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ON THE ACCELERANTS OF NON-SELF-ADJOINT DIRAC

OPERATORS
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Dedicated to Professors D. Z. Arov and V. M. Adamyan, with deep appreciation of their contribution

to modern functional analysis

Abstract. We prove that there is a homeomorphism between the space of acce-
lerants and the space of potentials of non-self-adjoint Dirac operators on a finite
interval.

1. Introduction and main results

The theory of accelerants was founded by M. G. Krein in the middle of the past
century. The origins of this theory go back to Krein’s short papers [5, 6, 7, 8], where he
showed that the resolvent kernels of some integral equations generate solutions of some
2nd order differential equations and systems of 1st order differential equations. Thereby,
Krein established a fundamental connection between a special class of functions called
the accelerants and Sturm–Liouville and Dirac operators. A detailed presentation of
some of these his results can be found in the book [3]. Krein’s ideas in the theory of
accelerants were continued and further developed in many papers.

Accelerants play a particular role in the theory of continuous analogues of polynomials
orthogonal on the unit circle (see [5]). In this context, it is worth mentioning, e.g.,
remarkable lecture notes [2] by S. A. Denisov, where the detailed exposition of many
aspects of the theory can be found and some new results are obtained.

Let Mr denote the Banach algebra of all r × r matrices with complex entries which
we identify with the Banach algebra of linear operators in C

r endowed with the standard
norm.

Definition 1.1. We say that a function h ∈ L1((−1, 1),Mr) is an accelerant if for each
α ∈ (0, 1] the integral equation

(1.1) f(x) +

∫ α

0

h(x− t)f(t) dt = 0, x ∈ (0, 1),

has only zero solution in L2((0, 1),C
r).

Note that Definition 1.1 differs from the one originally introduced by Krein in that we
do not require any of the conditions h(x) = h(−x) or h(x) = h(−x)∗, x ∈ (−1, 1). Note
also that if h is an accelerant, then such is also h♯, where h♯(x) := h(−x), x ∈ (−1, 1)
(see Remark 2.5 below).

We denote by Hp,r the set of accelerants belonging to Lp((−1, 1),Mr), p ∈ [1,∞),
and endow Hp,r with the metric of the latter. It is known (see Proposition 3.1 below)
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that for an arbitrary accelerant h ∈ Hp,r, the integral equation

(1.2) r(x, t) + h(x− t) +

∫ x

0

r(x, s)h(s− t) ds = 0, (x, t) ∈ Ω+,

where Ω+ := {(x, t) | 0 < t < x < 1}, has a unique solution rh ∈ L1(Ω+,Mr). If one
sets rh(x, t) = 0 for (x, t) ∈ [0, 1]2 \Ω+, then rh ∈ G+

p,r (see definition in Sect. 2.2 below).
Equation (1.2) is called the Krein equation.

The connection between the accelerants and Dirac systems of differential equations
was established by Krein in [8]. In the present paper, it is convenient to explain this
connection in equivalent form using the solution of equation (1.2).

So, let h ∈ Hp,r. Consider the r × r matrix-valued functions

ϕ1(x, λ) := eiλx
(
I +

∫ x

0

e−2iλsrh(x, x− s) ds

)
,

ϕ2(x, λ) := e−iλx

(
I +

∫ x

0

e2iλsrh♯(x, x− s) ds

)
,

where x ∈ (0, 1), λ ∈ C, I is the r×r identity matrix and rh♯ is the solution of (1.2) with
h♯ instead of h. Then the 2r × r matrix-valued function ϕ := (ϕ1, ϕ2)

⊤ is a solution of
the Cauchy problem

J
d

dx
ϕ+Qϕ = λϕ, ϕ(0, λ) =

(
I
I

)
,

with

J :=
1

i

(
I 0
0 −I

)
, Q(x) = [Θ(h)](x) :=

(
0 irh(x, 0)

−irh♯(x, 0) 0

)
, x ∈ (0, 1).

Since both functions rh and rh♯ belong to G+
p,r, the function Q = Θ(h) belongs to the

class

Qp := {Q ∈ Lp((0, 1),M2r) | Q(x)J = −JQ(x) a.e. on (0, 1)}.

The mapping Θ : Hp,r → Qp will be called the Krein mapping.
The main result of this paper is the following theorem:

Theorem 1.1. For an arbitrary p ∈ [1,∞), the Krein mapping is a homeomorphism
between the metric spaces Hp,r and Qp. Moreover, both the Krein mapping and its inverse
are locally Lipschitz.

In his paper [8], Krein treated symmetric accelerants, i.e. the ones satisfying the
condition h(−t) = h(t) = h(t)⊤, t ∈ (−1, 1), where ⊤ designates the transposition of
matrices. Namely, he proved that there is a one-to-one correspondence between the set
of all continuous symmetric accelerants and the set of all continuous symmetric potentials
of the Krein systems which are closely related to Dirac operators.

The analogue of Krein’s theorem was established for self-adjoint Dirac operators with
continuous potentials in [1]. Therein, it was shown that there is a one-to-one corres-
pondence between the potentials of such operators and Hermitian accelerants (i.e. such
that h(−t) = h(t)∗) that are continuous outside the origin.

The analogous theorem for Krein systems on semi-axis was proved in [2, Theorem 5.3].
In [13, Theorem 1.9], it was proved that the Krein mapping is a homeomorphism be-

tween the space of all even accelerants h in H2,r and L2((0, 1),Mr). In [14, Theorem 1.5],
the same result was established about the space of Hermitian accelerants h in Hp,r and
Lp((0, 1),Mr), p ∈ [1,∞). It thus follows that the potentials of all self-adjoint Dirac
operators on [0, 1] correspond to Hermitian accelerants h ∈ Hp,r. In the present paper,
we actually abandon the condition of self-adjointness and show that the potentials of
all (not necessarily self-adjoint) Dirac operators on [0, 1] correspond to (not necessarily
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Hermitian) accelerants h ∈ Hp,r. Since rh♯(·, 0) = [rh(·, 0)]
∗ for all Hermitian accelerants,

the results of the present paper correlate well with the results of [14].

2. Some facts from the theory of factorizations

2.1. Some general facts. Let H be a separable infinite dimensional Hilbert space and
B := B(H) be the Banach algebra of all everywhere defined bounded linear operators in
H. We write B∞ and B0 for the Banach algebra of all compact operators and for the
linear space of all finite dimensional operators from B, respectively.

We say that a set P ⊂ B of orthoprojectors is a chain if for any P1, P2 ∈ P it holds
either P1 < P2 or P2 < P1. A chain is said to be closed if it is a closed subset of B in
the strong operator topology. A closed chain is said to be continuous if for each pair
P1, P2 ∈ P such that P1 < P2 there is P ∈ P such that P1 < P < P2. We say that
a closed chain P is complete if it is continuous and 0, I ∈ P, where I is the identity
operator in H.

Let P be a complete chain in H. Set

B+
∞ := {B ∈ B∞ | ∀P ∈ P (I − P )BP = 0},

B−
∞ := {B ∈ B∞ | ∀P ∈ P PB(I − P ) = 0}.

It can be easily verified that B+
∞ and B−

∞ are closed Banach subalgebras in B∞ and that
B+
∞ ∩ B−

∞ = {0}. Furthermore, the operators from B±
∞ are Volterra ones (see [3, Ch. I]).

Denote by P+ (P−, resp.) the projector in B̃∞ := B+
∞+̇B−

∞ onto B+
∞ (B−

∞, resp.)
parallel to B−

∞ (B+
∞, resp.). The projectors P+ and P− are called the transformators of

triangular truncations (this term was suggested by I. C. Gohberg and M. G. Krein for
the operators acting from one Banach algebra to another, see [3, Ch. II]).

Denote by Σ the set of all Banach algebras S ⊂ B∞ in which the transformators P+

and P− are continuous. For each S ∈ Σ we set

(2.1) S± := P±S.

It then follows that both S+ and S− are closed subalgebras in S consisting of Volterra
operators and that S = S++̇S−.

Let S ∈ Σ. We say that the operator I + Q with Q ∈ B∞ (Q ∈ S, resp.), admits a
factorization in B∞ (in S, resp.) if

(2.2) I +Q = (I +K−)
−1(I +K+)

−1

with some K± ∈ B±
∞ (K± ∈ S±, resp.).

Let Φ (ΦS, resp.) denote the set of all operators Q ∈ B∞ (Q ∈ S) for which I + Q
admits a factorization in B∞ (in S). It is known (see [3, Ch. IV]) that Φ is contained in
the set

Ψ := {Q ∈ B∞ | ∀P ∈ P ker(I + PQP ) = {0}}

and that for each Q ∈ Φ the operators K± = K±(Q) in (2.2) are determined uniquely.
The following theorem is proved in [10]:

Theorem 2.1. Let S ∈ Σ. Then the set ΦS is open in S. Moreover, the mappings
ΦS ∋ Q 7→ K±(Q) ∈ S are locally Lipschitz.

Remark 2.1. A mapping ϕ acting from an open set O in a Banach space X to a Banach
space Y is said to be locally Lipschitz if for each x0 ∈ O there are a neighborhood U ⊂ O
of x0 and c > 0 such that ‖ϕ(x1)− ϕ(x2)‖Y ≤ c‖x1 − x2‖X for all x1, x2 ∈ U .

Set

Σf := {S ∈ Σ | ΦS = Ψ ∩S}, Σ0
f := {S ∈ Σf | S ∩ B0 is dense everywhere in B∞}.
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Note that as follows from the well known results in the theory of factorizations (see [3])
the Neumann–Schatten ideals Bp, 1 < p < ∞, belong to the class Σ0

f .

The next two theorems follow from the results of [10, 11]:

Theorem 2.2. Let S ∈ Σ and S1 ∈ Σ0
f be a two-sided ideal in S. If S1 is dense

everywhere in S, then S ∈ Σ0
f .

Theorem 2.3. Let Q ∈ Φ and Q1 ∈ B0. Then the set {λ ∈ C | (Q+ λQ1) ∈ Ψ} is open
and dense everywhere in C.

Corollary 2.1. Let S ∈ Σ0
f . Then the set ΦS is dense everywhere in S.

2.2. Algebras Gp,n. For an arbitrary p ∈ [1,∞) and n ∈ N, we denote by Gp,n the set
of all measurable functions K : [0, 1]2 → Mn such that for all x, t ∈ [0, 1] the functions
K(x, ·) and K(·, t) belong to Lp((0, 1),Mn) and, moreover, the mappings

[0, 1] ∋ x 7→ K(x, ·) ∈ Lp((0, 1),Mn), [0, 1] ∋ t 7→ K(·, t) ∈ Lp((0, 1),Mn)

are continuous. The set Gp,n becomes a Banach space upon introducing the norm

(2.3) ‖K‖Gp,n
= max

{
max
x∈[0,1]

‖K(x, ·)‖Lp
, max

t∈[0,1]
‖K(·, t)‖Lp

}
.

We denote by Gp,n the set of all integral operators in H := L2((0, 1),C
n) with kernels

K ∈ Gp,n and endow Gp,n with the norm

‖K‖Gp,n
:= ‖K‖Gp,n

, K ∈ Gp,n.

Note that there are continuous embeddings Gp,n ⊂ G1,n ⊂ B(H) and that for each
K ∈ Gp,n and R ∈ G1,n it holds

‖K‖G1,n
≤ ‖K‖Gp,n

, ‖R‖B ≤ ‖R‖G1,n
.

Furthermore, it can be verified that Gp,n is a Banach algebra.
We set

Ω+ := {(x, t) | 0 < t < x < 1}, Ω− := {(x, t) | 0 < x < t < 1}

and write G±
p,n for the sets of all functions K ∈ Gp,n such that K(x, t) = 0 a.e. in Ω∓.

We denote by G±
p,n the subalgebras in Gp,n consisting of all operators K ∈ Gp,n with

kernels K ∈ G±
p,n. It is easy to verify that G±

p,n are closed subalgebras in Gp,n and that

Gp,n = G+
p,n ∔ G−

p,n.

We denote by S±
n the operator algebras consisting of all operators K ∈ G±

1,n with

kernels that are continuous in Ω±. The algebras S+
n and S−

n become Banach algebras
upon introducing the norms

‖K‖S±
n
:= max

(x,t)∈Ω±

‖K(x, t)‖.

We set Sn := S+
n ∔ S−

n and endow Sn with the norm

‖K‖Sn
:= max

{
‖K+‖S+

n
, ‖K−‖S−

n

}
, K = K+ +K−, K± ∈ S±

n .

It is easy to verify that Sn is a Banach algebra. We then denote by Sn,0 a subalgebra in
Sn consisting of all operators K ∈ Sn with kernels that are continuous on [0, 1]2.

Lemma 2.1. Sn is a two sided ideal in Gp,n. Furthermore, Sn and S±
n are continuously

and densely embedded into Gp,n and G±
p,n, respectively.



ON THE ACCELERANTS OF NON-SELF-ADJOINT DIRAC OPERATORS 353

Proof. A straightforward verification shows that for each K0 ∈ Sn and K1 ∈ Gp,n, the
products K0K1 and K1K0 belong to Sn,0 and that

(2.4) ‖K0K1‖Sn
, ‖K1K0‖Sn

≤ ‖K0‖Sn
‖K1‖Gp,n

.

Therefore, Sn is a two sided ideal in Gp,n. Since

(2.5) ‖K‖Gp,n
≤ ‖K‖Sn

, K ∈ Sn,

one also has that Sn and S±
n are continuously embedded into Gp,n and G±

p,n, respectively.
It was proved in [11] that S1,0 is dense everywhere in G1,1. By a straightforward

modification of that proof it can be shown that Sn,0 is dense everywhere in Gp,n. It then
follows that S+

n and S−
n are dense everywhere in G+

p,n and G−
p,n, respectively. �

In particular, it follows from Lemma 2.1 that Gp,n ⊂ B∞(H).

Lemma 2.2. Let K ∈ G+
p,n∪G−

p,n and ρ(K) be the spectral radius of K (see [15, Ch. 10]).
Then ρ(K) = 0.

Proof. Since the mapping K 7→ K∗ maps G−
p,n onto G+

p,n isometrically, it suffices to prove

that ρ(K) = 0 for each K ∈ G+
p,n.

For this purpose, note that for an arbitrary sequence (Kj)
m
j=1 in S+

n it holds

(2.6) ‖K1 · · · Km‖Sn
≤

1

m!

m∏

j=1

‖Kj‖Sn
.

Let K ∈ G+
p,n and δ ∈ (0, 1). In view of Lemma 2.1, the operator K can be written in the

form K = K0 + K1 with some K0 ∈ S+
n and K1 ∈ G+

p,n such that ‖K1‖Gp,n
≤ δ. It then

holds Ks =
∑

σ∈Us

Kσ(1) · · · Kσ(s), where the sum is taken over the set Us of all functions

σ : {1, . . . , s} → {0, 1}, and thus one has

‖Ks‖Gp,n
≤ 2s max

σ
‖Kσ(1) · · · Kσ(s)‖Gp,n

.

Let σ ∈ Un and m := card(σ−1(0)) > 0. It then follows from Lemma 2.1 and from
the estimates (2.4) and (2.6) that the operator L = Kσ(1) · · · Kσ(s) belongs to S+

n and,
furthermore,

‖L‖Sn
≤

1

m!
‖K1‖

s−m
Gp,n

‖K0‖
m
Sn

≤
1

m!
δs−m‖K0‖

m
Sn

.

Taking into account (2.5), we then obtain that

‖L‖Gp,n
≤ δs

(δ−1‖K0‖Sn
)m

m!
≤ δs exp (δ−1‖K0‖Sn

).

Evidently, the latter inequality holds true also for m = 0. Therefore, one has

‖Ks‖Gp,n
≤ (2δ)s exp (δ−1‖K0‖Sn

)

and thus the spectral radius ρ(K) of the operator K ∈ Gp,n does not exceed 2δ. Since δ
was arbitrary, one then has that ρ(K) = 0. �

It follows from Lemma 2.2 that the mapping K 7→ γ(K) := (I +K)−1 − I maps both
G+
p,n and G−

p,n into themselves. Actually even more holds true:

Lemma 2.3. The mappings G+
p,n ∋ K 7→ γ(K) ∈ G+

p,n and G−
p,n ∋ K 7→ γ(K) ∈ G−

p,n are
homeomorphic and locally Lipschitz.

Lemma 2.3 follows from the next general result:

Proposition 2.1. Let A be a Banach algebra with the identity e and A0 be its closed
subalgebra such that ρ(a) = 0 for each a ∈ A0. Then the mapping A0 ∋ a 7→ γ(a) :=
[(e+ a)−1 − e] ∈ A0 is homeomorphic and locally Lipschitz.
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Proof. Since (e+ a1)
−1 − (e+ a2)

−1 = (e+ a1)
−1(a2 − a1)(e+ a2)

−1, it follows that

(2.7) γ(a1)− γ(a2) = (e+ γ(a1))(a2 − a1)(e+ γ(a2)), a1, a2 ∈ A.

Let a ∈ A0. It then follows from the assumptions of the lemma that there is m ∈ N such
that ‖am‖A ≤ 1/4. Set C :=

∑m−1
k=0 ‖ak‖. Since multiplication in A0 is continuous, it

then follows that there is a neighborhood U ⊂ A0 of a such that

‖bm‖A ≤ 1/2,

m−1∑

k=0

‖bk‖A ≤ 2C, b ∈ U .

Since

γ(b) =

∞∑

s=1

(−b)s =

m−1∑

k=0

(−b)k
∞∑

s=1

(−b)ms,

it follows that ‖γ(b)‖A ≤ 2C for all b ∈ U . Taking into account (2.7) we then obtain that

‖γ(a1)− γ(a2)‖A ≤ (1 + 2C)2‖a1 − a2‖A, a1, a2 ∈ U .

Therefore the mapping γ is locally Lipschitz. Since γ(γ(a)) ≡ a, it also follows that γ is
homeomorphic. �

2.3. Factorization of operators in Gp,n. Let H := L2((0, 1),C
n). We consider the

transformators P± in B∞(H) generated by a complete chain of orthoprojectors Pα :
H → H, α ∈ [0, 1], given by the formula

Pαf := χ[0,α]f, f ∈ H,

where χ[0,α] is the characteristic function of the interval [0, α].

Lemma 2.4. The transformators P± are continuous in Gp,n and G±
p,n = P∓Gp,n.

Remark 2.2. The change of sign in the above formula arises due to discrepancy between
definition (2.1) and the definition of algebras G±

p,n given at the beginning of Sect. 2.2.
However, the authors prefer to accept this inconvenience in order to follow both the
standard notations in [3, 10, 11] and the ones used in [12, 13, 14]. This causes also sign
differences between formula (2.8) below and formula (2.2).

Proof of Lemma 2.4. In the scalar case n = 1, continuity of P±
1 := P± in Gp,1 follows

from the results of [11]. Note that Gp,n can be considered as a tensor product of the
algebras Gp,1 and Mn and that P± can be considered as tensor products of the operators
P±
1 and IMn

. Therefore, we obtain that the transformators P± act continuously in Gp,n.
Verification of the equalities G±

p,n = P∓Gp,n is straightforward. �

Remark 2.3. It follows from Lemma 2.4 that Gp,n belongs to the class Σ. The algebra
Sn belongs to the class Σf (see [3, Ch. IV]). Since Sn ∩ B0(H) is dense everywhere
in B∞(H), it follows that Sn belongs to the class Σ0

f . Therefore, taking into account

Theorem 2.2 and Lemma 2.1, we obtain that Gp,n also belongs to Σ0
f .

We denote by G̃p,n the set of all operators F ∈ Gp,n such that I + F admits a facto-

rization in Gp,n, i.e. F ∈ G̃p,n if and only if there exist L± ∈ G±
p,n such that

(2.8) I + F = (I + L+)
−1(I + L−)

−1.

In view of Theorem 2.1 and Corollary 2.1 we then arrive at the following statements:

Theorem 2.4. (i) The set G̃p,n is open and dense everywhere in Gp,n.

(ii) If F ∈ G̃p,n, then L± in (2.8) are determined uniquely and L± = K∓(F).

(iii) The mapping G̃p,n ∋ F 7→ K±(F) ∈ Gp,n is locally Lipschitz.
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Theorem 2.5. Let F ∈ Gp,n and F ∈ Gp,n be a kernel of F . Then the following
statements are equivalent:

(i) F ∈ G̃p,n;
(ii) for each α ∈ [0, 1], the integral equation

(2.9) f(x) +

∫ α

0

F (x, t)f(t) dt = 0, x ∈ (0, 1),

has only zero solution in H;
(iii) the integral equation

(2.10) X(x, t) + F (x, t) +

∫ x

0

X(x, s)F (s, t) ds = 0, (x, t) ∈ Ω+,

is solvable in G+
p,n.

Remark 2.4. Equation (2.10) always has at most one solution. If X ∈ G+
p,n is a solution

of (2.10), then X coincides with the kernel of the operator L+ = K−(F) ∈ G+
p,n.

Remark 2.5. Note that for each F ∈ Gp,n and P ∈ P, the operators I + FP and
I + PFP are invertible or not simultaneously. Therefore, it follows that equation (2.9)
has a non-zero solution in H if and only if it has a non-zero solution in L2((0, α),C

n).
For the same reason, we have that the functions h and h♯ from Lp((−1, 1),Mr) belong
to Hp,r or not simultaneously.

3. Proof of Theorem 1.1

The aim of this Section is to prove Theorem 1.1, which is the main result of this paper.
Firstly, we shall use the results of the previous section to prove that the Krein mapping
is locally Lipschitz. Next, we shall construct a locally Lipschitz mapping Υ : Qp → Hp,r

and show that Υ = Θ−1.

3.1. The Krein mapping. Here we shall prove that the Krein mapping is locally Lip-
schitz. We start with several auxiliary statements which will be useful in subsequent
expositions. The first one is a corollary of Theorems 2.4 and 2.5:

Proposition 3.1. Let h ∈ Lp((−1, 1),Mn). Consider the operator H ∈ Gp,n acting by
the formula

(3.1) (Hf)(x) =

∫ 1

0

h(x− t)f(t) dt, f ∈ L2((0, 1),C
n).

Then the following statements are equivalent:

(i) H ∈ G̃p,n;
(ii) h is an accelerant, i.e. h ∈ Hp,n;
(iii) the Krein equation

(3.2) r(x, t) + h(x− t) +

∫ x

0

r(x, s)h(s− t) ds = 0, (x, t) ∈ Ω+,

has a unique solution rh ∈ G+
p,n.

Moreover, the mapping Hp,n ∋ h 7→ rh ∈ G+
p,n is locally Lipschitz and the set Hp,n is

open in Lp((−1, 1),Cn).

Proposition 3.2. The set Hp,r is dense everywhere in Lp((−1, 1),Mr).
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Proof. Let f ∈ Lp((−1, 1),Mr). Then f can be written in the form f = h + h1, where
h, h1 ∈ Lp((−1, 1),Mr), ‖h‖Lp

< 1 and h1 is a trigonometric polynomial. Denote by H
and H1 the operators constructed by formula (3.1) from functions h and h1, respectively.
It is easily seen that the operator H1 is finite dimensional and that the norm of the

operator H is less than 1. Therefore, one has H ∈ G̃p,r. By virtue of Theorem 2.3, the set
Λ := {λ ∈ C | (H+λH1) ∈ Ψ} is open and dense everywhere in C. Since the algebra Gp,r

belongs to the class Σ0
f (see Remark 2.3), it follows that Λ = {λ ∈ C | (H+λH1) ∈ G̃p,r}.

In view of Proposition 3.1, this means that Λ = {λ ∈ C | (h + λh1) ∈ Hp,r}. Therefore,
f is a limit point of the set Hp,r. �

Lemma 3.1. Let h ∈ Lp((−1, 1),Mr),

(3.3) Fh(x, t) :=
1

2




h

(
x− t

2

)
h

(
x+ t

2

)

h

(
−
x+ t

2

)
h

(
−
x− t

2

)


 , x, t ∈ (0, 1),

and Fh ∈ Gp,2r be the integral operator with kernel Fh. Then h ∈ Hp,r ⇐⇒ Fh ∈ G̃p,2r.

Proof. In view of Proposition 3.1, the lemma will be proved if we show that

(3.4) H ∈ G̃p,r ⇐⇒ Fh ∈ G̃p,2r.

For this purpose, recall (see Theorem 2.5 and Remark 2.5) that H ∈ G̃p,r if and only if
the equation

(3.5) f(x) +

∫ α

0

h(x− t)f(t) dt = 0, x ∈ (0, α),

has only zero solution in L2((0, α),C
r). Similarly, one has Fh ∈ G̃p,2r if and only if the

equation

(3.6) g(x) +

∫ α

0

Fh(x, t)g(t) dt = 0, x ∈ (0, α),

has only zero solution in L2((0, α),C
2r). Now observe that if f ∈ L2((0, α),C

r) solves
(3.5), then

g(x) =



f

(
α+ x

2

)

f

(
α− x

2

)




solves (3.6) and that if g = (g1, g2)
⊤ with g1, g2 ∈ L2((0, α),C

r) solves (3.6), then

f(x) =

{
g2(α− 2x), x ∈

(
0, α

2

)
,

g1(2x− α), x ∈
(
α
2 , α

)
,

solves (3.5). Therefore, equations (3.5) and (3.6) have non-zero solutions simultaneously
which proves the equivalence (3.4). �

Remark 3.1. Let h ∈ Hp,r. Recall that h
♯(x) := h(−x) and set

(3.7) H(x) :=

(
h(x) 0
0 h♯(x)

)
, x ∈ (−1, 1).

It is then easily verified that for the function

(3.8) RH(x, t) :=

(
rh(x, t) 0

0 rh♯(x, t)

)
, (x, t) ∈ Ω+,
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it holds

(3.9) RH(x, t) +H(x− t) +

∫ x

0

RH(x, s)H(s− t) ds = 0, (x, t) ∈ Ω+,

and that for

(3.10) Lh(x, t) :=
1

2

{
RH

(
x,

x+ t

2

)
+RH

(
x,

x− t

2

)
B

}
, B :=

(
0 I
I 0

)
,

one has

(3.11) Fh(x, t) + Lh(x, t) +

∫ x

0

Lh(s, t)F
h(x, s) ds = 0, (x, t) ∈ Ω+.

Now we are ready to prove the following lemma which is the main purpose of this
subsection:

Lemma 3.2. For an arbitrary p ∈ [1,∞), the Krein mapping Θ : Hp,r 7→ Qp is locally
Lipschitz.

Proof. Let h ∈ Hp,r and H be as in (3.7). It then follows from Proposition 3.1 and from
(3.9) that H ∈ Hp,2r and that the mapping Hp,2r ∋ H 7→ RH ∈ G+

p,2r is locally Lipschitz.
Note that

(3.12) [Θ(h)](x) = RH(x, 0)BJ, x ∈ (0, 1),

where B is from (3.10). In view of formulas (3.7) and (3.12), it is then easily seen that
Θ is locally Lipschitz. �

3.2. Construction of the mapping Υ. We now construct the mapping Υ : Qp → Hp,r

that will appear to be the inverse of the Krein mapping.
Let Q ∈ Qp. For each λ ∈ C, we denote by ϕQ(x, λ), x ∈ [0, 1], a 2r× r matrix-valued

solution of the Cauchy problem

(3.13) J
d

dx
ϕ+Qϕ = λϕ, ϕ(0, λ) =

(
I
I

)
.

Lemma 3.3. For each Q ∈ Qp, there is a unique function KQ ∈ G+
p,2r such that for all

x ∈ [0, 1] and λ ∈ C it holds

(3.14) ϕQ(x, λ) = ϕ0(x, λ) +

∫ x

0

KQ(x, s)ϕ0(s, λ) ds,

where ϕ0(x, λ) is a solution of the Cauchy problem (3.13) in the free case Q = 0. More-
over, the mapping Qp ∋ Q 7→ KQ ∈ G+

p,2r is locally Lipschitz.

Proof. Denote by YQ(·, λ) ∈ W 1
2 ((0, 1),M2r) a 2r × 2r matrix-valued solution of the

Cauchy problem

J
d

dx
Y +QY = λY, Y (0, λ) = I2r.

It then follows from [16, Theorem 2.1] that there exist unique functions P± := P±
Q from

G+
p,2r such that for all x ∈ [0, 1] and λ ∈ C it holds

(3.15) YQ(x, λ) = e−λxJ +

∫ x

0

P+(x, t)e−λ(x−2t)J dt+

∫ x

0

P−(x, t)eλ(x−2t)J dt.

Since ϕQ(x, λ) = YQ(x, λ)a, where a := (I, I)⊤, straightforward manipulations lead us
to formula (3.14) with
(3.16)

KQ(x, t)=
1

2

{
P+

(
x,

x− t

2

)
+P+

(
x,

x+ t

2

)
B+P−

(
x,

x− t

2

)
B+P−

(
x,

x+ t

2

)}
,
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where B is from (3.10).
Let us prove that the mapping Qp ∋ Q 7→ KQ ∈ G+

p,2r is locally Lipschitz. It follows

from the proof of Theorem 2.8 in [16] that with P̃Q(x, t) := P+
Q

(
x, x−t

2

)
it holds

‖P̃Q1
(x, ·)− P̃Q2

(x, ·)‖Lp
≤ (1 + 2ε)e2ε‖Q1 −Q2‖Lp

,(3.17)

‖P̃Q1
(·, t)− P̃Q2

(·, t)‖Lp
≤ C‖Q1 −Q2‖Lp

, C := 2εeε + 2ε(1 + 2ε)e2ε,(3.18)

for every Q1, Q2 ∈ Qp such that ‖Q1‖, ‖Q2‖ < ε and that the same estimates hold true

also with P̃Q(x, t) := P+
Q

(
x, x+t

2

)
, P̃Q(x, t) := P−

Q

(
x, x+t

2

)
and P̃Q(x, t) := P−

Q

(
x, x−t

2

)
.

In view of (3.16), we then obtain that the mapping Qp ∋ Q 7→ KQ ∈ G+
p,2r is locally

Lipschitz. �

Denote by KQ ∈ Gp,2r the integral operator with kernel KQ and let I stand for the
identity operator in H. Since KQ is a Volterra operator, the operator I+KQ is invertible
in H. Set

LQ := (I +KQ)
−1 − I,(3.19)

FQ := (I +KQ)
−1(I +K∗

Q∗)−1 − I(3.20)

and denote by LQ and FQ the kernels of the integral operators LQ and FQ, respectively.

Theorem 3.1. Let Q ∈ Qp and F := FQ. Then there is a unique h = Υ(Q) ∈ Hp,r such
that FQ = Fh (see (3.3)). Moreover, the mapping Υ : Qp → Hp,r is locally Lipschitz.

Proof. Firstly, note that the mapping Qp ∋ Q 7→ FQ ∈ Gp,2r is locally Lipschitz. Indeed,
in view of Lemma 3.3 one has that the mapping Qp ∋ Q 7→ KQ ∈ G+

p,2r is locally
Lipschitz. Taking into account Proposition 2.1, we then easily find that the mapping
Qp ∋ Q 7→ FQ ∈ Gp,2r is locally Lipschitz as well.

Assume that for each Q ∈ Qp there is h ∈ Lp((−1, 1),Mr) such that FQ = Fh.
Evidently, such h is unique and one has h = η(F ), where η : Gp,2r → Lp((−1, 1),Mr) is
a continuous linear mapping acting by the formula

[η(F )](x) :=





F21(−2x− 1, 1), −1 ≤ x ≤ − 1
2 ,

F11(2x+ 1, 1), − 1
2 < x ≤ 0,

F22(−2x+ 1, 1), 0 < x ≤ 1
2 ,

F12(2x− 1, 1), 1
2 < x ≤ 1,

where

(3.21) F =

(
F11 F12

F21 F22

)
, Fij ∈ Gp,r.

In view of (3.20), note that FQ ∈ G̃p,2r. Since FQ = Fh, it then follows from Lemma 3.1
that h ∈ Hp,r. Moreover, since the mapping Qp ∋ Q 7→ FQ ∈ Gp,2r is locally Lipschitz,
it follows that the mapping Qp ∋ Q 7→ Υ(Q) := η(FQ) ∈ Hp,r is locally Lipschitz as well.

Therefore, Theorem 3.1 will be proved if we show that for each Q ∈ Qp there is
h ∈ Lp((−1, 1),Mr) such that FQ = Fh. Obviously, it suffices to prove this only for
smooth functions Q.

So, let Q ∈ Qp ∩ C1([0, 1],M2r) and F := FQ. It then follows from Proposition A.1

that F ∈ C1(Ω±,M2r) and that

JF ′
x(x, t) + F ′

t (x, t)J = 0, (x, t) ∈ Ω±,(3.22)

F (x, 0)a∗ = 0, aF (0, x) = 0, x ∈ (0, 1).(3.23)

If we write F in the block form (3.21), we then obtain from (3.22) that
(

∂

∂x
+

∂

∂t

)
F11 =

(
∂

∂x
+

∂

∂t

)
F22 = 0,

(
∂

∂x
−

∂

∂t

)
F12 =

(
∂

∂x
−

∂

∂t

)
F21 = 0.
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Therefore, it follows that F can be written in the form

F (x, t) =
1

2




h1

(
x− t

2

)
h2

(
x+ t

2

)

h3

(
−
x+ t

2

)
h4

(
−
x− t

2

)


 , (x, t) ∈ Ω±,

where h1, h4 ∈ C([−1/2, 1/2],Mr), h2 ∈ C([0, 1],Mr) and h3 ∈ C([−1, 0],Mr). Next,
we find from (3.23) that h1 = h4 and that

h2(x) = h1(x), x ∈
[
0, 1

2

]
,

h3(x) = h1(x), x ∈
[
− 1

2 , 0
]
.

We then arrive at F = Fh with h given by the formula

h(x) :=





h1(x), x ∈
(
− 1

2 ,
1
2

)
,

h2(x), x ∈
(
1
2 , 1

)
,

h3(x), x ∈
(
−1,− 1

2

)
.

�

3.3. Proof of Theorem 1.1. From Lemma 3.2 we already know that the Krein mapping
Θ is locally Lipschitz. Since the mapping Υ from Theorem 3.1 is also locally Lipschitz,
Theorem 1.1 will be proved if we show that Υ = Θ−1. Since Qp∩C1([0, 1],M2r) is dense
everywhere in Qp and Hp,r ∩ C1([−1, 1],Mr) is dense everywhere in Hp,r, it suffices to
prove the equalities

(3.24) Θ(Υ(Q)) = Q, Q ∈ Qp ∩ C1([0, 1],M2r),

(3.25) Υ(Θ(h)) = h, h ∈ Hp,r ∩ C1([−1, 1],Mr).

Let us first prove (3.24). Let Q ∈ Qp∩C1([0, 1],M2r) and h := Υ(Q). Since by virtue
of the definition of the mapping Υ one has FQ = Fh, in view of formula (3.20) one has

I + Fh = (I +KQ)
−1(I +K∗

Q∗)−1.

From the other hand, we obtain from Remark 3.1 that

Fh(x, t) + Lh(x, t) +

∫ x

0

Lh(s, t)F
h(x, s) ds = 0, (x, t) ∈ Ω+,

where Lh ∈ G+
p,2r is of (3.10). In view of Remark 2.4 we then find that KQ = Lh. By

virtue of formulas (3.10) and (A.5), it then holds

[Θ(h)](x) = KQ(x, x)J − JKQ(x, x) = Q(x), x ∈ (0, 1),

as desired.
It thus only remains to prove (3.25). Let h ∈ Hp,r ∩ C1([−1, 1],Mr) and Q := Θ(h).

Then (3.25) will be proved if we show that

(3.26) FQ = Fh.

In turn, since

I + FQ = (I +KQ)
−1(I +K∗

Q∗)−1,

we find from Remarks 3.1 and 2.4 that (3.26) will be proved if we show that KQ = Lh

with Lh of (3.10). For this purpose, it suffices to verify that the function

(3.27) ϕ(x, λ) := ϕ0(x, λ) +

∫ x

0

Lh(x, t)ϕ0(t, λ) dt, x ∈ [0, 1], λ ∈ C,
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where ϕ0(x, λ) := (eiλx, e−iλx)⊤, solves the Cauchy problem

(3.28) J
d

dx
ϕ+Qϕ = λϕ, ϕ(0, λ) =

(
I
I

)
.

The verification of this claim repeats the proof of Theorem 3.1 in [12].
Indeed, let H and RH be as in (3.7) and (3.8), respectively. In view of Remark 3.1, it

then holds

(3.29) RH(x, t) +H(x− t) +

∫ x

0

RH(x, s)H(s− t) ds = 0, (x, t) ∈ Ω+.

Moreover, it follows from [13, Lemma 3.4] that in the case of the smooth h as chosen one
has RH ∈ C1(Ω+,M2r).

Taking into account formulas (3.10) and Bϕ0(x, λ) = ϕ0(−x, λ), we can rewrite (3.27)
in the form

ϕ(x, λ) = ϕ0(x, λ) +

∫ x

0

RH(x, x− t)ϕ0(x− 2t, λ) dt.

From this equality, taking into account that J d
dxϕ0(x, λ)− λϕ0(x, λ) = 0, we find that

(3.30)

J
d

dx
ϕ(x, λ) +Q(x)ϕ(x, λ)− λϕ(x, λ) = {JRH(x, 0)Bϕ0(x, λ) +Q(x)ϕ0(x, λ)}

+

∫ x

0

{
J

∂

∂x
RH(x, x− t) +Q(x)RH(x, x− t)

}
ϕ0(x− 2t, λ) dt.

Since Q(x) = −JRH(x, 0)B, (3.30) is reduced to

J
d

dx
ϕ(x, λ) +Q(x)ϕ(x, λ)− λϕ(x, λ)

= J

∫ x

0

{
∂

∂x
RH(x, x− t)−RH(x, 0)BRH(x, t)B

}
ϕ0(x− 2t, λ) dt.

Therefore, (3.28) will be verified if we show that

(3.31)
∂

∂x
RH(x, x− t)−RH(x, 0)BRH(x, t)B = 0, (x, t) ∈ Ω+.

Let us prove (3.31). For this purpose, we obtain from (3.29) that

RH(x, x− t) +H(t) +

∫ x

0

RH(x, x− s)H(t− s) ds = 0, (x, t) ∈ Ω+.

Differentiating this expression in x we find that

∂

∂x
RH(x, x− t) +RH(x, 0)H(t− x)

+

∫ x

0

∂

∂x
[RH(x, x− s)]H(t− s) ds = 0, (x, t) ∈ Ω+.

(3.32)

Multiplying now (3.29) by RH(x, 0)B from the left and by B from the right and sub-
tracting it from (3.32), in view also of the relation H(x)B = BH(−x), we find that the
function

X(x, t) :=
∂

∂x
RH(x, x− t)−RH(x, 0)BRH(x, t)B, (x, t) ∈ Ω+,

solves the equation

X(x, t) +

∫ x

0

X(x, s)H(t− s) ds = 0, (x, t) ∈ Ω+.

Since RH ∈ C1(Ω+,M2r), one has X ∈ C(Ω+,M2r) and thus by virtue of Proposi-
tion 3.1 we find that X(x, t) = 0, (x, t) ∈ Ω+. Therefore, (3.31) follows and the proof is
complete.
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Appendix A

The aim of this appendix is to prove equalities (3.22) and (3.23) which were used in
the proof of Theorem 3.1. The proof is technical and goes back to the well known fact
that kernels of transformation operators satisfy some differential equations.

Let A be the differential operator acting on functions X : (x, t) 7→ M2r from the class
C1(Ω±,M2r) by the formula

(A.1) AX := JX ′
x +X ′

tJ,

where X ′
x and X ′

t denote the derivatives in variables x and t, respectively. We shall prove
the following proposition:

Proposition A.1. Let Q ∈ Qp ∩C1([0, 1],M2r) and F := FQ. Then F ∈ C1(Ω±,M2r)
and

(AF )(x, t) = 0, (x, t) ∈ Ω±,(A.2)

F (x, 0)a∗ = 0, aF (0, x) = 0, x ∈ (0, 1),(A.3)

where a :=
(
I, −I

)
.

The proof of Proposition A.1 will be based on two auxiliary lemmas:

Lemma A.1. Let Q ∈ Qp ∩ C1([0, 1],M2r) and K := KQ. Then K ∈ C1(Ω+,M2r)
and

(AK)(x, t) = −Q(x)K(x, t), (x, t) ∈ Ω+.(A.4)

(KJ − JK)(x, x) = Q(x), K(x, 0)a∗ = 0, x ∈ (0, 1).(A.5)

Proof. Let Q and K be as in the statement of the lemma. Recall (see (3.16)) that
(A.6)

K(x, t)=
1

2

{
P+

(
x,

x− t

2

)
+P+

(
x,

x+ t

2

)
B+P−

(
x,

x− t

2

)
B+P−

(
x,

x+ t

2

)}
,

where P± are from (3.15) and B is from (3.10). It follows from the results of [16] that if
Q ∈ Qp ∩ C1([0, 1],M2r), then P± ∈ C1(Ω+,M2r) and, moreover,

P+(x, t) =

∫ x

t

JQ(s)P−(s, s− t) ds,(A.7)

P−(x, t) =

∫ x

t

JQ(s)P+(s, s− t) ds+ JQ(t),(A.8)

P+(x, t)J = JP+(x, t), P−(x, t)J = −JP−(x, t).(A.9)

Using now (A.6)–(A.9) and the equalities

(A.10) J2 = −I2r, JB = −BJ, JQ(x) = −Q(x)J,

by virtue of straightforward (but quite extensive) verification we then arrive at (A.4).
Now let us prove (A.5). It follows from (A.7) and (A.8) that P+(x, x) = 0 and

P−(x, x) = JQ(x). Therefore, in view of (A.6), we find that

K(x, x) =
1

2

{
P+(x, 0) + P−(x, 0)B + JQ(x)

}
.

Taking into account (A.9) and (A.10) we then obtain that

K(x, x)J − JK(x, x) = Q(x).

Since (I2r +B)a∗ = 0, in view of formula (A.6) we then arrive at

K(x, 0)a∗ =
1

2

{
P+

(
x, x

2

)
+ P−

(
x, x

2

)}
(I2r +B)a∗ = 0

and thus (A.5) is proved. �



362 YA. V. MYKYTYUK AND D. V. PUYDA

Lemma A.2. Let Q ∈ Qp ∩ C1([0, 1],M2r) and L := LQ. Then L ∈ C1(Ω+,M2r) and

(AL)(x, t) = L(x, t)Q(t), (x, t) ∈ Ω+,(A.11)

(JL− LJ)(x, x) = Q(x), L(x, 0)a∗ = 0, x ∈ [0, 1].(A.12)

Proof. Let Q ∈ Qp∩C1([0, 1],M2r), K := KQ and L := LQ. In view of (3.19), it follows

that (I +KQ)(I + LQ) = (I + LQ)(I +KQ) = I and thus for (x, t) ∈ Ω+ it holds

K(x, t) + L(x, t) +

∫ x

t

K(x, s)L(s, t) ds = 0,

K(x, t) + L(x, t) +

∫ x

t

L(x, s)K(s, t) ds = 0.

(A.13)

In view also of (A.5), these equalities easily lead us to (A.12).
To prove (A.11), set

(A.14) S(x, t) :=

∫ x

t

K(x, s)L(s, t) ds, (x, t) ∈ Ω+.

Taking into account (A.4), it can be verified that

(A.15)

(AS)(x, t) +Q(x)S(x, t) = JK(x, x)L(x, t)−K(x, t)L(t, t)J

−

∫ x

t

K ′
s(x, s)JL(s, t) ds+

∫ x

t

K(x, s)L′
t(s, t)J ds.

Integrating by parts then leads to
∫ x

t

K ′
s(x, s)JL(s, t) ds

= K(x, x)JL(x, t)−K(x, t)JL(t, t)−

∫ x

t

K(x, s)JL′
s(s, t) ds.

Therefore, taking into account (A.5) and (A.12), we can rewrite (A.15) in the form

(A.16)

(AS)(x, t) +Q(x)S(x, t)

= −Q(x)L(x, t) +K(x, t)Q(t) +

∫ x

t

K(x, s)(AL)(s, t) ds.

Now let

X(x, t) := (AL)(x, t)− L(x, t)Q(t), (x, t) ∈ Ω+,

and X(x, t) := 0, (x, t) ∈ Ω−. Since S(x, t) = −K(x, t)− L(x, t), from (A.16) and (A.4)
we then find that

X(x, t) +

∫ x

0

K(x, s)X(s, t) ds = 0.

Since the operator I + K is invertible in H, we then obtain that X(x, t) = 0 for all
(x, t) ∈ Ω+ which proves (A.11). �

Now we are ready to prove Proposition A.1:

Proof of Proposition A.1. Let Q ∈ Qp ∩ C1([0, 1],M2r), L := LQ, L∗ := LQ∗ and
F := FQ. It then follows from (3.19) and (3.20) that

F (x, t) = L(x, t) + L∗(t, x)
∗ +

∫ 1

0

L(x, s)L∗(t, s)
∗ ds, x, t ∈ [0, 1].
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Since L(x, t) = L∗(x, t) = 0 as x < t, we then obtain that

F (x, t) =L(x, t) +

∫ t

0

L(x, s)L∗(t, s)
∗ ds, (x, t) ∈ Ω+,

F (x, t) =L∗(t, x)
∗ +

∫ x

0

L(x, s)L∗(t, s)
∗ ds, (x, t) ∈ Ω−,

(A.17)

which immediately implies (A.3). Furthermore, it follows from (A.17) and Lemma A.2
that F ∈ C1(Ω±,M2r).

To prove also (A.2), take into account (3.20) and observe that F∗ := F∗
Q = FQ∗ .

Therefore, it suffices to prove (A.2) only for (x, t) ∈ Ω+. Taking into account (A.11), we
obtain from the first equality in (A.17) that

(A.18)

(AF )(x, t) = (AL)(x, t) + L(x, t)L∗(t, t)
∗J

−

∫ t

0

L′
s(x, s)JL∗(t, s)

∗ ds−

∫ t

0

L(x, s)Q(s)L∗(t, s)
∗ ds

+

∫ t

0

L(x, s)Q(s)L∗(t, s)
∗ ds+

∫ t

0

L(x, s)[(L∗(t, s))
′
sJ ]

∗ ds.

Integrating by parts leads to

(A.19)

∫ t

0

L′
s(x, s)JL∗(t, s)

∗ ds = L(x, t)JL∗(t, t)
∗

− L(x, 0)JL∗(t, 0)
∗ −

∫ t

0

L(x, s)J(L∗(t, s)
∗)′s ds.

Furthermore, in view of Lemma A.2 it holds

(A.20) JL∗(t, t)− L∗(t, t)J = Q(t)∗, t ∈ [0, 1].

Taking into account (A.19), (A.20) and (A.11), we then obtain from (A.18) that

(AF )(x, t) = (AL)(x, t)− L(x, t)Q(t) + L(x, 0)JL∗(t, 0)
∗ = L(x, 0)JL∗(t, 0)

∗.

Finally, noting that J = a∗aJ + Ja∗a and, in view of (A.12),

L(x, 0)a∗ = 0 = L∗(x, 0)a
∗, x ∈ [0, 1],

we then find that L(x, 0)JL∗(t, 0)
∗ = 0, (x, t) ∈ Ω+, which completes the proof of the

proposition. �
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