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SMOOTH FUNCTIONS ON 2-TORUS WHOSE KRONROD-REEB

GRAPH CONTAINS A CYCLE

SERGIY MAKSYMENKO AND BOHDAN FESHCHENKO

Dedicated to the memory of our teacher Sharko Volodymyr Vasylyovych

Abstract. Let f : M → R be a Morse function on a connected compact surface M ,

and S(f) and O(f) be respectively the stabilizer and the orbit of f with respect to
the right action of the group of diffeomorphisms D(M). In a series of papers the first
author described the homotopy types of connected components of S(f) and O(f) for

the cases when M is either a 2-disk or a cylinder or χ(M) < 0. Moreover, in two
recent papers the authors considered special classes of smooth functions on 2-torus
T 2 and shown that the computations of π1O(f) for those functions reduces to the
cases of 2-disk and cylinder.

In the present paper we consider another class of Morse functions f : T 2 → R

whose KR-graphs have exactly one cycle and prove that for every such function
there exists a subsurface Q ⊂ T 2, diffeomorphic with a cylinder, such that π1O(f)

is expressed via the fundamental group π1O(f |Q) of the restriction of f to Q.

This result holds for a larger class of smooth functions f : T 2 → R having the
following property: for every critical point z of f the germ of f at z is smoothly
equivalent to a homogeneous polynomial R2 → R without multiple factors.

1. Introduction

Let M be a smooth compact surface, X ⊂ M be a closed (possibly empty) subset,
and D(M,X) be the group of diffeomorphisms of M fixed on some neighborhood of X.
Then D(M,X) acts from the right on C∞(M) by following rule: if h ∈ D(M,X) and
f ∈ C∞(M) then the result of the action of h on f is the composition map

(1) f ◦ h : M
h

−−→ M
f

−−→ R.

Given f ∈ C∞(M) let

S(f,X) = {f ∈ D(M,X) | f ◦ h = f}, O(f,X) = {f ◦ h | h ∈ D(M,X)}

be respectively the stabilizer and the orbit of f under the action (1). Let also

S ′(f,X) = S(f) ∩ Did(M,X).

IfX is empty, then we omit it from notation and writeD(M) = D(M,∅), S(f) = S(f,∅),
O(f) = O(f,∅), and so on. We will also endow the spaces D(M,X), C∞(M), S(f,X),
and O(f,X) with the corresponding Whitney C∞-topologies.

Denote by Sid(f,X) andDid(M,X) the identity path components S(f,X) andD(M,X)
respectively, and Of (f,X) be the path component of f in O(f,X).

Let F(M) be a subset in C∞(M) consisting of functions f having the following two
properties:

(B) f takes a constant value at each connected components of ∂M , and all critical
points of f are contained in the interior of M ;
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(L) for every critical point z of f the germ of f at z is smoothly equivalent to a
certain homogeneous polynomial fz : R2 → R without multiple factors.

Let Morse(M) ⊂ C∞(M) be an open and everywhere dense subset consisting of
all Morse functions having the above property (B), that is functions having only non-
degenerate critical points. By the Morse lemma every non-degenerate singularity is
smoothly equivalent to a homogeneous polynomial ±x2 ± y2 having no multiple factors.
Therefore Morse(M) ⊂ F(M). This shows that the class F(M) is large.

Let f ∈ F(M) and c ∈ R. A connected component C of the level set f−1(c) is called
critical if C contains at least one critical point of f ; otherwise C is regular . Consider a
partition ∆ of M into connected component of level sets of f . It is well known that the
corresponding quotient M/∆ has a structure of a finite one-dimensional CW -complex
and is called Kronrod-Reeb graph or simply KR-graph of the function f . We will denote
it by Γ(f). The vertices of Γ(f) are critical components of level sets of f .

This graph was introduced by A. S. Kronrod in [4] for studying functions on surfaces
and also used by by G. Reeb in [20]. Applications of Γ(f) to study Morse functions on
surfaces are given e.g. in [1, 8, 5, 22, 23, 19].

In a series of papers, [10], [12], [13], [14], [16], [15], the first author calculated the
homotopy types of spaces S(f) and O(f) for all f ∈ F(M), see §2 for some details. In
particular, it was proved, [10, Theorem 1.5(3)], that if f is a generic Morse function, i.e.
it takes distinct values at distinct critical point, then Of (f) is homotopy equivalent to a
finite-dimensional torus.

This result was improved by E. Kudryavtseva [6, Theorem 2.5(B)], [7, Theorem 2.6(C)]:
using another approach she shown that if M is orientable, χ(M) < 0, and f is Morse,
then Of (f) is homotopy equivalent to a quotient T k/G of a finite-dimensional torus T k

by the free action of some finite group G.
Recently, [15], the first author established such a statement for all f ∈ F(M) provided

M is distinct from 2-torus, 2-sphere, projective plane, and Klein bottle. It was also
shown in [11, Theorem 1.8] that under the same restrictions on M , the computation of
the homotopy type of O(f), reduces to the case when M is either 2-disk, or a cylinder,
or a Möbius band.

In two recent papers, [17], [18], the authors studied smooth functions on 2-torus and
shown that under some conditions on f ∈ F(T 2) the computation of the homotopy type
of O(f) also reduces to the cases when M is a 2-disk or a cylinder.

In the present paper we study functions f ∈ F(T 2) whose Kronrod-Reeb graph has
one cycle. The main result, see Theorem 1.6, reduces the computation of Of (f) to the
restriction of f onto some subsurface Q ⊂ T 2 diffeomorphic to a cylinder. We also give
exact formula expressing π1Of (f) via π1O(f |Q). This extends the result of [18].

Remark 1.1. In [18] the group D(M,X) means the group of diffeomorphisms fixed on
X, while in the present paper we denote by D(M,X) the group of diffeomorphisms fixed
on some neighborhood of X. In fact, if X is a finite collection of regular components of
some level-sets of f ∈ F(M), such a restriction does not impact on the homotopy types
of D(M,X), S(f,X) and O(f), see [13].

1.2. Wreath products G ≀
Zn

Z. Let G be a group with unit e, and n ≥ 1. Denote by

Map(Zn, G) the group of all maps , not necessarily homomorphisms, from cyclic group Zn

into G, with respect to point wise multiplication. That is if α, β : Zn → G two elements
from Map(Zn, G), then their product is given by the formula (αβ)(i) = α(i) · β(i) for
i ∈ Zn, where the multiplication · is taken in the group G.

Notice that the group Z acts from the right on Map(Zn, G) by the following rule: if
α ∈ Map(Zn, G) and a ∈ Z, then the result αk : Zn → G of the action of k on α is given
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by the formula:

(2) αk(i) = α(i+ k mod n), i ∈ Zn.

The semidirect product Map(Zn, G) ⋊ Z corresponding to this action is called a wreath
product of G and Z over Zn and denoted by

G ≀
Zn

Z := Map(Zn, G)⋊ Z.

More precisely, G ≀
Zn

Z is the set Map(Zn, G)× Z with the following operation

(3) (α, k) (β, l) = (αβk, k + l)

for all (α, k), (β, l) ∈ Map(Zn, G)× Z.
In particular, we have the following short exact sequence:

(4) 1 −→ Map(Zn, G)
ζ

−−→ G ≀
Zn

Z
p

−−→ Z −→ 1,

where ζ(α) = (α, 0) is a canonical inclusion and p(α, k) = k is a canonical projection.
Notice also that for n = 1, there is a natural isomorphism G ≀

Zn

Z ∼= G× Z.

1.3. Parallel curves on T 2. A finite non-empty family of C0, . . . , Cn−1 ⊂ T 2 of sim-
ple closed curves will be called parallel if these curves are mutually disjoint and non-
separating.

If n = 1, then T 2 \ C is an open cylinder, we will regard T 2 as a cylinder Q0 with
identified boundary components, see Figure 1a).

Suppose n ≥ 2. Then all curves in a parallel family must be isotopic each other. In
this case we will always assume that they are cyclically enumerated along T 2, that is Ci

and Ci+1 bound a cylinder Qi containing no other curves Cj , where all indices are taken
modulo n, see Figure 1b). We will also use the following notation:

C =
n−1
∪
i=0

Ci, Ci := Cimodn, Qi := Qimodn

for all integers i ∈ Z.

Figure 1

1.4. Cyclic index of f . Let f ∈ F(T 2) be such that its KR-graph Γ(f) is not a tree.
It is easy to show, [18], that then Γ(f) has a unique simple cycle, which we will denote
by Λ, see Figure 2.

Let also C ⊂ T 2 be a regular component of some level set f−1(c), c ∈ R, and z be the
corresponding point on Γ(f). It is easy to check, see [18], that z ∈ Λ if and only if C does
not separate T 2. Notice that f−1(c) consists of finitely many connected components and
is invariant with respect to each h ∈ S(f). Let

C = {h(C) | h ∈ S ′(f)}
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Figure 2

be the set of images of C under the action of S ′(f) = S(f) ∩ Did(T
2). Then C consists

of finitely many connected components of f−1(c):

C = {C0 = C, C1, . . . , Cn−1 }

for some n ≥ 1. Emphasize that we only consider the images of C for all diffeomorphisms
h that preserve f and are isotopic to C. However, there may exist h ∈ S(f) that is not
isotopic to idT 2 and such that h(C) ⊂ f−1(c) \ C.

It follows that the curves in C are mutually disjoint, and neither of them separates
T 2, since C does not do this. Thus they are parallel in the sense of §1.3, and therefore
we will assume that they are cyclically ordered along T 2, and that Ci and Ci+1 bound a
cylinder Qi whose interior does not intersect C.

Definition 1.5. The number n of curves in C will be called the cyclic index of f .

It is easy to see that the cyclic index of f does not depend on a particular choice of a
regular component C of some level-set of f that does not separate T 2.

Let f |Q0
be the restriction of f onto Q0 and O(f |Q0

, ∂Q0) be the orbit of f |Q0
with

respect to the action of the group D(Q0, ∂Q0) of diffeomorphisms of Q0 fixed on some
neighborhood of ∂Q0. Now we can formulate the main result of the present paper.

Theorem 1.6. cf. [18]. Let f ∈ F(T 2) be such that Γ(f) has a cycle, C be a regular
connected component of certain level set f−1(c) of f that does not separate T 2, C =
{h(C) | h ∈ S ′(f)}, and n be the cyclic index of f , i.e. the number of curves in C.

If n = 1, then there is an isomorphism

ξ : π1O(f) ∼= π1O(f, C) × Z.

Suppose n ≥ 2 and let Q0 be the cylinder bounded by C0 and C1. Then we have an
isomorphism

ξ : π1O(f) ∼= π1O(f |Q0
, ∂Q0) ≀

Zn

Z.

For n = 1 this theorem is proved in [18], therefore we will assume that n ≥ 2.

1.7. Structure of the paper. In §2 we recall some results about the homotopy types of
stabilizers and orbits of f ∈ F(M), and in §3 present some formulas for the multiplication
in the relative homotopy group π1(D,S), where D is a topological group and S is its
subgroup.

In §4 we consider families of parallel curves on 2-torus and relations between Dehn
twists and slides along these curves. Given f ∈ F(T 2) such that its KR-graph has one
cycle, we introduce in §5 some special coordinates and flows adopted with f . In §6 we
define two epimorphisms ϕ : π1(D(T 2),S ′(f)) → Z and κ : π0S

′(f) → Zn and study
their properties, see Theorem 6.1.

As an interpretation of (c) Theorem 6.1 we show in §7 that there exists a f -invariant
Zn-action on T 2, see Theorem 7.1. This interpretation is not used in the paper, but it
gives a new view point of such functions f . Finally, in §8 we complete Theorem 1.6.
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2. Homotopy types of S(f) and O(f)

Let f ∈ F(M) and X be a finite (possibly empty) union of regular components of
some level sets of f . We will briefly recall description of the homotopy types of S(f,X)
and O(f,X).

Theorem 2.1. [21, 10, 13]. The following map

p : D(M,X) −→ O(f,X), p(h) = f ◦ h.

is a Serre fibration with fiber S(f,X), that is it has a homotopy lifting property for
CW-complexes.

Hence p(Did(M,X)) = Of (f,X) and the restriction map

(5) p|Did(M,X) : Did(M,X) −→ Of (f,X)

is also a Serre fibration with fiber S ′(f,X) = S(f) ∩ Did(M,X).
Moreover, for each k ≥ 0 there is an isomorphism

λk : πk

(
D(M,X),S(f,X)

)
→ πkO(f,X)

defined by λk[ω] = [f ◦ ω] for a continuous map ω : (Ik, ∂Ik, 0) →
(
D(M),S(f), idM

)
,

and making commutative the following diagram:

· · · // πkD(M,X)
q

//

p
))❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘❘

πk

(
D(M,X),S(f,X)

)

λk
∼=

��

∂
// πk−1S(f,X) // · · ·

πkO(f,X)

∂◦λ−1

k

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦

see for example [3, §4.1, Theorem 4.1].

Theorem 2.2. [10, 12, 13]. Of (f,X) = Of (f,X ∪ ∂M), and so

πkO(f,X) ∼= πkO(f,X ∪ ∂M), k ≥ 1.

Suppose either f has a critical point which is not a nondegenerate local extremum or
M is a non-orientable surface. Then Sid(f) is contractible, πnO(f) = πnM for n ≥ 3,
π2O(f) = 0, and for π1O(f) we have the following short exact sequence of fibration p:

(6) 1 −→ π1D(M)
p

−−→ π1O(f)
∂◦λ−1

1−−−−−→ π0S
′(f) −→ 1.

Moreover, p
(
π1D(M)

)
is contained in the center of π1O(f).

If either χ(M) < 0 or X 6= ∅. Then Did(M,X) and Sid(f,X) are contractible, whence
from the exact sequence of homotopy groups of the fibration (5) we get πkO(f,X) = 0
for k ≥ 2, and that the boundary map

∂ ◦ λ−1
1 : π1O(f,X) −→ π0S

′(f,X)

is an isomorphism.

Suppose M is differs from 2-sphere S2, 2-torus, projective plane, and Klein bottle,
and let X = ∂M . Then M and X satisfy assumptions of Theorem 2.2, and we get the
following isomorphisms

π1O(f) ∼= π1O(f, ∂M) ∼= π0S
′(f, ∂M).

A possible structure of π0S
′(f, ∂M) for this case is completely described in [16].

However in the remained four cases of M we have that π1D(M) 6= 0, and all terms in
the short exact sequence (6) can be non-trivial.

In particular, suppose M = T 2. Then the sequence (6) has the following form:

(7) 1 −→ Z
2 p
−−→ π1Of (f)

∂
−−→ π0S

′(f) −→ 1.



SMOOTH FUNCTIONS ON 2-TORUS 27

It is shown in [17] that if a KR-graph Γ(f) of f ∈ F(T 2) is a tree, then under some
additional “triviality” assumption on the action S ′(f) on Γ(f), the sequence (7) splits.

Moreover, in [18] the authors considered the case when Γ(f) of f ∈ F(T 2) has one
cycle, and f has cyclic index n = 1.

3. Multiplication in π1(D,S, e)

Let D be a topological space, S be its subset, and e ∈ S be a point. Then, in general,
the relative homotopy set π1(D,S, e), as well as π0(D, e) and π0(S, e) have no natural

group structure . However, if D is a topological group, S is a subgroup of D, and e is
the unit of D, then such group structures exist. We leave the following lemma for the
reader.

Lemma 3.1. cf. [2, Ch. 1, §4]. Let D be a topological group with multiplication ◦, S
be a subgroup of D, and e be the unit of D. Then π0(D, e), π1(D,S, e), π0(S, e) have a
group structures such that in the corresponding sequence of homotopy groups of the triple
(D,S, e)

· · · → π1(D, e)
q

−−→ π1(D,S, e)
∂

−−→ π0(S, e)
i

−−→ π0D → · · ·

the maps q, ∂, and i are homomorphisms. Moreover q(π1(D, e)) is contained in the
center of π1(D,S, e).

In what follows we will assume that D, S, and e are the same as in Lemma 3.1. We
will recall a formula for the multiplication in π1(D,S, e).

Let g, h : (I, ∂I, 0) → (D,S, e) be two paths representing some elements of π1(D,S, e).
For simplicity we will denote g(t) by gt and similarly for h. The class of [g] ∈ π1(D,S, e)
will also be denoted by [gt]. Define another path r : (I, ∂I, 0) → (D,S, e) by

r(t) =

{
g2t, t ∈ [0, 1

2 ],

g1 ◦ h2t−1, t ∈ [ 12 , 1].

Then [rt] = [gt] [ht] in π1(D,S, e).
As an immediate consequence of this formula we get the following lemma:

Lemma 3.2. Let g, h : I → D be two paths such that g(0) = e, g(1) = h(0) ∈ S and
h(1) ∈ S as well, and s : (I, ∂I, 0) → (D,S, e) be a path defined by

s(t) =

{
g2t, t ∈ [0, 1

2 ],

h2t−1, t ∈ [ 12 , 1],

so it is obtained by joining g and h, see Figure 3(a). Then

(8) [st] = [gt] [g
−1
1 ◦ ht]

in π1(D,S, e), where [g−1
1 ◦ ht] is a class of a path (I, ∂I, 0) → (D,S, e) defined by

t 7→ g−1
1 ◦ ht.

Lemma 3.3. Let gt, ht : (I, ∂I, 0) → (D,S, e) be two paths. Then in π1(D,S, e) we have
the following identities:

[gt ◦ ht] = [gs] [ht] = [ht] [h
−1
1 ◦ gs ◦ h1],(9)

[ht] [gs] [h
−1
t ] = [h−1

1 ◦ gs ◦ h
−1],(10)

where [gt ◦ ht] means the class of the path (I, ∂I, 0) → (D,S, e) given by t 7→ gt ◦ ht, and
similarly for all other classes.
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(a) (b)

Figure 3

Proof. Let γ : I × I → D be a continuous map defined by

γ(s, t) = gs ◦ ht, (s, t) ∈ I × I,

see Figure 3(b).
Then the path [gt◦ht] corresponds to the restriction of γ to the diagonal AC = {s = t |

(s, t) ∈ I×I}. Evidently, this path is homotopic relatively to its ends to the composition
of paths along sides AB and BC as well as to the composition of paths along sides AD
and DC. Hence by (8) we get the following relations in π1(D,S, e):

[gt ◦ ht] = [gs ◦ h0] [(g1 ◦ h0)
−1 ◦ g1 ◦ ht] = [gs] [ht],

[gt ◦ ht] = [g0 ◦ ht] [(g0 ◦ h1)
−1 ◦ gs ◦ h1] = [ht] [h

−1
1 ◦ gs ◦ h1],

[ht] [gs] [h
−1
t ] = [ht] [h

−1
t ] [h1 ◦ gs ◦ h

−1
1 ] = [ht ◦ h

−1
t ] [gs ◦ h

−1
1 ] = [gs ◦ h

−1
1 ],

where we take to account that g0 = h0 = e. �

4. Parallel curves on T 2

4.1. Twists and slides along curves. Let α, β : [−1, 1] → [0, 1] be two C∞-functions
such that α = 0 on [−1,− 1

2 ] and α = 1 on [ 12 , 1], while β = 0 on [−1,− 2
3 ] ∪ [ 23 , 1] and

β = 1 on [− 1
3 ,

1
3 ], see Figure 4.

Let also Q = S1 × [−1, 1] be a cylinder and C = S1 × 0. Define the following two
diffeomorphisms τ, θ : Q → Q by

τ(z, t) = (zeα(t), t), θ(z, t) = (zeβ(t), t)

for (z, t) ∈ Q, see Figure 4. Then τ is called a Dehn twist and θ is called a slide along
the curve C. Notice that τ is fixed on some neighborhood of ∂Q, while θ is fixed on some
neighborhood of C ∪ ∂Q.

(a) Dehn twist (b) Slide

Figure 4

Lemma 4.2. Let D(Q, ∂Q) be the group of diffeomorphisms fixed on some neighborhood
of ∂Q = S1 × {0, 1}, and τ ∈ D(Q, ∂Q) be a Dehn twist along the curve C. Then

π0D(Q, ∂Q) = 〈[τ ]〉 ∼= Z,

i.e. it is an infinite cyclic group generated by the isotopy class of the Dehn twist τ .
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Now let C ⊂ M be a simple closed curve. Suppose C preserves orientation, that is it
has a closed neighborhood W diffeomorphic to a cylinder Q. Fix any φ : Q → W such
that φ(S1 × 0) = C.

Since τ is fixed on some neighborhood of ∂Q, we see that φ◦τ ◦φ−1 : W → W extends
by the identity to some diffeomorphism τ̄ and θ̄ of M respectively. Any diffeomorphism
h : M → M isotopic to τ̄ or τ̄−1 will be called a Dehn twist along C.

Also notice that θ is fixed on some neighborhood of (S1 × 0) ∪ ∂Q, whence the dif-
feomorphism φ ◦ θ ◦ φ−1 : W → W extends by the identity to some diffeomorphisms θ̄
of M . Any diffeomorphism h : M → M fixed on some neighborhood of C, supported
in some cylindrical neighborhood W of C, and isotopic to θ̄ or θ̄−1 relatively to some
neighborhood of C ∪M \Q will be called a slide along C.

4.3. Diffeomorphisms of T 2 fixed on parallel family of curves. Let C0, . . . , Cn−1 ⊂
T 2 be a parallel family of curves cyclically ordered along T 2, see §1.3 and Figure 1. For
each i = 0, . . . , n− 1 let τi ∈ D(T 2) be a Dehn twist such that supp (τi) ⊂ IntQi and its
restriction τi|Qi

generates π0D(Qi, ∂Qi) ∼= Z, see Figure 5(a). Replacing, if necessary, τi
with τ−1

i we can assume that all τi are isotopic each other as diffeomorphisms of T 2.

(a) Dehn twist (b) Slide

Figure 5

Let

(11) G = Did(T
2) ∩ D(T 2, C)

be the group of diffeomorphisms fixed on some neighborhood of each Ci and isotopic to
the identity via an isotopy that is not necessarily fixed near C. Evidently, Did(T

2, C) is
the path component of G containing idT 2 , whence

π0G ∼= G/Did(T
2, C).

Theorem 4.4. Let θi ∈ G, i = 0, . . . , n− 1, be a slide along Ci such that

(i) supp (θi) ⊂ IntQi−1 ∪ IntQi, and, in particular, θi is fixed near Qi;
(ii) supp (θi) ∩ supp (θj) = ∅ for i 6= j;

(iii) θ|Qi
is isotopic to τi−1◦τ

−1
i relatively to some neighborhood of Ci∪M\(Qi−1∪Qi),

see Figure 5(b).

Denote θ = θ0 ◦ θ1 ◦ · · · ◦ θn−1. Then θ ∈ Did(T
2, C), i.e. it is isotopic to idT 2 relatively

to some neighborhood of C. Moreover,

(12) π0G ∼= 〈[θ1], . . . , [θn−1]〉 ∼= Z
n−1,

i.e. this group is freely generated by isotopy classes of slides θ1, . . . , θn−1 in G.
In particular, if n = 1, π0G = {1}, and so G = Did(T

2) ∩ D(T 2, C) = Did(T
2, C).

Proof. For n = 1 this statement is established in [18], therefore we will assume that
n ≥ 2.

It follows from (iii) that θ is isotopic relatively to some neighborhood of C to

τ0 ◦ τ
−1
1 ◦ τ1 ◦ τ

−1
2 ◦ · · · ◦ τn−1 ◦ τ

−1
0 = idT 2 ,

that is θ ∈ Did(T
2, C).
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It remains to prove (12). Evidently, if h ∈ G, then h(Qi) = Qi and h is fixed on some
neighborhood of ∂Qi = Ci ∪ Ci+1. In other words, the restriction h|Qi

∈ D(Qi, ∂Qi).
Hence, by Lemma 4.2, h|Qi

is isotopic relatively to some neighborhood ∂Qi to τai

i |Qi
for

a unique ai ∈ Z. Therefore h itself is isotopic relatively to some neighborhood of C to
the product

(13) τa0

0 ◦ τa1

1 ◦ · · · ◦ τ
an−1

n−1

for unique integers a0, . . . , an−1 ∈ Z
n.

It easily follows that the correspondence h 7−→ (a0, . . . , an−1) is a well-defined homo-
morphism

q : G −→ Z
n.

Consider the following subgroup of Zn:

∆ = {(a0, . . . , an−1) ∈ Z
n | a0 + · · ·+ an−1 = 0}.

Lemma 4.5. ker(q) = Did(T
2, C) and q(G) = ∆, so we have the following exact

sequence:

1 −→ Did(T
2, C)

⊂
−−→ G

q
−−→ ∆ −→ 1.

Hence π0G ∼= G/Did(T
2, C) ∼= ∆ ∼= Z

n−1.

Proof. The identity ker(q) = Did(T
2, C) easily follows from Lemma 4.2.

Let us prove that q(G) = ∆. Suppose q(h) = (a0, . . . , an−1), so h is isotopic relatively
to some neighborhood of C to the product τa0

0 ◦ τa1

1 ◦ · · · ◦ τ
an−1

n−1 . But by construction all

τi are mutually isotopic as diffeomorphisms of T 2. Hence h is isotopic to τ
a0+···+an−1

0 .
On the other hand, by assumption h is isotopic to idT 2 , while τ0 is not isotopic to the
identity and its isotopy class in π0D(T 2) has infinite order. Therefore a0+ · · ·+an−1 = 0,
i.e. q(h) ∈ ∆. �

Now we can complete the proof of Theorem 4.4. By (ii) θi is isotopic relatively C to
the product τi−1 ◦ τ

−1
i , see Figure 5(b). This means that

q(θi) = (0, . . . , 0, 1︸ ︷︷ ︸
i

,−1, 0, . . . , 0), i = 1, . . . , n− 1.

It remains to note that the elements q(θi), i = 1, . . . , n − 1, constitute a basis for ∆,
whence their isotopy classes in G constitute a basis for π0G. �

Corollary 4.6. For each h ∈ G there exist unique b1, . . . , bn−1 ∈ Z and g ∈ Did(T
2, C)

such that h = θb11 ◦ · · · ◦ θ
bn−1

n−1 ◦ g.

4.7. Smooth shifts along trajectories of a flow. Let F : M × R → M be a smooth
flow on a manifold M . Then for every smooth function α : M → R one can define the
following map Fα : T 2 → R by the formula:

(14) Fα(z) = F(z, α(z)), z ∈ M.

Lemma 4.8. [10, Claim 4.14.1]. Suppose Fα is a diffeomorphism. Then for each
t ∈ [0, 1] the map

Ftα : M → M, Ftα(z) = F(z, tα(z))

is a diffeomorphism as well.
In particular, {Ftα}t∈I is an isotopy between idM = F0 and Fα.
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5. Some constructions associated with f

In the sequel we will regard the circle S1 and the torus T 2 as the corresponding
factor-groups R/Z and R

2/Z2. For s ∈ S1 and ε ∈ (0, 0.5) let

Jε(s) = (s− ε, s+ ε) ⊂ S1

be an open ε-neighborhood of s ∈ S1.

Let f ∈ F(T 2) be a function such that its KR-graph Γ(f) has only one cycle, C be a
regular connected component of certain level set of f not separating T 2, and

C = {h(C) | h ∈ S ′(f)} = {C0 = C, C1, . . . , Cn−1},

see Figure 2. We will now define several constructions “adopted” with f .

Special coordinates. As the curves {Ci | i = 0, . . . , n − 1} are “parallel”, one can
assume (by a proper choice of coordinates on T 2) that the following two conditions hold:

(a) Ci =
i
n × S1 ⊂ R

2/Z2 ≡ T 2 ;

(b) there exists ε > 0 such that for all t ∈ Jε(
i
n ) = ( i

n − ε, i
n + ε) the curve t× S1 is

a regular connected component of some level set of f .

It is convenient to regard each Ck as a meridian of T 2. Let C ′ = S1 × 0 be the corres-
ponding parallel. Then C ′ ∩ Ci =

i
n .

Isotopies L and M. Let L,M : T 2 × [0, 1] → T 2 be two isotopies defined by

L(x, y, t) = (x+ t mod 1, y), M(x, y, t) = (x, y + t mod 1)(15)

for x ∈ C ′, y ∈ C, and t ∈ [0, 1]. Geometrically, L is a “rotation” of the torus along
its parallels and M is a rotation along its meridians. We can regard them as loops in
π1D(T 2). Denote by L and M the subgroups of π1D

id generated by loops L and M
respectively. It is well known that that L and M are commuting free cyclic groups, and
so we get an isomorphism

π1D
id ∼= L ×M.

Also notice that L and M can be also regarded as flows L,M : T 2 × R → T 2 defined
by the same formulas Eq. (15) for (x, y, t) ∈ T 2×R. All orbits of the flows L and M are
periodic of period 1.

A flow F. Since T 2 is an orientable surface, one can construct a “Hamiltonian like” flow
F : T 2 × R → T 2 having the following properties, see e.g. [10, Lemma 5.1]:

1) a point z ∈ T 2 is fixed for F if and only if z is a critical point of f ;
2) f is constant along orbits of F, that is f(z) = f(F(z, t)) for all z ∈ T 2 and t ∈ R.

It follows that every critical point of f and every regular components of every level set
of f is an orbit of F.

In particular, each curve t×S1 for t ∈ Jε(
i
n ), i = 0, . . . , n−1, is an orbit of F. On the

other hand, this curve is also an orbit of the flow M. Therefore, we can always choose F
so that

(16) M(x, y, t) = F(x, y, t)

for (x, y, t) ∈ Jε(
i
n )× S1 × R and i = 0, . . . , n− 1.

Lemma 5.1. [10, 12]. Suppose a flow F : T 2 ×R → T 2 satisfies the above conditions 1)
and 2). Then the following statements hold.

(1) Let h ∈ S(f). Then h ∈ Sid(f) if and only if there exists a C∞ function α : T 2 → R

such that h = Fα, see (14). Such a function is unique and the family of maps {Ftα}t∈I

constitute an isotopy between idM and h, [12, Lemma 16].
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(2) Suppose C is a regular component of some level set of f and h ∈ S(f) be such
that h(C) = C and h preserves orientation of C. Let also N be an arbitrary open
neighborhood of C. Then each h ∈ S(f) is isotopic in S(f) via an isotopy supported
in N to a diffeomorphism g fixed on some smaller neighborhood of C. In particular,
[h] = [g] ∈ π0S(f), [10, Lemma 4.14].

(3) Let X be a finite disjoint union of regular components of some level sets of f ,
and N be an open neighborhood of X. Then there exists a smaller open neighborhood
U ⊂ N of X such that U ⊂ N and each h ∈ Sid(f) is isotopic in S(f) relatively to U
to a diffeomorphism g fixed on M \ N . In particular, g ∈ Sid(f) as well. Moreover, if
h = Fα, then one can assume that g = Fβ, where β = α on U and β = 0 on M \N , [10,
Lemma 4.14].

Special slides. It follows from (16) and (15) that each Ck is an orbit of the flow F of
period 1. Let α, β : [−1, 1] → [0, 1] be the functions defined in §4.1, see Figure 4, and ε
be the same as in (16). Define two diffeomorphisms τi, θi : T

2 → T 2, i = 0, . . . , n− 1, by
the formulas

(17) τi(x, y) =

{
F
(
x, y, α((y − i

n )/2ε)
)
, (x, y) ∈ Jε(

i
n )× S1,

(x, y), otherwise,

(18) θi(x, y) =

{
F
(
x, y, β((y − i

n )/2ε)
)
, (x, y) ∈ Jε(

i
n )× S1,

(x, y), otherwise.

Evidently, τi is a Dehn twist and θi is a slide along Ci in the sense of §4.1.
Notice that f ◦θi = f , θi is isotopic to idT 2 , and θk is also fixed on some neighborhood

of C. In other words,

θi ∈ S(f) ∩ Did(T
2) ∩ D(T 2, C) = S(f) ∩ G,

see (11). Moreover, supp (θi) ∩ supp (θj) = ∅ for i 6= j ∈ {1, . . . , n− 1}. Let also

(19) θ = θ0 ◦ · · · ◦ θn−1.

Then by Theorem 4.4 θ ∈ S(f) ∩ Did(T
2, C) = SC . Let [θ]c be the isotopy class of θ in

π0SC , and Θ = 〈[θ]c〉 be the subgroup of π0SC generated by [θ]c.
The following lemma is an easy consequence of (18) and (19) and we leave it for the

reader.

Lemma 5.2. θ = Fσ = Mσ for some C∞ function σ such that σ = 1 on C. Moreover,
as σ is constant along orbits of F, it follows from [9, Eq. (8)] and can easily be shown,
that θk = Fkσ for all k ∈ Z.

6. Two epimorphisms

In the notation of §5 let f ∈ F(T 2) be such that its KR-graph Γ(f) has exactly one
cycle, C be a regular connected component of certain level set f−1(c) of f that does not
separate T 2,

C = {h(C) | h ∈ S ′(f)}

be the corresponding family of curves parallel to C, and n be the number of curves in C.
The case n = 1 is considered in [18], therefore we will assume that n ≥ 1.

For simplicity we will introduce the following notation:

Did := Did(T
2), O := Of (f), S := S ′(f), S id := Sid(T

2),

Did
C := Did(T

2, C), OC := Of (f, C), SC := S ′(f, C), S id
C := Sid(f, C),

DQ := Did(Q0, ∂Q0), OQ := O(f |Q0
, ∂Q0), SQ := S(f |Q0

, ∂Q0).
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Our aim is to construct an isomorphism π1O ∼= π1O
Q ≀

Zn

Z. Due to (2) of Theorem 2.2

we have isomorphisms

π1(D
id
C ,SC) ∼= π1OC , π1(D

id,S) ∼= π1O, π1(D
Q,SQ) ∼= π1O

Q,

and so we are reduced to finding an isomorphism

(20) ξ : π1(D
Q,SQ) ≀

Zn

Z ∼= π1(D
id,S).

Let i : (Did
C
,SC) ⊂ (Did,S) be the inclusion map. It yields a morphism between

the exact sequences of homotopy groups of these pairs, see Theorems 2.1 and 2.2. The
non-trivial part of this morphism is contained in the following commutative diagram:

(21)

1 −−−−→ 1 −−−−→ π1(D
id
C
,SC)

∂C−−−−→ π0SC −−−−→ 1
y i1

y
yi0

1 −−−−→ π1D
id q

−−−−→ π1(D
id,S)

∂
−−−−→ π0S −−−−→ 1

In this section we describe kernel and images of all homomorphisms from (21), see
Theorem 6.1 below. For n = 1 this diagram is studied in [18].

For h ∈ S we will denote by [h] its isotopy class in π0S. If h ∈ SC , then its isotopy
class in π0SC will be denoted by [h]c. Evidently,

i0
(
[h]c

)
= [h].

Similarly, for a path ω : (I, ∂I, 0) −→ (Did,S, idT 2) we will denote by [ω] its homotopy
class in π1(D

id,S). If ω(I, ∂I, 0) ⊂ (Did
C
,SC , idT 2), then we denote by [ω]c is homotopy

class in π1(D
id
C
,SC). Again

i1
(
[ω]c

)
= [ω].

Recall also that the boundary homomorphism ∂C : π1(D
id
C
,SC) −→ π0SC is defined as

follows: if ω : (I, ∂I, 0) → (Did
C
,SC , idT 2) is a continuous path, then

∂C
(
[ω]c

)
= [ω(1)]c ∈ π0SC .

Theorem 6.1. In the notation above there exist two epimorphisms

ϕ : π1(D
id,S) −→ Z, κ : π0S −→ Zn,

such that the following diagram is commutative:

(22)

1

��
1

��

Θ

��
π1(D

id
C
,SC) ∼=

∂C
//

i1
��

π0SC

i0
��

1 // L ×M

pr
��

q
// π1(D

id,S)

ϕ
��

∂
// π0S

k
��

// 1

1 // L
·n

// Z

��

modn
// Zn

��

// 1

1 1

Here the arrow
·n

−−→ means a unique monomorphism associating to the generator
L ∈ L the number n. Moreover, the following statements hold true.
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(a) q
(
M

)
= i1 ◦ ∂

−1
C

(
Θ
)
;

(b) all rows and columns in diagram (22) are exact;
(c) there exists a path γ : (I, ∂I, 0) → (Did,S, idT 2) such that

ϕ[γ] = 1, γ(1)n = idT 2 .

Proof.
Proof of (a). Let M : T 2 × I → T 2 be the loop in π1D(T 2) generating a subgroup M
of π1D(T 2), see (15). Let also θ = θ0 ◦ · · · ◦ θn−1 be the product of slides along all curves
in C, see (19), θ−1 be its inverse, and [θ−1]c ∈ Θ be the isotopy class of θ−1 in π0SC .
Then [θ−1]c also freely generates Θ = 〈[θ]c〉. Therefore it suffices to prove that

q(M) = i1 ◦ ∂
−1
C

(
[θ−1]c

)
.

Notice that q(M) is represented by the isotopy {Mt}t∈I .
Also recall that we can also regardM as a flow on T 2 defined by the same formula (15).

Since all orbits of M have period 1, Mα = Mα+k for all k ∈ Z and any function α.
In particular, by Lemma 5.2 θ−1 = M−σ = M1−σ for a C∞ function σ : T 2 →

R such that σ = 1 on a small neighborhood U of C and σ = 0 outside some larger
neighborhood N .

Now let Gt = Mt(1−σ), t ∈ I, be an isotopy between G(0) = idT 2 and G(1) = θ−1

fixed on some neighborhood of C. Regard it as a path G : (I, ∂I, 0) −→ (Did
C
,SC , idT 2).

Then ∂([G]c) = [G(1)]c = [θ−1]c, and so

∂−1
C

[θ−1]c = [G]c.

As ∂C is an isomorphism, ∂−1
C

[θ−1]c does not depend on a particular choice of such an

isotopy G. Furthermore, i1 ◦ ∂
−1
C

[θ−1]c is a homotopy class of G regarded as a map

G : (I, ∂I, 0) −→ (Did,S, idT 2), G(t) = Mt(1−σ).(23)

Therefore it remains to show that [G] = q(idT 2 ×M) ∈ π1(D
id,S). In fact the homotopy

between {Gt}t∈I and {Mt}t∈I in the space C
(
(I, ∂I, 0), (Did,S, idT 2)

)
can be defined as

follows:

H : (I, ∂I, 0)× I −→ (Did,S, idT 2), H(t, s) = Mt(1−sσ).

We leave the details for the reader, see [18].

Proof of (b). The upper row of (22) coincides with (21) and exactness of the lower row
is evident. Therefore it remains to construct epimorphisms ϕ and κ and prove that the
columns of the diagram (22) are exact as well.

(b1) Construction of κ : π0S −→ Zn. Let h ∈ S. Then h(C) = C. Since the curves in
C are cyclically ordered, there exists κ(h) ∈ Zn such that

(24) h(Ci) = Ci+κ(h)modn, i = 0, . . . , n− 1.

Recall that all indices here are taken module n. Evidently, κ(h) depends only on the
isotopy class [h] of h in S, and the correspondence h 7−→ κ[h] is a homomorphism
κ : π0S → Zn. Moreover, κ is an epimorphism, since by definition C consists of all
images of C with respect to S.
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(b2) Construction of ϕ : π1(D
id,S) −→ Z. Let η : R × S1 −→ T 2 ≡ S1 × S1 be the

covering map defined by η(x, y) =
(
x
n mod 1, y

)
. Since Ci =

i
n × S1, we have that

(25) η({i} × S1) = Cimodn, i ∈ Z,

and in particular, η−1(C) = Z× S1.

Let ω : (I, ∂I, 0) −→ (Did,S, idT 2) be a representative of some element of π1(D
id,S).

Then ω can be regarded as an isotopy ω : T 2 × I → T 2 such that ω0 = idT 2 and ω1 ∈ S,
that is ω1(C) = C. Therefore ω lifts to a unique isotopy ω̃ : (R× S1)× I → R× S1 such
that ω̃0 = idR×S1 and η ◦ ω̃t = ωt ◦ η for all t ∈ I.

In particular, since ω1(C) = C, we have from (25) that ω̃1(Z× S1) = Z× S1, whence
there exists an integer number ϕω ∈ Z such that

(26) ω̃1({i} × S1) = ({i+ ϕω} × S1), i ∈ Z.

It is easy to see that ϕω depends only on the homotopy class [ω] of ω in π1(D
id,S) and

the correspondence [ω] 7−→ ϕω is a homomorphism ϕ : π1(D
id,S) −→ Z.

(b3) Commutativity of diagram (22). Due to (21) the upper square is commutative.

Lower right square. We need to check that

(27) κ ◦ ∂ = ϕmodn.

In the notation of (b2), notice that ∂[ω] = [ω1] ∈ π0S by definition of boundary homo-
morphism. Hence for i = 0, . . . , n− 1,

ω1(Ci)
(25)
== ω1 ◦ η({i} × S1) = η ◦ ω̃1({i} × S1)

(26)
== η({i+ ϕ[ω]} × S1) = Ci+ϕ[ω] modn.

Now (27) follows from (24).

Lower left square. We should show that

(28) ϕ ◦ q([L]) = n.

Evidently, the path q(L) : (I, ∂I, 0) −→ (Did,S, idT 2) can be regarded as an isotopy

L : T 2 × I → T 2, L(x, y, t) = (x+ modn, y)

for (x, y) ∈ T 2, see (15). Then L lifts to an isotopy L̃ : (R × S1) × I → R × S1 given

by L̃(x, y, t) = (x + nt, y). In particular, L̃({i} × S1) = {i + n} × S1, whence by (26)
ϕ ◦ q([L]) = n.

(b4) Exactness of right column. We should prove that the following sequence

1 −→ Θ
⊂

−−→ π0SC

i0−−→ π0S
κ

−−→ Zn −→ 1

is exact. By definition Θ is a subgroup of π0SC and as noted above κ is an epimorphism.
Therefore we should check that Θ = ker i0 and i0(π0SC) = kerκ.

Inclusion Θ ⊂ ker i0.
Recall that each θi ∈ Sid(f), whence their product θ ∈ Sid(f) as well, and therefore

i0([θ]c) = [θ] = [idT 2 ] ∈ π0S. This shows that Θ = 〈[θ]c〉 ⊂ ker(i0)

Inverse inclusion Θ ⊃ ker i0.
Notice that the kernel of i0 : π0SC → π0S consists of isotopy classes of diffeomor-

phisms in SC isotopic to idT 2 by f -preserving isotopy, however such an isotopy should
not necessarily be fixed on C. In other words, if we denote

K := S id ∩ Did
C = Sid(f) ∩ D(T 2, C),

then

(29) ker i0 = π0K.
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Evidently, S id
C

= S(f) ∩ Did(T
2, C) is the identity path component of K, whence

ker i0 = π0K = K/S id
C .

Also notice that each slide θi ∈ Sid(f), whence their product θ ∈ Sid(f) as well. On the
other hand by Theorem 4.4 θ ∈ Did

C
, whence

θ ∈ S id ∩ Did
C = K.

Lemma 6.2. π0K = 〈[θ]c〉 ∼= Z. In other words, each h ∈ K is isotopic in K to θb for a
unique b ∈ Z.

Proof. Let h ∈ K. Since K := S id ∩ Did
C

⊂ S id, it follows from Lemma 5.1 that there
exists a unique smooth function α ∈ C∞(T 2) such that h = Fα.

Since h is fixed on some neighborhood Ni of Ci, that is h(x) = Fα(x) = F(x, α(x)) = x
for all x ∈ Ni, it follows that α(x) must be an integer multiple of the period of Ci. Hence
α takes a constant integer value on Ni.

We claim that this value is the same for all i = 0, . . . , n − 1. Indeed, let Qi be a
cylinder bounded by Ci and Ci+1 is isotopic to idQi

relatively to some neighborhood of
∂Qi, and τi be a Dehn twist supported in IntQi and defined by (17). By Lemma 4.2 the
isotopy class of its restriction τi|Qi

generates the group π0D(Qi, ∂Qi). Then it is easy
to see that h|Qi

is isotopic in D(Qi, ∂Qi) to τ b if and only if α(Qi+1) − α(Qi) = b. By
assumption h|Qi

is isotopic to idQi
= τ0i relatively to ∂Qi, whence α(Qi+1)− α(Qi) = 0

for all i.
Thus α takes the same constant integer value on all of C, which of course depends on

h. Denote this value by k. Then the isotopy between h = Fα and θk = Fkσ in SC can
be given by the formula: ht = F(1−t)α+tkσ, see Lemma 4.8.

It remains to note that since f has critical points inside each Qi, θ
k is not isotopic to

θl for k 6= l. �

Inclusion image(i0) ⊂ ker(κ). Let h ∈ SC , so h is fixed on C, and in particular,
h(Ci) = Ci for all i. Then by (24), κ ◦ i0

(
[h]c

)
= 0, i.e. image(i0) ⊂ ker(κ).

Inverse inclusion image(i0) ⊃ ker(κ). Let h ∈ S be such that κ[h] = 0, that is
h(Ci) = Ci for all i. Since h is isotopic to idT 2 , it also preserves orientation of each Ci,
therefore by Lemma 5.1 we can assume that h is fixed on some neighborhood of C and
such a replacement does not change the isotopy class [h] ∈ π0S. So we can assume that
h ∈ Did(T

2) ∩ D(T 2, C) = G, see (11). Then by Corollary 4.6 we can write

h = θa1

1 ◦ · · · ◦ θ
an−1

n−1 ◦ g

for some ai ∈ Z and g ∈ Did(T
2, C). But each θi ∈ Sid(f), whence [h] = [g] ∈ π0S and

g ∈ S(f) ∩ Did(T
2, C) ≡ SC .

In other words, [h] = [g] = i0
(
[g]c

)
. Thus image(i0) ⊃ ker(κ) as well.

(b5) Exactness of middle column. We need to check that the following short se-
quence

1 −→ π1(D
id
C ,SC)

i1−−→ π1(D
id,S)

ϕ
−−→ Z −→ 1

is exact. Since ∂, κ and modn are surjective, it follows from (27) that ϕ is surjective

as well. Therefore it remains to verify that i1 is injective and image(i1) = ker(ϕ).

Inclusion image(i1) ⊂ ker(ϕ). Again using notation of (b2) suppose that ω :
(I, ∂I, 0) −→ (Did

C
,SC , idT 2) is a representative of some element of π1(D

id
C
,SC). Thus

ω can be regarded as an isotopy of T 2 fixed on C. Therefore its lifting ω̃ : (R×S1)× I →
R × S1 is fixed on Z × S1, whence ω̃1({i} × S1) = {i} × S1 for all i ∈ Z. Therefore
by (26), ϕ ◦ i1

(
[ω]c

)
= ϕ[ω] = 0, i.e. ω ∈ ker(ϕ).
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Inverse inclusion image(i1) ⊃ ker(ϕ). Let x ∈ π1(D
id,S) be such that ϕ(x) = 0,

i.e. x ∈ ker(ϕ). Then

0 = ϕ(x)modn = κ ◦ ∂(x).

Hence ∂(x) ∈ ker(κ) = image(i0) = i0(Θ). In other words, ∂(x) = i0(θ
k) for some k ∈ Z,

where for simplicity of notation we denote by θ its isotopy class [θ]c ∈ π0SC .
Put y = i1 ◦ ∂

−1
C

(θk) ∈ π1(D
id,S). Then

∂(y) = ∂ ◦ i1 ◦ ∂
−1
C

(θk) = i0 ◦ ∂C ◦ ∂−1
C

(θk) = i0(θ
k) = ∂(x).

Hence xy−1 ∈ ker(∂) = image(q). In other words,

x = q(L)a · q(M)b · y

for some a, b ∈ Z.
We claim that a = 0, whence x = q(M)b · y. Indeed, since ϕ ◦ q(L) = n, ϕ ◦ q(M) = 0,

and ϕ(y) = ϕ ◦ i1 ◦ ∂
−1
C

(θk) = 0 we see that

0 = ϕ(x) = ϕ
(
q(L)a · q(M)b · y

)
= an+ 0 + 0,

and so a = 0.
Moreover, by (a) q(M) = i1 ◦ ∂

−1
C

(θ−1), whence

x = q(M)b · y = i1 ◦ ∂
−1
C

(θ−b) · i1 ◦ ∂
−1
C

(θk) = i1 ◦ ∂
−1
C

(θk−b) ∈ image(i1).

Proof of (c). For n = 1, we can take γ to be the constant path into idT 2 . Therefore
assume that n ≥ 2.

Let Lt : T 2 → T 2, t ∈ I, be the isotopy defined by (15) and generating L, and
λ = L1/n, thus

λ(x, y) = (x+ 1
n mod 1, y).

In fact we will use the following three properties of λ:

• f ◦ λ coincides with f on some neighborhood N of C, see (16);
• λn = idT 2 ;
• λ(Qi) = Qi+1 for all i = 0, . . . , n− 1.

Notice that by definition of cyclic index of f , there exists h ∈ S such that h(Qi) = Qi+1

as well as λ.
We can assume that h = λ on some neighborhood N of C. Indeed, since λ and h

preserve orientation of T 2, and f ◦ h = f , it follows that h ◦ λ−1 leaves invariant all
regular components of level sets of f belonging to N . Therefore h is isotopic in S to a
diffeomorphism h1 ∈ S such that h1 ◦λ

−1 is fixed on some neighborhood N1 of C, whence
h1 = λ near C. Therefore we can replace h with h1 and N with N1.

We can additionally assume that hn = idT 2 . Indeed, we have that

hn−1|N = λn−1|N = λ−1|N = h−1|N .

Define a diffeomorphism h1 : T 2 → T 2 by h1 = h on M \ Qn−1, and h1 = h−1 on
Qn−1. Then h1 is a well-defined diffeomorphism such that hn

1 = idT 2 and f ◦h1 = f , i.e.
h1 ∈ S(f). Therefore we can again replace h with h1.

We claim that h is isotopic to idT 2 . Indeed, since h = λ on an open set, say on a
neighborhood of C, and g preserves orientation, we see that so does h. But all non-trivial
isotopy classes of diffeomorphisms of T 2 have infinite orders, whence h is isotopic to idT 2 .

Now let γt : T
2 → T 2, t ∈ I, be any isotopy between idT 2 and h. It can be regarded

an element of π1(D(T 2),S(f)). Then 1 = κ[γ] = ϕ[γ] modn, so ϕ[γ] = an + 1 for
some a ∈ Z. Replacing γ with any representative of the class [γ] [L]−a can assume that
ϕ[γ] = 1.

Theorem 6.1 is completed. �
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7. f-invariant free Zn-action

The following theorem is a reformulation of (c) of Theorem 6.1. It shows that there
exists a free f -invariant Zn-action on T 2, and so f factors to a function of the same class
F(T 2) on the corresponding quotient T 2/Zn being also a T 2.

Theorem 7.1. There exists an n-sheet covering map p : T 2 → T 2 and f̂ ∈ F(T 2)
making commutative the following diagram:

(30) T 2 p
//

f
  ❆

❆❆
❆❆

❆❆
❆ T 2

f̂
~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

R

Moreover, the KR-graph of f̂ also has one cycle, however the cyclic index of f̂ is 1.

Proof. Let γ be the same as in (c) of Theorem 6.1 and let g = γ(1) ∈ S(f). Then
gn = idT 2 . Notice also that g has no fixed points, since κ(g) = ϕ(γ)modn = 1, i.e.
g(Qi) = Qi+1 for all i. In other words, g yields a free f -invariant action of Zn on T 2 by
orientation preserving diffeomorphisms. Hence the corresponding factor map p : T 2 →
T 2/Zn is an n-sheet covering of T 2 and the factor space T 2/Zn is diffeomorphic to T 2.

Furthermore, since the action is f -invariant, we obtain that f yields a smooth function

f̂ : T 2/Zn = T 2 → R, such that the diagram (30) becomes commutative.

It remains to note that since p is a local diffeomorphism, the function f̂ has property

(L) as well as f . Therefore f̂ ∈ F(T 2/Zn). The verification that KR-graph of f̂ has one

cycle and that the cyclic index of f̂ is 1 we leave for the reader. �

8. Proof of Theorem 1.6

We have to construct an isomorphism

ξ : π1(D
Q,SQ) ≀

Zn

Z ∼= π1(D
id,S).

Let γ : (I, ∂I, 0) −→ (Did,S, idT 2) be a path defined in (c) of Theorem 6.1, and g =
γ(1) ∈ S. Then g(Qi) = Qi+1 and gn = idT 2 .

Recall also that the group Z acts on Map(Zn, π1O
Q) by formula (2).

Lemma 8.1. There exists an isomorphism

η : Map
(
Zn, π1(D

Q,SQ)
)
−→ π1(D

id
C ,SC).

Moreover, let α ∈ Map
(
Zn, π1(D

Q,SQ)
)
, k ∈ Z, and αk ∈ Map

(
Zn, π1(D

Q,SQ)
)
be the

result of the action of k on α, see (2). Then

(31) i1(η(α
k)) = [γk] i1(η(α)) [γ

−k].

Proof. Let α : Zn → P be any map, and ωi : (I, ∂I, 0) → (DQ,SQ, idQ0
) be a repre-

sentative of α(i) in π1(D
Q,SQ). Then ωi(t) is fixed near ∂Q0, whence we have a path

ω : I → Did
C

given by

(32) ω(t)|Qi
= gi ◦ ωi(t) ◦ g

−i|Qi
, i = 0, . . . , n− 1.

Notice that

ω(0)|Qi
= g ◦ ωi(0) ◦ g

−i = idQi
, f ◦ ω(1)|Qi

= f ◦ g ◦ ωi(1) ◦ g
−i = f,

whence ω(0) = idT 2 and ω(1) ∈ S(f) ∩ Did(T
2, C) = SC . Therefore ω is a map of triples

ω : (I, ∂I, 0) → (Did
C
,SC , idT 2), and so it represents some element [ω]c of π1(D

id
C
,SC). It

is easy to see that the class [ω]c depends only on the classes of [ωi] ∈ P.
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Define the map η : Map
(
Zn, π1(D

Q,SQ)
)
−→ π1(D

id
C
,SC) by η(α) = [ω]c. A straight-

forward verification shows that η is a group isomorphism. We leave the details for the
reader.

Now let k ∈ Z. Then by definition of the action αk(i) = α(i+kmodn), i = 0, . . . , n−1.
In particular, if ωi : (I, ∂I, 0) → (DQ,SQ, idQ0

) is a representative of α(i) in P, then
ωi+kmodn is a representative of αk(i). Therefore the path ω′ : I → Did

C
defined by

ω′(t)|Qi
= gi ◦ ωi+kmod (t) ◦ g

−i|Qi
, i = 0, . . . , n− 1.

corresponds to αk, that is η(αk) = [ω′]c. Notice that

ω′(t)|Qi
= g−k ◦ gi+k ◦ ωi+kmod (t) ◦ g

−i−k ◦ gk|Qi
= g−k ◦ ω(t) ◦ gk|Qi

.

Hence
ω′(t) = g−k ◦ ω(t) ◦ gk = γk

1 ◦ ωt ◦ g
−k
1 .

Notice that i1(η(α)) = [ω] and i1(η(α
k)) = [ω′] are the homotopy classes of ω and ω′

regarded as elements of π1(D
id,S). Then by (10)

i1(η(α
k)) = [γk

1 ◦ ωt ◦ g
−k
1 ] = [γk

t ] [ωt] [γ
−k
t ] = [γk

t ] i1(η(α)) [γ
−k
t ].

Lemma is proved. �

The following statements completes Theorem 1.6.

Lemma 8.2. Define a map ξ : π1(D
Q,SQ) ≀

Zn

Z −→ π1(D
id,S) by

ξ(α, k) = i1(η(α)) [γ
k
t ],

for α ∈ Map(Zn, π1(D
Q,SQ)) and k ∈ Z. Then ξ is a homomorphism making commuta-

tive the following diagram with exact rows, see (4):

1 −−−−→ Map
(
Zn, π1(D

Q,SQ)
) ζ
−−−−→ π1(D

Q,SQ) ≀
Zn

Z
p

−−−−→ Z −−−−→ 1

η

y∼= ξ

y
∥∥∥

1 −−−−→ π1(D
id
C
,SC)

i1−−−−→ π1(D
id,S)

ϕ
−−−−→ Z −−−−→ 1.

Hence, by five lemma, ξ is an isomorphism.

Proof. We should check that ξ is an isomorphism. Suppose α, β ∈ Map
(
Zn, π1(D

Q,SQ)
)

and k, l ∈ Z. Then in π1(D
Q,SQ) ≀

Zn

Z we have that

(α, k) (β, l) = (αβk, k + l)

whence
ξ(α, k) = i1(η(α)) [γ

k], ξ(β, k) = i1(η(β)) [γ
l
t].

On the other hand,

ξ(αβk, k + l) = i1(η(αβ
k)) [γk+l

t ]

= i1(η(α)) i1(η(β
k)) [γk+l

t ] by (31)

= i1(η(α)) [γ
k
t ] i1(η(β)) [γ

−k
t ] [γk+l

t ]

= i1(η(α)) [γ
k
t ] i1(η(β)) [γ

l
t]

= ξ(α, k) ξ(β, l),

and so ξ is a homomorphism. Moreover,

ξ ◦ ζ(α) = ξ(α, 0) = i1 ◦ η(α),

ϕ ◦ ξ(α, k) = ϕ(η(α) [γk]) = ϕ ◦ η(α) + ϕ([γk]) = 0 + k = k = p(α, k).
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Hence the above diagram is commutative, and by five lemma ξ is an isomorphism. �
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