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STABILITY OF N-EXTREMAL MEASURES

MATTHIAS LANGER AND HARALD WORACEK

Abstract. A positive Borel measure µ on R, which possesses all power moments,
is N-extremal if the space of all polynomials is dense in L2(µ). If, in addition,

µ generates an indeterminate Hamburger moment problem, then it is discrete. It is
known that the class of N-extremal measures that generate an indeterminate moment
problem is preserved when a finite number of mass points are moved (not “removed”!).

We show that this class is preserved even under change of infinitely many mass points
if the perturbations are asymptotically small. Thereby “asymptotically small” is
understood relative to the distribution of suppµ; for example, if suppµ = {nσ log n :
n ∈ N} with some σ > 2, then shifts of mass points behaving asymptotically like,

e.g. nσ−2[log logn]−2 are permitted.

A sequence ~s = (sn)
∞
n=0 of real numbers is called a Hamburger moment sequence if

there exists a positive Borel measure µ on R which has ~s as its sequence of power moments

(1) sn =

∫

R

xn dµ(x), n = 0, 1, 2, . . .

If ~s is a Hamburger moment sequence, we denote by V~s the set of all positive Borel
measures µ on R such that (1) holds.

Hamburger moment sequences can be characterized by a determinant criterion (see,
e.g. [1, Theorem 2.1.1]). If ~s is a Hamburger moment sequence and V~s contains only one
element, the sequence ~s is called determinate; otherwise, it is called indeterminate. Which
of these alternatives takes place can also be characterized by a determinant criterion (see,
e.g. [1, Addendum 9 in Chapter 2]). A measure µ that leads to an indeterminate moment
sequence ~s via (1) is also called indeterminate; similarly, one speaks of a determinate

measure.
For an indeterminate sequence ~s, the set V~s is infinite and can be described as follows.

The Nevanlinna parameterization. Let ~s be an indeterminate Hamburger moment se-
quence. Then there exist four entire functions A,B,C,D of minimal exponential type
(here and in the following we understand by this a function of order one and type zero
or a function of order less than one) such that the formula

(2)

∫

R

dµ(x)

x− z
=
A(z)τ(z) +B(z)

C(z)τ(z) +D(z)
, z ∈ C \ R,

establishes a bijective correspondence µ↔ τ between V~s and the set

N :=
{

τ : τ analytic in C \ R, τ(z) = τ(z), Im z · Im τ(z) ≥ 0
}

∪ {∞}.

For τ = ∞, the right-hand side of (2) is interpreted as A(z)/C(z). ♦

A measure µ, which possesses all moments, is called N-extremal if the space of all
polynomials is dense in L2(µ). By a theorem of M. Riesz, a measure, which possesses all
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moments, is N-extremal if and only if it is either determinate or it is indeterminate and
corresponds to a constant parameter τ ∈ R∪{∞} in (2) (see, e.g. [1, Theorem 2.3.2]). The
support of an indeterminate N-extremal measure is always discrete and infinite (see, e.g.
[1, § 3.4.1]). Due to an operator-theoretic interpretation, sometimes the term canonical

is used for an indeterminate N-extremal measure (see, e.g. [1, Definition 3.4.1]).
All what we have mentioned so far are classical notions, and results go back to H. Ham-

burger, M. Riesz and R. Nevanlinna in the 1920s. More information about the classical
theory of power moment problems can be found in the monographs [1] and [12].

In the paper [3], C. Berg and J. P. Christensen showed that the property of being
indeterminate and N-extremal is stable with respect to moving finitely many points of
its support. More precisely, they proved the following theorem.

[3, Theorem 8]. Let µ be an indeterminate N-extremal measure. Write

µ =
∑

x∈suppµ

µxδx,

where µx := µ({x}) and δx denotes the Dirac measure concentrated at x.

Let M be a finite subset of suppµ, let M̃ ⊆ R be such that

|M̃ | = |M |, M̃ ∩ (suppµ \M) = ∅,

and let µ̃x > 0, x ∈ M̃ . Then the measure

µ̃ :=
∑

x∈suppµ\M

µxδx +
∑

x∈M̃

µ̃xδx

is indeterminate and N-extremal.

In the present note we show that this result can be improved significantly. Based
on the characterization of indeterminate N-extremal measures given by A. Borichev and
M. Sodin in [5, Corollary 1.1] and the recent stability result [10, Theorem 3.3] we prove
the theorem below. It states that the class of indeterminate N-extremal measures is
preserved under asymptotically small shifts of support points. What “asymptotically
small” quantitatively means, depends on the distribution of the support of the measure.
Intuitively speaking, shifts must be smaller than the separation of neighbouring points
of suppµ and must not produce (or remove) lumps of support points close to each other.
As a conclusion: if the support of the measure is sparse and regularly distributed, large
shifts are allowed.

In order to formulate our theorem, we recall the following. A function λ : R+ → R
+

is called a growth function if it satisfies the following axioms:

(gf1) the limit ρλ := lim
r→∞

log λ(r)
log r

exists and is finite and non-negative;

(gf2) for all sufficiently large values of r, the function λ is differentiable and

lim
r→∞

(

r λ
′(r)
λ(r)

/

log λ(r)
log r

)

= 1;

moreover, lim
r→∞

λ(r) = ∞.

Sometimes also the term proximate order for the logarithm of a growth function
is used. For details see [8, I.12] or [9, I.6]. Classical examples of growth functions
are functions of the form λ(r) := rσ(log r)a(log log r)b (for large r) or inverses of such
functions.

Further, we write φn ≍ ψn if there exist positive constants c, C such that cφn ≤ ψn ≤
Cφn for all n ∈ N.
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Theorem. Let µ be an indeterminate N-extremal measure. Write suppµ = {xn : n ∈ N}
where (xn)

∞
n=1 is a sequence of pairwise distinct real numbers, set µn := µ({xn}) and

s(n) := min
{

|xk − xn| : k 6= n
}

, rρ(n) := #
{

k :
1

ρ
xn < xk < ρxn

}

for ρ > 1. Moreover, choose a growth function λ such that r−1λ(r) is non-increasing or

non-decreasing for large r and that

(3)
∑

n∈N

xn 6=0

1

λ(|xn|)
<∞.

Let (x̃n)
∞
n=1 be a sequence of pairwise distinct real points, and assume that

|x̃n − xn| = O

(

|xn|

λ(|xn|)

)

, n→ ∞,(4)

( x̃n − xn
s(n)

)∞

n=1
∈ ℓ1,(5)

∃ ρ > 1 :
x̃n − xn
s(n)

= O

(

1

rρ(n)

)

, n→ ∞.(6)

Moreover, let µ̃n > 0 be such that µn ≍ µ̃n. Then the measure

µ̃ :=
∑

n∈N

µ̃nδx̃n

is indeterminate and N-extremal.

Note that the support {xn : n ∈ N} of an indeterminate N-extremal measure is the
zero set of an entire function of minimal exponential type and therefore (|xn|)

∞
n=1 grows

at least linearly if the latter sequence is arranged in a non-increasing way. Hence one can
always choose the growth function

(7) λ(r) := r1+ε with ε > 0.

However, the choice of λ can be adapted to suppµ and lead to much stronger results
than what one obtains with (7).

Example. Consider a growth function ω with ρω ∈
(

0, 12
]

such that

(8) ω(r) = O(rρω ), r → ∞ with “o” instead of “O” if ρω =
1

2
.

As a concrete instance, one could think of a function ω whose inverse is

ω−1(s) = sσ(log s)α(log log s)β for large s,

where σ ≥ 2, α, β ≥ 0 and α > 0 if σ = 2.
Set xn := ω−1(n) log n, n ∈ N, let F be the canonical product with zeros at xn, and

set µn := |F ′(xn)|
−2. By [5, Theorem D] the measure

µ :=
∑

n∈N

µnδxn

is indeterminate and N-extremal.
We show that, for each sequence (x̃n)

∞
n=1 of pairwise distinct real numbers which

satisfies

(9) |x̃n − xn| = O

(

n
1

ρω
−2

[log log n]1+ε

)

, n→ ∞, for some ε > 0,
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the hypotheses of the Theorem are fulfilled, and hence that the measure µ̃ :=
∑

n∈N
µ̃nδx̃n

, where µ̃n ≍ µn, is indeterminate and N-extremal. Note that in the case

ρω <
1
2 the shifts are allowed to be unbounded.

Define a growth function λ such that

λ(r) = ω(r)[logω(r)]2 for large enough r.

Then ρλ = ρω < 1, and hence r−1λ(r) is decreasing for large r (see, e.g. [10, Re-
mark 2.2 (iii)]). Moreover, ω(xn) & n, and hence λ(xn) & n(log n)2 (we write φn & ψn if
there exists a positive constant C such that φn ≥ Cψn for all n ∈ N). This shows that
(3) holds.

Let ε′ ∈ (0, 1). By (8) and the definition of ρω we have

n
1

ρω . ω−1(n) . xn . n
1

ρω
+ε′ and hence ω(xn) . n1+ε′ρω .

It follows that (this rough estimate is enough) λ(xn) . n2. Now (9) gives

|x̃n − xn|

xn/λ(xn)
.

n
1

ρω
−2

[log log n]1+ε
·
n2

n
1

ρω

≤ 1,

which is (4).
Denote by sω(n) the separation of the sequence (ω−1(n))∞n=1, and let s(n) be the se-

paration of (xn)
∞
n=1 as in the Theorem. Then s(n) ≥ sω(n) log n. Using [10, Lemma 2.12],

we can deduce that

(10)
|x̃n − xn|

s(n)
.

n
1

ρω
−2

[log n]ε
·

n

ω−1(n)
·

1

log n
.

1

n(log n)[log log n]1+ε
,

which gives (5).
Denote by rω,ρ(n) the expression defined analogously to rρ(n) for the sequence

(ω−1(n))∞n=1 instead of (xn)
∞
n=1. Then rω,ρ(n) . rρ(n) and hence (see the proof of

[10, Lemma 2.12]) rω,ρ(n) . n. The above estimate (10) thus also shows that (6) holds.

For more (and explicit) examples of indeterminate N-extremal measures see, e.g. [5,
Appendix 2]. Examples with very sparse support (corresponding to order 0) can be found
in [11].

For the proof of the Theorem, we need to recall the notion of entire functions of the
Hamburger class.

The Hamburger class of entire functions. In what follows we use the letter H to denote
the set of all transcendental entire functions H of minimal exponential type which have
only real and simple zeros, say (yn)

∞
n=1, and satisfy

(11) lim
n→∞

|yn|
l

|H ′(yn)|
= 0, l = 0, 1, 2, . . .

This class H of functions is known as the Hamburger class1.
Let H ∈ H, denote by (yn)

∞
n=1 the zeros of H in any order, let (y+n ) be the (finite

or infinite) sequence of positive zeros arranged in an increasing order and let (y−n ) be

1We use the definition given in [5]. In many other sources, e.g. in [1], the definition of the Hamburger
class reads differently. However, these definitions are equivalent.



STABILITY OF N-EXTREMAL MEASURES 73

the negative zeros arranged in a decreasing order, both with indices n = 1, 2, . . . . By
Lindelöf’s theorem (see, e.g. [2, Theorem 2.10.3]) we have

lim
n→∞

y+n
n

= lim
n→∞

y−n
n

= 0 and lim
r→∞

∑

|yn|≤r

yn 6=0

1

yn
exists in R,

where we tacitly understand the limit of a finite sequence as being equal to 0.
If H(0) = 1, then the function H has the product representation

H(z) = lim
r→∞

∏

|yn|≤r

(

1−
z

yn

)

.

♦

The following lemma, which is used in the proof of the Theorem, is a perturbation
result for the Hamburger class.

Lemma. Let H ∈ H with H(0) = 1, and write the set of zeros of H as a sequence

(yn)
∞
n=1. Let (ỹn)

∞
n=1 be a sequence of pairwise distinct real non-zero points such that

the conditions (3)–(6) are satisfied for the pair (yn)
∞
n=1, (ỹn)

∞
n=1 of sequences and some

growth function as in the Theorem. Then the following statements hold.

(i) The sequences (yn)
∞
n=1 and (ỹn)

∞
n=1 satisfy

(12) lim
n→∞

ỹn
yn

= 1.

(ii) For the sequence (ỹn)
∞
n=1 one has

(13) lim
n→∞

ỹ+n
n

= lim
n→∞

ỹ−n
n

= 0, lim
r→∞

∑

|ỹn|≤r

1

ỹn
exists in R.

(iii) The function H̃(z) := lim
r→∞

∏

|ỹn|≤r

(

1− z
ỹn

)

satisfies

(14)
∣

∣H̃ ′(ỹn)
∣

∣ ≍
∣

∣H ′(yn)
∣

∣.

(iv) H̃ belongs to the Hamburger class.

Proof. Conditions (3) and (4) imply that

(15)
∑

n∈N

∣

∣

∣

∣

ỹn
yn

− 1

∣

∣

∣

∣

<∞.

In particular, we obtain (12). We conclude that the sequence (ỹn)
∞
n=1 satisfies the first

relation in (13). Since we have
∣

∣

1
yn

− 1
ỹn

∣

∣ = 1
|ỹn|

·
∣

∣

ỹn

yn
− 1

∣

∣, the convergence of (15) also

implies that
∑

n∈N

∣

∣

∣

∣

1

yn
−

1

ỹn

∣

∣

∣

∣

<∞.

Now it follows from the relation
∑

|ỹn|≤r

1

ỹn
=

∑

|ỹn|≤r

1

yn
+

∑

|ỹn|≤r

(

1

ỹn
−

1

yn

)

that the second limit relation in (13) holds; here we also use the argument in [10, Re-
mark 3.16] and (5) to control the effect of situations where |yn| ≤ r and |ỹn| > r or

vice versa. This readily implies that the function H̃ is well defined and, by Lindelöf’s
theorem, of minimal exponential type.
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The assumptions (3)–(6) are exactly the hypotheses of [10, Theorem 3.3] for the se-

quences (yn)
∞
n=1 and (ỹn)

∞
n=1. An application of this theorem gives |H̃ ′(ỹn)| ≍ |H ′(yn)|.

Together with (12) it follows that H̃ satisfies (11) and therefore H̃ ∈ H. �

The Hamburger class plays an important role in the characterization of indetermi-
nate N-extremal measures: Corollary 1.1 in [5] says that a measure µ =

∑∞
n=1 µnδxn

is
indeterminate and N-extremal if and only if

(a) F (z) := lim
r→∞

∏

|xn|≤r

(

1−
z

xn

)

converges and belongs to H;

(b)

∞
∑

n=1

|xn|
lµn <∞ for all l = 0, 1, . . . ;

(c)
∞
∑

n=1

1

µn|F ′(xn)|2(1 + x2n)
<∞;

(d) for every function G ∈ H such that every zero of G is also a zero of F ,

∞
∑

k=1

1

µn(k)|G′(xn(k))|2
= ∞,

where (xn(k))
∞
k=1 is the sequence of zeros of G.

Remark. This statement has a remarkable history. In [6, § 8, Theorem 4], H. Hamburger
stated the false result that µ is indeterminate and N-extremal if and only if the conditions
(a)–(c) hold and

(d’)

∞
∑

k=1

1

µn(k)|F ′(xn(k))|2
= ∞.

This mistake remained unnoticed for a long time; it was even reproduced in [1, Ch. 4,
Addenda and Problems, Corollary 2]. The first person who noticed that Hamburger’s
proof is incomplete was H. Pedersen in 1989. Counterexamples were constructed, e.g.
by P. Koosis in [7]. The correction of Hamburger’s original statement was posed as an
open problem in [4]. Finally, the correct statement was established in [5] in 1998 as a
consequence of a more general and stronger theorem.

It should be added that, by considering the canonical system corresponding to the
given measure, it is easy to see that Hamburger’s original statement is false, and one
can construct a variety of counterexamples. However, this approach does not (or is not
known to) lead to a proof of the correct result.

Proof of the Theorem. Without loss of generality we can assume that neither of the
sequences (xn)

∞
n=1, (x̃n)

∞
n=1 contains the point 0 because otherwise, we could shift zeros

from 0 to a non-zero point using [3, Theorem 8]; the conditions in the Theorem are
unaffected by this. We check the conditions (a)–(d) stated above from [5, Corollary 1.1]
for µ̃.

1. The Hamburger conditions (a)–(c). Since µ is an indeterminate N-extremal measure,
the set {xn : n ∈ N} is the zero set of some Hamburger class function F satisfying (a)–(c).
It follows from the Lemma applied to the sequences (xn)

∞
n=1 and (x̃n)

∞
n=1 that {x̃n : n ∈

N} is the zero set of a Hamburger class function, namely F̃ (z) := limr→∞

∏

|x̃n|≤r

(

1− z
x̃n

)

.

Moreover, (14), (12) and our hypothesis “µ̃n ≍ µn” imply that (b) and (c) are satisfied

with xn, µn and F replaced by x̃n, µ̃n and F̃ .

2. The Borichev–Sodin condition (d). Let G̃ ∈ H be such that each zero of G̃ is also a

zero of F̃ , and write the set of zeros of G̃ as a subsequence (x̃n(k))k∈N of (x̃n)
∞
n=1.
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By [10, Proposition 3.23], the conditions (3)–(6) also hold with the roles of (xn)
∞
n=1

and (x̃n)
∞
n=1 exchanged. The quantity s(n), measuring the separation of a sequence, does

not decrease when one passes to a subsequence. The quantity rρ(n), measuring the size
of lumps of points in a sequence, does not increase when one passes to a subsequence.
Hence, the sequences (x̃n(k))k∈N and (xn(k))k∈N satisfy the conditions corresponding to
(3)–(6) (with the same growth function λ).

The Lemma implies that

G(z) := lim
r→∞

∏

|xn(k)|≤r

(

1−
z

xn(k)

)

belongs to the Hamburger class. Each zero of G is also a zero of F and therefore condition
(d) is satisfied. We obtain from the Lemma that |G′(xn(k))| ≍ |G̃′(x̃n(k))| and hence (d)
is also satisfied for x̃n, µ̃n and G. This shows that all conditions (a)–(d) are satisfied for
µ̃ and therefore µ̃ is indeterminate and N-extremal. �

Remark. A result analogous to the above theorem can be formulated and proved, which
asserts stability of density of polynomials in weighted ℓp-spaces, and is based on [5,
Theorem A] rather than [5, Corollary 1.1]. The proof is just the same application of [10,
Theorem 3.3].
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