ)(τ+(λ) +M+(λ))
−1,(4.50)

ω̃3(λ) = − 1

2
IH0

+(τ+(λ)+M+(λ))
−1M+(λ), ω̃4(λ)=−(τ+(λ)+M+(λ))

−1.(4.51)

It follows from (4.34) that the equalities (4.49)–(4.51) can be represented as

ω̃1(λ) = M+(λ)(C0(λ)− C1(λ)M+(λ))
−1C0(λ),(4.52)

ω̃2(λ) = − 1

2
IH1

−M+(λ)(C0(λ)− C1(λ)M+(λ))
−1C1(λ),(4.53)

ω̃3(λ) =
1

2
IH0

− (C0(λ)− C1(λ)M+(λ))
−1C0(λ),(4.54)

ω̃4(λ) = (C0(λ)− C1(λ)M+(λ))
−1C1(λ).(4.55)

In the following proposition we give a somewhat other parametrization of all charac-
teristic matrices Ω(λ) (cf. (4.33)).

Proposition 4.7. Let P
Ĥ

∈ [H0] be the orthoprojection in H0 onto Ĥ and let

X1 =

(
PH1,H0

i
2
P
Ĥ
PH0,H0

0 PH0,H

)
: H1 ⊕H0 → H0 ⊕H︸ ︷︷ ︸

H

,(4.56)

X2 =

(
PH0,H0

i
2
P
Ĥ
PH1,H0

0 PH1,H

)
: H0 ⊕H1 → H0 ⊕H︸ ︷︷ ︸

H

(4.57)

(clearly the operators PHj ,H0
and PHj ,H make sense, because in view of (3.13) H ⊂

H0 ⊂ Hj , j ∈ {0, 1}). Then for each boundary parameter τ = {τ+, τ−} the corresponding
characteristic matrix Ω(λ) = Ωτ (λ) of the system (3.2) admits the representation

(4.58) Ωτ (λ) = X1Ω̃τ (λ)X
∗
2 , λ ∈ C+.

Proof. Let Tτ (λ) be given by (4.34). Since

(4.59) X∗
2 =

(
IH0,H0

0
− i

2
IH0,H1

P
Ĥ

IH,H1

)
: H0 ⊕H → H0 ⊕H1,

it follows from (4.56) and (4.48)–(4.51) that

(4.60) X1Ω̃τ (λ)X
∗
2 =

(
ω1(λ) ω2(λ)
ω3(λ) ω4(λ)

)
: H0 ⊕H → H0 ⊕H, λ ∈ C+,
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where

ω1(λ) = m0(λ) + PH1,H0
M+(λ)Tτ (λ)M+(λ) ↾ H0 +

i
2
PH1,H0

M+(λ)Tτ (λ) ↾ H0 · PĤ

− i
2
P
Ĥ
PH0,H0

Tτ (λ)M+(λ) ↾ H0 +
1

4
P
Ĥ
PH0,H0

Tτ (λ) ↾ H0 · PĤ
,

ω2(λ) = − 1

2
IH,H0

− PH1,H0
M+(λ)Tτ (λ) ↾ H + i

2
P
Ĥ
PH0,H0

Tτ (λ) ↾ H,

ω3(λ) = − 1

2
PH0,H − PH0,HTτ (λ)M+(λ) ↾ H0 −

i
2
PH0,HTτ (λ) ↾ H0 · PĤ

,

ω4(λ) = PH0,HTτ (λ) ↾ H

(in the equality for ω1(λ) we made use of the relation m0(λ) = PH1,H0
M+(λ) ↾ H0

implied by (3.22)). Next, in view of (3.22) the equalities (4.31) and (4.32) can be written
as

S1(λ) =

(
PH1,H0

M+(λ)−
i
2
P
Ĥ
PH0,H0

−PH0,H

)
: H0 → H0 ⊕H,(4.61)

S2(λ) = (M+(λ) ↾ H0 +
i
2
IH0,H1

P
Ĥ
, −IH,H1

) : H0 ⊕H → H1.(4.62)

This and (4.33) yield

Ωτ (λ) =

(
m0(λ) − 1

2
IH,H0

− 1

2
PH0,H 0

)

+

(
PH1,H0

M+(λ)−
i
2
P
Ĥ
PH0,H0

−PH0,H

)
· Tτ (λ) · (M+(λ) ↾ H0+

i
2
IH0,H1

P
Ĥ
, −IH,H1

)

and the immediate calculations show that

(4.63) Ωτ (λ) =

(
ω1(λ) ω2(λ)
ω3(λ) ω4(λ)

)
: H0 ⊕H → H0 ⊕H, λ ∈ C+.

Now comparing (4.60) and (4.63) we arrive at the equality (4.58). �

Theorem 4.8. Assume the hypotheses of Lemma 4.2. Moreover, let τ = {τ+, τ−} be a
boundary parameter defined by (2.2) and (4.1)–(4.4) and let Ca(λ) and Cb(λ) be given
by (4.9) and (4.10). Then

(1) For each λ ∈ C+ there exists a unique operator solution Zτ (·, λ) ∈ L2
∆[H] of Eq.

(3.3) satisfying the boundary condition

(4.64) Ca(λ)(Zτ (a, λ) + J) + Cb(λ)ΓbZτ (λ) = 0, λ ∈ C+

(here Zτ (λ) is the mapping (3.8) for Zτ (·, λ)).
(2) The corresponding characteristic matrix Ωτ (·) satisfies

(4.65) Ωτ (λ) = Zτ (a, λ) +
1

2
J, λ ∈ C+.

(3) The following inequality holds

(4.66) (Imλ)−1 · ImΩτ (λ) ≥

∫

I

Z∗
τ (t, λ)∆(t)Zτ (t, λ) dt, λ ∈ C+.

Proof. (1) Let Π+ = {H0 ⊕ H1,Γ0,Γ1} be the decomposing boundary triplet (3.13)–
(3.15) for Tmax and let M+(·) and γ+(·) be the Weyl function and the γ-field of Π+

respectively. Moreover, let Z+(·, λ) ∈ L2
∆[H0,H] be the operator solution of Eq. (3.3)

defined in Proposition 3.8 and let

(4.67) Zτ (t, λ) := −Z+(t, λ)(C0(λ)− C1(λ)M+(λ))
−1Ca(λ)J, λ ∈ C+.

Clearly, Zτ (·, λ) ∈ L2
∆[H] and Zτ (·, λ) is an operator solution of Eq. (3.3). Let us show

that Zτ (·, λ) satisfies (4.64).
Assume that h ∈ H, h0 := −(C0(λ)− C1(λ)M+(λ))

−1Ca(λ)Jh and

(4.68) ỹ = π(Zτ (·, λ)h).
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Then by (4.67) ỹ = πZ+(λ)h0 and the equality (3.21) yields

(4.69) ỹ = γ+(λ)h0.

Combining (4.68) with (4.26) one gets

(4.70) C0(λ)Γ0{ỹ, λỹ} − C1(λ)Γ1{ỹ, λỹ} = (Ca(λ)Zτ (a, λ) + Cb(λ)ΓbZτ (λ))h.

On the other hand, combining of (4.69) with (2.10) and (2.8) yields Γ0{ỹ, λỹ} = h0 and
Γ1{ỹ, λỹ} = M+(λ)h0. Therefore

C0(λ)Γ0{ỹ, λỹ} − C1(λ)Γ1{ỹ, λỹ} = (C0(λ)− C1(λ)M+(λ))h0 = −Ca(λ)Jh.

Comparing this equality with (4.70) one obtains

Ca(λ)Zτ (a, λ) + Cb(λ)ΓbZτ (λ) = −Ca(λ)J, λ ∈ C+.

This implies (4.64).

To prove uniqueness of Zτ (·, λ) assume that Z̃τ (·, λ) ∈ L2
∆[H] is another solution of

Eq. (3.3) satisfying (4.64). Then for each h ∈ H the function y = (Zτ (t, λ)− Z̃τ (t, λ))h
is a solution of the homogeneous boundary problem (4.22), (4.23) (with f = 0). Since
by Theorem 4.3 such a problem has a unique solution y = 0, it follows that Zτ (t, λ) =

Z̃τ (t, λ).
(2) Assume that S2(λ) is given by (4.32) and that

(4.71) Z0(t, λ) := (Z+(t, λ) ↾ H0, 0) : H0 ⊕H → H, λ ∈ C+.

Then by (4.42)

Z0(a, λ) =

(
m0(λ)−

i
2
P
Ĥ

0
−PH0,H 0

)
: H0 ⊕H → H0 ⊕H

and the equalities (4.30) and (4.46) yield

(4.72) Z0(a, λ) = Ω0(λ)−
1

2
J, λ ∈ C+.

Next we show that

(4.73) Zτ (t, λ) = Z0(t, λ) + Z+(t, λ)(C0(λ)− C1(λ)M+(λ))
−1C1(λ)S2(λ), λ ∈ C+.

Since by (4.9)

Ca(λ)J = (−C0a(λ), −Ĉ0(λ)−
i
2
Ĉ1(λ), C1a(λ)) : H ⊕ Ĥ ⊕H → H0,

it follows from (4.1) and (4.2) that

(4.74) Ca(λ)Jh = −C0(λ)(P0h+ P̂h)− i
2
C1(λ)P̂h+ C1(λ)P1h, h ∈ H.

Let PH,H0
(∈ [H, H0]) be the orthoprojection in H onto H0 (see (3.1)) and let as before

P
Ĥ
(∈ [H0]) be the orthoprojection in H0 onto Ĥ. Then P0h + P̂h = PH,H0

h, P̂h =
P
Ĥ
PH,H0

h and the equality (4.74) can be written as

Ca(λ)Jh = −C0(λ)PH,H0
h− i

2
C1(λ)PĤ

PH,H0
h+ C1(λ)P1h, h ∈ H.

Moreover, by (4.62)

S2(λ)h = M+(λ)PH,H0
h+ i

2
P
Ĥ
PH,H0

h− P1h, h ∈ H,

and combining of the last two equalities yields

Ca(λ)Jh = −(C0(λ)− C1(λ)M+(λ))PH,H0
h− C1(λ)S2(λ)h, h ∈ H.

This and (4.67) imply that for each h ∈ H

(4.75) Zτ (t, λ)h = Z+(t, λ)PH,H0
h+ Z+(t, λ)(C0(λ)− C1(λ)M+(λ))

−1C1(λ)S2(λ)h.

Since by (4.71) Z+(t, λ)PH,H0
h = Z0(t, λ)h, it follows from (4.75) that Zτ (t, λ) admits

the representation (4.73).
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Now combining (4.73) with (4.72) and the first equality in (4.43) and then taking
(4.33) into account one obtains the equality (4.65).

(3) Let us show that

(4.76) Ω0(µ)− Ω∗
0(λ) = (µ− λ)γ∗

1 (λ)γ1(µ), S1(µ)− S∗
2 (λ)P1 = (µ− λ)γ∗

1 (λ)γ+(µ),

where µ, λ ∈ C+, P1 = PH0,H1
is the orthoprojection in H0 onto H1 and

(4.77) γ1(λ) = (γ+(λ) ↾ H0, 0) : H0 ⊕H → L2
∆(I).

The first equality in (4.76) is immediate from (2.9). Next, by (4.62) one has

S∗
2 (λ)P1 =

(
PH0,H0

M∗
+(λ)−

i
2
P
Ĥ
PH1,H0

−PH1,H

)
P1 =

(
PH0,H0

M∗
+(λ)P1 −

i
2
P
Ĥ
PH0,H0

−PH0,H

)
,

which in view of (4.61) yields
(4.78)

S1(µ)−S∗
2 (λ)P1=

(
PH1,H0

M+(µ)− PH0,H0
M∗

+(λ)P1

0

)
: H0→H0 ⊕H, µ, λ ∈ C+.

Since H0 ⊂ H1, it follows that H0 ⊥ H2 and hence PH0,H0
P2 = 0. Therefore application

of the operator PH0,H0
to the identity (2.9) yields

PH1,H0
M+(µ)− PH0,H0

M∗
+(λ)P1 = (µ− λ)PH0,H0

γ∗
+(λ)γ+(µ), µ, λ ∈ C+.

Combining this equality with (4.78) one gets the second equality in (4.76).
Now application of [25, Lemma 21] to the representation (4.33) of Ωτ (·) with taking

(4.76) and (2.9) into account yields

(4.79) ImΩτ (λ) ≥ Imλ · γ∗
τ (λ)γτ (λ), λ ∈ C+,

where

(4.80) γτ (λ) = γ1(λ) + γ+(λ)(C0(λ)− C1(λ)M+(λ))
−1C1(λ)S2(λ), λ ∈ C+.

Since by (3.21) γ+(λ) = πZ+(λ), it follows from (4.77) and (4.71) that γ1(λ) = πZ0(λ).
Combining these equalities with (4.80) and (4.73) we obtain

(4.81) γτ (λ) = πZτ (λ),

where Zτ (λ) is the mapping (3.8) for Zτ (·, λ). Therefore by Lemma 3.3

(4.82) γ∗
τ (λ)f̃ =

∫

I

Z∗
τ (t, λ)∆(t)f(t) dt, f̃ ∈ L2

∆(I), f ∈ f̃ ,

and combining of (4.79) with (4.81) and (4.82) gives (4.66). �

4.3. The case of equal deficiency indices. In the case of equal deficiency indices
n+(Tmin) = n−(Tmin) the above results can be rather simplified. Namely, the following
theorems are immediate from Theorems 4.6, 4.8 and Proposition 4.7.

Theorem 4.9. Let n+(Tmin) = n−(Tmin) (so that H̃b = Hb), let H = H0 ⊕ Hb, let
A0 = A∗

0 be given by (3.16) and let M(·) be the (Nevanlinna) operator function defined
by (3.26)–(3.28). Moreover, let Ω0(·) be the operator function (4.30) and let

(4.83) S(λ) =

(
m0(λ)−

i
2
P
Ĥ

M2(λ)
−PH0,H 0

)
: H0 ⊕Hb︸ ︷︷ ︸

H

→ H0 ⊕H︸ ︷︷ ︸
H

, λ ∈ C \ R.

Then: (1) Ω0(·) is the characteristic matrix corresponding to the canonical resolvent
(A0 − λ)−1 and the equality

Ω(λ) = Ωτ (λ) = Ω0(λ) + S(λ)(C0(λ)− C1M(λ))−1C1(λ)S
∗(λ), λ ∈ C \ R
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establishes a bijective correspondence between all boundary parameters τ of the form (2.4)
and all characteristic matrices Ω(·) of the system (3.2). Moreover, the characteristic
matrix Ω(·) = Ωτ (·) is canonical if and only if the boundary parameter τ is self-adjoint.

(2) For each boundary parameter τ = τ(λ) the corresponding characteristic matrix
Ω(λ) = Ωτ (λ) of the system (3.2) admits the representation

Ωτ (λ) = XΩ̃τ (λ)X
∗, λ ∈ C \ R,

with the Nevanlinna operator function Ω̃τ (·) : C \ R → [H ⊕H]) of the form (1.21) and
the operator X ∈ [H⊕H,H] given by

X =

(
PH,H0

i
2
P
Ĥ
PH,H0

0 PH,H

)
: H⊕H → H0 ⊕H︸ ︷︷ ︸

H

.(4.84)

Theorem 4.10. Let n+(Tmin) = n−(Tmin), let Hb = Hb ⊕ Ĥ ⊕ Hb and let Jb be the
operator (1.10). Moreover, let τ be a boundary parameter defined by (2.4) and (4.5),
(4.6) and let Ca(λ) and Cb(λ) be the operator functions (4.17) and (4.18). Then for each
λ ∈ C \R there exists a unique operator solution Zτ (·, λ) ∈ L2

∆[H] of Eq. (3.3) satisfying
(4.64) (with λ ∈ C \R). Moreover, Ωτ (λ) = Zτ (a, λ) +

1

2
J, λ ∈ C \R, and the inequality

(4.66) is valid for all λ ∈ C \ R.
If in addition τ is a self-adjoint boundary parameter, then the following identity holds:

Ωτ (µ)− Ω∗
τ (λ) = (µ− λ)

∫

I

Z∗
τ (t, λ)∆(t)Zτ (t, µ) dt, µ, λ ∈ C \ R.

This implies that for the canonical characteristic matrix Ωτ (·) the inequality (4.66) turns
into the equality, which holds for all λ ∈ C \ R.
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