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FACTORIZATION FORMULAS FOR SOME CLASSES OF
GENERALIZED J-INNER MATRIX VALUED FUNCTIONS

OLENA SUKHORUKOVA

Dedicated to Professor D. Z. Arov in the occasion of his 80-th birthday with great respect

ABSTRACT. The class Uy (jpq) of generalized jpg-inner matrix valued functions (mvf’s)
was introduced in [2]. For a mvf W from a subclass U (jpq) of Uk (jpqg) the notion
of the right associated pair was introduced in [13] and some factorization formulas
were found. In the present paper we introduce a dual subclass U (jpq) and for every
mvf W € U. (jpq) a left associated pair {31, B2} is defined and factorization formulas
for W in terms of (1,82 are found. The notion of a singular generalized jpq-inner
mvf W is introduced and a characterization of singularity of W is given in terms of
associated pair.

1. INTRODUCTION

Let J be an m x m signature matrix, i.e., J = J* = J~!. Recall that an m x m
meromorphic in D = {\ : |A| < 1} matrix valued function (mvf) W () is said to belong
to the Potapov class P(J) of J-contractive mvf’s, if

(1.1) WA JW(N) < J

for all XA € h;{, that is the domain of holomorphy of W in D. If W € P(J), then the
nontangential limits W(u) exists a.e. on T, the boundary of D. A J-contractive mvf
W (A) is called J-inner, and is written as W € U(J) if

(1.2) W(u)* JW(u)=J for ae peT=09D.

J-inner mvf’s play an important role in the theory of classical problems of analysis. As is
known (see [1], [6]-[10], [15]) the set of solutions of many classical interpolation problems
coincides with the range of a linear fractional transformation generated by a J-inner mvf.

In the case where J = jpq := diag(lp, —I;) (p, ¢ € N) the Potapov-Ginzburg transform
S = PG(W) of a jpq-contractive mvE W € P(jipq),

(1.3) S\ = [ S11 512 ] — [ wi1(A) wia(N) } { I, 0o 1!

S21 S99 0 Iq U}21(>\) w22(>‘) 7

belongs to the Schur class S™*™ of m x m mvf’s holomorphic and contractive in D and,
moreover, for every W € U(jpq) the mvf S = PG(W) belongs to the class S;"*™ of inner
mvf’s, ie., S € 8™*™ and S(u)*S(u) = I, a.e. on T. For every W € U(jpq) the mvf’s
s11(A\) and s22()\) admit left and right inner-outer factorization,

s11(A) = b1 (A)p1(A),  s22(A) = @2 (A)b2(A),

where by € SP*P by € S*? and @1, 2 are outer mvf’s (see definition in Subsection 2.1).

The pair {1, b2} is called an associated pair of W € U(j,q) and is designated by {b1, b2} €
ap(W) (see [6]).
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A subclass Us(jpq) of singular jp,-inner mvf’s was introduced by D. Arov in [5] by the
equivalence

W e Us(jpq) <= W € U(jpq) and W is outer.

The class Us(jpq) was completely characterized in terms of associated pairs. As was
shown in [6] a mvif W € U(jp,) belongs to Us(jp,) if and only if its associated pair is
trivial, i.e., b1(\) = I, and ba(\) = I,,.

A class Uy (jpq) of generalized jp,-inner mvf’s was introduced in [2] in connection with
some indefinite interpolation problems. Recall that an m x m mvf W(X) meromorphic
in D is said to belong to the class Uy (jpq), if

1) the kernel
- W()\)quW(w)*
1 — dw*

KW()\) _ qu
has k negative squares in h?/'v;
2) W(p) is jpg-unitary a.e. on T.
The class of mvf’s S7**™, which satisfy the first condition with jpq = I, is called a
generalized Schur class and is denoted by S7"*™ (see Subsection 2.2 for details). As is
known [2], the Potapov-Ginzburg transform S = PG(W) of a mvf W € U,.(j,q) belongs
to the class §"*™.
In [13] a subclass

U,:(qu) ={We Z’{F»(qu) P 821 = _w2_21w21 € ngp}

was introduced and for every mvf W € U (jpq) the notion of the (right) associated pair
{b1, b2} was introduced. The mvf’s by, by were used in order to get a factorization for the
mvf W € UL (5pq)-

In the present paper we introduce another subclass

Uﬁ(qu) ={We Ui (Jpq) * 812 1= wl?w;zl € ngp}

and define the notion of the left associated pair {1, B2} for W € U.(jpq). We find new
factorization formulas for W € UL (jpq)-

The classes U (jpq) and UL(jpq) do not coincide as is shown in Example 1. More-
over, if W € U (jpq) NUE(jpq), then the corresponding right associated pair {b1, b2} not
necessarily coincides with the left associated pair {81, 82} (see Example 3). However,
Theorem 3.14 says that in this case

detby = det 57y and detby = det 5o,

and b;, and 3; have the same degrees and the same zero sets for every j € {1,2}.

In the present paper we introduce also the notion of singular mvf in classes U], (jipq),
U (jpq) and obtain a characterization of singular mvf’s in terms of associated pairs. The
proof of this result is essentially based on factorization theorems for the class U} (jpq)
from [13].

2. PRELIMINARIES

2.1. Notations. Let 24 be equal to either D ={A € C: [N\ <1}, or C; ={A e C:
SA > 0}

1= w, if Qp =D,
,%(A)—{ —2mi(A —w*), if Q4 =C,.

Thus, Q4 ={w e C: py(w) > 0} and Qy = {w € C: p,(w) = 0} is the boundary of Q.
Correspondingly, we set Q_ = {w € C: p,(w) < 0}.
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For a mvf f(A) let us set

N s if Q. =D, A#£0
# o 0 * o __ + ’ ’
O L S e N

Denote by h¢ the domain of holomorphy of the mvf f and let h]jf =bhrNQy.
The following basic classes of mvf’s will be used in this paper:
H,.(21) (0 < r < o0) is the class of holomorphic functions in 24 such that ||ul, < oo,
sup [g Jy" fu(pe)lde}F, (0 <7 < o0),

2w JO
0<p<1 4

sup |u(2)], (p = 00).
z€Q 4

[l =

HP*9(Q.) is the class of p X ¢ -mvf’s with entries in H,(Q4),
He= HX(Q)), HP = HPYO,) (1< 7 < oo)
SPX1 = {s € §P*: s(u)*s(u) = I, a.e. on Qp},
S = {5 € S0 SHY = HY},  Sous = S5,
NP ={f=hT"g: ge HEZ (), h € Sour(Q)},
NoRt ={f=h""g: g€ SLL" 1 € Sow},  Now = Nyt
In particular, f € N?*? if and only if f# € N7 As is known [8], a p x p mvf f

belongs to the class N2 if and only if det f € Noy. This implies, in particular, that
PXP

such a mvf should be invertible in Q. Another criterion for f € NE3? is formulated in
terms of the Smirnov class
FEND = f,f7 e NTX,
An important connection between these classes is given by the following
Theorem 2.1. ([8], Th. 3.59). (THE SMIRNOV MAXIMUM PRINCIPLE).
NP LPX = HP*9 (1 <r < 00).

2.2. The generalized Schur class. Let k € Z,. Recall [9], [16] that a Hermitian kernel
Ko(A) @ 2 x Q@ — C™ ™ is said to have k negative squares, if for every positive integer

n and every choice of w; € @ and u; € C™ (j =1,...,n) the matrix
((Ku; (Wi )1, us )} gy
has at most k negative eigenvalues, and for some choice of wy, ..., w, € Qand uq,...,u, €

C™ exactly k negative eigenvalues.
Let S2*P denote the generalized Schur class of ¢ x p mvf’s s that are meromorphic in
Q. and for which the kernel

I, — s(A)s(w)*

(2.1) A = 2

has k negative squares on hT x hT (see [16]).

In the case where £ = 0 the class S coincides with the Schur class S9P of con-
tractive mvf’s holomorphic in Q4. Every mvf s € SP*P with det s(\) # 0 admits an
inner-outer factorization

s = bgay = a,by,

X X
where by, b, € SP*P ay,a, € SHE.
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Let b, (A), be an elementary Blaschke factor (b,(\) = ﬁ in the case Q4 = D,
A—w

bo(A) = £=% in the case 2y = C), and let P be an orthogonal projection in C?. Then
the mvf

Ba(\) =1, — P+b (NP, weQ,,

belongs to the Schur class SP*P and is called an elementary Blaschke—Potapov (BP)
factor and B(A) is called primary if rank P = 1. The product

B(/\) = H BaJ (/\)a

where By, ()) are primary Blaschke-Potapov factors is called a Blaschke—Potapov product
of degree k.
As shown in [16] every mvf s € S2*P admits a factorization of the form

(2.2) s(\) = bs(\)"tse(N), A enbl,

where by € S7%7 is a g X ¢ Blaschke-Potapov product of degree x, sy is in the Schur class
S9*P and

(2.3) rank [ be(A) s¢(A) | =q (AeQy).

The representation (2.2) is called a left Krein—Langer factorization.
Similarly, every generalized Schur function s € SI*P admits a right Krein-Langer
factorization

(2.4) s(A) = 8. (A\)b.(\)"t for Xeb],
where b, € SP*P is a Blaschke-Potapov product of degree &, s,. € S7*P and
(2.5) rank [ b.(A)* s (N)* | =p (AeQy).

As is known (see [8]) the factors by and sp in (2.2) meet the rank condition (2.3) if and
only if the factorization (2.2) is left coprime, i.e., there exists a pair of mvf’s ¢, € HZ*?
and dy € HL? such that

(2.6) bg()\)Cg()\) + S@()\)dg()\) = Iq for Ae Q+.

Therefore mvf’s ¢, and dy do not have a common right inner divider.

Similarly, the factors b, and s, in (2.4) meet the rank condition (2.3) if and only if
the factorization (2.4) is right coprime, i.e., there exists a pair of mvf’s ¢, € HEXP and
d, € HPX? such that

(2.7) cr(Nbr(N) +dr(N)sp(A) =1, for Ae Q.
Therefore mvf’s ¢, and d, don’t have a common left inner divider.
Theorem 2.2. ([13]). Let s € SI*P have Krein-Langer factorizations
(2.8) s=1b; sy =s.b".

Then there exists a set of muf’s cp = c¢(s) € HX, dy = de(s) € HE Y, ¢, = ¢, (s) €
HPXP and d, = d,(s) € HEX?, such that

¢ dp) [by —df] _[I, 0©
29 el )
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3. GENERALIZED jp,-INNER MVF’S

Let jpq be an m x m signature matrix

. I 0
qu:{é’ —Iq}’ where p+q=m,

Definition 3.1. ([13]). An m x m mvf W(X) = [wij()\)]ijzl that is meromorphic in Q4
is said to belong to the class Uy (jpq) of generalized jpq-inner mvf’s, if

(i) the kernel
= W(A)jpgW (w)*

w _ qu
(3.1) KV () = P

w

has x negative squares in h;{, X h;rv;
(ii) Jpg — W(1)jpgW (1r)* = 0 a.e. on Q.

As is known [2, Th. 6.8], for every W € Uy (jpq), w2o(A) is invertible for all A € by,
except for at most k points in Q. Thus the Potapov-Ginzburg transform of W

_ ] win (A wia(X) I, 0 -t
(3.2) () = Po(w) = | 1 2 me(k) o

is well defined for those A € by, for which waz()) is invertible. As is easily seen, S())
belongs to the class S**™ and S(p) is unitary for a.e. p € Qg (see [2], [13]).

3.1. The class U] (jpq)-
Definition 3.2. ([13]). An m x m mvf W € U, (jpq) is said to be in the class U (jpq), if
(3.3) So1 1= —w2_21w21 e Sp

Let W € U] (jpq) and let the Krein-Langer factorization of so1 be written as

(3.4) 521(A) = be(N) "Lse(N) = 5,.(N)b,(N) (A ebl),

§21

where by € S1*, b, € SP*T| 54,8, € SI*P. Then, as was shown in [13], the mvf’s bysao
and s11b, are holomorphic in Q4 , and

(35) nggQ € 877 and Sllb»,« € SP*P,

Definition 3.3. ([13]). Consider the inner-outer factorizations of s;1b, and bysao

(3.6) $11by = bra1,  bysaz = azbs,
where by € SP*P by € ST* a1 € SPIF, as € ST, The pair by, by of inner factors in the

factorizations (3.6) is called the associated pair of the mvf W € U (j,,) and is written
as {b1,ba} € ap” (W), for short.

From now onwards this pair {b1, b2} will be called also a right associated pair since it
is related to the right linear fractional transformation

Tw[cﬂ = (’LU11€ + ’LU12)(’LU21€ + ’LU22)71,

see [6], [8]. Such transformations play an important role in describing solutions of different
interpolation problems, see [1], [6]-[10], [4], [12], [14]. In case x = 0 a definition of
associated pair was introduced in [6].

As was shown in [13] for every W € U] (jpq) and ¢, d,, c¢ and dy as in (2.9) the mvf

(37) K, = KXV = (7w11dg + wlZCg)(fwgldg -+ w2264)71,
belongs to H2X? and admits the representations

(3.8) K, = (—wi1dy + wiace)azbs = biar (c,wd) — drwy),
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where {b1,by} € ap”(W). It is clear that K¥ € HIXP(Q_).
In the future we shall need the following factorizations of the mvf W € U} (j,q), which
were obtained in [13].

Theorem 3.4. ([13]). Let W € U] (jipq), {b1,b2} € ap” (W) and let by, s¢, by, s, be defined
by the Krein-Langer factorization (3.4). Then W admits the factorization

L I by —sk .
(3.9) W = {O b2_1] [ 0 azl} {—Se bg:| a.e. in Q.

Theorem 3.5. ([13]). Let W € UL (jpq), {b1,b2} € ap” (W), let K, be defined by (3.7),
Cr, dy., cg and dg be as in Theorem 2.2. Then W admits the factorization

(3.10) W=0% in Q and W=0"d" in Q_,
where
[ K _ [ n 0 .
(3.11) 0= {O by ! ] in Qi = [Kf&bl bg_l] n Q_,
e 12| fjar O ¢ dy .

(3.12) d = me <P22} = [0 a21] [—Se be] in 4,

— -1 —# # ot

- _ P11 Pi2| _ |1 0 } |:br 57} .

3.13 ¢ = |7 2 = m Q_.
(3:13) |:<p21 P2 { 0 a? d?& Cf

Moreover, ® and ®~ are invertible in Q4 and Q_, respectively, and

r -1
o1 |br _df] [“1 O} i Qy,

|Sr e 0 as
(3.14) (&)1 = [ c;## sz} {a? 9#] o
—dr b} 0 ay
It follows from (3.12)—(3.14) that,
(3.15) © e NGi™(Q2y), 7 e NGI™(2-) (m=p+aq).

3.2. The class U (jpq)-
Definition 3.6. An m x m muf W € Uy (jpq) is said to be in the class UL (jpq), if
(3.16) S19 1= w12w2_21 e SIxp,

The classes U’ (jpq) and UL (jpq) do not coincide.

V2 =
-1 V2x
and s12 € S, therefore W € U7 (j11), but W ¢ Uf (j11)-

-1

Example 1. Let W = [ 1
X

], then § = PG(W) = [}
A

5 :|, i.e., $91 € 81

Introduce the notation
= . [ W, if Q. =D,
Proposition 3.7. Let W € Uf(jpq) and let S(A) = [si;(N)]? ;, be its PG-transform.
Then W € UL (jpq) and S(\) = PG(W) has the form

S11(A)  —S21(A) .

(3.18) 50 = [’SVQ(A) 522(A)
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s1i(\) B2 (N)
S12(A)  S22(N)
S21(\) = —Waa(N) M 12(N) = —(wi2wsy)

Therefore W € UL (Gpg)-
Let W € U:(jpq) and let the Krein-Langer factorization of sj2 be written as

Proof. If S(\) = PG(W) = [ } then

~

= _§12(A) € Src-

(3.19) s12(0) = Be(N)Loe(N) = 0, (NB N TH (e b)),
where 3, € ST, 3, € SP*? 54,0, € S9*P. Then

(3.20) 521 (A) = —512(\) = =5, (M) Be(N) " = =B,(A) 15 (N),
(3.21) S2a(N) = Waa(N) 7! = B2 (N),

511(A) = W11 (A) — War (AW (A) M2 (N)

(3.22) _ 1 o o~
= w11 (A) = (wi2(MN)wa1(A) " w21 (A))™ = 511 (A).

O

Theorem 3.8. Let W € U'(j,,) and let the Blaschke-Potapov factors By and 3, be
defined by the Krein-Langer factorizations (3.19) of sa1. Then

(3.23) S993, € 879 and fBpsyy € SP*P.
Proof. 1t follows from (3.5), (3.21) and (3.22) that
BrBaz = (s228,)~ € ST, 311 = (Bes11)™ € SP°P,
Therefore, s998, € S99 and [ys11 € SP*P. O
Definition 3.9. Consider inner-outer factorizations of Bes11 and $220;,
(3.24) Besit = a1Pr,  S228r = Praz,

where 1 € SE¥P, By € S, ay € SPIT, g € ST, The pair 1, B2 of inner factors in
the factorizations (3.24) is called the left associated pair of the muf W € UL (jpq) and is
written as {B1, B2} € ap*(W), for short.

If {ﬂl,ﬂg} S apé(W), then
(3.25) 51180 = frdn,  Brdan = Gl

and, therefore, {Bl, Eg} € apT(W).
Applying equation (2.9) to mvf 531 one gets mvf’s J, d¢, ¥, 0, such that

Y | [ B b, I, 0]
3.26 o S - .
( ) [ar ﬂr] |:07“ Tr :| |:0 Iq_

Then by Theorem 3.4
wo[on @) B o @t 0173 &)
w12 W22 0 B5 0 ay | |or o
Passing to the W one obtains
i alls o
W= "% _ Z1 -
Il

Note that equation (3.26) is equivalent to (3.9).
Since W € UL (4pq), (B1,82) € ap” (W) and

ce(521) = Vry  de(521) = 0y,
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¢r(Bo) =70, dr(3m) = 0,
then the mvf -
Ky = K}V = (=116, + 0217,) (—W126, + Wa2Fr) "
belongs to H2X? and in view of (3.8) it admits the representations
K¢ = (~@nb, + @17,)@202 = fron (e — 0¢3y)-
Hence the mvf K, = (KXNVT can be represented as

(3.27) Ky = Baa(—8wiy + yrwar) = (wiyye — wihor)on By € HIXP.

By Theorem 3.5 W admits the factorization

(3.28) W=6,9,, in Q,
where
(3.29) 0, = Bl f(ﬁggl ‘51:[&1 ~01} v @ )
0 Byt |7 0 &' |5 B
Hence
Ye Or| |O1 0 B1 0 ]
3.30 W=®,0, = _ Z 1 -
(3:30) 1O [c» ﬁrHo 0‘21] [52% 67
Similarly, the second identity in (3.9) has the form
W =072,
where
o — B0 ;I;—:[a1# O] @# &f.
VOB gyttt Lo af]|of A7
Therefore
ot [og® 01 [8 K
3.31 W=ae707 = "4 ! e
(331 s [U# ﬁHo a#HO By

Thus one obtains the following.

Theorem 3.10. Let W € U (jpq), let {B1, B2} € ap®(W) and let K, be defined as in
(3.27). Then W admit the factorizations

(3.32) W=&0, in Qp and W=0707 in Q,
where
B 0 ] - {51 ﬁ1K#}

3.33 O1=," 1, ©1 = B
( ) ! [ﬂz 1K€ 521 ! 0 ﬁ21

Yo or| a1 0 _ [ #[a;* 0
3.34 P, = O R S r .
I R A | e B A | A

Similarly, Theorem 3.4 and formulas (3.25), (3.26) yield

Theorem 3.11. Let W € U.(jpq), and let {B1, B2} € ap®(W). Then W can be expressed
in terms of the factors in (3.24) as follows:

(3.35) W:[fi; ;] [O‘(l) agl} [%1 531] ae in Q.
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3.3. The class U (jpq) VUL (Jpg)- Let G(N) be a p x ¢ mvf that is meromorphic on
with a Laurent expansion

(3.36) G =A=X0) "G+ + (A=) 'G_1 + Go + oA — o)

in a neighborhood of a pole A\ € 4, G_; € CP*? (j =0,1,...,k). The pole multiplicity
M, (G, \o) is defined by (see [16])

G_j 0
(3.37) M, (G, \o) =rankL(G,\o), L(G, )= | : .

G, ... G
The pole multiplicity of G over €4 is given by
(3.38) Mo(G, Q) = > M (G, ).

r€Q
This definition of pole multiplicity coincides with the definition based on the Smith-
McMillan representation of G (see [10]).
Proposition 3.12. ([13]). Let Hy, H, € HYX? and let Gy € HYP and G, € HLX? be a
pair of muf’s such that G, ' € HPXP and G;' € Hy oo for some k € NU{0}. Then
(i) The pair Gy, Hy is left coprime over Q4 <= M. (G, 'Hy, Q1) = Mo (G;*,Q4).
(ii) The pair G,., H, is right coprime over Q4 <= M, (H,.G1,Q,) = M. (G, *, Q).

Lemma 3.13. ([13]). If S = [s;]? € S™*™ and so1 € SI*P and if [0 1,] Sh € H
for some h € Hy", then Sh € HJ".

Theorem 3.14. Let W € UL (jipg) VU (jpq), let S(N) be its Potapov-Ginzburg transform
and let (by,b2) and (51, B2) be its right and left associated pairs defined by (3.6) and
(3.24), respectively, and let the Blaschke-Potapov factors by, b, B, By be defined by the
Krein-Langer factorizations (3.4) and (3.19). Then

(i) the factorization sag = b[l(agbg) is left coprime over 4,

(ii) the factorization sqy = (Bac2)B;7t is right coprime over Q. ,
(iii) the factorization s11 = B[l(alﬁl) is left coprime over ),
(iv) the factorization s11 = (bya1)b, ! is right coprime over Q. ,
(v) detby = 0y det 81 and det by = O3 det B2 for some 01,05 € T. In particular,

hbl = hﬂ1 and hb2 = hﬁz'
Proof. (1) Let us denote by ' the pole multiplicity of a2 over Q,
(339) H/ = Mﬂ—(SQQ, Q+)(§ 5)7

and denote by 6 the Blaschke-Potapov factor of degree s’ such that s520 € S9%%. Then
$220u € HJ for every u € C?. By Lemma 3.13 one gets the inclusion

(3.40) {212] Ou e Hy, forall weCq,
22
and hence
(3.41) My (512,Q4) < Mw( [Zﬂ ,Q+> — K <k

On the other hand M, (s12,Q) = k, since W € U.(jp,). This proves the equality
(3.42) My (s22,Q4) = k = Mo (b, ', Q).

By Proposition 3.12 this means that the factorization sgo = b;l(bgsm) is left coprime,
so by (2.8) the factorization sa = b, ' (azbs) is left coprime, too.
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(ii) Let the mvf W(A) be given by (3 17) and let S be the Potapov-Ginzburg transform
of W()A). Then by Proposition 3.7 S takes the form (3.18) and, hence, W € U (Jpg) N
U (jpq). Application of the statement proved in (i) shows that the factorization
S22 = B, (G2f2)
is left coprime over . This implies (ii).
(iii) & (iv) Consider the mvf

o[ Holt -5 )

/ /
The Potapov-Ginzburg transform S’ = PG(U) = {s,ﬂ 8,12] of this matrix takes the

form 21 S22
(— IR ACVIRAON , 0 ]
g=re= | "BV BV B ]
M. . # # # -1, # # # -1
3.43 _ w3 (A) — wir(Mwii(A) T rwih (A)  wih(Mwii (V)
(4% T ) S|
_ [ 522()\) 521()\):|
_—812()\) 811()\) ’

(see [8, Lemma 4.24]). Therefore, U € U (jpq) N UL (jpy)- Applying the statements (i)
and (ii) to the mvf U one proves that the factorizations

(344) S11 = ,6[1(0(1,81) and S11 = (blal)bfl

are left coprime and right coprime, respectively, over € .
(v) By (3.6), (3.24),

(3.45) det s11 det b, = det by det ay, det s1; det By = det oy det 4.

Since B¢ and b, are left and right inner factors in the Krein-Langer factorization (3.44),
we see that det b, = 6det 8y for some 6 € T (see [3]). Therefore, the formulas in (3.45)
represent two inner-outer factorizations of the same function. The uniqueness of inner-
outer factorization implies that

(3.46) det by = 07 det B4
for some 0, € T. Similarly as s998, = Boca and bysas = asbs,
det sgo det by = det by det ag, det sop det 5, = det B det g
and hence, using the equality det by = 98, (¢ € T) one obtains for some 0 € T
(3.47) det by = 05 det .
Equalities (3.46) and (3.47) imply that by, = bg,, b, = ha,. O

Example 2. Let a 4 x 4 mvf W(A) be given by

4—X 0 0 22—2
() wi\) O 10 0
_ W11 w12 _
W()\> - |:’LU21()\) ’LU22()\)1| o 0)\ 0 1 4)0
2-2 —1
3\ 0 0 3\
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Then the Potapov-Ginzburg transformation S = PG(W) of W takes the form

1200 B2 1 00 07" [ 00 %3

0 1 0 0 0 1 0 0 0 1 0 0

S(/\)_ 0 0 1 0 0 0 1 0 B 0 0 1 0
—2) AN— _

0 00 1 [[3%» 00 %3 Bt 00 2y

The mvf s91(\) admits the left Krein-Langer factorization

) [ 0 0} _—y [1 0 ]‘1{ 0 0]
21 = | 2x— = ¢ = A A
121)\7? 0 ¢ 0 447)\1 247)\2 0

with a Blaschke-Potapov factor b, of degree 1 and hence so1 € 812 X2,
Thus, considering the outer-inner factorization of bysag

b {1 0 10_10_1010_b
w2 ol @ Tlo &) T 2l o e

10
0 A’
On the other hand the mvf s12 admits the right Krein-Langer factorization

1
[0 BE_ s [0 BR[O
S12 = {0 0 | = orB, " = 0 0 0 9= ;

and (3.24) takes the form

5_1 0]/t 0_10_1010_/3
822r—0 4/‘\331 0 44>\:/\1—0 A_O)\ 0 3 | = P20a.

10
0 A~
Similarly, one obtains b; = 31 = Is.

one obtains by =

Therefore 8y = by =

Modifying this example one can get a mvf W € U’ (j,q) N UL (jpg) such that the left
and the right associated pairs do not coincide.

Example 3. Let U be a unitary 2 x 2 matrix and let

= o wll()\) ’wlg()\)U
W(A) B |:’w21()\) ’wgg(/\)U:| ’

where w;; are as in Example 2. Then the corresponding Potapov-Ginzburg transforma-
tion S = PG(W) of W takes the form

S ) S [ su) s12()
SO = [’séi(x) zﬁm} B [U‘iﬂ(” U_i”(”}

and hence
So1 = (bU) s, be=bU, Bia=0.67", Br=f
Since
be3o2 = bpsoo = asby  and 322, = U 8208, = U™ Baa,
we see that

~ 1 0 ~ N 4 [1 0
b2=b2:|:0 A} and 52=U152=U1[0 A}.
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4. SINGULAR GENERALIZED J-INNER MVF’S
4.1. Definition of singular generalized J-inner mvf.

Definition 4.1. A muf U € U,.(J) is said to be singular, if U,U~" € N"*™. The class
of singular generalized J-inner muf’s will be denoted by U, s(J).

In the case £ = 0 this definition was introduced by D. Arov in [7]. The simplest
examples of singular J-inner mvf’s are the elementary BP factors of the third and fourth
kind (see [7]). We will present below an example of a singular generalized J-inner mvf
in the case kK = 1.

Example 4. Let W(X\) = I,,, — %guu*.], Qy =D, where
1 0 1
P PR OO 5
Then
1 3—A —-1-2A
W(/\)*zu_)\) { 1+XA 1-3A }’
. 1 R L T Y
W) JW =
W = = | e e |
and
1 -1 -1
4.1 KV = ——— .
- 0= e |
The kernel KXV(/\) has 1 negative square in ID since
. . 1 1
(12) KYO) = —F0fs it S0 =15 [ ]

Moreover, J — W (u)JW (u)* = O for p € T\ {1}, and, therefore, W € U7 (J).
Next, since det W(A\) =1, W and W~ are outer, and thus, W € U s(J).

Other examples of singular generalized J-inner mvf’s for J = [ (;

in [11].

BZ ] can be found

Proposition 4.2. Let U = U Us, where U; € Uy, s(J), i = 1,2, are singular generalized
J-inner muf’s. Then U € Uy, s(J) for some k € Zy such that k < K1 + Ko.

Proof. Let Uy,Us; be singular generalized J-inner mvf’s, then Ul,Ul_1 e N{™™ and
U, Uyt € NJ™™ hence U = U;Us, belongs to N"*™, moreover, U™' = Uy 'U*
belongs to N"*™. Therefore U € Nyyt, i.e., the mvf U is singular.
The inclusion U € U, (J) with k < k1 + ko is a general fact that is implied by the
identity
KJ(N) = KJ' ) + Ui (VKD (W)U (w)*.

O

4.2. Characterization of singular mvf’s in terms of associated pairs. In what
follows we suppose that J = jpq.

Lemma 4.3. Let W € Uy (jpg) and {b1,bz} € ap"(W). Then W € UL (jpq) NNI™™ if
and only if bo = const.
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Proof. 1) Without loss of generality we may assume that by = I,. Then it follows from
(3.10) and (3.11) that
W= [ b K } P,

0 I
where ® € N3 (Q4) C NJV*™. Therefore, W € N7 NU (jpq)-

out

2) Assume now that W € NJT*™. Then also W®' € N7*™ and by the for-
mula (3.10)

-1
W<I>1:®:[b01 Ig?l }e/\f?xmﬁLO@.
Therefore, by the Smirnov maximum principle
by Kb2_1 mxm
[ 0 byt | SH=T
and hence by ' € HZ*™, Thus by = const. d

Lemma 4.4. Let W € U] (jpq) and {b1,ba} € ap”(W). Then W € UL (jpq) NN if
and only if by = const.

Proof. 1) Without loss of generality we may assume that by = I,. Then it follows from
(3.10), (3.11) and (3.12) that
e 0 e

K#* by'I
where @~ € NJWX™(Q_) C N™*™. Hence W € N™ ™ N U (jpq)-

out

2) Conversely, let W € N”*™. Then W(®~)~! € N™*™ and by the formula (3.10)

by 0
K#by byt

Thus, by the Smirnov maximum principle

[ Kl;;bl bgl ] eN™™N Ly,

and hence by € HZ2*™(2_). This proves that b; = const. O

W@ ) t=0"= [ } € HX™(QL).

Theorem 4.5. Let W € UL (jpq) and {b1,b2} € ap”(W). Then W is singular if and only
if by = const and by = const.

Proof. If by = const, then by Lemma 4.3

(4.3) W e Uy (jpq) NNIX™.

If by = const, then by Lemma 4.4 W € UL (jpq) NNT*™. Tt follows from the identity
W(N)ipgWH#(X) = jpg (A € b Nhy#)

that

(4.4) W()‘)il = quW# (A)Jpg-
Therefore, since W € N™*™  then W# € N7"*™. Consequently,
(4.5) W—te N

With regard to these two conditions (4.3), (4.5) we obtain that W € U, s(jpq) by Defi-
nition 4.1.
Conversely, let W € U], ¢(jpg). Then

W€ U (Gpg) N NG ™ (24),
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and hence W € U, (jpq) "N, By Lemma 4.3 this condition is equivalent to by = const.
Next, it follows from (4.4) and (4.5) that W# € N2, Hence W € N"™*™ and by

ut
Lemma 4.4 this condition is equivalent to b; = const. (Il

Corollary 4.6. Let W € U.(jp,) and {B1, B2} € ap®*(W). Then W is singular if and
only if f1 = const and 2 = const.

Proof. By Lemma 3.14 | deg 81| = | deg by |, | deg S2| = | deg bz|. Therefore, the statements
concerning W are implied by Theorem 4.5. ([l
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