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CHARACTERISTIC MATRICES AND SPECTRAL FUNCTIONS OF

FIRST ORDER SYMMETRIC SYSTEMS WITH MAXIMAL

DEFICIENCY INDEX OF THE MINIMAL RELATION

VADIM MOGILEVSKII

Abstract. Let H be a finite dimensional Hilbert space and let [H] be the set of all li-
near operators in H. We consider first-order symmetric system Jy′−B(t)y = ∆(t)f(t)

with [H]-valued coefficients defined on an interval [a, b) with the regular endpoint a.
It is assumed that the corresponding minimal relation Tmin has maximally possible
deficiency index n+(Tmin) = dimH. The main result is a parametrization of all

characteristic matrices and pseudospectral (spectral) functions of a given system by
means of a Nevanlinna type boundary parameter τ . Similar parametrization for
regular systems has earlier been obtained by Langer and Textorius. We also show
that the coefficients of the parametrization form the matrix W (λ) with the pro-

perties similar to those of the resolvent matrix in the extension theory of symmetric
operators.

1. Introduction

Let H and Ĥ be finite dimensional Hilbert spaces and let

H := H ⊕ Ĥ ⊕H.

Denote also by [H] the set of all linear operators in H. We study first-order symmetric
systems of differential equations defined on an interval I = [a, b),−∞ < a < b ≤ ∞,

with the regular endpoint a and regular or singular endpoint b. Such a system is of the
form [4, 11]

(1.1) Jy′ −B(t)y = ∆(t)f(t), t ∈ I,

where B(t) = B∗(t) and ∆(t) ≥ 0 are locally integrable [H]-valued functions on I and

(1.2) J =




0 0 −IH
0 iI

Ĥ
0

IH 0 0


 : H ⊕ Ĥ ⊕H → H ⊕ Ĥ ⊕H

(the operator function ∆(t) is called a Hamiltonian). With (1.1) one associates the
homogeneous system

(1.3) Jy′ −B(t)y = λ∆(t)y, λ ∈ C.

We assume that system (1.1) is definite (see Definition 3.1).
Let H := L2

∆(I) be the Hilbert space of functions f(·) : I → H satisfying∫
I

(∆(t)f(t), f(t))H dt < ∞. As is known system (1.1) generates the minimal linear rela-

tion Tmin and the maximal linear relation Tmax in H. It turns out that Tmin is a closed
symmetric relation with finite deficiency indices n±(Tmin) ≤ dimH and Tmax = T ∗

min.
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Moreover, according to [5, 8, 32] each generalized resolvent R(λ) of Tmin admits the
representation

(R(λ)f)(x) =

∫

I

Y0(x, λ)(Ω(λ) +
1
2 sgn(t− x)J)Y ∗

0 (t, λ)∆(t)f(t) dt, f = f(·) ∈ L2
∆(I).

Here Y0(·, λ) is an [H]-valued operator solution of (1.3) satisfying Y0(a, λ) = IH and
Ω(·) : C \R → [H] is a Nevanlinna operator function called a characteristic matrix of the
system (1.1).

Next, the following definition was introduced in our paper [28].

Definition 1.1. A non-decreasing left continuous function Σ(·) : R → [H] with Σ(0) = 0
is called a pseudospectral (resp. spectral) function of the system (1.1) if the Fourier
transform

(1.4) f̂(λ) = (VΣf)(λ) =

∫

I

Y ∗
0 (t, λ)∆(t)f(t) dt, f ∈ H

defines a partial isometry VΣ from H to L2(Σ;H) with kerVΣ = mulTmin (resp. an
isometry VΣ from H to L2(Σ;H)). Here mulTmin = {f ∈ H : {0, f} ∈ Tmin} is the
multivalued part of Tmin and L2(Σ;H) is the Hilbert space of all functions g(·) : R → H

satisfying
∫
R

(dΣ(λ)g(λ), g(λ)) < ∞ [9]. Moreover, the integral in (1.4) converges in the

norm of L2(Σ;H).

Motivation of the above definition of a pseudospectral function can be found in [28].
Recall that system (1.1) is called regular if the coefficients B(t) and ∆(t) are defined

and integrable on a compact interval I = [a, b]. A description of all characteristic matri-
ces and pseudospectral functions of a regular system is given by the following theorem
obtained by Langer and Textotius in [20, 21, 22].

Theorem 1.2. Let system (1.1) be regular. Then
(1) The equality

(1.5) Ω(λ) = − 1
2 (Ca(λ) + Cb(λ)Y0(b, λ))

−1(Ca(λ)− Cb(λ)Y0(b, λ))J, λ ∈ C+

establishes a bijective correspondence between all pairs of holomorphic operator functions
Ca(λ), Cb(λ)(∈ [H]) satisfying

(1.6) iCa(λ)JC
∗
a(λ) ≥ iCb(λ)JC

∗
b (λ), ran (Ca(λ), Cb(λ)) = H, λ ∈ C+

and all characteristic matrices Ω(λ) of the system (1.1).
(2) The equality (1.5) together with the Stieltjes inversion formula

(1.7) Σ(s) = lim
δ→+0

lim
ε→+0

1

π

∫ s−δ

−δ

ImΩ(σ + iε) dσ

gives a bijective correspondence between all holomorphic pairs Ca(λ) and Cb(λ) satisfying
(1.6) and the limit condition

(1.8) lim
y→+∞

1
iy
J(Y0(b, iy)− I)(Ca(iy) + Cb(iy)Y0(b, iy))

−1(Ca(iy) + Cb(iy)) = 0

on one hand, and all pseudospectral functions Σ(s) of the system (1.1) on another hand.

Note that statement (2) of the above theorem is not completely proved in [21, 22].
More precisely, the proof of the assertion that each pseudospectral function Σ(·) admits
the representation (1.5), (1.7) is based on one of the statements of [21, Theorem 1], which
is not proved in [21] (for more details see Remark 4.20 in [28]). In fact we do not know
whether statement (2) of Theorem 1.2 is valid without additional assumptions about the
system.
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In our papers [27, 28] the results similar to Theorem 1.2 were obtained for general
(not necessarily regular) symmetric systems on an interval I = [a, b), b ≤ ∞. More
precisely, we parametrized in [27] all characteristic matrices Ω(·) of a given system in
a form different from (1.5). This enabled us to parametrize in [28] all pseudospectral
functions of an absolutely definite system (system (1.1) is called absolutely definite if the
Lebesgue measure of the set {t ∈ I : ∆(t) is invertible} is positive).

Clearly, for a regular system one has n+(Tmin) = n−(Tmin) = dimH. Moreover, for
any n ∈ N and N− between 0 and n there exist a space H with dimH = n and a
system (1.1) on I = [0,∞) with n+(Tmin) = dimH(= n) and n−(Tmin) = N− [18]. In
the present paper we study symmetric systems (1.1) on I = [a, b), b ≤ ∞, with the
maximally possible deficiency index n+(Tmin) = dimH of Tmin. Our main result is a
parametrization of characteristic matrices and pseudospectral functions of such a system
in the form close to that in Theorem 1.2 for regular systems.

We show that in the case n+(Tmin) = dimH there exist subspace Hb ⊂ H and a
surjective linear mapping Γb : domTmax → H1 such that the Lagrange’s bilinear form
[y, z]b := lim

t↑b
(Jy(t), z(t)) admits the representation

[y, z]b = (JbΓby,Γbz), y, z ∈ domTmax.

Here H1 := H ⊕ Ĥ ⊕Hb is a subspace in H and Jb is an operator in H1 given by

(1.9) Jb =




0 0 −IHb

0 iI
H⊥

b
⊕Ĥ

0

IHb
0 0


 : Hb ⊕ (H⊥

b ⊕ Ĥ)⊕Hb︸ ︷︷ ︸
H1

→ Hb ⊕ (H⊥
b ⊕ Ĥ)⊕Hb︸ ︷︷ ︸
H1

with H⊥
b := H⊖Hb. In fact, Γby is a singular boundary value of a function y ∈ domTmax

(for more details see Remark 3.5 in [2]).
Assume that Hb and Γb are fixed and let τ = {C0(λ), C1(λ)} be a pair of holomorphic

operator functions C0(λ)(∈ [H]) and C1(λ)(∈ [H1,H]), λ ∈ C+, belonging to the Nevan-

linna type class R̃+(H,H1) [26]. With such a pair τ we associate a pair of holomorphic
operator functions Ca(λ) = Cτ,a(λ)(∈ [H]) and Cb(λ) = Cτ,b(λ)(∈ [H1,H]) satisfying the
relations (cf. (1.6))

iCa(λ)JC
∗
a(λ) ≥ iCb(λ)JbC

∗
b (λ), ran (Ca(λ), Cb(λ)) = H, λ ∈ C+.(1.10)

It turns out that for each generalized resolvent R(λ) of Tmin there exists a unique pair

τ ∈ R̃+(H,H1) such that a function y(t) = (R(λ)f)(t), f = f(·) ∈ H, is an L2
∆-solution

of the following boundary problem:

Jy′ −B(t)y = λ∆(t)y +∆(t)f(t), t ∈ I,(1.11)

Cτ,a(λ)y(a) + Cτ,b(λ)Γby = 0, λ ∈ C+.(1.12)

Note, that (1.12) is a boundary condition imposed on boundary values of a function
y ∈ domTmax. One may consider a pair τ as a boundary parameter, since R(λ) runs
over the set of all generalized resolvents of Tmin when τ runs over the set of all pairs τ =

{C0(λ), C1(λ)} ∈ R̃+(H,H1). To indicate this fact explicitly we write R(λ) = Rτ (λ) and
Ω(λ) = Ωτ (λ) for the generalized resolvent of Tmin and the corresponding characteristic
matrix respectively.

The main result can be formulated in the form of the following theorem (cf. Theo-
rem 1.2).

Theorem 1.3. Let the minimal relation Tmin has the maximally possible deficiency index
n+(Tmin) = dimH and let B(λ)(∈ [H,H1]) be the operator function given by B(λ)h =
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Γb(Y0(·, λ)h), h ∈ H, λ ∈ C+. Then there exists an operator function

W (λ) =

(
w1(λ) w2(λ)
w3(λ) w4(λ)

)
: H⊕H → H⊕H1, λ ∈ C+

such that the equality

(1.13) Ωτ (λ) = (C0(λ)w1(λ) + C1(λ)w3(λ))
−1(C0(λ)w2(λ) + C1(λ)w4(λ)), λ ∈ C+

establishes a bijective correspondence between all boundary parameters τ = {C0(λ), C1(λ)}
and all characteristic matrices Ω(λ) = Ωτ (λ) of the system (1.1). Moreover, (1.13) ad-
mits the representation

(1.14) Ωτ (λ) = − 1
2 (Ca(λ) + Cb(λ)B(λ))−1(Ca(λ)− Cb(λ)B(λ))J, λ ∈ C+,

with Ca(λ) = Cτ,a(λ) and Cb(λ) = Cτ,b(λ) (hence Ca(λ) and Cb(λ)) satisfy (1.10).
If in addition system (1.1) is absolutely definite, then the equality (1.13) together with

the Stieltjes inversion formula (1.7) gives a bijective correspondence between all boundary
parameters τ = {C0(λ), C1(λ)} satisfying the limit conditions

lim
y→+∞

1
iy
PH1

w1(iy)(C0(iy)w1(iy) + C1(iy)w3(iy))
−1C1(iy) = 0,

lim
y→+∞

1
iy
w3(iy)(C0(iy)w1(iy) + C1(iy)w3(iy))

−1C0(iy) ↾ H1 = 0

and all pseudospectral functions Σ(·) = Στ (·) of the system.

Note that B(λ) is a singular boundary value of the operator solution Y0(·, λ) at the
endpoint b and W (λ) is defined in terms of B(λ). Observe also that the matrix of the
operator W (λ) is rectangular and its dimension is (dimH+ n−(Tmin))× 2 dimH.

Recall that system (1.1) is called quasi-regular if Tmin has maximally possible (equal)
deficiency indices n+(Tmin) = n−(Tmin) = dimH. For a quasi-regular system the matrix
of W (λ) is square and its dimension is 2 dimH. Moreover, for such a system W (·) is an
entire [H⊕H]-valued function satisfying the identity

W ∗(λ)J1W (µ)− J1 = (µ− λ)

∫

I

Ỹ ∗(t, λ)∆(t)Ỹ (t, µ) dt, λ, µ ∈ C.(1.15)

Here Ỹ (·, λ)(∈ [H⊕H,H]) is a solution of (1.3) such that Ỹ (a, λ) = (IH,
1
2J) and

(1.16) J1 =

(
0 −IH
IH 0

)
: H⊕H → H⊕H.

The identity (1.15) enables one to represent W (λ) explicitly in terms of certain operator
solutions of the homogeneous system (1.3) (see (4.51) and (4.52)).

Theorem 1.3 and identity (1.15) show that the function W (λ) is an analog of the
Nevanlinna matrix in the moment problem [1] and the resolvent matrix in the extension
theory of symmetric operators [19].

According to [28] the set of spectral functions is not empty if and only if mulTmin =
{0}. Moreover, if this condition is satisfied, then the set of spectral functions coincides
with the set of pseudospectral functions and, consequently, all the above results hold for
spectral functions.

As is known various boundary problems with separated boundary conditions induce
”truncated” pseudospectral and spectral functions of the reduced dimension. A descrip-
tion of such functions for the case of equal maximal deficiency indices in the form close
to (1.13), (1.7) has been obtained in [10, 12, 14, 16, 17, 31] (see also the book by D. Z.
Arov and H. Dym [3] and references therein). Observe also that for the corresponding
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”resolvent matrix” W (λ) of the Sturm-Liouville operator the equalities similar to (4.51)
and (4.52) can be found in [12].

In conclusion note that all the results of the paper are applicable to singular formally
self-adjoint differential expressions both of even and odd order.

2. Preliminaries

2.1. Notations. The following notations will be used throughout the paper: H, H de-
note Hilbert spaces; [H1,H2] is the set of all bounded linear operators defined on the
Hilbert space H1 with values in the Hilbert space H2; [H] := [H,H]; PL is the ortho-
projection in H onto the subspace L ⊂ H; C+ is the upper half-plane of the complex
plane.

Recall that a closed linear relation from H0 to H1 is a closed linear subspace in
H0 ⊕H1. The set of all closed linear relations from H0 to H1 (in H) will be denoted by

C̃(H0,H1) (C̃(H)). A closed linear operator T from H0 to H1 is identified with its graph

grT ∈ C̃(H0,H1).

For a linear relation T ∈ C̃(H0,H1) we denote by domT, ranT, kerT and mulT the
domain, range, kernel and the multivalued part of T respectively. Recall that mulT is a
subspace in H1 defined by

mulT := {h1 ∈ H1 : {0, h1} ∈ T}.

Clearly, T ∈ C̃(H0,H1) is an operator if and only if mulT = {0}. Moreover, we denote

by T−1(∈ C̃(H1,H0)) and T ∗(∈ C̃(H1,H0)) inverse and adjoint linear relations of T
respectively.

Recall also that an operator function Φ(·) : C\R → [H] is called a Nevanlinna function
if it is holomorphic and satisfies Imλ · ImΦ(λ) ≥ 0 and Φ∗(λ) = Φ(λ), λ ∈ C \ R.

2.2. Boundary triplets and Weyl functions for symmetric relations. Recall that

a linear relation A ∈ C̃(H) is called symmetric (self-adjoint) if A ⊂ A∗ (resp. A = A∗).
Let A be a closed symmetric linear relation in the Hilbert space H, let Nλ(A) =

ker (A∗ − λ) (λ ∈ C) be a defect subspace of A, let N̂λ(A) = {{f, λf} : f ∈ Nλ(A)} and
let n±(A) := dimNλ(A) ≤ ∞, λ ∈ C±, be deficiency indices of A.

Next we recall definitions of boundary triplets for A∗ and the corresponding Weyl
functions and γ-fields (see [7, 24, 25, 26]).

Assume that H0 is a Hilbert space, H1 is a subspace in H0 and H2 := H0 ⊖ H1, so
that H0 = H1 ⊕H2. Denote by Pj the orthoprojection in H0 onto Hj , j ∈ {1, 2}.

Definition 2.1. A collection Π+ = {H0 ⊕ H1,Γ0,Γ1}, where Γj : A∗ → Hj , j ∈

{0, 1}, are linear mappings, is called a boundary triplet for A∗, if the mapping Γ : f̂ →

{Γ0f̂ ,Γ1f̂}, f̂ ∈ A∗, from A∗ into H0⊕H1 is surjective and the following Green’s identity

(f ′, g)− (f, g′) = (Γ1f̂ ,Γ0ĝ)H0
− (Γ0f̂ ,Γ1ĝ)H0

+ i(P2Γ0f̂ , P2Γ0ĝ)H2

holds for all f̂ = {f, f ′}, ĝ = {g, g′} ∈ A∗.

A boundary triplet Π+ = {H0⊕H1,Γ0,Γ1} for A
∗ exists if and only if n−(A) ≤ n+(A),

in which case dimH1 = n−(A) and dimH0 = n+(A).

Proposition 2.2. [25]. Let Π+ = {H0⊕H1,Γ0,Γ1} be a boundary triplet for A∗. Denote

also by π1 the orthoprojection in H⊕H onto H⊕{0}. Then the operator Γ0 ↾ N̂λ(A), λ ∈

C+, isomorphically maps N̂λ(A) onto H0 . Therefore the equalities

γ+(λ) = π1(Γ0 ↾ N̂λ(A))
−1, λ ∈ C+,

M+(λ)h0 = Γ1{γ+(λ)h0, λγ+(λ)h0}, h0 ∈ H0, λ ∈ C+
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correctly define the operator functions γ+(·) : C+ → [H0,H] and M+(·) : C+ → [H0,H1],
which are holomorphic on their domains.

Definition 2.3. [25]. The operator functions γ±(·) andM+(·) defined in Proposition 2.2
are called the γ-fields and the Weyl function, respectively, corresponding to the boundary
triplet Π+.

Remark 2.4. If H0 = H1 := H, then the boundary triplet in the sense of Definition 2.1
turns into the boundary triplet Π = {H,Γ0,Γ1} for A∗ in the sense of [13, 24]. In this
case n+(A) = n−(A)(= dimH) and the functions γ+(·) and M+(·) turn into the γ-field
γ(·) : C \ R → [H,H] and Weyl function M(·) : C \ R → [H] respectively introduced in
[7, 24]. Moreover, in this case M(·) is a Nevanlinna operator function.

To avoid misleading with using other definitions, a boundary triplet Π = {H,Γ0,Γ1}
in the sense of [13, 24] will be called an ordinary boundary triplet for A∗.

3. First-order symmetric systems

3.1. Notations. Let I = [a, b〉 (−∞ < a < b ≤ ∞) be an interval of the real line
(the symbol 〉 means that the endpoint b < ∞ might be either included to I or not).
For a given finite-dimensional Hilbert space H denote by AC(I;H) the set of functions
f(·) : I → H which are absolutely continuous on each segment [a, β] ⊂ I.

Next assume that ∆(·) is an [H]-valued Borel measurable function on I integrable
on each compact interval [a, β] ⊂ I and such that ∆(t) ≥ 0. Denote by L2

∆(I) the
semi-Hilbert space of Borel measurable functions f(·) : I → H satisfying ||f ||2∆ :=∫
I

(∆(t)f(t), f(t))H dt < ∞ (see e.g. [9, Chapter 13.5]). The semi-definite inner product

(·, ·)∆ in L2
∆(I) is defined by (f, g)∆ =

∫
I

(∆(t)f(t), g(t))H dt, f, g ∈ L2
∆(I). Moreover,

let L2
∆(I) be the Hilbert space of the equivalence classes in L2

∆(I) with respect to the
semi-norm || · ||∆ and let π∆ be the quotient map from L2

∆(I) onto L
2
∆(I).

For a given finite-dimensional Hilbert space K we denote by L2
∆[K,H] the set of all

Borel measurable operator-functions F (·) : I → [K,H] such that F (t)h ∈ L2
∆(I), h ∈ K.

Moreover, we let L2
∆[H] := L2

∆[H,H].

3.2. Symmetric systems. In this subsection we provide some known results on sym-
metric systems of differential equations following [11, 15, 23, 30].

Let H and Ĥ be finite-dimensional Hilbert spaces and let

(3.1) H = H ⊕ Ĥ ⊕H.

Let as above I = [a, b〉 (−∞ < a < b ≤ ∞) be an interval in R . Moreover, let B(·) and
∆(·) be [H]-valued Borel measurable functions on I integrable on each compact interval
[a, β] ⊂ I and satisfying B(t) = B∗(t) and ∆(t) ≥ 0 a.e. on I and let J ∈ [H] be
operator (1.2).

A first-order symmetric system on an interval I (with the regular endpoint a) is a
system of differential equations of the form

(3.2) Jy′ −B(t)y = ∆(t)f(t), t ∈ I,

where f(·) ∈ L2
∆(I). Together with (3.2) we consider also the homogeneous system

(3.3) Jy′(t)−B(t)y(t) = λ∆(t)y(t), t ∈ I, λ ∈ C.

A function y ∈ AC(I;H) is a solution of (3.2) (resp. (3.3)) if equality (3.2) (resp. (3.3)
holds a.e. on I. A function Y (·, λ) : I → [K,H] is an operator solution of equation (3.3)
if y(t) = Y (t, λ)h is a (vector) solution of this equation for every h ∈ K (here K is a
Hilbert space with dimK <∞).
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In the following we denote by Y0(·, λ) the [H]-valued operator solution of Eq. (3.3)
satisfying Y0(a, λ) = IH. Clearly, each operator solution Y (·, λ) of Eq. (3.3) admits the
representation

(3.4) Y (t, λ) = Y0(t, λ)Y (a, λ), t ∈ I.

In what follows we always assume that system (3.2) is definite in the sense of the
following definition.

Definition 3.1. [11]. Symmetric system (3.2) is called definite if for each λ ∈ C and
each solution y of (3.3) the equality ∆(t)y(t) = 0 (a.e. on I) implies y(t) = 0, t ∈ I.

Moreover, the following definition will be useful in the sequel.

Definition 3.2. System (3.2) is called absolutely definite if

µ1({t ∈ I : the operator ∆(t) is invertible}) > 0,

where µ1 is the Lebesgue measure on I.

Clearly, each absolutely definite system is definite.
As it is known [30, 15, 23] definite system (3.2) gives rise to themaximal linear relations

Tmax and Tmax in L2
∆(I) and L

2
∆(I), respectively. They are given by

Tmax = {{y, f} ∈ (L2
∆(I))

2 : y ∈ AC(I;H) and Jy′(t)−B(t)y(t) = ∆(t)f(t) a.e. on I}

and Tmax = {{πy, πf} : {y, f} ∈ Tmax}. Moreover the Lagrange’s identity

(f, z)∆ − (y, g)∆ = [y, z]b − (Jy(a), z(a)), {y, f}, {z, g} ∈ Tmax.

holds with

(3.5) [y, z]b := lim
t↑b

(Jy(t), z(t)), y, z ∈ dom Tmax.

Formula (3.5) defines the skew-Hermitian bilinear form [·, ·]b on dom Tmax. By using this
form one defines the minimal relations Tmin in L2

∆(I) and Tmin in L2
∆(I) via

Tmin = {{y, f} ∈ Tmax : y(a) = 0 and [y, z]b = 0 for each z ∈ dom Tmax}.

and Tmin = {{πy, πf} : {y, f} ∈ Tmin}. According to [30, 15, 23] Tmin is a closed
symmetric linear relation in L2

∆(I) and T
∗
min = Tmax.

For λ ∈ C denote by Nλ(⊂ dom Tmax) the linear space of solutions of the homogeneous
system (3.3) belonging to L2

∆(I) and let Nλ(Tmin) be the defect subspace of Tmin. Since
system (3.2) is definite, it follows that dimNλ(Tmin) = dimNλ. Hence Tmin has finite
(not necessarily equal) deficiency indices

(3.6) n±(Tmin) = dimNλ ≤ dimH, λ ∈ C±.

In the following with each operator solution Y (·, λ) ∈ L2
∆[K,H] of Eq. (3.3) we associate

the linear mapping Y (λ) : K → Nλ given by

(3.7) K ∋ h→ (Y (λ)h)(t) = Y (t, λ)h ∈ Nλ.

Remark 3.3. (1) According to the decomposition (3.1) of H each function y ∈ dom Tmax

admits the representation

(3.8) y(t) = {y0(t), ŷ(t), y1(t)}(∈ H ⊕ Ĥ ⊕H).

(2) It is known (see e.g. [23]) that the maximal relation Tmax induced by the definite

symmetric system (3.2) possesses the following property: for any {ỹ, f̃} ∈ Tmax there
exists a unique function y ∈ AC(I;H) ∩ L2

∆(I) such that y ∈ ỹ and {y, f} ∈ Tmax for

any f ∈ f̃ . Below we associate such a function y ∈ AC(I;H) ∩ L2
∆(I) with each pair

{ỹ, f̃} ∈ Tmax.
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3.3. Decomposing boundary triplets.

Lemma 3.4. If n+(Tmin) = dimH, then there exists a subspace Hb ⊂ H and a surjective
linear mapping

Γb =



Γ0b

Γ̂b

Γ1b


 : dom Tmax → H ⊕ Ĥ ⊕Hb(3.9)

such that for all y, z ∈ dom Tmax the following identity is valid:

(3.10) [y, z]b = (Γ0by,Γ1bz)H − (Γ1by,Γ0bz)H + i(PH⊥

b

Γ0by, PH⊥

b

Γ0bz)H + i(Γ̂by, Γ̂bz)Ĥ

(here H⊥
b = H ⊖Hb). Moreover, Hb = H if and only if

(3.11) n−(Tmin) = n+(Tmin)(= dimH).

Proof. It follows from (3.6) that n−(Tmin) ≤ n+(Tmin)(= dimH). Therefore according to

[2] there exist a finite-dimensional Hilbert space H̃b, a subspace Hb ⊂ H̃b and a surjective
linear mapping

Γb = (Γ0b, Γ̂b,Γ1b)
⊤ : dom Tmax → H̃b ⊕ Ĥ ⊕Hb

such that the identity (3.10) holds with H̃b instead of H. Moreover,

(3.12) dim H̃b = n+(Tmin)−dimH−dim Ĥ and dimHb = n−(Tmin)−dimH−dim Ĥ.

Since n+(Tmin) = dimH = 2dimH + dim Ĥ, the first equality in (3.12) yields dim H̃b =

dimH. Therefore without loss of generality one can put H̃b = H, which implies the
first statement of the lemma. Moreover, by the second equality in (3.12) one has the
equivalence dimHb = dimH ⇐⇒ n−(Tmin) = dimH. This gives the second statement
of the lemma. �

The following proposition is immediate from [2, Proposition 3.6].

Proposition 3.5. Let n+(Tmin) = dimH, let Hb be a subspace of H and let Γb be a
surjective linear mapping (3.9) satisfying (3.10). Moreover, let

(3.13) H1 = H ⊕ Ĥ ⊕Hb(⊂ H)

and let Γ′
0 : dom Tmax → H and Γ′

1 : dom Tmax → H1 be linear mappings given by

Γ′
0y = {−y1(a), i(ŷ(a)− Γ̂by), Γ0by}(∈ H ⊕ Ĥ ⊕H),(3.14)

Γ′
1y = {y0(a),

1
2 (ŷ(a) + Γ̂by), −Γ1by}(∈ H ⊕ Ĥ ⊕Hb), y ∈ dom Tmax,(3.15)

with y0(a), ŷ(a) and y1(a) taken from (3.8). Then a collection Π+ = {H ⊕ H1,Γ0,Γ1}
with

(3.16) Γ0{ỹ, f̃} = Γ′
0y, Γ1{ỹ, f̃} = Γ′

1y, {ỹ, f̃} ∈ Tmax

is a (so called decomposing) boundary triplet for Tmax. In (3.16) y ∈ dom Tmax is a

function corresponding to {ỹ, f̃} ∈ Tmax in accordance with Remark 3.3, (2).

Proposition 3.6. Let under the assumptions of Proposition 3.5 Π+ = {H⊕H1,Γ0,Γ1}
be a decomposing boundary triplet (3.13), (3.16) for Tmax, let γ+(λ) be the γ-field of Π+

and let

(3.17) M+(λ)=



M11(λ) M12(λ) M13(λ)
M21(λ) M22(λ) M23(λ)
M31(λ) M32(λ) M33(λ)


 : H ⊕ Ĥ ⊕H︸ ︷︷ ︸

H

→H ⊕ Ĥ ⊕Hb︸ ︷︷ ︸
H1

, λ ∈ C+
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be the block matrix representation of the corresponding Weyl function M+(·). Then for
each λ ∈ C+ there exists an operator solution Z+(·, λ) ∈ L2

∆[H] of (3.3) satisfying the
relations

γ+(λ) = π∆Z+(λ),(3.18)

Z+(a, λ) =



M11(λ) M12(λ) M13(λ)
M21(λ) M22(λ)−

i
2IĤ M23(λ)

−IH 0 0


 : H ⊕ Ĥ ⊕H → H ⊕ Ĥ ⊕H.(3.19)

In (3.18)Z+(λ) : H → Nλ is the linear mapping (3.7) for the solution Z+(·, λ).

Proof. Existence of the solution Z+(·, λ) satisfying (3.18) directly follows from the proof
of Proposition 4.4 in [2] (see in particular [2, (4.17)]). Moreover, the equality (3.19) is
implied by [27, (4.42) and (3.25)]. �

4. The matrix W (λ)

4.1. The case of one maximal deficiency index. In this subsection we suppose that
the following assumptions are satisfied:

(A1) n+(Tmin) = dimH,
(A2) Hb is a subspace in H and Γb is a surjective linear mapping (3.9) such that (3.10)

holds.
In view of (3.6) the assumption (A1) implies that Y0(·, λ) ∈ L2

∆[H] for all λ ∈ C+.
By using this fact we let B(λ) = ΓbY0(λ), λ ∈ C+. It is easily seen that B(·) is a
holomorphic [H,H1]-valued function on C+ (for H1 see (3.13)). Moreover, if

(4.1) Y0(t, λ) = (ϕ(t, λ), χ(t, λ), ψ(t, λ)) : H ⊕ Ĥ ⊕H → H, λ ∈ C+

is the block matrix representation of Y0(t, λ), then B(λ) can be written in the block-
matrix form as

(4.2)

B(λ) =



Γ0b

Γ̂b

Γ1b


(ϕ(λ), χ(λ), ψ(λ))

=



B11(λ) B12(λ) B13(λ)
B21(λ) B22(λ) B23(λ)
B31(λ) B32(λ) B33(λ)


 : H ⊕ Ĥ ⊕H︸ ︷︷ ︸

H

→ H ⊕ Ĥ ⊕Hb︸ ︷︷ ︸
H1

.

For each λ ∈ C+ we put

(4.3) W (λ) =

(
w1(λ) w2(λ)
w3(λ) w4(λ)

)
: H⊕H → H⊕H1,

where

w1(λ) =




0 0 −IH
−iB21(λ) −i(B22(λ)− I

Ĥ
) −iB23(λ)

B11(λ) B12(λ) B13(λ)


 : H ⊕ Ĥ ⊕H︸ ︷︷ ︸

H

→ H ⊕ Ĥ ⊕H︸ ︷︷ ︸
H

,

(4.4)
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w2(λ) =




1
2IH 0 0

− i
2B23(λ)

1
2 (B22(λ) + I

Ĥ
) i

2B21(λ)
1
2B13(λ)

i
2B12(λ) − 1

2B11(λ)


 : H ⊕ Ĥ ⊕H︸ ︷︷ ︸

H

→ H ⊕ Ĥ ⊕H︸ ︷︷ ︸
H

,

(4.5)

w3(λ) =




−IH 0 0
− 1

2B21(λ) − 1
2 (B22(λ) + I

Ĥ
) − 1

2B23(λ)
B31(λ) B32(λ) B33(λ)


 : H ⊕ Ĥ ⊕H︸ ︷︷ ︸

H

→ H ⊕ Ĥ ⊕Hb︸ ︷︷ ︸
H1

,

(4.6)

w4(λ) =




0 0 − 1
2IH

− 1
4B23(λ) − i

4 (B22(λ)− I
Ĥ
) 1

4B21(λ)
1
2B33(λ)

i
2B32(λ) − 1

2B31(λ)


 : H ⊕ Ĥ ⊕H︸ ︷︷ ︸

H

→ H ⊕ Ĥ ⊕Hb︸ ︷︷ ︸
H1

.

(4.7)

Clearly, the equalities (4.3)–(4.7) define a holomorphic operator function W (·) : C+ →
[H⊕H,H⊕H1].

Next, assume that Π+ = {H⊕H1,Γ0,Γ1} is the decomposing boundary triplet (3.16)
for Tmax and let M+(·) be the Weyl function of Π+. By using the block matrix repre-
sentation (3.17) of M+(λ) we let for λ ∈ C+

Ω0(λ) =



M11(λ) M12(λ) − 1

2IH
M21(λ) M22(λ) 0
− 1

2IH 0 0


 : H ⊕ Ĥ ⊕H︸ ︷︷ ︸

H

→ H ⊕ Ĥ ⊕H︸ ︷︷ ︸
H

,(4.8)

S1(λ) =



M11(λ) M12(λ) M13(λ)
M21(λ) M22(λ)−

i
2IĤ M23(λ)

−IH 0 0


 : H ⊕ Ĥ ⊕H︸ ︷︷ ︸

H

→ H ⊕ Ĥ ⊕H︸ ︷︷ ︸
H

,(4.9)

S2(λ) =



M11(λ) M12(λ) −IH
M21(λ) M22(λ) +

i
2IĤ 0

M31(λ) M32(λ) 0


 : H ⊕ Ĥ ⊕H︸ ︷︷ ︸

H

→ H ⊕ Ĥ ⊕Hb︸ ︷︷ ︸
H1

.(4.10)

The equalities (4.8)–(4.10) define holomorphic operator functions Ω0(·) : C+ → [H], S1(·) :
C+ → [H] and S2(·) : C+ → [H,H1].

Proposition 4.1. The operator S1(λ) is invertible and the operator function W (λ) de-
fined by (4.3)–(4.7) admits for each λ ∈ C+ the following representation:

W (λ) =

(
w1(λ) w2(λ)
w3(λ) w4(λ)

)
=

(
S−1
1 (λ) S−1

1 (λ)Ω0(λ)
−M+(λ)S

−1
1 (λ) S2(λ)−M+(λ)S

−1
1 (λ)Ω0(λ)

)
.(4.11)

Proof. Let Z+(·, λ) ∈ L2
∆[H] be the operator solution of (3.3) defined in Proposition 3.6

and let Γ′
0 and Γ′

1 be the linear mappings (3.14) and (3.15). It follows from (3.18) (see the
proof of [2, Propositions 4.4 and 4.5]) that Γ′

0Z+(λ) = IH and Γ′
1Z+(λ) = M+(λ), λ ∈

C+. Moreover, by (3.19)

S1(λ) = Z+(a, λ)(4.12)

and the equality (3.4) yields

Z+(λ) = Y0(λ)Z+(a, λ) = Y0(λ)S1(λ).(4.13)

This implies that (Γ′
0Y0(λ))S1(λ) = IH and (Γ′

1Y0(λ))S1(λ) =M+(λ), λ ∈ C+. Therefore
the operator S1(λ) is invertible and

Γ′
0Y0(λ) = S−1

1 (λ), Γ′
1Y0(λ) =M+(λ)S

−1
1 (λ), λ ∈ C+.(4.14)

Moreover, the immediate calculations with taking (4.2) into account give Γ′
0Y0(λ) =

w1(λ) and Γ′
1Y0(λ) = −w3(λ), where w1(λ) and w3(λ) are defined by (4.4) and (4.6)
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respectively. Therefore by (4.14)

w1(λ) = S−1
1 (λ), w3(λ) = −M+(λ)S

−1
1 (λ), λ ∈ C+.(4.15)

Next, in view of (4.15) one has

S−1
1 (λ)Ω0(λ)=w1(λ)Ω0(λ), S2(λ)−M+(λ)S

−1
1 (λ)Ω0(λ)=S2(λ)+w3(λ)Ω0(λ).(4.16)

Since w1(λ) is invertible, it follows from (4.4) that the operator
(
−iB21(λ) −i(B22(λ)− I)
B11(λ) B12(λ)

)

is invertible as well. Let

(
x1(λ) x2(λ)
x3(λ) x4(λ)

)
:=

(
−iB21(λ) −i(B22(λ)− I)
B11(λ) B12(λ)

)−1

, so that

−iB21(λ)x1(λ)− i(B22(λ)− I
Ĥ
)x3(λ) = I

Ĥ
, B11(λ)x1(λ) +B12(λ)x3(λ) = 0,(4.17)

−iB21(λ)x2(λ)− i(B22(λ)− I
Ĥ
)x4(λ) = 0, B11(λ)x2(λ) +B12(λ)x4(λ) = IH .(4.18)

Since S1(λ) = w−1
1 (λ), it follows from (4.4) that

(4.19) S1(λ) =



−ix1(λ)B23(λ) + x2(λ)B13(λ) x1(λ) x2(λ)
−ix3(λ)B23(λ) + x4(λ)B13(λ) x3(λ) x4(λ)

−IH 0 0


 .

Comparing (4.19) with (4.9) one gets

M11(λ) = −ix1(λ)B23(λ) + x2(λ)B13(λ), M12(λ) = x1(λ),(4.20)

M21(λ) = −ix3(λ)B23(λ) + x4(λ)B13(λ), M22(λ) = x3(λ) +
i
2IĤ .(4.21)

Moreover, by (4.15) one has M+(λ) = −w3(λ)S1(λ). Combining of this equality with
(4.6) and (4.19) yields

M31(λ) =−B31(λ)(−ix1(λ)B23(λ) + x2(λ)B13(λ))(4.22)

−B32(λ)(−ix3(λ)B23(λ) + x4(λ)B13(λ)) +B33(λ),

M32(λ) =−B31(λ)x1(λ)−B32(λ)x3(λ).(4.23)

Substituting (4.20)–(4.23) into the right hand sides of (4.8) and (4.10) one obtains the
representation of Ω0(λ) and S2(λ) by means of Bij(λ) and xj(λ). Moreover, (4.4)
and (4.6) give similar representation of w1(λ) and w3(λ). Now the direct calcula-
tions with taking (4.17) and (4.18) into account yield w1(λ)Ω0(λ) = w2(λ) and S2(λ) +
w3(λ)Ω0(λ) = w4(λ), where w2(λ) and w4(λ) are given by (4.5) and (4.7) respectively.
This and (4.16) imply

(4.24) w2(λ) = S−1
1 (λ)Ω0(λ), w4(λ) = S2(λ)−M+(λ)S

−1
1 (λ)Ω0(λ), λ ∈ C+.

Substituting (4.15) and (4.24) into (4.3) one gets the representation (4.11) of W (λ). �

Lemma 4.2. Assume that K, H and H are Hilbert spaces, H1 is a subspace in H,
H2 := H⊖H1, P1 = PH,H1

(∈ [H,H1]) is the orthoprojector in H onto H1 and P2(∈ [H])
is the orthoprojector in H onto H2. Moreover, let

(
a1(λ) a2(λ)
a3(λ) a4(λ)

)
: K ⊕H → K⊕H1, (ϕ1(λ), ϕ2(λ)) : K ⊕H → H, λ ∈ E

be the operator functions defined on a set E ⊂ C and satisfying

a1(µ)− a∗1(λ) = (µ− λ)ϕ∗
1(λ)ϕ1(µ), a2(µ)− a∗3(λ)P1 = (µ− λ)ϕ∗

1(λ)ϕ2(µ),(4.25)

a4(µ)− a∗4(λ)P1 + iP2 = (µ− λ)ϕ∗
2(λ)ϕ2(µ), µ, λ ∈ E(4.26)
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(in (4.26) a4(µ) is considered as an operator in H). Assume also that a2(λ) is invertible
and let(
w1(λ) w2(λ)
w3(λ) w4(λ)

)
:=

(
a−1
2 (λ) a−1

2 (λ)a1(λ)
−a4(λ)a

−1
2 (λ) a3(λ)− a4(λ)a

−1
2 (λ)a1(λ)

)
: K ⊕K → H⊕H1,

Q0(λ) :=ϕ2(λ)a
−1
2 (λ)(∈ [K,H]), Q1(λ) :=−ϕ1(λ) + ϕ2(λ)a

−1
2 (λ)a1(λ)(∈ [K,H]), λ∈E.

Then for all µ, λ ∈ E the following identities hold:

iw∗
1(λ)P2w1(µ)− w∗

1(λ)w3(µ) + w∗
3(λ)P1w1(µ) = (µ− λ)Q∗

0(λ)Q0(µ),(4.27)

iw∗
2(λ)P2w1(µ)− w∗

2(λ)w3(µ) + w∗
4(λ)P1w1(µ)− IK = (µ− λ)Q∗

1(λ)Q0(µ),(4.28)

iw∗
2(λ)P2w2(µ)− w∗

2(λ)w4(µ) + w∗
4(λ)P1w2(µ) = (µ− λ)Q∗

1(λ)Q1(µ).(4.29)

Proof. By using (4.25) and (4.26) one gets

iw∗
1(λ)P2w1(µ)− w∗

1(λ)w3(µ) + w∗
3(λ)P1w1(µ)

= ia−1∗
2 (λ)P2a

−1
2 (µ) + +a−1∗

2 (λ)a4(µ)a
−1
2 (µ)− a−1∗

2 (λ)a∗4(λ)P1a
−1
2 (µ)

= a−1∗
2 (λ)(iP2 + a4(µ)− a∗4(λ)P1)a

−1
2 (µ)

= (µ− λ)a−1∗
2 (λ)ϕ∗

2(λ)ϕ2(µ)a
−1
2 (µ) = (µ− λ)Q∗

0(λ)Q0(µ);

iw∗
2(λ)P2w1(µ)− w∗

2(λ)w3(µ) + w∗
4(λ)P1w1(µ)− IK

= a∗1(λ)a
−1∗
2 (λ)(a4(µ)− a∗4(λ)P1 + iP2)a

−1
2 (µ)− (a2(µ)− a∗3(λ)P1)a

−1
2 (µ)

= (µ− λ)
[
a∗1(λ)a

−1∗
2 (λ)ϕ∗

2(λ)ϕ2(µ)a
−1
2 (µ)− ϕ∗

1(λ)ϕ2(µ)a
−1
2 (µ)

]

= (µ− λ)Q∗
1(λ)Q0(µ);

iw∗
2(λ)P2w2(µ)− w∗

2(λ)w4(µ) + w∗
4(λ)P1w2(µ)

= ia∗1(λ)a
−1∗
2 (λ)P2a

−1
2 (µ)a1(µ)− a∗1(λ)a

−1∗
2 (λ)a3(µ)

+ a∗1(λ)a
−1∗
2 (λ)a4(µ)a

−1
2 (µ)a1(µ)

+ a∗3(λ)P1a
−1
2 (µ)a1(µ)− a∗1(λ)a

−1∗
2 (λ)a∗4(λ)P1a

−1
2 (µ)a1(µ)

= a∗1(λ)a
−1∗
2 (λ)(iP2 + a4(µ)− a∗4(λ)P1)a

−1
2 (µ)a1(µ)

− (a2(µ)− a∗3(λ)P1)a
−1
2 (µ)a1(µ)

− a∗1(λ)a
−1∗
2 (λ)(a3(µ)− a∗2(λ)) + (a1(µ)− a∗1(λ))

= (µ− λ)
[
a∗1(λ)a

−1∗
2 (λ)ϕ∗

2(λ)ϕ2(µ)a
−1
2 (µ)a1(µ)

− ϕ∗
1(λ)ϕ2(µ)a

−1
2 (µ)a1(µ)

− a∗1(λ)a
−1∗
2 (λ)ϕ∗

2(λ)ϕ1(µ) + ϕ∗
1(λ)ϕ1(µ)

]

= (µ− λ)Q∗
1(λ)Q1(µ).

This proves (4.27)–(4.29). �

Lemma 4.2 is used in the proof of the following proposition.

Proposition 4.3. Assume that H1 ⊂ H is the subspace (3.13), H2 = H⊖H1(= H⊖Hb),
P1 = PH,H1

(∈ [H,H1]) is the orthoprojector in H onto H1 and P2(∈ [H]) is the or-
thoprojector in H onto H2. Moreover, let W (·) be the operator function (4.3) and let
Y1(·, λ) ∈ L2

∆[H], λ ∈ C+, be a solution of Eq. (3.3) satisfying Y1(a, λ) =
1
2J . Then for
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all λ, µ ∈ C+

iw∗
1(λ)P2w1(µ)− w∗

1(λ)w3(µ) + w∗
3(λ)P1w1(µ)(4.30)

= (µ− λ)

∫

I

Y ∗
0 (t, λ)∆(t)Y0(t, µ) dt,

iw∗
2(λ)P2w1(µ)− w∗

2(λ)w3(µ) + w∗
4(λ)P1w1(µ)− IH

= (µ− λ)

∫

I

Y ∗
1 (t, λ)∆(t)Y0(t, µ) dt,

iw∗
2(λ)P2w2(µ)− w∗

2(λ)w4(µ) + w∗
4(λ)P1w2(µ)(4.31)

r = (µ− λ)

∫

I

Y ∗
1 (t, λ)∆(t)Y1(t, µ) dt.

The identities (4.30)–(4.31) mean that

W ∗(λ)J2W (µ)− J1 = (µ− λ)

∫

I

Ỹ ∗(t, λ)∆(t)Ỹ (t, µ) dt, λ, µ ∈ C+,

where Ỹ (t, λ) = (Y0(t, λ), Y1(t, λ)) : H⊕H → H, λ ∈ C+, and

(4.32) J1 =

(
0 −IH
IH 0

)
: H⊕H → H⊕H, J2 =

(
iP2 −IH1

P1 0

)
: H⊕H1 → H⊕H1.

Proof. Let M+(·) be the Weyl function (3.17) of the decomposing boundary triplet Π+

for Tmax, let Ω0(λ), S1(λ) and S2(λ) be given by (4.8)–(4.10) and let

(4.33)

(
a1(λ) a2(λ)
a3(λ) a4(λ)

)
:=

(
Ω0(λ) S1(λ)
S2(λ) M+(λ)

)
: H⊕H → H⊕H1, λ ∈ C+.

Assume also that

γ+(λ) = (γ0(λ), γ̂(λ), γ1(λ)) : H ⊕ Ĥ ⊕H → L2
∆(I), λ ∈ C+,

is the block matrix representation of the γ-field γ+(·) of Π+ and let

(4.34) ϕ1(λ) = (γ0(λ), γ̂(λ), 0) : H ⊕ Ĥ ⊕H → L2
∆(I), λ ∈ C+.

Then according to equalities (2.9) and (4.76) in [27] one has

Ω0(µ)− Ω∗
0(λ) = (µ− λ)ϕ∗

1(λ)ϕ1(µ), S1(µ)− S∗
1 (λ)P1 = (µ− λ)ϕ∗

1(λ)γ+(µ),

M+(µ)−M∗
+(λ)P1 + iP2 = (µ− λ)γ∗+(λ)γ+(µ), µ, λ ∈ C+.

Moreover, W (λ) admits the representation (4.11). Now applying Lemma 4.2 to (4.33)
and W (λ) one gets the identities (4.27)–(4.29) with

(4.35) Q0(λ) = γ+(λ)S
−1
1 (λ), Q1(λ) = −ϕ1(λ) + γ+(λ)S

−1
1 (λ)Ω0(λ), λ ∈ C+.

Let us show that

(4.36) Q0(λ) = π∆Y0(λ) and Q1(λ) = π∆Y1(λ),

where Yj(λ) : H → Nλ is the linear mapping (3.7) for the solution Yj(·, λ), j ∈ {0, 1}.
It follows from (3.18) and (4.13) that

(4.37) γ+(λ) = π∆Y0(λ)S1(λ), λ ∈ C+.

Moreover, by (4.34) ϕ1(λ) = γ+(λ)X, where

X =



IH 0 0
0 I

Ĥ
0

0 0 0


 : H ⊕ Ĥ ⊕H → H ⊕ Ĥ ⊕H.

Therefore in view of (4.37) one has

(4.38) ϕ1(λ) = π∆Y0(λ)S1(λ)X, λ ∈ C+.
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Combining the first equality in (4.35) with (4.37) one gets the first equality in (4.36).
Moreover, combining of (4.37) and (4.38) with the second equality in (4.35) yields

Q1(λ) = π∆Y0(λ)(Ω0(λ)− S1(λ)X)

and the immediate calculations give Ω0(λ) − S1(λ)X = 1
2J . Observe also that by (3.4)

Y1(λ) = Y0(λ)(
1
2J). Hence Q1(λ) = π∆Y0(λ)(

1
2J) = π∆Y1(λ), which proves the second

equality in (4.36).
Applying [2, Lemma 3.3] to (4.36) one gets

Q∗
j (λ)f̃ =

∫

I

Y ∗
j (t, λ)∆(t)f(t) dt, f̃ ∈ L2

∆(I), f(·) ∈ f̃ , j ∈ {0, 1},

and, consequently,

Q∗
j (λ)Qk(µ) =

∫

I

Y ∗
j (t, λ)∆(t)Yk(t, µ) dt, j, k ∈ {0, 1}.

Now the identities (4.30)–(4.31) are implied by (4.27)–(4.29). �

4.2. The case of the quasi-regular system.

Theorem 4.4. For system (3.2) the following assertions are equivalent:

(1) The relation Tmin has maximal deficiency indices n+(Tmin) = n−(Tmin) = dimH.
(2) Y0(·, λ) ∈ L2

∆[H] for all λ ∈ C.

(3) There exists λ0 ∈ C such that Y0(·, λ0) ∈ L2
∆[H] and Y0(·, λ0) ∈ L2

∆[H].

We omit the proof of this theorem, because it is similar to the proof of the corres-
ponding statements for differential operators (see e.g. [29]).

Definition 4.5. Symmetric system (3.2) is said to be quasi-regular if at least one (and
hence all) of the conditions (1)–(3) are satisfied.

Recall also that system (3.2) is called regular if it is defined on a compact interval
I = [a, b]. Clearly, each regular system is quasi-regular.

It follows from Lemma 3.4 that in the case of the quasi-regular system there exists a
surjective linear mapping

Γb =



Γ0b

Γ̂b

Γ1b


 : dom Tmax → H ⊕ Ĥ ⊕H︸ ︷︷ ︸

H

(4.39)

such that

(4.40) [y, z]b = (Γ0by,Γ1bz)− (Γ1by,Γ0bz) + i(Γ̂by, Γ̂bz), y, z ∈ dom Tmax.

This means that Γb is a linear mapping from dom Tmax onto H satisfying

(4.41) [y, z]b = (JΓby,Γbz), y, z ∈ dom Tmax.

In this subsection we assume that system (3.2) is quasi-regular and that Γb is a surjective
linear mapping (4.39) satisfying (4.40). Then the equality B(λ) = ΓbY0(λ), λ ∈ C,

defines an entire [H]-valued function B(·), which admits the block matrix representation
(4.2) with Hb = H.

For each λ ∈ C we put

(4.42) W (λ) =

(
w1(λ) w2(λ)
w3(λ) w4(λ)

)
: H⊕H → H⊕H,

where the entries wj(λ), j ∈ {1, 2, 3, 4}, are defined by (4.4)–(4.7) with Hb = H.
Clearly, W (·) is an [H⊕H]-valued entire function.

Next, the decomposing boundary triplet Π+ becomes an ordinary boundary triplet
Π = {H,Γ0,Γ1} for Tmax with mappings Γ0 and Γ1 given by (3.16) and (3.14), (3.15).
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By using the arguments similar to those in the previous subsection one can easily
prove the following two propositions.

Proposition 4.6. Assume that system (3.2) is quasi-regular. Let

M(λ) =



M11(λ) M12(λ) M13(λ)
M21(λ) M22(λ) M23(λ)
M31(λ) M32(λ) M33(λ)


 : H ⊕ Ĥ ⊕H︸ ︷︷ ︸

H

→ H ⊕ Ĥ ⊕H︸ ︷︷ ︸
H

, λ ∈ C \ R

be the block matrix representation of the Weyl function M(·) corresponding to the decom-
posing boundary triplet Π = {H,Γ0,Γ1} for Tmax and let Ω0(λ), S1(λ) and S2(λ) be the
[H]-valued functions defined for λ ∈ C \ R by (4.8), (4.9) and (4.10) respectively (with
Hb = H). Then for each λ ∈ C \ R the operator function W (λ) admits the representa-
tion (4.11).

Proposition 4.7. Let system (3.2) be quasi-regular and let Y0(·, λ) ∈ L2
∆[H] and

Y1(·, λ) ∈ L2
∆[H], λ ∈ C, be operator solutions of (3.3) satisfying Y0(a, λ) = IH and

Y1(a, λ) =
1
2J . Then for all λ, µ ∈ C the following identities hold:

−w∗
1(λ)w3(µ) + w∗

3(λ)w1(µ) = (µ− λ)

∫

I

Y ∗
0 (t, λ)∆(t)Y0(t, µ) dt,(4.43)

−w∗
2(λ)w3(µ) + w∗

4(λ)w1(µ)− IH = (µ− λ)

∫

I

Y ∗
1 (t, λ)∆(t)Y0(t, µ) dt,(4.44)

−w∗
2(λ)w4(µ) + w∗

4(λ)w2(µ) = (µ− λ)

∫

I

Y ∗
1 (t, λ)∆(t)Y1(t, µ) dt.(4.45)

This means that

W ∗(λ)J1W (µ)− J1 = (µ− λ)

∫

I

Ỹ ∗(t, λ)∆(t)Ỹ (t, µ) dt, λ, µ ∈ C,(4.46)

where J1 is given by the firs equality in (4.32) and

Ỹ (t, λ) = (Y0(t, λ), Y1(t, λ)) : H⊕H → H, λ ∈ C.(4.47)

A somewhat other representation of the operator function W (λ) is given in the fol-
lowing proposition.

Proposition 4.8. Let the assumptions of Proposition 4.7 be fulfilled and let Y2(·, λ) ∈
L2
∆[H] and Y3(·, λ) ∈ L2

∆[H], λ ∈ C, be operator solutions of (3.3) satisfying

(4.48) Y2(a, λ) =



0 0 0
0 I

Ĥ
0

0 0 −IH


 , Y3(a, λ) =



0 0 IH
0 i

2IĤ 0
0 0 0


 .

Then:
(1) for each y ∈ dom Tmax there exists the limit

(4.49) Γby := lim
t↑b

(−JY ∗
0 (t, 0)Jy(t)), y ∈ dom Tmax,

and the equality (4.49) defines a surjective linear mapping Γb : dom Tmax → H satisfying
(4.41). Moreover, the corresponding operator function B(λ)(= ΓbY0(λ)) is

(4.50) B(λ) = lim
t↑b

(−JY ∗
0 (t, 0)JY0(t, λ)), λ ∈ C.
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(2) If Γb is defined by (4.49), then the entries of the corresponding operator function
W (λ) (see (4.42)) admit the representation

w1(λ) = C1 − λ

∫

I

Y ∗
2 (t, 0)∆(t)Y0(t, λ) dt, w2(λ) = C2 − λ

∫

I

Y ∗
2 (t, 0)∆(t)Y1(t, λ) dt,

(4.51)

w3(λ) = C3 − λ

∫

I

Y ∗
3 (t, 0)∆(t)Y0(t, λ) dt, w2(λ) = C4 − λ

∫

I

Y ∗
3 (t, 0)∆(t)Y1(t, λ) dt

(4.52)

with the operators Cj ∈ [H ⊕ Ĥ ⊕H] given by

C1 =




0 0 −IH
0 0 0
IH 0 0


 , C2 =




1
2IH 0 0
0 I

Ĥ
0

0 0 − 1
2IH


 ,(4.53)

C3 =



−IH 0 0
0 −I

Ĥ
0

0 0 IH


 , C4 =




0 0 − 1
2IH

0 0 0
1
2IH 0 0


 .(4.54)

Proof. (1) It is well known (see e.g. [11]) that Y ∗
0 (t, 0)JY0(t, 0) = J and, consequently,

Y −1
0 (t, 0) = −JY ∗

0 (t, 0)J, t ∈ I. For each function y ∈ dom Tmax put

Fy(t) = Y −1
0 (t, 0)y(t) = −JY ∗

0 (t, 0)Jy(t).(4.55)

Let h̃ ∈ H and let z(t) = Y0(t, 0)h̃. Then

[y, z]b = lim
t↑b

(Jy(t), Y0(t, 0)h̃) = lim
t↑b

(JY0(t, 0)Fy(t), Y0(t, 0)h̃) = − lim
t↑b

(Fy(t), Jh̃).

This and (4.55) yield existence of the limit (4.49). Next, for each h̃ ∈ H one has

Γb(Y0(·, 0)h̃) = h̃, so that the mapping Γb is surjective. Moreover, for any y, z ∈ dom Tmax

one has

[y, z]b = lim
t↑b

(JY0(t, 0)Fy(t), Y0(t, 0)Fz(t)) = lim
t↑b

(JFy(t), Fz(t)) = (JΓby,Γbz),

which proves (4.41). Finally, (4.50) directly follows from (4.49).
(2) Since by (4.46) W ∗(0)J1W (0) = J1, it follows that (W ∗(0)J1)

−1 = −W (0)J1.
This and (4.46) yield

W (λ) =W (0)− λW (0)J1

∫

I

Ỹ ∗(t, 0)∆(t)Ỹ (t, λ) dt, λ ∈ C.(4.56)

By (4.50) B(0) = IH and (4.3)–(4.7) give the equality

W (0) =

(
C1 C2

C3 C4

)
: H⊕H → H⊕H,(4.57)

where Cj are defined by (4.53) and (4.54). Moreover, the immediate calculation with
taking (4.47) and (4.57) into account gives

(4.58)

W (0)J1

∫

I

Ỹ ∗(t, 0)∆(t)Ỹ (t, λ) dt

=

(∫
I
Y ∗
2 (t, 0)∆(t)Y0(t, λ) dt

∫
I
Y ∗
2 (t, 0)∆(t)Y1(t, λ) dt∫

I
Y ∗
3 (t, 0)∆(t)Y0(t, λ) dt

∫
I
Y ∗
3 (t, 0)∆(t)Y1(t, λ) dt

)
,

where

Y2(t, λ) = Y0(t, λ)C
∗
2 − Y1(t, λ)C

∗
1 = Y0(t, λ)(C

∗
2 − 1

2JC
∗
1 ),

Y3(t, λ) = Y0(t, λ)C
∗
4 − Y1(t, λ)C

∗
3 = Y0(t, λ)(C

∗
4 − 1

2JC
∗
3 ).
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Hence Y2(·, λ) and Y3(·, λ) are operator solutions of (3.3) with

Y2(a, λ) = C∗
2 − 1

2JC
∗
1 , Y3(a, λ) = C∗

4 − 1
2JC

∗
3

and the immediate checking gives the equalities (4.48). Now combining (4.56) with (4.57)
and (4.58) we arrive at statement (2) of the proposition. �

5. Description of characteristic matrices and pseudospectral functions

5.1. Characteristic matrices. Recall that the operator function R(·) : C\R → [L2
∆(I)]

is called a generalized resolvent of Tmin if there exist a Hilbert space H̃ ⊃ L2
∆(I) and a

self-adjoint linear relation T̃ in H̃ such that Tmin ⊂ T̃ and

R(λ) = PL2

∆
(I)(T̃ − λ)−1 ↾ L2

∆(I), λ ∈ C \ R.

The following theorem is well known (see e.g. [5, 8, 32]).

Theorem 5.1. For each generalized resolvent R(λ) of Tmin there exists a unique operator

function Ω(·) : C \ R → [H] such that for each f̃ ∈ L2
∆(I) and λ ∈ C \ R

(5.1) R(λ)f̃ = π∆

(∫

I

Y0(·, λ)(Ω(λ) +
1
2 sgn(t− x)J)Y ∗

0 (t, λ)∆(t)f(t) dt
)
, f ∈ f̃ .

Moreover, Ω(·) is a Nevanlinna operator function.

Definition 5.2. [5, 32]. The operator function Ω(·) is called the characteristic matrix
of the symmetric system (3.2) corresponding to the generalized resolvent R(λ).

Everywhere below we suppose that the assumptions (A1) and (A2) from Section 4.1
are satisfied.

Let H1 be the subspace (3.13) of H and let τ = {τ+, τ−} be a collection of holomorphic

functions τ±(·) : C± → C̃(H,H1).

Definition 5.3. A collection τ = {τ+, τ−} is called a boundary parameter if it belongs

to the class R̃+(H,H1) in the sense of [26].

According to [26] a boundary parameter τ = {τ+, τ−} admits the representation

(5.2) τ+(λ) = {(C0(λ), C1(λ));H}, λ ∈ C+; τ−(λ) = {(D0(λ), D1(λ));H1}, λ ∈ C−

by means of two pairs of holomorphic operator functions

(C0(λ), C1(λ)) : H⊕H1 → H, λ ∈ C+, and (D0(λ), D1(λ)) : H⊕H1 → H1, λ ∈ C−

with special properties (more precisely, by equivalence classes of such pairs). The equ-
alities (5.2) mean that

τ+(λ) = {{h̃, h1} ∈ H⊕H1 : C0(λ)h̃+ C1(λ)h1 = 0}, λ ∈ C+,

τ−(λ) = {{h̃, h1} ∈ H⊕H1 : D0(λ)h̃+D1(λ)h1 = 0}, λ ∈ C−.

In the case of the quasi-regular system one has H1 = H and a boundary parameter

τ is a function τ(·) : C \ R → C̃(H) belonging to the well known Nevanlinna class R̃(H)
(see e.g [6]). Such τ admits the representation in the form of a Nevanlinna operator pair

(5.3) τ(λ) = {(C0(λ), C1(λ));H}, λ ∈ C \ R,

with [H]-valued functions C0(λ) and C1(λ) satisfying for λ ∈ C\R the following relations:

(5.4) Imλ · Im(C1(λ)C
∗
0 (λ))≥0, C1(λ)C

∗
0 (λ)−C0(λ)C

∗
1 (λ)=0, ran (C0(λ), C1(λ))= H.
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If in addition τ(λ) ≡ θ(= θ∗), λ ∈ C \ R, then a boundary parameter τ is called
self-adjoint. Such a boundary parameter admits the representation in the form of a
self-adjoint operator pair

(5.5) τ(λ) ≡ {(C0, C1);H}, λ ∈ C \ R, C0, C1 ∈ [H].

For each boundary parameter τ = {τ+, τ−} of the form (5.2) we assume that

C0(λ) = (C0a(λ), Ĉ0(λ), C0b(λ)) : H ⊕ Ĥ ⊕H → H, λ ∈ C+,(5.6)

C1(λ) = (C1a(λ), Ĉ1(λ), C1b(λ)) : H ⊕ Ĥ ⊕Hb → H, λ ∈ C+(5.7)

are the block matrix representations of C0(λ) and C1(λ).
The following lemma is immediate from [27, Lemma 4.2].

Lemma 5.4. Let H be decomposed as H = Hb ⊕H⊥
b , so that

H1(= H ⊕ Ĥ ⊕Hb) = Hb ⊕ (H⊥
b ⊕ Ĥ)⊕Hb.

Assume also that Jb ∈ [H1] is the operator (1.9). Then the equalities

Ca(λ) = (−C1a(λ), iĈ0(λ)−
1
2 Ĉ1(λ), −C0a(λ)) : H ⊕ Ĥ ⊕H → H, λ ∈ C+(5.8)

Cb(λ) = (C0b(λ), −iĈ0(λ)−
1
2 Ĉ1(λ), C1b(λ)) : H ⊕ Ĥ ⊕Hb → H, λ ∈ C+(5.9)

establish a bijective correspondence between all boundary parameters τ = {τ+, τ−} of the
form (5.2) and (5.6), (5.7) and all holomorphic operator functions

(5.10) (Ca(λ), Cb(λ)) : H⊕H1 → H, λ ∈ C+

satisfying (1.10). If in addition system (3.2) is quasi-regular, then the relations (5.6)–
(5.10) and (1.10) hold with Hb = H, H1 = H and Jb = J ; moreover, in this case Ca(λ)
and Cb(λ) are defined on C \ R.

Let τ = {τ+, τ−} be a boundary parameter (5.2). For a given function f ∈ L2
∆(I)

consider the boundary problem

Jy′ −B(t)y = λ∆(t)y +∆(t)f(t), t ∈ I,(5.11)

C0(λ)Γ
′
0y − C1(λ)Γ

′
1y = 0, λ ∈ C+; D0(λ)Γ

′
0y −D1(λ)Γ

′
1y = 0, λ ∈ C−,(5.12)

where Γ′
0y ∈ H and Γ′

1y ∈ H1 are defined by (3.14) and (3.15). According to [27, (4.26)]
the first equality in (5.12) admits the representation

(5.13) Ca(λ)y(a) + Cb(λ)Γb(y) = 0, λ ∈ C+,

where Ca(λ) and Cb(λ) are defined by (5.8) and (5.9) and hence satisfy (1.10).
If system is quasi-regular and τ is a boundary parameter (5.3), then boundary condi-

tions (5.12) take one of the following equivalent form:

(5.14) C0(λ)Γ
′
0y − C1(λ)Γ

′
1y = 0 ⇐⇒ Ca(λ)y(a) + Cb(λ)Γb(y) = 0, λ ∈ C \ R.

Theorem 5.5. Let τ = {τ+, τ−} be a boundary parameter (5.2). Then for every f ∈
L2
∆(I) the boundary problem (5.11), (5.12) has a unique solution y(t, λ) = yf (t, λ) and

the equality

R(λ)f̃ = π∆(yf (·, λ)), f̃ ∈ L2
∆(I), f ∈ f̃ , λ ∈ C \ R

defines a generalized resolvent R(λ) =: Rτ (λ) of Tmin. Conversely, for each generalized
resolvent R(λ) of Tmin there exists a unique boundary parameter τ such that R(λ) =
Rτ (λ).

If in addition system (3.2) is quasi-regular, then the above statements hold with the
boundary parameter τ of the form (5.5) and the boundary condition (5.14) in place of
(5.12).
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Proof. Let Π+ = {H ⊕ H1,Γ0,Γ1} be a decomposing boundary triplet (3.16) for Tmax.
Applying to this triplet [26, Theorem 3.11] one obtains the required statements. �

According to Theorem 5.5 the boundary problem (5.11), (5.12) induces a bijective
correspondence R(λ) = Rτ (λ) between boundary parameters τ and generalized resolvents
R(λ) of Tmin. In the following we denote by Ωτ (·) the characteristic matrix corresponding
to Rτ (·). Clearly, the equality Ω(·) = Ωτ (·) gives a parametrization of all characteristic
matrices of the system (3.2) by means of a boundary parameter τ . In the following
theorem we represent this parametrization in the explicit form.

Theorem 5.6. Assume that n+(Tmin) = dimH. Moreover, let Hb be a subspace in H,
let Γb be a surjective linear mapping (3.9) satisfying (3.10) let B(λ) = ΓbY0(λ), λ ∈ C+,

and let W (λ) be the operator function given by (4.3)–(4.7). Then for each boundary
parameter τ = {τ+, τ−} of the form (5.2) the operator C0(λ)w1(λ)+C1(λ)w3(λ), λ ∈ C+,

is invertible and the corresponding characteristic matrix Ωτ (·) is

(5.15) Ωτ (λ) = (C0(λ)w1(λ) + C1(λ)w3(λ))
−1(C0(λ)w2(λ) + C1(λ)w4(λ)), λ ∈ C+.

Moreover, Ωτ (·) can be represented as

(5.16) Ωτ (λ) = − 1
2 (Ca(λ) + Cb(λ)B(λ))−1(Ca(λ)− Cb(λ)B(λ))J, λ ∈ C+,

where Ca(λ) and Cb(λ) are defined by (5.8) and (5.9).

Proof. It follows from [27, Theorem 4.6] that

(5.17) Ωτ (λ) = Ω0(λ) + S1(λ)(C0(λ)− C1(λ)M+(λ))
−1C1(λ)S2(λ), λ ∈ C+,

where M+(λ) is the Weyl function (3.17) and Ω0(λ), S1(λ) and S2(λ) are given by
(4.8)–(4.10). Moreover, by Proposition 4.1 S1(λ) is invertible. Hence

Ωτ (λ) = Ω0(λ) + (C0(λ)S
−1
1 (λ)− C1(λ)M+(λ)S

−1
1 (λ))−1C1(λ)S2(λ)

= (C0(λ)S
−1
1 (λ)− C1(λ)M+(λ)S

−1
1 (λ))−1

[
(C0(λ)S

−1
1 (λ)

− C1(λ)M+(λ)S
−1
1 (λ))Ω0(λ) + C1(λ)S2(λ)

]

= (C0(λ)S
−1
1 (λ)− C1(λ)M+(λ)S

−1
1 (λ))−1

[
C0(λ)S

−1
1 (λ)Ω0(λ)

+ C1(λ)(S2(λ)−M+(λ)S
−1
1 (λ)Ω0(λ)

)
], λ ∈ C+,

which in view of (4.11) yields (5.15). To prove (5.16) note that C0(λ) = Ca(λ)X1 +
Cb(λ)X3 and C1(λ) = Ca(λ)X2 + Cb(λ)X4, where

X1 =




0 0 0
0 − i

2I 0
−I 0 0


 , X2 =



−I 0 0
0 −I 0
0 0 0


 , X3 =



0 0 I

0 i
2I 0

0 0 0


 ,

X4 =



0 0 0
0 −I 0
0 0 I


 .

Therefore

C0(λ)w1(λ) + C1(λ)w3(λ)

= Ca(λ)(X1w1(λ) +X2w3(λ)) + Cb(λ)(X3w1(λ) +X4w3(λ)),

C0(λ)w2(λ) + C1(λ)w4(λ)

= Ca(λ)(X1w2(λ) +X2w4(λ)) + Cb(λ)(X3w2(λ) +X4w4(λ))
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and the immediate calculations with taking (4.4)–(4.7) into account give

X1w1(λ) +X2w3(λ) = I, X3w1(λ) +X4w3(λ) = B(λ),
X1w2(λ) +X2w4(λ) = − 1

2J, X3w2(λ) +X4w4(λ) =
1
2B(λ)J.

Hence C0(λ)w1(λ) + C1(λ)w3(λ) = Ca(λ) + Cb(λ)B(λ), C0(λ)w2(λ) + C1(λ)w4(λ) =
− 1

2 (Ca(λ)− Cb(λ)B(λ))J and (5.16) follows from (5.15). �

In the case of the quasi-regular system Theorem 5.6 can be rather simplified. Namely,
the following corollary is obvious.

Corollary 5.7. Assume that system (3.2) is quasi-regular. Moreover, let Γb be a sur-
jective linear mapping (4.39) satisfying (4.40), let B(λ) = ΓbY0(λ), λ ∈ C, and let
W (λ) be the operator function given by (4.42) and (4.4)–(4.7). Then for each boundary
parameter τ of the form (5.3) the corresponding characteristic matrix Ωτ (·) admits the
representations (5.15) and (5.16) for all λ ∈ C \ R.

Corollary 5.8. [20]. Let system (3.2) be regular. Then the equalities (1.5) and (5.1)
give a 1,1-correspondence between all holomorphic operator functions (Ca(λ), Cb(λ)) :
H⊕H → H, λ ∈ C+, satisfying (1.6) and all generalized resolvents R(λ) of Tmin.

The statement of this corollary directly follows from Theorem 5.1 and Corollary 5.7,
if we only put Γby = y(b), y ∈ dom Tmax.

5.2. Pseudospectral and spectral functions. Recall that a non-decreasing operator
function Σ(·) : R → [H] is called a distribution function if it is left continuous and
satisfies Σ(0) = 0. With each distribution function Σ(·) one associates a semi-Hilbert
space L2(Σ;H) of all Borel-measurable functions f(·) : R → H satisfying

||f ||2L2(Σ;H) :=

∫

R

(dΣ(s)f(s), f(s)) <∞

and the Hilbert space L2(Σ;H) of all equivalence classes in L2(Σ;H) with respect to the
seminorm || · ||L2(Σ;H) (for more details see e.g. [9]). In the following we denote by πΣ
the quotient map from L2(Σ;H) onto L2(Σ;H).

Let Hb the set of all f̃ ∈ L2
∆(I) with the following property: there exists β

f̃
∈ I such

that for some (and hence for all) function f ∈ f̃ the equality ∆(t)f(t) = 0 holds a.e. on
(β

f̃
, b).

Definition 5.9. A distribution function Σ(·) is called a pseudospectral (resp. spectral)
function of the system (3.2) if the operator

VΣf̃ = πΣ

(∫

I

Y ∗
0 (t, ·)∆(t)f(t) dt

)
, f(·) ∈ f̃ ,

defined originally for all f̃ ∈ Hb admits a continuation to a partial isometry VΣ ∈
[L2

∆(I), L
2(Σ;H)] with kerVΣ = mulTmin (resp. to an isometry VΣ ∈ [L2

∆(I), L
2(Σ;H)].

The operator V = VΣ is called the Fourier transform corresponding to Σ(·).

In what follows we put H0 = L2
∆(I)⊖mulTmin and denote by V0 = V0,Σ the isometry

from H0 to L2(Σ;H) given by V0,Σ = VΣ ↾ H0.
In the following theorem we describe all pseudospectral functions of the system (3.2)

in terms of the boundary parameter τ .

Theorem 5.10. Assume that system (3.2) is absolutely definite. Moreover, let the as-
sumptions of Theorem 5.6 be satisfied, let P1 be the orthoprojection in H onto H1 (for
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H1 see (3.13)) and let P2 be orthoprojection in H onto H2 := H⊖H1. Then the equality
(5.15) together with the Stieltjes inversion formula

(5.18) Σ(s) = Στ (s) = lim
δ→+0

lim
ε→+0

1

π

∫ s−δ

−δ

ImΩτ (σ + iε) dσ

establishes a bijective correspondence between all boundary parameters τ = {τ+, τ−} of
the form (5.2) satisfying the conditions

lim
y→+∞

1
iy
P1w1(iy)(C0(iy)w1(iy) + C1(iy)w3(iy))

−1C1(iy) = 0,(5.19)

lim
y→+∞

1
iy
w3(iy)(C0(iy)w1(iy) + C1(iy)w3(iy))

−1C0(iy) ↾ H1 = 0(5.20)

and all pseudospectral functions Σ(·) = Στ (·) of the system (3.2). Moreover, the following
statements are valid:

(i) if lim
y→+∞

1
iy
w3(iy)w

−1
1 (iy) ↾ H1 = 0, then the condition (5.20) can be omitted;

(ii) if lim
y→+∞

1
iy
w3(iy)w

−1
1 (iy) ↾ H1 = 0 and

(5.21) lim
y→+∞

y
(
Im

(
−w3(iy)w

−1
1 (iy)h̃, h̃

)
H

+ 1
2 ||P2h̃||

2
)
= +∞, h̃ ∈ H, h̃ 6= 0,

then both the conditions (5.19) and (5.20) can be omitted.

Proof. It follows from [28, Theorem 5.4] that the equality (5.17) together with (5.18)
establishes a bijective correspondence between all boundary parameters τ = {τ+, τ−} of
the form (5.2) satisfying the conditions

lim
y→+∞

1
iy
P1(C0(iy)− C1(iy)M+(iy))

−1C1(iy) = 0,(5.22)

lim
y→+∞

1
iy
M+(iy)(C0(iy)− C1(iy)M+(iy))

−1C0(iy) ↾ H1 = 0(5.23)

and all pseudospectral functions Σ(·) = Στ (·) of the system (3.2). As was shown in the
proof of Theorem 5.6 the equality (5.17) admits the representation (5.15). Moreover, by
(4.11) one has M+(λ) = −w3(λ)w

−1
1 (λ) and, consequently,

(C0(λ)− C1(λ)M+(λ))
−1 = (C0(λ) + C1(λ)w3(λ)w

−1
1 (λ))−1

= w1(λ)(C0(λ)w1(λ) + C1(λ)w3(λ))
−1, λ ∈ C+.

Therefore the conditions (5.22) and (5.23) are equivalent to (5.19) and (5.20) respectively.
This implies the main statement of the theorem.

Finally, statements (i) and (ii) of the theorem follows from assertions (i) and (ii) just
before Theorem 5.4 in [28]. �

The following corollary is immediate from Theorem 5.10 and [28, Theorem 5.5].

Corollary 5.11. Assume that system (3.2) is absolutely definite and quasi-regular and
let the assumptions of Corollary 5.7 be satisfied. Then the equalities (5.15) and (5.18)
establish a bijective correspondence between all boundary parameters τ of the form (5.3)
satisfying the conditions

lim
y→∞

1
iy
w1(iy)(C0(iy)w1(iy) + C1(iy)w3(iy))

−1C1(iy) = 0,(5.24)

lim
y→∞

1
iy
w3(iy)(C0(iy)w1(iy) + C1(iy)w3(iy))

−1C0(iy) = 0(5.25)
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and all pseudospectral functions Σ(·) = Στ (·) of the system (3.2). Moreover, V0,Σ(∈
[H0, L

2(Σ;H)]) is a unitary operator if and only if τ is a self-adjoint boundary parameter
(5.5) (satisfying (5.24) and (5.25)).

If in addition lim
y→∞

y Im
(
−w3(iy)w

−1
1 (iy)h̃, h̃

)
= +∞, 0 6= h̃ ∈ H, then the conditions

(5.24) and (5.25) can be omitted.

The following corollary is implied by the results of [28].

Corollary 5.12. The set of spectral functions of the system (3.2) is not empty if and
only if mulTmin = {0}. Moreover, if this condition is satisfied, then Theorem 5.10 and
Corollary 5.11 are valid for spectral functions (in place of pseudo-spectral functions).
Moreover, in this case the second statement of Corollary 5.11 holds with VΣ instead
of V0,Σ.
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