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SCALE-INVARIANT SELF-ADJOINT EXTENSIONS OF
SCALE-INVARIANT SYMMETRIC OPERATORS: CONTINUOUS
VERSUS DISCRETE

MIRON B. BEKKER, MARTIN J. BOHNER, MARK A. NUDEL'MAN, AND HRISTO VOULOV

ABSTRACT. We continue our study of a g-difference version of a second-order dif-
ferential operator which depends on a real parameter. This version was introduced
in our previous three articles on the subject. First we study general symmetric and
scale-invariant operators on a Hilbert space. We show that if the index of defect of
the operator under consideration is (1,1), then the operator either does not admit
any scale-invariant self-adjoint extension, or it admits exactly one scale-invariant self-
adjoint extension, or it admits exactly two scale-invariant self-adjoint extensions, or
all self-adjoint extensions are scale invariant. We then apply these results to the
differential operator and the corresponding difference operator under consideration.
For the continuous case, we show that the interval of the parameter, for which the
differential operator is not semi-bounded, contains an infinite sequence of values for
which all self-adjoint extensions are scale-invariant, while for the remaining values of
the parameter from that interval, there are no scale-invariant self-adjoint extensions.
For the corresponding difference operator, we show that if it is not semi-bounded,
then it does not admit any scale-invariant self-adjoint extension. We also show that
both differential and difference operators, at value(s) of the parameter that cor-
respond to the endpoint(s) of the interval(s) of semi-boundedness, have exactly one
scale-invariant self-adjoint extension.

1. INTRODUCTION

In this article, we continue our investigation of a scale-invariant difference operator
that was initiated in [6, 7, 8]. At first, we briefly recall some notation and previously
obtained results.

For a fixed number g > 1, we consider the Hilbert space T = [?(Z;q) of bi-infinite
sequences {z,,}52 _ _ with complex entries that satisfy the condition

o0
Z q"|zn|* < .
n=-—oo
The inner product (-,-) in the space T is defined by

o

(1) (z,y) = % > q"z(n)y(n), zyeT.

n=—oo
We study the difference operator which is defined by means of the difference expression

q xn+1)—1+qz(n)+qx(n—1) o

) (Lz)(n) = — (q—1)2 72" + q2n71m(n)
g z(n+1) — Bz(n) + qx(n—1)
(q—1)2 2" J
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where a € R and 8 = 1+¢+ (¢ —1)%2a. Denote by Lg the operator on T with the domain
D(Lg) consisting of elements « € T with finite support and put Lox = Lz, x € D(Lyg).
The operator L under consideration is the closure of Ly. We consider the operator L as
a discrete analogue of the differential operator H which is generated by the differential
expression
@Pf  «
3 THE) =——5+ 5 f(
(3) (T1)(0) = =55 + 550)
in the space L2(Ry). Namely, for a given number ¢ > 1, we consider points t,, = ¢",
n € Z, as points of discretization. The first and the second derivative of the function x
defined on (0, c0) is replaced by the expressions
z(n+1) —xz(n)
(Dy)(m) = HE
and
(Dy2)() = (D)0~ 1)
qn _ qnfl
z(n+1) — (1+q)z(n) +qz(n—1)
¢*n (g — 1) ’

respectively, where x(n) := z(¢™). The term

%x(t) is replaced by z(n).

q2n—1
Denote by Hg the differential operator in the space L?(R,) with the domain D(Hg)
consisting of all smooth functions with compact support within R, i.e.,

(4) Hof =Tf, fe€D(Ho).

The operator H is the closure of Hg. The following facts about the differential operator
H generated by (3) are well known (see, for example [15, 17]):

1. For a« > 3/4, the operator H is self-adjoint with simple absolutely continuous
spectrum.

2. For —1/4 < a < 3/4, the operator H is positive and symmetric with index of
defect (1,1).

3. For a@ < —1/4, the operator H is symmetric with index of defect (1,1) and not
semibounded.

In [6], the following results about the difference operator L generated by the difference
expression (2) in the space T were proved:

1. For )
1+1 1
Q2 0y = \/@‘—4’/\/57 ie, B>y =2 i
(Va+1)? Va
and for
141 241
agaii:_\/a——i_/\/a e 5§577::_Q+

va-nz Vi

the operator L is self-adjoint.

2. For
_(\/Z]}i—l)? =tap <a<ayy, Le, 2q=:0y <pB<Biqt
and for
0 <a<ali= -t ie, Ao <B<B =25

(Va-12" 7



SCALE-INVARIANT SELF-ADJOINT EXTENSIONS 43

the operator L is symmetric with index of defect (1, 1), positive for a« > ay, and
negative for a < ar_.
3. For

a_ <a<ag, le, p_<p<pBy,
the operator L is symmetric with index of defect (1, 1), but not semibounded.

Observe that for ¢ | 1, we have ;. — —1/4 and a4 — +3/4, while o~ — —oco and
a__ — —oo, that is, we obtain the classical results for the corresponding differential
operator.

A critical réle in our investigation is played by the fact that the operator L is (¢2,U)-
scale invariant (see Definition 1 in Section 2). Note that the operator H is also (¢2,U)-
scale invariant for any ¢ > 0. Using this fact, in [7], it was proved that for o > a4
and for a < a__, that is, in the case when the operator L is self-adjoint, its spectrum is
simple, discrete and located along a geometric sequence with the ratio ¢2. In [5], it was
proved that a semibounded symmetric (g2, U)-scale-invariant operator always admits
positive (¢2,U)-scale-invariant and positive self-adjoint extensions. In particular, the
extreme extensions, the so-called Friedrichs extensions and Krein extensions (‘hard’ and
‘soft’ in the terminology of Mark G. Krein) are (¢?,U)-scale invariant. In addition, it
was proved that if a symmetric positive (¢2,U)-scale-invariant operator has index of
defect (1,1), then the only self-adjoint extensions that are (¢2, U)-scale invariant are the
extreme extensions.

In [5], the above mentioned results were obtained in an indirect way, using extension
theory of nondensely defined Hermitian contractions. Reformulation of those results
in terms of scale-invariant semibounded densely defined symmetric operators was also
pointed out in [5, Theorem 5]. In [14], invariance of the Friedrichs and Krein extensions
for scale-invariant semibounded operators (u-scale-invariant in the terminology of [14])
was proved directly.

Now, using invariance of the extreme extensions, in [8], it was proved that for a; <
a < atpy and o- - < a < a_, the operator L has distinct extreme extensions, and the
resolvent operators of those extensions were described. It is known that for —1/4 < o <
3/4, extreme self-adjoint extensions of the differential operator H are also distinct.

In this article, we investigate the case a_ < a < a4 for the operator L and the case
a < —1/4 for the operator H. The article is organized as follows. In Section 2, we
consider the problem of existence of (g2, U)-scale-invariant self-adjoint extensions of a
given (g2, U)-scale-invariant symmetric operator with index of defect (1,1). With each
such symmetric operator, we associate a linear fractional transformation that maps the
unit circle onto itself and the interior of the unit circle onto itself. We show that the
operator possesses (¢2, U)-scale-invariant self-adjoint extensions if and only if the corres-
ponding linear fractional transformation has fixed points on the unit circle (Theorem 1).
In Section 3, we apply Theorem 1 to the case of the differential operator H defined by
the differential expression (3) for « = —1/4 (H is a positive operator) and a < —1/4 (H
is not semibounded operator) and ¢ fixed. We show that for o = —1/4, the operator
H has exactly one (¢2, U)-scale-invariant self-adjoint extension. According to the above
mentioned result from [5], this means that for « = —1/4, the operator H has exactly
one positive self-adjoint extension (Theorem 3). This statement is, perhaps, known, but
the authors could not find any reference. We also show that for o < —1/4, there exists
an infinite sequence of values of oy, ap | —oo, depending on ¢, such that for a = ay,
all self-adjoint extensions of the operator H are (g%, U)-scale invariant, and for o # oy,
the operator H does not possess (g2, U)-scale-invariant self-adjoint extensions. To the
best of the authors’ knowledge, this result is new (Theorem 2). In Section 4, we apply
Theorem 1 to the difference operator L defined by (2) in the space [?(Z; q) for the values
of @ = a4 and @ = a_ and for a_ < a < ay. We show that for &« = a4 and for
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a = a_, when the operator L is semibounded, it has exactly one (¢, U)-scale-invariant
(i.e. positive, respectively, negative) self-adjoint extension (Theorem 7). At the same
time, for «_ < a < ay, the operator L does not have any (q2, U)-scale-invariant self-
adjoint extension (Theorem 5)! This demonstrates an essential difference in the behavior
of the differential operator H and the difference operator L.

2. SELF-ADJOINT EXTENSIONS

Definition 1. Let H be a closed operator in a Hilbert space 7 with the domain D(H).
Let ¢ # 1 be a positive real number. We say that the operator H is (¢2, U)-scale invariant
if there exists a unitary operator U on the Hilbert space T such that

(5) UD(H) = D(H)
and
(6) UHSf = *HUf, feD(H).

The notion of (¢2,U)-scale invariance is a particular case of a more general notion of
p(t)-homogeneity of a symmetric operator with respect to a *-closed family of unitary
operators, introduced in [10, Definition 1.1].

From Definition 1, it follows that if the densely defined operator H is (¢2,U)-scale
invariant, then the operator H* is also (g2, U)-scale invariant. The proof of this statement
is given in [4].

Recall that a point z € C belongs to the field of regularity of an operator H if there
exists k > 0 (depending on z) such that

I(H = =D = klfll, feDFH).

The field of regularity of the operator H is an open set and, therefore, consists of a finite
or countable number of components. Put
M, =(H—2I)D(H) and N:= M.

Every nonzero vector from A, is an eigenvector of the operator H* that corresponds to
the eigenvalue z. If z belongs to the field of regularity of the closed operator H, then
M., is a closed linear manifold, that is, a subspace. For z and ¢ from the one and same
component of the field of regularity, dim Nz = dim N, and this dimension is called the
defect number of the operator H in the corresponding component of the field of regularity.

Lemma 1. Let H be a closed operator in a Hilbert space T with the domain D(H).
Suppose that there exist a unitary operator U on the space T and q € (0,00) \ {1} such
that

1. UD(H) C D(H);
2. UHf = ¢*HUf, f € D(H).
If for some z € C, both points z and z/q* belong to the one and same component of the

field of regularity and the defect number of the operator H in that component is finite,
then UD(H) = D(H), and the operator H is (¢*,U)-scale invariant.

Proof. Suppose, in contrary, that UD(H) is properly contained in D(#). Then
UM, =U(H — zI)D(H) = (¢*H — 2I)UD(H) C M, 2,
where the inclusion is proper. Therefore,
UN; D N3 /q%s
and the inclusion is also proper. But
dim UN; = dimN; = dim N3/ < o0,

a contradiction, which completes the proof. O
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Since for a symmetric operator, the upper half plane C; = {z : Imz > 0} and the
lower half plane C_ = {z : Imz < 0} belong to the field of regularity, we have the
following corollary.

Corollary 1. Let H be a closed symmetric operator and suppose that there exist a unitary
operator U and q € (0,00) \ {1} such that conditions 1 and 2 of Lemma 1 are fulfilled.
If at least one of the defect numbers of the operator H is finite, then H is (¢%,U)-scale
invariant.

Theorem 1. Let H be a symmetric (¢%,U)-scale-invariant operator in a Hilbert space
T. Suppose that the index of defect of the operator H is (1,1). Then exactly one of the
following four cases holds:

1. H does not admit any (¢*,U)-scale-invariant self-adjoint extension in T .
2. H admits exactly one (¢2,U)-scale-invariant self-adjoint extension in T .
3. H admits ezactly two (g2, U)-scale-invariant self-adjoint extensions in T .
4. All self-adjoint extensions of H in T are (¢*,U)-scale invariant.

Proof. Let H be a self-adjoint (dissipative) extension of the (¢2, U)-scale-invariant sym-
metric operator H with index of defect (1,1). Denote by (z) a defect vector of H that
corresponds to z ¢ R. Note that from our assumption about (q2, U)-scale invariance of
H, it follows that Uyp(z) = p(2/q¢?). According to the von Neumann formulas (see, for
example, [2]), the operator H is described by

(7) DH)={feT: f=fo+&(i)+pp(—i)), fo€ D(H)}
(@)l = lle(=i)[]) and
(8) Hf =Hfo +i&(p(i) — pp(—i)),

where |p| = 1 for a self-adjoint extension and |p| < 1 for a dissipative extension. Since
UDH) = {f €T : f=fo+&((i/a®) + pe(~i/a*)). fo € D(H)}
is a domain of another self-adjoint (dissipative) extension, say H’, of the operator H, it
admits the description
UDH) = {f €T+ f=fo+&eli)+pe(~i)), fo € DH)},
where |p'| = 1if [p| =1 and |p/| < 1if |p| < 1. In particular,

(9) 0(i/a°) + pp(=i/q®) = fo + &(e(i) + p'p(—0))
for some fo € D(H) and £ € C. In order to find a relation between parameters p and p’,
we use the fact that the domain D(H*) of the operator H* is a complete Hilbert space
with respect to the inner product

(z,9)" = (z,9) + (H'z, H'y), x,y€DH")
and admits the decomposition (see, e.g., [9, Chapter XII, Sec. 4])
(10) D(H*) = D(H) &*N; &* N_,

where @* stands for the orthogonal sum with respect to the inner product (-,-)* and
N; = Lh{p@)}, No; = Lh{p(—i)} are the defect subspaces (1.h. means linear hull).
Using (9) and (10), one obtains

(o(i/a®), ()" + p{o(—i/a*), (i) = & (p(i), p(i))"
and
(p(i/q®), (=) + p{p(—i/a?), o(—i))" = p'& (p(—i), p(—0))" .

From the last two equations, it follows that
(=), (=) (p(i/q?), o(—i))" + p{p(—i/q?), e(—i))"

(@), (@)™ {p(i/a?), e(i))" + p{p(—i/q?), (i)
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Taking into account that
(@), ()" =2l
(p(=1),(=0))" = 2]l(=)II*,

2
(oti/ ) o))" =T L oi/a®), o(~1)) |

¢ +1

{p(=i/q?),p(—i))" = Z {p(=i/q?), p(—1)),
(/) 9(0))” = T (li/ ). (1)
and
(p(=i/q?), (i) =1 q; ! {(=i/q®), (1)),

one obtains

,_ ol + 1) (p(=i/a%), (=) + (¢ = 1) (9(i/4*), (=)
P T @ — ) {p(—i/a), 00) (@ + 1) (9(i/a2), 9(0))

that is, p’ is a linear fractional transformation of p. Put

A (@®+1)(p (*i/qz) (*'))

B = (¢ —1)(e(i/q*), (1)),
C = (¢®—1){p(- l/q Z))
D = (@ +1)(e(i/q*), (i)
so that
,  Ap+B
(11) ’=CoiD =TL(p).

The transformation (11) maps the unit circle onto itself and the interior of the unit circle
onto itself. From this fact it follows that the matrix of coefficients (we denote it also by
') satisfies

r= (“é g) , DJT =kJ, J=dag{l,—1}, k#0.

The extension H is (¢, U)-scale invariant if and only if I'(p) = p, that is, p is a fixed point
of . If the fixed point is on the unit circle, then any (¢, U)-scale-invariant extension is
self-adjoint. If the fixed point is inside the unit circle, then the extension is dissipative.
Now the result follows immediately. If C = B = 0 and A = D, then I is the identity
transformation, and every self-adjoint or dissipative extension is (g2, U)-scale invariant.

O

Remark 1. (a) In [11], a symmetric operator commuting with a #-closed family of
unitary operators was considered. Necessary as well as sufficient conditions for the
existence of a self-adjoint extension of the symmetric operator that also commutes
with each operator of the family were obtained. The corresponding conditions were
expressed in terms of the characteristic function of the symmetric operator.

(b) Let U be a unitary operator. It is well known that there exists a symmetric opera-
tor A with index of defect (1,1) which commutes with U but does not admit any
self-adjoint extension which also commutes with U. The first example of such an
operator was constructed by R. S. Phillips (see [13, Chapter 2] for details). State-
ment 1. of our Theorem 1 states that the same is true if we replace commutativity
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by (g2, U)-invariance. Corresponding examples are, in fact, given by Theorem 2
and 5 below.

(c) Statements 2., 3., and 4. of our Theorem 1 are related to [10, Proposition 4.16] in
which, however, only semibounded operators were considered.

Remark 2. If H is a (¢2, U)-scale-invariant operator with index of defect (n,n), then its
self-adjoint (¢, U)-scale-invariant extensions are defined by unitary operators which are
fixed points of some linear fractional transformation with matrix coefficients. That linear
fractional transformation maps the interior of the unit ball in the space of n x n-matrices
onto itself, and the set of unitary n x m-matrices onto itself. From these properties, it
is possible to deduce (see [12, 16]) that the matrix I of the coefficients of that linear
fractional transformation satisfies

T*JT = kJ, J=diag{l,,—I.}, k#0.

3. DIFFERENTIAL OPERATOR

In this section, we apply the results obtained in Section 2 to the differential opera-
tor describe in Section 1. Recall that the differential operator H is generated by the
differential expression

@Pf «
TH(E) = —— + = f(t).
(TH0) =T + 550
Denote by H, the differential operator in the space L?(R, ) with the domain D(Hg) con-
sisting of all smooth functions with compact support within Ry (see (4)). The operator
‘H is the closure of Hg. It is easily seen that the operator H* is described as follows. Its
domain D(H*) consists of those and only those functions f € L?(R) for which
1. f is absolutely continuous;
2. f’ is absolutely continuous;
3. TfeL*(Ry)
and
Hf=Tf feDH).
For any ¢ > 0, denote by U, the operator on 7 = L*(R.) defined by

U )(t) = Vaf(at)-

It is easily seen that U, are unitary operators and Uy = U, /4. Moreover,
Uqu = q2HUqfv fe D(H0)7

and thus the operator H is (¢2, U,)-scale-invariant. Therefore, the same is valid for the
operator H = Hgy. We fix a value of ¢ € (0,00) \ {1} and denote the corresponding U,
by U. Since the operator H has real coefficients, its defect vectors ¢(z) = 1, (t) satisfy
Pz(t) =1, (t). From this fact, it follows that the transformation (11) takes the form

o = Ap+B
Bp+ A’
that is, it is a usual M&bius transformation.
At first, we consider the case a < —1/4. We put a = —1/4 —v?, v > 0. It is well

known (see, for example, [17]), that H is a symmetric but not semibounded operator
with index of defect (1,1).

(12)

Theorem 2. Define
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For v = vy, all self-adjoint extensions of the operator H in T are (¢%,U)-scale invari-
ant. For v # vy, the operator H does not have (¢?,U)-scale-invariant estensions in the
space T .

Proof. We follow the construction from Section 2. The defect vector ¢(z) = 1.(¢),
Im z # 0, that is, a solution of the differential equation

A, 2 4
O ) = 20

is given by
bty = { VI (V3. Iz >
e \/EH(j-)V(ﬁt), Imz <0,
where H f}) and H l(Lz) are the Hankel functions of order p of first and second kind, re-

spectively (we assume that —7 < arg z < 7). For the properties of Hankel functions, see
[1, 3]. In the formula (12), the coefficients A and B are calculated according to

0 —im/4 )
A = (@+ 1)/ tH®) (et> H (/) dt,
0 q
0 imw/4 )
B = (¢-— 1)/ tH) <6t> HY (/) dt.
0 q

Evaluating the integrals using known formulas for integrals of products of Bessel functions
(see, e.g., [3, Sec. 7.14.1, formula (9)]) and asymptotic behavior of such functions, one
obtains
A = 2(]2@7”/ (em//Qeiulnq _ efmj/Qefiulnq)
7 sinh v ’

B _4iq2e7”’sin(ulnq).

msinh v
In particular,
A — 4q2e™ sin (v In q) cosh (wv/2) ’

7 sinh v

4q%e™ | sin (v1nq)|
B = .

7 sinh v

From the last formulas, the result follows immediately. Indeed, for v = v, = %,

k € Z, we have B = 0 while A € R, so the transformation (12) becomes the identity
transformation. Thus, in such case, every self-adjoint or dissipative extension of the
operator H is (¢%,U)-scale invariant. If v # vy, then |B| < |Im.A|. This means that
transformation (12) is of elliptic type and has one fixed point inside the unit circle and
one outside. In other words, the operator H does not admit any (q?, U)-scale-invariant
self-adjoint extension. This completes the proof. O

Remark 3. It is possible to show that for v = vy, the spectrum of any self-adjoint
extension consists of an absolutely continuous part, filling the positive semiaxis, and
simple eigenvalues are located on the negative semiaxis. Those eigenvalues are located
along a geometric sequence with ratio ¢2.

Now we consider the case @ = —1/4 in (3). It is known that for such a value of « (in
fact, for —1/4 < a < 3/4), the operator H, the closure of Hg, is a symmetric positive
operator with index of defect (1,1).

Theorem 3. For a = —1/4, the operator H has exactly one (q?,U)-scale-invariant
self-adjoint extension.
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Proof. We follow the line of proof of Theorem 2. The defect vectors ¢(z) = 9.(t) are
given by
Vut) = tHél)\/Et, Imz >0,
- tH(gQ)\/EL Imz < 0.
The coefficients A and B are given by

0 —im/4 ) 202
A = @+ 1)/ tH (eqt> H (e/4)dt = ?(12(4 +2ilng),
0
00 i /4 ) 45 21
B = (¢~ 1)/ tHW (et> HO (e /Apar = L2
0 q ™
Since |Im A| = |B|, one concludes that the transformation (12) has one fixed point on
the unit circle. This completes the proof. O

In [5], it was proved that for a symmetric semibounded (g2, U)-scale-invariant operator
H with index of defect (1, 1), the only semibounded and (g2, U)-scale-invariant extensions
are the extreme extensions, the so-called the Friedrichs extension Hg and the Krein
extension Hg. Since a semibounded symmetric operator has only one semibounded self-
adjoint extension if and only if the extreme extensions coincide, one obtains the following
statement.

Corollary 2. For o = —1/4, the positive operator H, the closure of the operator H,
defined by (4), has only one positive self-adjoint extension, say Hy. Its domain D(H)
is described by

(13) D(Hy) = {f € LARy) : £ €D, lim W(LR)(H) =0},
where 4 '
(t) = VE[HY (e ) — D (om0
and W(f,g9) = f'g— fg' is the Wronskian.
Remark 4. The operator H; has a homogeneous Lebesgue spectrum filling the positive
semiaxis R .
4. DIFFERENCE OPERATOR

In this section, we study the difference operator that was introduced in our previous
articles [6, 7, 8] and described in Section 1. Recall that the difference operator acts in
the Hilbert space T = [?(Z; q) of bi-infinite sequences {x(n)}5___ with complex entries
that satisfy the condition

oo
> ¢ < oo,

n=—oo
where ¢ > 1 is fixed. For z,y € T, the inner product (z,y) is defined by (1). The
difference operator is defined by means of the difference expression

qg =zn+1)—10+qgzMn)+qzr(n—1) n o

(Lz)(n) = - (¢ —1)2 2n q2n—1x(”)
g 1) = fa(n) +ge(n— 1)
(¢—1)? g ’

where € R and 8 = 1+ ¢+ (¢ — 1)?a. The operator L generated by the difference
expression (2) in the space T is (¢2, U)-scale invariant, where the unitary operator U on
the space T is defined by

1
(14) (Uz)(n) = ﬁx(n —1).
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The domain of the operator L* consists of all those z = {x(n)}3>_ ., z € T, for which
Lx €T and L*z = Lx.

At first, we assume that o satisfies
1 o< 1
———=a_<a<ay=————=
T (va+ 2

(vVa—1)?

ie.,

(15) —2\/q < B <2/
For such values of «, and 3, the operator L, generated by the difference expression (2),
is symmetric, but not semibounded, with index of defect (1, 1) (see [6]).

The key role in our consideration of the operator L is played by the following theorem
proved in [8].

Theorem 4. Suppose that A1 and Ao are distinct roots of the quadratic equation A2 —
(B/OX+ (1/g)\ = 0. Then:
1. Fori € {1,2}, there exist solutions f;, f;(0) =1, of the functional equation

)2
(16) ) = 802+ andia/ ) = L o
that are entire functions of z € C.
2. If we put
(17) wi(n, z) = A\ " fi(2¢°"), n€LZ,

then w; = {w;(n, )} _ . are linearly independent solutions of the equation Lz =
zx. In particular, w;(n,-) are entire functions for each n € Z.
The solutions w;, i € {1,2}, clearly satisfy the condition
lim wi(n—1,2)
n——oo w;(n,z)

=X\, i€{l,2},

and we call them Poincaré-Perron solutions (PP-solutions). More precisely, since f; =
1+ zg;, where g; is an entire function, one has

(18) wi(n, z) = " (1 + 6i(n, 2)),

where 6;(n, z) = ¢~ 2" 2g;(2¢q2I"!). Therefore §;(n,z) — 0 as n — —oc. For the interval
of a, and (3, under consideration, the roots

A= (B+iV4qg—B2)/(2q) and Xy = (B —iv4q — 3?)/(2q)

are complex conjugates, from which it follows that

f2(2) = f1(2)
and, therefore
(19) wa(2) = wi(Z2).

In [6], it was pointed out that the domain of the adjoint operator L* consists of all
vectors x € T for which Lz € T and (L*x)(n) = (Lx)(n). For the operator L, we have
the limit point case as n — oo and the limit circle case as n — —oo (see [8]). Using this
observation, one can easily deduce that the operator L admits the description

D(L) = {m €T: LT, lim g "W(z,)=0¥ye D(L*)},
Lx = Lx.
Here Wy, (21, 22) = z1(n)x2(n + 1) — z1(n + 1)z2(n).
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The defect vector ¢(z) = {p(n, 2)}5 _ ., that is, the solution of the equation Lz = zz,
Im z # 0, that belongs to the space T, can be written in terms of PP-solutions w; and
wy as
(20) p(n, 2) = a(z)wi(n, 2) + b(2)ws(n, 2).

Since the coefficients of the difference expression (2) are real, one has p(zZ) = ¢(z).

By virtue of (19), this means that a(zZ) = b(z). Therefore, in the representation (20),
a(z) # 0 and b(z) # 0 for Im z # 0.

Theorem 5. Let 3 satisfy condition (15). Then the operator L does not admit (¢*,U)-
scale-invariant self-adjoint extensions.

In order to prove Theorem 5, we first provide the following inequality.
Lemma 2. Let the functions a and b be defined by (20). Then
[b(2)” — |a(2)|?

> 0.
Im z

Proof. We show
q

-1 2q Im z

from which the statement follows. In [8, p. 876], it was shown that

o> = =2

o0

S etk )P

koo
= ; : _(m—l) |: _
e e CA CUR R D)

q

—p(m, 2)p(m —1,2)] } .
Using (20), one obtains

lim g™ [io(m — 1, 2)ip(m. 2) — p(m, 2)p(m — 1,2)|

m—r—0Q

= |a(2)|? mlirzlm gmi+t [wl (m — 1, 2)wi(m, z) — wi(m, 2)w (m — 1, z)}

+ |b(2)|? mgrilooqlmlﬂ [wg(m — 1, 2)wa(m, z) — wa(m, z)ws(m — 1,2)}

+ a(z)b(z) mgrzlooq\ml-‘rl [

wy(m — 1, 2)wa(m, z) — wy(m, 2)wa(m — 1, z)}
+ a(2)b(z) mgrilooq‘mHl [wl (m, z)wa(m — 1, 2) — w1 (m — 1, 2)wa(m, z)} .

Now we evaluate the limits using (18) and the fact that Ay = A;:

Iml|+1 [

la(2)|? mgriloo q wy(m — 1, 2)wi (m, z) — wy(m, 2)wy(m — 1, z)}

_ |a(z)\2 ml_ifiloo q\mH-l')\l |2|m\

X ()\1 146 (m—1,2)] [1 + o (m, z)} ~ N (L4 6y (m, 2)] [1 4o (m = l,z)D
= la(2)Pg(M\ — A2).
In the same way, one obtains
b tim g [wa(m — 1, 2)ws(m, 2) — wy(m, 2)wa(m — 1,2)]
m——00

= [b(2)[*(A2 = A1)



52 M. BEKKER, M. BOHNER, M. NUDEL’MAN, AND H. VOULOV

Now

a(z)@mg@ooqlmlﬂ [wl(m — 1, z)wa(m, 2) — wi(m, z)wz(m — 1,2)}

= a(2)b(z) lim_gmi+igmieiimizin

x (A4 81 im = 1,2)] [14 80m, 2)| = Re [L+ 81(m,2)] |14+ 8a(m — 1,2)] ) =0

—1/2

because Ay = A\; and |\| = ¢ . Similarly,

a(2)b(z) mgrgw gmitt {wl(m, 2)wa(m —1,2) —wi(m — 1, 2)ws(m, z)} =0.

Combining the previous equalities and taking into account that

Im A\ = +/4q — %/2q,

one obtains (21). This completes the proof. O

Proof of Theorem 5. Since ¢(Z) = ¢(z), the transformation (11) is again Mobius trans-
formation, that is, of the form (12). The coefficients A and B are calculated according
to the formulas

A= +1) Y "ok —1,i)p(k, i)

(22) . k=—o0
- <ql_q 17 m a7 lp(m = 1,0)[2 = p(m — 2,7)p(m, 1)
and
B = (q2 - 1) Z qksﬁ(k - 17i)<10(k7i)
(23) k=—o0

3

— et [ 2w - (W 10)

Evaluating the limits in (22) and (23) in the same way as above, one obtains the expres-
sions

iq> 4 .
A1 _q1)2 [a@)*(1 = ™) + [b(i)|*(1 — e*¥)] ,
(24) qz' !
= 4 a(?)b(z)(cos _
b= (q—1)2 (1)b(i)(cos 2¢ — 1),

where ¢ = argA;, 0 < ¢ < m. As was pointed out above a(i) # 0 and b(i) # 0, i.e.,
B # 0. This means that the transformation (12) is not the identical transformation.
From (24), it follows that

2¢° sin® 1)

(¢—1)?
(we also used (21)). The last inequality means that the transformation (12) is of elliptic
type and does not have fixed points on the unit circle. This completes the proof. O

|B] = [Tm A] = (1) = la(@)])* < 0

. . _ 1 _ _ 1

Now we consider the cases a = a4 = ar? and o = a_ = CESVER In both
cases, 32 = 4q. Since the arguments for & = o, and for & = a_ are the same, we provide
them only for @ = ay.

For the value of 3 = 2,/q, instead of Theorem 4, we have the following result.
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Theorem 6. Let L be the difference expression (2). Then for B =2,/q and any z € C,
the equation
Lr=zx

has two linearly independent solutions, wy = {wy(n, )15 and wy = {wa(n, )} _ .,
such that

. wi(n, 2
@) N
(26) lim 22002

n——oo MATT

where A = ¢~ /2 is the double root of the equation N> — (8/q)\+1/q = 0.

Proof. The solution w; is constructed in the same way as in Theorem 4, that is, wy (n, z) =
A" f(2¢*), where f(z) = 1+ c12 + co2? + -+ is an entire function, which is a solution
of the functional equation

1 qg—1)?
M) =816 + (el =~ pe),

Since f(0) = 1 and ¢ > 1, the condition (25) is fulfilled. Note that from the proof of
Theorem 4 (see [8]), it follows that ¢; # 0. For the solution ws, we are looking at the
form ws(n, z) = u(n, z)wy(n, z). For the bi-infinite sequence u(z) = {u(n,2)}5 _, one
obtains the equation

(27) —f(2q® ) [u(n +1,2) = u(n, 2)] + f(2¢*" %) [u(n, 2) —u(n — 1,2)] = 0
(we used the fact that A\¢g® = 1). From (27), it follows that
u(naz) —’LL(’I’L— 17Z) BT f(2q2n+2)

lim

n=—cou(n+1,z) —u(n,z) no-co f(z¢g*"72)

=1

(as f(0) = 1, one has f(2¢*") # 0 for n < 0 and |n| large enough). Now we show that
the limit

(28) lim [u(n,z) —u(n—1,2)] = K(z) #0

n——oo

exists. Consider the infinite product

- u(n,z)—un—1,z
II (n,2) — u( )

(29) ~1 u(n+1,2) —u(n,z)’

From (27), it follows that

uln,z) —u(n=1,2) | | f(z¢"""%) = f(2¢*" %)
u(n+1,2) —u(n, z) B f(zq®72) '

The numerator of the last fraction behaves as |c;z|(1—¢~*)¢*"*2[1+0(1/n)] as n — —oo,
while the denominator approaches 1. This means that

u(n, z) —u(n —1,2)
u(n+1,2) — u(n, 2)

2n+2

as mn — —oQ.

|

Hence

P

=1

u(n,z) —uln —1,z)
u(n+1,2) —u(n, 2)

—1’<oo,
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which means that the infinite product (29) converges. Since

u(n, z) —u(n —1,2)

7 uln,z)—un—1,2) o
E1 u(n+1,2) —u(n,z) J\;Hoo ot ulnt1,2) —u(n, 2)
—  lim u(—=N,z) —u(—N —1,2)

N-oo u(=1,2) —u(0,2)

bl

one deduces that lim, o [u(—n,z) — u(—n — 1, 2)] exists and is not equal to zero. This
shows (28). Now

(30) lim [u(—n —1,2) —u(—n,z)] = K(2).

n— 00

By (28), K(z) # 0. From the existence of the limit in (30), it follows that

im 202 ),
n——o0o n
As wy(n, z) = wy(n, 2)u(n, z), one concludes that

. wa(n,z)
Since solutions of the equation Lx = zx are defined up to a multiplicative constant, the
proof is complete. O

As above, we represent the defect vector ¢(z) in the form
p(2) = a(z)wi(2) + b(z)wa(2)
and have the following lemma (compare with [8, Lemma 3.1]).

Lemma 3. For = 2,/q, one has

i) = /L mlatell)].

qg—1 Imz

In particular,

Im[a(2)b(2)]

1
(31) Im z

>0, Imz#0.
The proof of Lemma 3 is based on calculations similar to those performed in the proof
of Lemma 2, and we omit them. Note that (31) implies that |b(7)| > 0.

Theorem 7. For 8 = 2,/q, the operator L has only one (¢, U)-scale-invariant extension.
Hence the operator L has only one positive self-adjoint extension.

Proof. As in the proof of Theorem 5, the transformation (11) is a Mobius transformation
of the form (12). The coefficients A and B of the transformation are given by the formulas
(22) and (23), respectively. Evaluating those coeflicients in the same way as above, one
obtains

A= b 2 mlaPE ) B =~ L TR
(¢—1)? ’ (¢— 1) ’
In particular, B # 0. Since |B| = |Im AJ, one concludes that the transformation (12) in
the case under consideration is of parabolic type, that is, has only one fixed point. This
completes the proof. O

Remark 5. Theorem 7 proves [8, Conjecture 4.6].
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