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FACTORIZATION FORMULAS FOR SOME CLASSES OF

GENERALIZED J-INNER MATRIX VALUED FUNCTIONS

OLENA SUKHORUKOVA

Dedicated to Professor D. Z. Arov in the occasion of his 80-th birthday with great respect

Abstract. The class Uκ(jpq) of generalized jpq-inner matrix valued functions (mvf’s)
was introduced in [2]. For a mvf W from a subclass Ur

κ(jpq) of Uκ(jpq) the notion
of the right associated pair was introduced in [13] and some factorization formulas
were found. In the present paper we introduce a dual subclass Uℓ

κ(jpq) and for every

mvf W ∈ Uℓ
κ(jpq) a left associated pair {β1, β2} is defined and factorization formulas

for W in terms of β1, β2 are found. The notion of a singular generalized jpq-inner
mvf W is introduced and a characterization of singularity of W is given in terms of
associated pair.

1. Introduction

Let J be an m × m signature matrix, i.e., J = J∗ = J−1. Recall that an m × m
meromorphic in D = {λ : |λ| < 1} matrix valued function (mvf) W (λ) is said to belong
to the Potapov class P(J) of J-contractive mvf’s, if

(1.1) W (λ)∗JW (λ) ≤ J

for all λ ∈ h+W that is the domain of holomorphy of W in D. If W ∈ P(J), then the
nontangential limits W (µ) exists a.e. on T, the boundary of D. A J-contractive mvf
W (λ) is called J-inner, and is written as W ∈ U(J) if
(1.2) W (µ)∗JW (µ) = J for a.e. µ ∈ T = ∂D.

J-inner mvf’s play an important role in the theory of classical problems of analysis. As is
known (see [1], [6]–[10], [15]) the set of solutions of many classical interpolation problems
coincides with the range of a linear fractional transformation generated by a J-inner mvf.

In the case where J = jpq := diag(Ip,−Iq) (p, q ∈ N) the Potapov-Ginzburg transform
S = PG(W ) of a jpq-contractive mvf W ∈ P(jpq),

(1.3) S(λ) =

[
s11 s12
s21 s22

]
:=

[
w11(λ) w12(λ)

0 Iq

] [
Ip 0

w21(λ) w22(λ)

]−1

,

belongs to the Schur class Sm×m of m×m mvf’s holomorphic and contractive in D and,
moreover, for every W ∈ U(jpq) the mvf S = PG(W ) belongs to the class Sm×m

in of inner
mvf’s, i.e., S ∈ Sm×m and S(µ)∗S(µ) = Im a.e. on T. For every W ∈ U(jpq) the mvf’s
s11(λ) and s22(λ) admit left and right inner-outer factorization,

s11(λ) = b1(λ)ϕ1(λ), s22(λ) = ϕ2(λ)b2(λ),

where b1 ∈ Sp×p
in , b2 ∈ Sq×q

in and ϕ1, ϕ2 are outer mvf’s (see definition in Subsection 2.1).
The pair {b1, b2} is called an associated pair ofW ∈ U(jpq) and is designated by {b1, b2} ∈
ap(W ) (see [6]).
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A subclass US(jpq) of singular jpq-inner mvf’s was introduced by D. Arov in [5] by the
equivalence

W ∈ US(jpq) ⇐⇒ W ∈ U(jpq) and W is outer.

The class US(jpq) was completely characterized in terms of associated pairs. As was
shown in [6] a mvf W ∈ U(jpq) belongs to US(jpq) if and only if its associated pair is
trivial, i.e., b1(λ) ≡ Ip and b2(λ) ≡ Iq.

A class Uκ(jpq) of generalized jpq-inner mvf’s was introduced in [2] in connection with
some indefinite interpolation problems. Recall that an m ×m mvf W (λ) meromorphic
in D is said to belong to the class Uκ(jpq), if

1) the kernel

K
W
ω (λ) =

jpq −W (λ)jpqW (ω)∗

1− λω∗

has κ negative squares in h+W ;
2) W (µ) is jpq-unitary a.e. on T.

The class of mvf’s Sm×m
κ , which satisfy the first condition with jpq = Im, is called a

generalized Schur class and is denoted by Sm×m
κ (see Subsection 2.2 for details). As is

known [2], the Potapov-Ginzburg transform S = PG(W ) of a mvf W ∈ Uκ(jpq) belongs
to the class Sm×m

κ .
In [13] a subclass

Ur
κ(jpq) = {W ∈ Uκ(jpq) : s21 := −w−1

22 w21 ∈ Sq×p
κ }

was introduced and for every mvf W ∈ Ur
κ(jpq) the notion of the (right) associated pair

{b1, b2} was introduced. The mvf’s b1, b2 were used in order to get a factorization for the
mvf W ∈ Ur

κ(jpq).
In the present paper we introduce another subclass

U ℓ
κ(jpq) = {W ∈ Uκ(jpq) : s12 := w12w

−1
22 ∈ Sq×p

κ }
and define the notion of the left associated pair {β1, β2} for W ∈ U ℓ

κ(jpq). We find new
factorization formulas for W ∈ U ℓ

κ(jpq).
The classes Ur

κ(jpq) and U ℓ
κ(jpq) do not coincide as is shown in Example 1. More-

over, if W ∈ Ur
κ(jpq)

⋂U ℓ
κ(jpq), then the corresponding right associated pair {b1, b2} not

necessarily coincides with the left associated pair {β1, β2} (see Example 3). However,
Theorem 3.14 says that in this case

det b1 = detβ1 and det b2 = detβ2,

and bj , and βj have the same degrees and the same zero sets for every j ∈ {1, 2}.
In the present paper we introduce also the notion of singular mvf in classes Ur

κ(jpq),
U ℓ
κ(jpq) and obtain a characterization of singular mvf’s in terms of associated pairs. The

proof of this result is essentially based on factorization theorems for the class Ur
κ(jpq)

from [13].

2. Preliminaries

2.1. Notations. Let Ω+ be equal to either D = {λ ∈ C : |λ| < 1}, or C+ = {λ ∈ C :
ℑλ > 0};

ρω(λ) =

{
1− λω∗, if Ω+ = D,
−2πi(λ− ω∗), if Ω+ = C+.

Thus, Ω+ = {ω ∈ C : ρω(ω) > 0} and Ω0 = {ω ∈ C : ρω(ω) = 0} is the boundary of Ω+.
Correspondingly, we set Ω− = {ω ∈ C : ρω(ω) < 0}.
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For a mvf f(λ) let us set

f#(λ) = f(λ◦)∗, where λ◦ =

{
1/λ∗ : if Ω+ = D, λ 6= 0,
λ∗ : if Ω+ = C+.

Denote by hf the domain of holomorphy of the mvf f and let h±f = hf ∩ Ω±.
The following basic classes of mvf’s will be used in this paper:
Hr(Ω±) (0 < r ≤ ∞) is the class of holomorphic functions in Ω± such that ‖u‖r < ∞,

‖u‖r =





sup
0<ρ<1

[ 1
2π

∫ 2π

0
|u(ρeit)|dt] 1r , (0 < r < ∞),

sup
z∈Ω±

|u(z)|, (p = ∞).

Hp×q
r (Ω±) is the class of p× q -mvf’s with entries in Hr(Ω±),

Hr := H1×1
r (Ω+), Hp

r := Hp×1
r (Ω+) (1 ≤ r ≤ ∞),

Sp×q
in = {s ∈ Sp×q : s(µ)∗s(µ) = Ip a.e. on Ω0},

Sp×q
out = {s ∈ Sp×q : sHq

2 = Hp
2}, Sout = S1×1

out ,

N p×q
± = {f = h−1g : g ∈ Hp×q

∞ (Ω±), h ∈ Sout(Ω±)},
N p×q

out = {f = h−1g : g ∈ Sp×q
out , h ∈ Sout}, Nout = N 1×1

out .

In particular, f ∈ N p×q
− if and only if f# ∈ N q×p

+ . As is known [8], a p × p mvf f

belongs to the class N p×p
out if and only if det f ∈ Nout. This implies, in particular, that

such a mvf should be invertible in Ω+. Another criterion for f ∈ N p×p
out is formulated in

terms of the Smirnov class

f ∈ N p×p
out ⇐⇒ f, f−1 ∈ N p×p

+ .

An important connection between these classes is given by the following

Theorem 2.1. ([8], Th. 3. 59). (The Smirnov maximum principle).

N p×q
+ ∩ Lp×q

r = Hp×q
r (1 ≤ r ≤ ∞).

2.2. The generalized Schur class. Let κ ∈ Z+. Recall [9], [16] that a Hermitian kernel
Kω(λ) : Ω × Ω → C

m×m is said to have κ negative squares, if for every positive integer
n and every choice of ωj ∈ Ω and uj ∈ C

m (j = 1, . . . , n) the matrix

(
〈
Kωj

(ωk)uj , uk

〉
)nj,k=1

has at most κ negative eigenvalues, and for some choice of ω1, . . . , ωn ∈ Ω and u1, . . . , un ∈
C

m exactly κ negative eigenvalues.
Let Sq×p

κ denote the generalized Schur class of q × p mvf’s s that are meromorphic in
Ω+ and for which the kernel

(2.1) Λ
s
ω(λ) =

Ip − s(λ)s(ω)∗

ρω(λ)

has κ negative squares on h+s × h+s (see [16]).

In the case where κ = 0 the class Sq×p
0 coincides with the Schur class Sq×p of con-

tractive mvf’s holomorphic in Ω+. Every mvf s ∈ Sp×p with det s(λ) 6≡ 0 admits an
inner-outer factorization

s = bℓaℓ = arbr,

where bℓ, br ∈ Sp×p
in , aℓ, ar ∈ Sp×p

out .
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Let bω(λ), be an elementary Blaschke factor (bω(λ) = λ−ω
1−λω∗ in the case Ω+ = D,

bω(λ) =
λ−ω
λ−ω∗ in the case Ω+ = C+), and let P be an orthogonal projection in C

p. Then
the mvf

Bα(λ) = Ip − P + bα(λ)P, ω ∈ Ω+,

belongs to the Schur class Sp×p and is called an elementary Blaschke–Potapov (BP)
factor and B(λ) is called primary if rank P = 1. The product

B(λ) =

κ
y∏

j=1

Bαj
(λ),

where Bαj
(λ) are primary Blaschke–Potapov factors is called a Blaschke–Potapov product

of degree κ.
As shown in [16] every mvf s ∈ Sq×p

κ admits a factorization of the form

(2.2) s(λ) = bℓ(λ)
−1sℓ(λ), λ ∈ h+s ,

where bℓ ∈ Sq×q is a q× q Blaschke–Potapov product of degree κ, sℓ is in the Schur class
Sq×p and

(2.3) rank
[
bℓ(λ) sℓ(λ)

]
= q (λ ∈ Ω+).

The representation (2.2) is called a left Krĕın–Langer factorization.
Similarly, every generalized Schur function s ∈ Sq×p

κ admits a right Krĕın-Langer
factorization

(2.4) s(λ) = sr(λ)br(λ)
−1 for λ ∈ h+s ,

where br ∈ Sp×p is a Blaschke–Potapov product of degree κ, sr ∈ Sq×p and

(2.5) rank
[
br(λ)

∗ sr(λ)
∗ ]

= p (λ ∈ Ω+).

As is known (see [8]) the factors bℓ and sℓ in (2.2) meet the rank condition (2.3) if and
only if the factorization (2.2) is left coprime, i.e., there exists a pair of mvf’s cℓ ∈ Hq×q

∞
and dℓ ∈ Hq×p

∞ such that

(2.6) bℓ(λ)cℓ(λ) + sℓ(λ)dℓ(λ) = Iq for λ ∈ Ω+.

Therefore mvf’s cℓ and dℓ do not have a common right inner divider.
Similarly, the factors br and sr in (2.4) meet the rank condition (2.3) if and only if

the factorization (2.4) is right coprime, i.e., there exists a pair of mvf’s cr ∈ Hp×p
∞ and

dr ∈ Hp×q
∞ such that

(2.7) cr(λ)br(λ) + dr(λ)sr(λ) = Ip for λ ∈ Ω+.

Therefore mvf’s cr and dr don’t have a common left inner divider.

Theorem 2.2. ([13]). Let s ∈ Sq×p
κ have Krĕın-Langer factorizations

(2.8) s = b−1
ℓ sℓ = srb

−1
r .

Then there exists a set of mvf’s cℓ = cℓ(s) ∈ Hq×q
∞ , dℓ = dℓ(s) ∈ Hp×q

∞ , cr = cr(s) ∈
Hp×p

∞ and dr = dr(s) ∈ Hp×q
∞ , such that

(2.9)

[
cr dr
−sℓ bℓ

] [
br −dℓ
sr cℓ

]
=

[
Ip 0
0 Iq

]
.
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3. Generalized jpq-inner mvf’s

Let jpq be an m×m signature matrix

jpq =

[
Ip 0
0 −Iq

]
, where p+ q = m,

Definition 3.1. ([13]). An m×m mvf W (λ) = [wij(λ)]
2
i,j=1 that is meromorphic in Ω+

is said to belong to the class Uκ(jpq) of generalized jpq-inner mvf’s, if

(i) the kernel

(3.1) K
W
ω (λ) =

jpq −W (λ)jpqW (ω)∗

ρω(λ)

has κ negative squares in h+W × h+W ;
(ii) jpq −W (µ)jpqW (µ)∗ = 0 a.e. on Ω0.

As is known [2, Th. 6.8], for every W ∈ Uκ(jpq), w22(λ) is invertible for all λ ∈ h+W
except for at most κ points in Ω+. Thus the Potapov-Ginzburg transform of W

(3.2) S(λ) = PG(W ) :=

[
w11(λ) w12(λ)

0 Iq

] [
Ip 0

w21(λ) w22(λ)

]−1

is well defined for those λ ∈ h+W for which w22(λ) is invertible. As is easily seen, S(λ)
belongs to the class Sm×m

κ and S(µ) is unitary for a.e. µ ∈ Ω0 (see [2], [13]).

3.1. The class Ur
κ(jpq).

Definition 3.2. ([13]). An m×m mvf W ∈ Uκ(jpq) is said to be in the class Ur
κ(jpq), if

(3.3) s21 := −w−1
22 w21 ∈ Sq×p

κ .

Let W ∈ Ur
κ(jpq) and let the Krĕın-Langer factorization of s21 be written as

(3.4) s21(λ) = bℓ(λ)
−1sℓ(λ) = sr(λ)br(λ)

−1 (λ ∈ h+s21),

where bℓ ∈ Sq×q
in , br ∈ Sp×p

in , sℓ, sr ∈ Sq×p. Then, as was shown in [13], the mvf’s bℓs22
and s11br are holomorphic in Ω+, and

(3.5) bℓs22 ∈ Sq×q and s11br ∈ Sp×p.

Definition 3.3. ([13]). Consider the inner-outer factorizations of s11br and bℓs22

(3.6) s11br = b1a1, bℓs22 = a2b2,

where b1 ∈ Sp×p
in , b2 ∈ Sq×q

in , a1 ∈ Sp×p
out , a2 ∈ Sq×q

out . The pair b1, b2 of inner factors in the
factorizations (3.6) is called the associated pair of the mvf W ∈ Ur

κ(jpq) and is written
as {b1, b2} ∈ apr(W ), for short.

From now onwards this pair {b1, b2} will be called also a right associated pair since it
is related to the right linear fractional transformation

TW [ε] = (w11ε+ w12)(w21ε+ w22)
−1,

see [6], [8]. Such transformations play an important role in describing solutions of different
interpolation problems, see [1], [6]–[10], [4], [12], [14]. In case κ = 0 a definition of
associated pair was introduced in [6].

As was shown in [13] for every W ∈ Ur
κ(jpq) and cr, dr, cℓ and dℓ as in (2.9) the mvf

(3.7) Kr = KW
r := (−w11dℓ + w12cℓ)(−w21dℓ + w22cℓ)

−1,

belongs to Hp×q
∞ and admits the representations

(3.8) Kr = (−w11dℓ + w12cℓ)a2b2 = b1a1(crw
#
21 − drw

#
22),
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where {b1, b2} ∈ apr(W ). It is clear that K#
r ∈ Hq×p

∞ (Ω−).
In the future we shall need the following factorizations of the mvf W ∈ Ur

κ(jpq), which
were obtained in [13].

Theorem 3.4. ([13]). Let W ∈ Ur
κ(jpq), {b1, b2} ∈ apr(W ) and let bℓ, sℓ, br, sr be defined

by the Krĕın-Langer factorization (3.4). Then W admits the factorization

(3.9) W =

[
b1 0
0 b−1

2

] [
a−∗
1 0
0 a−1

2

] [
b∗r −s∗r
−sℓ bℓ

]
a.e. in Ω0.

Theorem 3.5. ([13]). Let W ∈ Ur
κ(jpq), {b1, b2} ∈ apr(W ), let Kr be defined by (3.7),

cr, dr, cℓ and dℓ be as in Theorem 2.2. Then W admits the factorization

(3.10) W = ΘΦ in Ω+ and W = Θ−Φ− in Ω−,

where

(3.11) Θ =

[
b1 Krb

−1
2

0 b−1
2

]
in Ω+, Θ− =

[
b1 0

K#
r b1 b−1

2

]
in Ω−,

(3.12) Φ =

[
ϕ11 ϕ12

ϕ21 ϕ22

]
=

[
a1 0
0 a−1

2

] [
cr dr
−sℓ bℓ

]
in Ω+,

(3.13) Φ− =

[
ϕ−
11 ϕ−

12

ϕ−
21 ϕ−

22

]
=

[
a−#
1 0

0 a#2

] [
b#r −s#r
d#ℓ c#ℓ

]
in Ω−.

Moreover, Φ and Φ− are invertible in Ω+ and Ω−, respectively, and

(3.14)

Φ−1 =

[
br −dℓ
sr cℓ

] [
a−1
1 0
0 a2

]
in Ω+,

(Φ−)−1 =

[
c#r s#ℓ
−d#r b#ℓ

] [
a#1 0

0 a−#
2

]
in Ω−.

It follows from (3.12)–(3.14) that,

(3.15) Φ ∈ Nm×m
out (Ω+), Φ− ∈ Nm×m

out (Ω−) (m = p+ q).

3.2. The class U ℓ
κ(jpq).

Definition 3.6. An m×m mvf W ∈ Uκ(jpq) is said to be in the class U ℓ
κ(jpq), if

(3.16) s12 := w12w
−1
22 ∈ Sq×p

κ .

The classes U ℓ
κ(jpq) and Ur

κ(jpq) do not coincide.

Example 1. Let W =

[√
2 −λ

−1
√
2λ

]
, then S = PG(W ) = 1√

2

[
1 −1
1
λ

1
λ

]
, i.e., s21 ∈ S1

and s12 ∈ S, therefore W ∈ Ur
1 (j11), but W /∈ U ℓ

1(j11).

Introduce the notation

(3.17) W̃ (λ) =

{
W (λ)∗, if Ω+ = D,

W (−λ)∗, if Ω+ = C+.

Proposition 3.7. Let W ∈ U ℓ
κ(jpq) and let S(λ) = [sij(λ)]

2
i,j=1 be its PG-transform.

Then W̃ ∈ Ur
κ(jpq) and Ŝ(λ) = PG(W̃ ) has the form

(3.18) Ŝ(λ) =

[
s̃11(λ) −s̃21(λ)
−s̃12(λ) s̃22(λ)

]
.
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Proof. If Ŝ(λ) = PG(W̃ ) =

[
ŝ11(λ) ŝ21(λ)
ŝ12(λ) ŝ22(λ)

]
then

ŝ21(λ) = −w̃22(λ)
−1w̃12(λ) = −(w12w

−1
22 )

∼
= −s̃12(λ) ∈ Sκ.

Therefore W̃ ∈ Ur
κ(jpq).

Let W ∈ U ℓ
κ(jpq) and let the Krĕın-Langer factorization of s12 be written as

(3.19) s12(λ) = βℓ(λ)
−1σℓ(λ) = σr(λ)βr(λ)

−1, (λ ∈ h+s12),

where βℓ ∈ Sq×q
in , βr ∈ Sp×p

in , σℓ, σr ∈ Sq×p. Then

(3.20) ŝ21(λ) = −s̃12(λ) = −σ̃ℓ(λ)β̃ℓ(λ)
−1 = −β̃r(λ)

−1σ̃r(λ),

(3.21) ŝ22(λ) = w̃22(λ)
−1 = s̃22(λ),

ŝ11(λ) = w̃11(λ)− w̃21(λ)w̃22(λ)
−1w̃12(λ)

= w̃11(λ)− (w12(λ)w21(λ)
−1w21(λ))

∼ = s̃11(λ).
(3.22)

�

Theorem 3.8. Let W ∈ U ℓ
κ(jpq) and let the Blaschke-Potapov factors βℓ and βr be

defined by the Krĕın-Langer factorizations (3.19) of s21. Then

(3.23) s22βr ∈ Sq×q and βℓs11 ∈ Sp×p.

Proof. It follows from (3.5), (3.21) and (3.22) that

β̃r s̃22 = (s22βr)
∼ ∈ Sq×q, s̃11β̃ℓ = (βℓs11)

∼ ∈ Sp×p,

Therefore, s22βr ∈ Sq×q and βℓs11 ∈ Sp×p. �

Definition 3.9. Consider inner-outer factorizations of βℓs11 and s22βr,

(3.24) βℓs11 = α1β1, s22βr = β2α2,

where β1 ∈ Sp×p
in , β2 ∈ Sq×q

in , α1 ∈ Sp×p
out , α2 ∈ Sq×q

out . The pair β1, β2 of inner factors in
the factorizations (3.24) is called the left associated pair of the mvf W ∈ U ℓ

κ(jpq) and is
written as {β1, β2} ∈ apℓ(W ), for short.

If {β1, β2} ∈ apℓ(W ), then

(3.25) s̃11β̃ℓ = β̃1α̃1, β̃r s̃22 = α̃2β̃2

and, therefore, {β̃1, β̃2} ∈ apr(W̃ ).

Applying equation (2.9) to mvf ŝ21 one gets mvf’s γ̂ℓ, δ̂ℓ, γ̂r, δ̂r such that

(3.26)

[
γ̂ℓ δ̂ℓ
σ̂r β̂r

] [
β̂ℓ −δ̂r
−σ̂r γ̂r

]
=

[
Ip 0
0 Iq

]
.

Then by Theorem 3.4

W̃ =

[
w̃11 w̃21

w̃12 w̃22

]
=

[
β̃1 0

0 β̃−1
2

] [
α̃−∗
1 0
0 α̃−1

2

] [
β̃∗
ℓ σ̃∗

ℓ

σ̃r σ̃r

]
.

Passing to the W one obtains

W =

[
β∗
ℓ σr

σ∗
ℓ βr

] [
α−∗
1 0
0 α−1

2

] [
β1 0
0 β−1

2

]
.

Note that equation (3.26) is equivalent to (3.9).

Since W̃ ∈ Ur
κ(jpq), (β̃1, β̃2) ∈ apr(W̃ ) and

cℓ(ŝ21) = γ̃r, dℓ(ŝ21) = δ̃r,



372 OLENA SUKHORUKOVA

cr(ŝ21) = γ̃ℓ, dr(ŝ21) = δ̃ℓ,

then the mvf

K̃ℓ := KW̃
r = (−w̃11δ̃r + w̃21γ̃r)(−w̃12δ̃r + w̃22γ̃r)

−1

belongs to Hp×q
∞ and in view of (3.8) it admits the representations

K̃ℓ = (−w̃11δ̃r + w̃21γ̃r)α̃2β̃2 = β̃1α̃1(γ̃ℓw̃
#
12 − δ̃ℓw̃

#
22).

Hence the mvf Kℓ = (KW̃
r )̃ can be represented as

(3.27) Kℓ = β2α2(−δrw11 + γrw21) = (w#
12γℓ − w#

22δℓ)α1β1 ∈ Hq×p
∞ .

By Theorem 3.5 W̃ admits the factorization

(3.28) W̃ = Θ̃1Φ̃1, in Ω+,

where

(3.29) Θ̃1 =

[
β̃1 K̃ℓβ̃

−1
2

0 β̃−1
2

]
, Φ̃1 =

[
α̃1 0
0 α̃−1

2

] [
γ̃ℓ δ̃ℓ
σ̃r β̃r

]
.

Hence

(3.30) W = Φ1Θ1 =

[
γℓ σr

δℓ βr

] [
α1 0
0 α−1

2

] [
β1 0

β−1
2 Kℓ β−1

2

]
.

Similarly, the second identity in (3.9) has the form

W̃ = Θ̃−
1 Φ̃

−
1 ,

where

Θ̃−
1 =

[
β̃1 0

K̃#
ℓ β̃1 β̃−1

2

]
, Φ̃−

1 =

[
α̃−#
1 0

0 α̃#
2

] [
β̃#
ℓ σ̃#

ℓ

δ̃#r γ̃#
r

]
.

Therefore

(3.31) W = Φ−
1 Θ

−
1 =

[
β#
ℓ δ#r

σ#
ℓ γ#

r

] [
α−#
1 0

0 α#
2

] [
β1 β1K

#
ℓ

0 β−1
2

]
.

Thus one obtains the following.

Theorem 3.10. Let W ∈ U ℓ
κ(jpq), let {β1, β2} ∈ apℓ(W ) and let Kℓ be defined as in

(3.27). Then W admit the factorizations

(3.32) W = Φ1Θ1 in Ω+ and W = Φ−
1 Θ

−
1 in Ω+,

where

(3.33) Θ1 =

[
β1 0

β−1
2 Kℓ β−1

2

]
, Θ−

1 =

[
β1 β1K

#
ℓ

0 β−1
2

]
,

(3.34) Φ1 =

[
γℓ σr

δℓ βr

] [
α1 0
0 α−1

2

]
, Φ−

1 =

[
β#
ℓ δ#r

σ#
ℓ γ#

r

] [
α−#
1 0

0 α#
2

]
.

Similarly, Theorem 3.4 and formulas (3.25), (3.26) yield

Theorem 3.11. Let W ∈ U ℓ
κ(jpq), and let {β1, β2} ∈ apℓ(W ). Then W can be expressed

in terms of the factors in (3.24) as follows:

(3.35) W =

[
β∗
ℓ σr

σ∗
ℓ βr

] [
α−∗
1 0
0 α−1

2

] [
β1 0
0 β−1

2

]
a.e. in Ω0.
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3.3. The class U ℓ
κ(jpq) ∩ Ur

κ(jpq). Let G(λ) be a p× q mvf that is meromorphic on Ω+

with a Laurent expansion

(3.36) G(λ) = (λ− λ0)
−kG−k + · · ·+ (λ− λ0)

−1G−1 +G0 + o(λ− λ0)

in a neighborhood of a pole λ0 ∈ Ω+, G−j ∈ C
p×q (j = 0, 1, . . . , k). The pole multiplicity

Mπ(G,λ0) is defined by (see [16])

(3.37) Mπ(G,λ0) = rankL(G,λ0), L(G,λ0) =



G−k 0
...

. . .

G−1 . . . G−k


 .

The pole multiplicity of G over Ω+ is given by

(3.38) Mπ(G,Ω+) =
∑

λ∈Ω+

Mπ(G,λ).

This definition of pole multiplicity coincides with the definition based on the Smith-
McMillan representation of G (see [10]).

Proposition 3.12. ([13]). Let Hℓ, Hr ∈ Hp×q
∞ and let Gℓ ∈ Hp×p

∞ and Gr ∈ Hq×q
∞ be a

pair of mvf’s such that G−1
ℓ ∈ Hp×p

κ,∞ and G−1
r ∈ Hκ,∞ for some κ ∈ N ∪ {0}. Then

(i) The pair Gℓ, Hℓ is left coprime over Ω+ ⇐⇒ Mπ(G
−1
ℓ Hℓ,Ω+) = Mπ(G

−1
ℓ ,Ω+).

(ii) The pair Gr, Hr is right coprime over Ω+ ⇐⇒ Mπ(HrG
−1
r ,Ω+) = Mπ(G

−1
r ,Ω+).

Lemma 3.13. ([13]). If S = [sij ]
2
1 ∈ Sm×m

κ and s21 ∈ Sq×p
κ and if

[
0 Iq

]
Sh ∈ Hq

2

for some h ∈ Hm
2 , then Sh ∈ Hm

2 .

Theorem 3.14. Let W ∈ U ℓ
κ(jpq)∩Ur

κ(jpq), let S(λ) be its Potapov-Ginzburg transform
and let (b1, b2) and (β1, β2) be its right and left associated pairs defined by (3.6) and
(3.24), respectively, and let the Blaschke-Potapov factors bℓ, br, βℓ, βr be defined by the
Krĕın-Langer factorizations (3.4) and (3.19). Then

(i) the factorization s22 = b−1
ℓ (a2b2) is left coprime over Ω+,

(ii) the factorization s22 = (β2α2)β
−1
r is right coprime over Ω+,

(iii) the factorization s11 = β−1
ℓ (α1β1) is left coprime over Ω+,

(iv) the factorization s11 = (b1a1)b
−1
r is right coprime over Ω+,

(v) det b1 = θ1 detβ1 and det b2 = θ2 detβ2 for some θ1, θ2 ∈ T. In particular,

hb1 = hβ1
and hb2 = hβ2

.

Proof. (i) Let us denote by κ′ the pole multiplicity of s22 over Ω+,

(3.39) κ′ := Mπ(s22,Ω+)(≤ κ),

and denote by θ the Blaschke-Potapov factor of degree κ′ such that s22θ ∈ Sq×q. Then
s22θu ∈ Hq

2 for every u ∈ C
q. By Lemma 3.13 one gets the inclusion

(3.40)

[
s12
s22

]
θu ∈ Hm

2 , for all u ∈ C
q,

and hence

(3.41) Mπ(s12,Ω+) ≤ Mπ

([
s12
s22

]
,Ω+

)
= κ′ ≤ κ.

On the other hand Mπ(s12,Ω+) = κ, since W ∈ U ℓ
κ(jpq). This proves the equality

(3.42) Mπ(s22,Ω+) = κ = Mπ(b
−1
ℓ ,Ω+).

By Proposition 3.12 this means that the factorization s22 = b−1
ℓ (bℓs22) is left coprime,

so by (2.8) the factorization s22 = b−1
ℓ (a2b2) is left coprime, too.
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(ii) Let the mvf W̃ (λ) be given by (3.17) and let Ŝ be the Potapov-Ginzburg transform

of W̃ (λ). Then by Proposition 3.7 Ŝ takes the form (3.18) and, hence, W̃ ∈ U ℓ
κ(jpq) ∩

Ur
κ(jpq). Application of the statement proved in (i) shows that the factorization

s̃22 = β̃−1
r (α̃2β̃2)

is left coprime over Ω+. This implies (ii).
(iii) & (iv) Consider the mvf

U(λ) =

[
0 Iq
Ip 0

]
W#(λ)

[
0 Ip
Iq 0

]
=

[
w#

22(λ) w#
12(λ)

w#
21(λ) w#

11(λ)

]
.

The Potapov-Ginzburg transform S′ = PG(U) =

[
s′11 s′12
s′21 s′22

]
of this matrix takes the

form

S′ = PG(U) =

[
w#

22(λ) w#
12(λ)

0 Iq

] [
Ip 0

w#
21(λ) w#

11(λ)

]−1

=

[
w#

22(λ)− w#
12(λ)w

#
11(λ)

−1w#
21(λ) w#

12(λ)w
#
11(λ)

−1

−w#
11(λ)

−1w#
21(λ) w#

11(λ)
−1

]

=

[
s22(λ) −s21(λ)
−s12(λ) s11(λ)

]
.

(3.43)

(see [8, Lemma 4.24]). Therefore, U ∈ U ℓ
κ(jpq) ∩ Ur

κ(jpq). Applying the statements (i)
and (ii) to the mvf U one proves that the factorizations

(3.44) s11 = β−1
ℓ (α1β1) and s11 = (b1a1)b

−1
r

are left coprime and right coprime, respectively, over Ω+.
(v) By (3.6), (3.24),

(3.45) det s11 det br = det b1 det a1, det s11 detβℓ = detα1 detβ1.

Since βℓ and br are left and right inner factors in the Krĕın-Langer factorization (3.44),
we see that det br = θ detβℓ for some θ ∈ T (see [3]). Therefore, the formulas in (3.45)
represent two inner-outer factorizations of the same function. The uniqueness of inner-
outer factorization implies that

(3.46) det b1 = θ1 detβ1

for some θ1 ∈ T. Similarly as s22βr = β2α2 and bℓs22 = a2b2,

det s22 det bℓ = det b2 det a2, det s22 detβr = detβ2 detα2

and hence, using the equality det bℓ = ϑβr (ϑ ∈ T) one obtains for some θ2 ∈ T

(3.47) det b2 = θ2 detβ2.

Equalities (3.46) and (3.47) imply that hb1 = hβ1
, hb2 = hβ2

. �

Example 2. Let a 4× 4 mvf W (λ) be given by

W (λ) =

[
w11(λ) w12(λ)
w21(λ) w22(λ)

]
=




4−λ
3λ

0 0 2λ−2
3λ

0 1 0 0
0 0 1 0

2−2λ
3λ

0 0 4λ−1
3λ


 .
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Then the Potapov-Ginzburg transformation S = PG(W ) of W takes the form

S(λ) =




4−λ
3λ

0 0 2λ−2
3λ

0 1 0 0
0 0 1 0
0 0 0 1







1 0 0 0
0 1 0 0
0 0 1 0

2−2λ
3λ

0 0 4λ−1
3λ




−1

=




3
4λ−1

0 0 2λ−2
4λ−1

0 1 0 0
0 0 1 0

2λ−2
4λ−1

0 0 3λ
4λ−1


 .

The mvf s21(λ) admits the left Krĕın–Langer factorization

s21 =

[
0 0

2λ−2
4λ−1

0

]
= b−1

ℓ sℓ =

[
1 0
0 4λ−1

4−λ

]−1 [
0 0

2λ−2
4−λ

0

]

with a Blaschke–Potapov factor bℓ of degree 1 and hence s21 ∈ S2×2
1 .

Thus, considering the outer-inner factorization of bℓs22

bℓs22 =

[
1 0
0 4λ−1

4−λ

] [
1 0
0 3λ

4λ−1

]
=

[
1 0
0 3λ

4−λ

]
=

[
1 0
0 3

4−λ

] [
1 0
0 λ

]
= a2b2,

one obtains b2 =

[
1 0
0 λ

]
.

On the other hand the mvf s12 admits the right Krĕın–Langer factorization

s12 =

[
0 2λ−2

4λ−1

0 0

]
= σrβ

−1
r =

[
0 2λ−2

4−λ

0 0

] [
1 0
0 4λ−1

4−λ

]−1

,

and (3.24) takes the form

s22βr =

[
1 0
0 3λ

4λ−1

] [
1 0
0 4λ−1

4−λ

]
=

[
1 0
0 3λ

4−λ

]
=

[
1 0
0 λ

] [
1 0
0 3

4−λ

]
= β2α2.

Therefore β2 = b2 =

[
1 0
0 λ

]
.

Similarly, one obtains b1 = β1 = I2.

Modifying this example one can get a mvf W ∈ U ℓ
κ(jpq) ∩ Ur

κ(jpq) such that the left
and the right associated pairs do not coincide.

Example 3. Let U be a unitary 2× 2 matrix and let

W̃ (λ) =

[
w11(λ) w12(λ)U
w21(λ) w22(λ)U

]
,

where wij are as in Example 2. Then the corresponding Potapov-Ginzburg transforma-

tion S̃ = PG(W̃ ) of W̃ takes the form

S̃(λ) =

[
s̃11(λ) s̃12(λ)
s̃21(λ) s̃22(λ)

]
=

[
s11(λ) s12(λ)

U−1s21(λ) U−1s22(λ)

]

and hence

s̃21 = (bℓU)−1sℓ, b̃ℓ = bℓU, s̃12 = σrβ
−1
r , β̃r = βr.

Since

b̃ℓs̃22 = bℓs22 = a2b2 and s̃22β̃r = U−1s22βr = U−1β2α2,

we see that

b̃2 = b2 =

[
1 0
0 λ

]
and β̃2 = U−1β2 = U−1

[
1 0
0 λ

]
.
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4. Singular generalized J-inner mvf’s

4.1. Definition of singular generalized J-inner mvf.

Definition 4.1. A mvf U ∈ Uκ(J) is said to be singular, if U,U−1 ∈ Nm×m
+ . The class

of singular generalized J-inner mvf’s will be denoted by Uκ,S(J).

In the case κ = 0 this definition was introduced by D. Arov in [7]. The simplest
examples of singular J-inner mvf’s are the elementary BP factors of the third and fourth
kind (see [7]). We will present below an example of a singular generalized J-inner mvf
in the case κ = 1.

Example 4. Let W (λ) = Im − 1+λ
1−λ

δ
2
uu∗J , Ω+ = D, where

J =

[
1 0
0 −1

]
, u =

[
1
1

]
, δ = −1.

Then

W (λ) =
1

2(1− λ)

[
3− λ −1− λ
1 + λ 1− 3λ

]
,

W (λ)JW (µ)∗ =
1

(1− λ)(1− µ∗)

[
2− λ− µ∗ 1− λµ∗

1− λµ∗ λ+ µ∗ − 2λµ∗

]
,

and

(4.1) KW
µ (λ) =

1

(1− λ)(1− µ∗)

[
−1 −1
−1 −1

]
.

The kernel KW
µ (λ) has 1 negative square in D since

(4.2) KW
µ (λ) = −f(λ)f(µ)∗, with f(λ) =

1

1− λ

[
1
1

]
.

Moreover, J −W (µ)JW (µ)∗ = O for µ ∈ T \ {1}, and, therefore, W ∈ Ur
1 (J).

Next, since detW (λ) ≡ 1, W and W−1 are outer, and thus, W ∈ U1,S(J).

Other examples of singular generalized J-inner mvf’s for J =

[
0 −i
i 0

]
can be found

in [11].

Proposition 4.2. Let U = U1U2, where Ui ∈ Uκi,S(J), i = 1, 2, are singular generalized
J-inner mvf’s. Then U ∈ Uκ,S(J) for some κ ∈ Z+ such that κ ≤ κ1 + κ2.

Proof. Let U1, U2 be singular generalized J-inner mvf’s, then U1, U
−1
1 ∈ Nm×m

+ and

U2, U
−1
2 ∈ Nm×m

+ , hence U = U1U2 belongs to Nm×m
+ , moreover, U−1 = U−1

2 U−1
1

belongs to Nm×m
+ . Therefore U ∈ Nout, i.e., the mvf U is singular.

The inclusion U ∈ Uκ(J) with κ ≤ κ1 + κ2 is a general fact that is implied by the
identity

KU
ω (λ) = KU1

ω (λ) + U1(λ)K
U2

ω (λ)U1(ω)
∗.

�

4.2. Characterization of singular mvf’s in terms of associated pairs. In what
follows we suppose that J = jpq.

Lemma 4.3. Let W ∈ Ur
κ(jpq) and {b1, b2} ∈ apr(W ). Then W ∈ Ur

κ(jpq) ∩ Nm×m
+ if

and only if b2 ≡ const.
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Proof. 1) Without loss of generality we may assume that b2 = Iq. Then it follows from
(3.10) and (3.11) that

W =

[
b1 K
0 I

]
Φ,

where Φ ∈ Nm×m
out (Ω+) ⊂ Nm×m

+ . Therefore, W ∈ Nm×m
+ ∩ Ur

κ(jpq).

2) Assume now that W ∈ Nm×m
+ . Then also WΦ−1 ∈ Nm×m

+ and by the for-
mula (3.10)

WΦ−1 = Θ =

[
b1 Kb−1

2

0 b−1
2

]
∈ Nm×m

+ ∩ L∞.

Therefore, by the Smirnov maximum principle
[

b1 Kb−1
2

0 b−1
2

]
∈ Hm×m

∞ ,

and hence b−1
2 ∈ Hm×m

∞ . Thus b2 ≡ const. �

Lemma 4.4. Let W ∈ Ur
κ(jpq) and {b1, b2} ∈ apr(W ). Then W ∈ Ur

κ(jpq) ∩ Nm×m
− if

and only if b1 = const.

Proof. 1) Without loss of generality we may assume that b1 = Ip. Then it follows from
(3.10), (3.11) and (3.12) that

W =

[
I 0

K# b−1
2 I

]
Φ−,

where Φ− ∈ Nm×m
out (Ω−) ⊂ Nm×m

− . Hence W ∈ Nm×m
− ∩ Ur

κ(jpq).

2) Conversely, let W ∈ Nm×m
− . Then W (Φ−)−1 ∈ Nm×m

− and by the formula (3.10)

W (Φ−)−1 = Θ− =

[
b1 0

K#b1 b−1
2

]
∈ Hm×m

∞ (Ω−).

Thus, by the Smirnov maximum principle
[

b1 0
K#b1 b−1

2

]
∈ Nm×m

− ∩ L∞,

and hence b1 ∈ Hm×m
∞ (Ω−). This proves that b1 ≡ const. �

Theorem 4.5. Let W ∈ Ur
κ(jpq) and {b1, b2} ∈ apr(W ). Then W is singular if and only

if b1 ≡ const and b2 ≡ const.

Proof. If b2 ≡ const, then by Lemma 4.3

(4.3) W ∈ Ur
κ(jpq) ∩ Nm×m

+ .

If b1 ≡ const, then by Lemma 4.4 W ∈ Ur
κ(jpq) ∩ Nm×m

− . It follows from the identity

W (λ)jpqW
#(λ) = jpq (λ ∈ hW ∩ hW#)

that

(4.4) W (λ)−1 = jpqW
#(λ)jpq.

Therefore, since W ∈ Nm×m
− , then W# ∈ Nm×m

+ . Consequently,

(4.5) W−1 ∈ Nm×m
+ .

With regard to these two conditions (4.3), (4.5) we obtain that W ∈ Uκ,S(jpq) by Defi-
nition 4.1.

Conversely, let W ∈ Ur
κ,S(jpq). Then

W ∈ Ur
κ(jpq) ∩ Nm×m

out (Ω+),
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and henceW ∈ Ur
κ(jpq)∩Nm×m

+ . By Lemma 4.3 this condition is equivalent to b2 ≡ const.

Next, it follows from (4.4) and (4.5) that W# ∈ Nm×m
out . Hence W ∈ Nm×m

− and by
Lemma 4.4 this condition is equivalent to b1 ≡ const. �

Corollary 4.6. Let W ∈ U ℓ
κ(jpq) and {β1, β2} ∈ apℓ(W ). Then W is singular if and

only if β1 ≡ const and β2 ≡ const.

Proof. By Lemma 3.14 | deg β1| = | deg b1|, | deg β2| = | deg b2|. Therefore, the statements
concerning W are implied by Theorem 4.5. �
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