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SPECTRAL ANALYSIS OF METRIC GRAPHS
WITH INFINITE RAYS

L. P. NIZHNIK

ABSTRACT. We conduct a detailed analysis for finite metric graphs that have a semi-
infinite chain (a ray) attached to each vertex. We show that the adjacency matrix
of such a graph gives rise to a selfadjoint operator that is unitary equivalent to a
direct sum of a finite number of simplest Jacobi matrices. This permitted to describe
spectrums of such operators and to explicitly construct an eigenvector decomposition.

1. INTRODUCTION

Spectral theory of graphs is one of most topical research directions in modern mathe-
matical physics, see [1]-[8] and the references therein. This is due to both the problems
pertaining to the theory itself and the solution of particular problems that arise in the
theory of information, communication, power, and transportation networks.

The simplest nonoriented graph G is a pair (V, E), where V is a nonempty set, the
set of vertices, and F is a set of edges that join vertices in V. There is an adjacency

matrix A(G) = (aij)%lzl connected with the graph G, with the elements a;; equal 1
if the vertices with the indices ¢ and j are joined with an edge, and equal 0 if no such
edge exists. If each edge is supplied with length, then the graph is called metric. The
adjacency matrix of such a graph has the matrix element a;; equal to the length of the
edge that joins the vertices 7 and j, and zero otherwise.

If the graph is countable, then the matrix A(G) gives rise to a selfadjoint operator A
on the Hilbert space lo(V') such that its spectrum could have a discrete, o,(A), and a
continuous, o.(A), components. Spectral analysis of a graph G means spectral analysis
of the selfadjoint operator A on the Hilbert space I3(V).

Spectral analysis of finite graphs reduces to spectral analysis of nonnegative symmetric
finite matrices, and it is now a well developed part of graph theory [2]. There is also
spectral theory constructed for some countable graphs [9, 10].

The most simple infinite graph Ay is a half-bounded chain having its vertices indexed
with natural numbers, N = {1,2,...}, and its edges join only the vertices that have
consecutive indices. The length of all such edge equals 1.

Such a graph will be called a ray.

The adjacency matrix of a half-bounded chain Ay is a Jacobi matrix Jy with zeros
on the main diagonal and ones on the adjacent diagonals. It is well known that the ma-
trix Jo gives rise to a selfadjoint operator on the space l3(N), whose spectrum is simple,
pure continuous, and coincides with the line segment [—2,2], see [4, 13, 12]. Moreover,
the operator Jy on the space I5(N) is subject to a spectral theorem on decomposition
with respect to generalized eigenfunctions, see [13]. For A € [—2,2], the vector-valued
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function (X)) = (@1(A), p2(A),...), where p;(A) = Pj(A),j > 0, is a generalized eigen-
function for the operator Jy and corresponds to the eigenvalue A, that is, Jop(A) = Ap(A).

Here P;j()\) is a polynomial in A of degree j. It can be expressed as Pj(\) = U;(3) in
terms of the second kind Chebyshev polynomials U;(z) = % The polyno-

mials P;(\) satisfy the recurrence relation Pjiq(A\) = AP;(A) — Pj_1(\) with the initial
conditions P_1(A) =0, Po(A) =1, Pi(A) = A.

To every vector x € [2(N) there is a corresponding Fourier transform z(\) with respect
to generalized eigenvectors,

(1) TN = = (20N = ) wjp5(N).
j=1
The function Z(A) belongs to the space La([—2, 2], p(A)dA) = La(p) of square integrable

functions on the line segment [—2,2] with the weight p(A) = 5=v4 — A2 = py(A).
The inverse Fourier transform is also defined on the whole space La(p),

2
(2) =55 = [ TP dr
—2
The following Parseval identity holds for arbitrary =,y € I3(N):
(3) (3), y)lz = (5’:7 mLQ(p)~

It was shown in [10] that a spectral analysis of countable graphs that are formed from
a finite graph by adjoining a single ray can be carried out using Jacobi matrices that
have only a finite number of elements different from the corresponding elements of the
Jacobi matrix Jy. This permitted in [9, 10] to obtain explicit formulas in the cases of
star, complete, and cyclic graphs, as well as for some other types of graphs.

The paper [11] deals with spectral properties of countable graphs that are formed from
finite graphs by adjoining infinite rays to some vertices. It is shown that the adjacency
matrix of such graphs is unitary equivalent to an orthogonal sum of a finite symmetric
matrix and several special Jacobi matrices that have not more than four elements different
from the corresponding ones in the simplest Jacobi matrix Jy. This permits to carry out
a complete and explicit analysis of such graphs.

The purpose of this research is to carry out a spectral analysis in an explicit form for
metric graphs that have semibounded rays attached to every vertex.

2. SPECTRAL ANALYSIS OF SIMPLEST JACOBI MATRICES

The simplest Jacobi matrices are the matrices J that have only a finite number of
elements different from the corresponding elements of the Jacobi matrix Jy. Spectral
theorem for such matrices can be explicitly stated, see [9, 10, 11, 12, 13]. Let us formulate
the result regarding the matrices J° of the form

b 0

oSO~ O
O = OO

a 1
(4) JP =10 0
0 1

Theorem 1. A Jacobi matriz Ji of the form (4) gives rise a bounded selfadjoint opera-
tor on the space l3(N) such that its spectrum consists of a simple absolutely continuous
component, which is the line segment [—2,2], and at most two eigenvalues A that are
zeros of the spectral polynomial

(5) p(N) = a* + b2 + b(a® — 2)A — (a® — 1)A2,

satisfying the condition that the absolute value of the number p = 25

2 18 less than 1.
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A necessary and sufficient condition for the matriz J{ to have

1) two eigenvalues is the condition that a®> > 2, |b| < a® —2;
2) a single eigenvalue is the condition that |b| > a? — 2, and then sign \ = sign b;
3) no eigenvalues is the condition a®> < 2, |b] <2 — a?.

To every eigenvalue X = i+ u~* there is a corresponding eigenvector in the space l3(N),

(6) ep=(a"  ppP ).
Also, to every \ € [—2,2] there is a generalized eigenvector,

e(\) = (a, Pi(\) — bPy(N), P2 (A\)—=bPy(\) — (a® — 1) Py(N),

@) ey Pjoi(N) = bP_2(\) — (a® = 1)Pj_3(N),...).

A decomposition with respect to the given eigenvector-valued functions and the Parseval

identity with the spectral density p(\) = 2v‘;'lp_(§§ on the absolutely continuous part of the

spectrum hold true.

Corollary. (1) If a = 1, the matriz J, will have a single eigenvalue, A = b+ b1, if
and only if |b| > 1.
(2) If b = 0, the matriz J* will have two eigenvalues, X\ = +a?(a® — 1)~'/2, if and
only if a > /2. If a < /2, it has no eigenvalues.

The following result will be used in the sequel.

Theorem 2. For the Hilbert space H = [3(N) @ l5(N), the orthogonal sum Jy @ J_p of
Jacobi matrices is unitary equivalent to the orthogonal sum J* @ Jy, where a = /1 + b?
and b is an arbitrary real number.

Proof. Let A= J,® J_p and {ex};2, be a standard basis in the subspace lo(N) @ {0} of
the space H, and {e_j}?2 | be a standard basis in the subspace {0} ®13(N), the subspaces
where the matrices J, and J_; act. Then

(8) Aesy = tberr +exa, Aesp =eqpp—_1) +etrsy), k=2

In the space H, consider a new basis {€iy}ren, which is related to the initial ba-
sis {exr fren via the identities e3 = %(el +e_1), €, = %ﬁ(b(en,l +e_(n-1))tente_n),
n > 2, wherea =+v1+b2>0ande_, = a%/i(e” —e_pn—bleny1 +e_(ng1))), n > 1. It
is easy to see that, on the space H; with the basis {€}ren, the operator A acts as the
Jacobi matrix J¢, and, on the space H_;, the operator A acts as the Jacobi matrix JO.

To finish the proof of the theorem, it only remains to show that H; L H_; and H =
H, & H_,. This can be easily done by using an explicit form of the new basis and the
action of the operator A given by (8) with respect to the constructed basis. Thus the
matrix of the operator A, with respect to the new basis, has the form A =J*® J,. O

3. METRIC GRAPHS WITH ATTACHED RAYS

Let G(n,0) be a countable graph that is obtained from the connected metric graph
G(n) with n vertices by attaching, to each vertex of the graph, a ray that is a semi-
bounded chain. All vertices of a ray are indexed with integers written in the lower index
whereas the vertices of the graph G(n) are indicated as an upper index. Hence, all
vertices V' of the graph G(n,o0) are vertices of n rays and have two indices, the upper
index is 7 = 1,...,n that is the index of the ray, and the lower index ¢ € N that is the
number i of the vertex on the j-th ray. The adjacency matrix of the graph G(n, c0) gives
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rise to a bounded selfadjoint operator A on the Hilbert space l3(N), acting by

(Aw)] =D ajeal +ai,
9) k=1

(Ax)g:$571+xg+1a 1>2, j=1,...,n

Here the components of the vectors 2 and Ax of the space l3(V'), which correspond to
the i-th vertex on the j-th ray, are denoted with the upper index j and the lower index 3.
The matrix [la; |} ,—, = A is the adjacency matrix of the metric graph G(n). The main
result is given by the following theorem.

Theorem 3. Let {/\j}?:l be all eigenvalues of the adjacency matrix A of the metric
graph G(n), counting multiplicities.

Then the operator A, which is selfadjoint on the space lo(V') and corresponds to the
graph G(n,o0) with rays attached to each vertex of the metric graph G(n), is unitary
equivalent to the orthogonal sum @}_,Jx, of Jacobi matrices Jy, that have the num-

bers Mg, 0,0,... on the main diagonals and the numbers 1,1,... on the adjacent diago-
nals, that is, there exists a unitary operator U on the space lo(V') such that
(10) UAU = @7_, Jy,.

Proof. Let {ez }i_1,ien be a standard basis in the space I2(V'), corresponding to the above
indexing of the vertices V of the graph G(n,o0). By (9), the operator A acts on vectors
of the standard basis by

n
Ael = Zajke’f + e,
(11) k=1
Ael =el | +el , i>2

In the space E™, consider an orthonormal system of eigenvectors {ex}}_; of the sym-

metric matrix A = ||a;,[|3};=;, corresponding to the eigenvalues {Ar};_,. The com-
ponents ey ; of the eigenvalues e = col(ex,1,...,ern) form a unitary matrix U =
lwk,illk j=15 uk; = ek, in the Euclidean space E™. Construct a new orthonormal

basis {€]}_, ;o in the space I3(V) by setting
. n
(12) e = ujkef.
k=1

Then the operator A acts as the Jacobi matrix J; on the subspaces H I C 1y(V) with
the basis{e! };cn. Indeed,

n n n n n
= _ k _ o k) _ o o _ 5 o)
Aey = g u;phey = g Ujk E arae] +ey | = A E Ujae] + E Ujn€y = Aje] + €3,
k=1 k=1 a=1 a=1 a=1

and, for i > 2,

Ag; =e_, +¢,.
Then the unitary operator U that maps the initial basis {e/} into the new one, {é/},

satisfies the claim of the theorem. O

4. EXAMPLES

4.1. A star graph with infinite rays.
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Proposition 1. Let S(n,00) be a star graph with n infinite rays. Then its adjacency
matriz gives rise to a selfadjoint operator that is unitary equivalent to an orthogonal sum
of the Jacobi matrices, V" & Jo & - & Jy.

————

n—1

Proof. The graph S(n, 0o) can be considered as the finite star graph S(n—1) with a single
vertex, the center, and n — 1 edges coming out of the vertex, together with infinite rays
attached to each vertex of the graph. Since the star graph S(n — 1) has the eigenvalues
Ao = 0 of multiplicity n — 1 and AL = ++v/n — 1 [1, 2], the proof follows from Theorems 2
and 3. (]

4.2. A complete graph with infinite rays.

Proposition 2. Let K(n,oc0;d) be a complete graph with n vertices each pair of which is
joined with an edge of length d, and such that an infinite ray is attached to each of the n
vertices. Then its adjacency matriz gives rise to a selfadjoint operator that is unitary
equivalent to an orthogonal sum of Jacobi matrices, Ji_1yq @ J-a® -+ & J_q.
—_—

n—1

Proof. Tt is known [1, 2] that eigenvalues of a complete graph with n vertices are the
numbers A = —d of multiplicities n — 1, and A = (n — 1)d. Then the claim follows from
Theorem 3. ([l

Theorem 1 gives a description of eigenvalues. If d > 1, then the adjacency matrix of
the graph K (n, o0; d) has n eigenvalues, \; = (n—1)d+ ((n—1)d)~!, and A\; = —d—d~*,
j=2,...,n. If (n—1)"! < d < 1, then the adjacency matrix of the graph K (n, co;d)
has a unique eigenvalue, A;. If d < (n — 1)~!, then the matrix of the graph K (n, oo; d)
has no eigenvalues.

4.3. A double star graph with rays attached.

Proposition 3. Let S(p,00;q,00,d) be a double star graph that consists of two star
graphs with infinite rays S(p,00) and S(gq,00) and the centers joined with an edge of
length d. Then the adjacency matriz of such a double star graph is unitary equivalent
to an orthogonal sum of the matrices J and J%-, and p + q — 2 matrices Jy. Here

ar =/1+Ag, where \y = S(p+q+d> -2+ /(p+q+d®>—2)2—4(p—1)(¢ - 1)).

Proof. The graph S(p,00;¢q,00,d) can be obtained by attaching an infinite ray to each
vertex of the finite metric graph S(p — 1,q — 1;d) that consists of two star graphs with,
correspondingly, p — 1 and g — 1 edges of length 1 and the centers joined with an edge of
length d. It is easy to see that the characteristic polynomial of the adjacency matrix of
the graph S(p—1,¢—1;d) can be written as \PT9=4(\*— (p+q+d? —4)A\2+(p—1)(¢—1)).
Hence, spectrum of the graph S(p — 1,q — 1;d) has A = 0 with multiplicity p + ¢ — 4
and four more zeros of the polynomial A* — (p +q + d?> — 4)A\*> + (p — 1)(¢ — 1)). Then
Proposition 3 follows from Theorems 2 and 3. Using Theorem 1 we conclude that the
double star graph S(p, o0;¢q,00,d) with p,q > 2 will have two eigenvalues for p = 2
or ¢ = 2, as well as for p,q > 3, if d> > pg — 2p — 2q + 4. In all other cases, the double
star graph has 4 eigenvalues. O

4.4. A cyclic graph with attached rays.

Proposition 4. Let C(n,00) be a cyclic graph with n vertices and with a ray attached
to each one. Then the adjacency matriz of the graph C(n,o0) is unitary equivalent to an
orthogonal sum of Jacobi matrices, ®p_,Jx,, where A\, = 2 cos %T”, k=0,...,n—1.

Proof. The proof follows from Theorem 3, since the eigenvalues for the cyclic graphs C(n)

with n vertices are given by A\; = 2 cos 22”, k=0,....,n—1.[1, 2] |
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Let us note that the eigenvalues can be paired, A\ and \,,,_r = —\g, if n = 2m. Hence,
using Theorem 2 and an explicit form of the eigenvalues, there is a unitary equivalence
obtained in [11] for the adjacency matrices A, of the graphs C(n,oc0) with the Jacobi
matrices

IVS@Jo@Jo®Jo, if n=4,

TV Ve 2 v Jo® Jy, if n=6,

Ve IVia e he... ol if n=S8,
—_——

5
Ve rerres?el?elye... ey, if n=I12.
7

4.5. A finite chain with a ray attached to each vertex.

Proposition 5. Let A(n,00) be a finite chain of n vertices with an infinite chain attached

to each one. Then the adjacency matriz of the graph A(n,o0) is unitary equivalent to

the orthogonal sum ®}_,Jx, of Jacobi matrices, where A\, = 2 cos nk—fl, k=1,...,n.

Proof. The proof follows from Theorem 3 and a use of known eigenvalues of a finite
chain [1, 2]. O

Let us note that, by using Theorem 1, one can give an explicit description of the
spectrum and the eigenvector decomposition corresponding to the discrete and continuous
parts of the spectrum for the graphs considered in Propositions 1-5.
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