TOPOLOGICAL EQUIVALENCE TO A PROJECTION

V. V. SHARKO AND YU. YU. SOROKA

ABSTRACT. We present a necessary and sufficient condition for a continuous function on a plane to be topologically equivalent to a projection onto one of the coordinates.

Let M be a connected surface, i.e., a 2-dimensional manifold. Two continuous functions $f, g: M \to \mathbb{R}$ are called *topologically equivalent*, if there exist two homeomorphisms $h: M \to M$ and $k: \mathbb{R} \to \mathbb{R}$ such that $k \circ f = g \circ h$.

A classification of continuous functions $f:M\to\mathbb{R}$ on surfaces, up to topological equivalence, was initiated in the works by M. Morse [8], [9], see also [5, 6, 7, 2, 3]. In recent years, an essential progress in the classification of such functions was made in [10, 12, 13, 1, 11].

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a continuous function. Assuming that f "has no critical points" we present a necessary and sufficient condition for f to be topologically equivalent to a linear function. First we recall some definitions from W. Kaplan [4].

Definition 1 ([4]). A curve in \mathbb{R}^2 is a homeomorphic image of the open interval (0,1). Let $U \subset \mathbb{R}^2$ be an open subset. A family of curves in U is a partition of U whose elements are curves.

A family of curves \Im in U is called regular at a point $p \in \mathbb{R}^2$, if there exist an open neighbourhood U_p of p and a homeomorphism $\varphi : (0,1) \times (0,1) \to U_p$ such that for every $y \in (0,1)$ the image $\varphi((0,1) \times y)$ is an intersection of U_p with some curve from the family \Im . Such a neighbourhood U_p is called r-neighbourhood of p.

Thus the curves of regular family are "locally parallel", however their global behaviour can be more complicated. In the present note we will consider continuous functions $f: \mathbb{R}^2 \to \mathbb{R}$ whose level-sets are "globally parallel".

One of the basic examples of such a function is a projection $g: \mathbb{R}^2 \to \mathbb{R}$ given by g(x,y)=y. Its level sets are parallel lines y= const and, in particular, they constitute a regular family of curves, see Figure 1b).

On the other hand, consider the function $f(x,y) = \arctan(x - \operatorname{tg}^2(y))$, see Figure 1a). It level sets are not connected, however, the partition into *connected components* of level sets of f is also a regular family of curves.

FIGURE 1. Level lines

The following theorem shows that connectedness of level sets is a characteristic property of a projection.

Theorem 1. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a continuous function and $\Im = \{f^{-1}(a) \mid a \in \mathbb{R}^2\}$ be the partition of \mathbb{R} by level sets of f. Suppose the following two conditions hold.

- (1) For each $p \in f(\mathbb{R}^2)$ belonging to the image of f, the corresponding level set $f^{-1}(a)$ is a curve. In particular, it is path connected.
- (2) The family of curves 3 is regular.

Then the image $f(\mathbb{R}^2)$ is an open interval (a,b), $a,b \in \mathbb{R} \cup \pm \infty$, and there is a homeomorphism $\varphi : \mathbb{R} \times (a,b) \to \mathbb{R}^2$ such that $f \circ \varphi(x,y) = y$. In other words, f is topologically equivalent to a projection.

The proof is based on the results of [4].

Let \Im be a regular family of curves in \mathbb{R}^2 . Then by [4, Theorem 16], each curve C of \Im is a proper embedding of \mathbb{R} , so it has an infinity as a sole limit point. It follows from Jordan's theorem (applied to the sphere $S^2 = \mathbb{R}^2 \cup \infty$) that each curve C of \Im divides the plane into two distinct regions, having C as the common boundary. This property allows to define the following relation for curves on \Im .

Definition 2. Three distinct curves K, L, C from \Im are in the relation K|C|L, if K and L belong to distinct components of $\mathbb{R}^2 \setminus C$.

For an open subset $U \subset \mathbb{R}^2$ let \Im_U be the partition of U by connected components of intersections of U with curves from \Im . Then \Im_U is a family of curves in U. Note also that an intersection of U with some curve from \Im may have even countable many connected components.

Definition 3. Let $p, q \in \mathbb{R}^2$. An arc [p, q], i.e., a homeomorphic image of [0, 1], connecting these points, will be called a *cross-section* relative to \Im if there exists an open set U in \mathbb{R}^2 containing [p, q] such that each curve of \Im_U meets [p, q] in U at most once.

Evidently, for every $p \in \mathbb{R}^2$, there is an arbitrary small r-neighbourhood V of p and a cross-section $[q, s] \subset V$ relative \Im passing through p.

Theorem 2. [4]. Let K, L be two distinct curves from a regular family \Im . Suppose two points $p \in L$ and $q \in K$ can be connected by a cross-section [p,q], and let S be the set of curves crossing [p,q] except for p and q. Then S forms an open point set, and the condition K|C|L is equivalent to the condition that C is contained in S.

Moreover, there is a homeomorphism $\varphi : \mathbb{R} \times [0,1] \to K \cup S \cup L$ such that $K = \varphi(\mathbb{R} \times 0)$, $L = \varphi(\mathbb{R} \times 1)$, and $\varphi(\mathbb{R} \times t)$ is a curve belonging to \Im for all $t \in (0,1)$.

Proof. First we need the following lemma.

Lemma 1. Let [p,q] be a cross-section of \Im . Then the restriction of f to [p,q] is strictly monotone. In particular, [p,q] intersects each curve in \Im in at most one point.

Proof. Suppose there exists a point $x \in [p,q]$ distinct from p and q and being a local extreme of $f|_{[p,q]}$. Let c = f(x). As mentioned above the embedding $f^{-1}(c) \subset \mathbb{R}^2$ is proper, therefore we have the following:

- (i) $f^{-1}(c)$ divides \mathbb{R}^2 into two connected components, say R_1 and R_2 and
- (ii) there exists an r-neighbourhood U of x relatively to \Im such that $U \cap f^{-1}(c)$ is a connected curve dividing U into two components, say U_1 and U_2 , such that $U_1 \subset R_1$ and $U_2 \subset R_2$.

Without loss of generality, we can assume that $[p,q] \subset U$, so that $[p,q] \setminus \{x\}$ consists of two half-open arcs $[p,x) \subset U_1$ and $(x,q] \subset U_2$. It follows that x is an *isolated* local extreme of the restriction of $f|_{[p,q]}$, whence there exist $y \in [p,x) \subset R_1$ and $z \in (x,q] \subset R_2$

such that $f(y) = f(z) \neq f(c)$. Thus $y, z \in f^{-1}(f(y)) \subset \mathbb{R}^2 \setminus f^{-1}(c) = R_1 \cup R_1$. By (1) $f^{-1}(f(y))$ is connected, and so both y and z belong either to R_1 or to R_2 . This gives a contradiction, whence x is not a local extreme of f.

For $[c,d] \subset \mathbb{R}$ denote $D_{c,d} = f^{-1}[c,d]$. Then it follows from Lemma 1 and Theorem 2 that for each cross-section [p,q] there exists a homeomorphism

$$\varphi: \mathbb{R} \times [f(p), f(q)] \longrightarrow f^{-1}[f(p), f(q)] = D_{f(p), f(q)}$$

such that $f \circ \varphi(x, y) = y$ for all $(x, y) \in \mathbb{R} \times [f(p), f(q)]$.

This also implies that the image $f(\mathbb{R}^2)$ is an open and path connected subset of \mathbb{R} , i.e., an open interval (a,b), where a and b can be infinite.

Hence we can find a countable strictly increasing sequence $\{c_i\}_{i\in\mathbb{Z}}\subset\mathbb{R}$ such that $\lim_{k\to -\infty}c_i=a, \lim_{k\to +\infty}c_k=b,$ and for each $k\in\mathbb{Z}$ a homeomorphism

$$\varphi_k : \mathbb{R} \times [c_k; c_{k+1}] \longrightarrow f^{-1}[c_k, c_{k+1}] = D_{c_k, c_{k+1}}$$

satisfying $f \circ \varphi_k(x, y) = y$.

Define a homeomorphism $\varphi: \mathbb{R} \times (a,b) \to \mathbb{R}^2$ as follows. Set

$$\varphi(x,y) = \varphi_0(x,y), \quad (x,y) \in \mathbb{R} \times [c_0, c_1].$$

Now if φ is defined on $\mathbb{R} \times [c_{k-1}, c_k]$ for some $k \geq 1$, then extend it to $\mathbb{R} \times [c_k, c_{k+1}]$ by

$$\varphi(x,y) = \varphi_k(\varphi_k^{-1} \circ \varphi(x,c_k), y), \quad (x,y) \in \mathbb{R} \times [c_k, c_{k+1}].$$

Similarly, one can extend φ to $\mathbb{R} \times (a, c_0]$. It easily follows that φ is a homeomorphism satisfying $f \circ \varphi(x, y) = y$, $(x, y) \in \mathbb{R} \times (a, b)$.

References

- V. I. Arnold, Topological classification of Morse polynomials, Differential equations and topology. I, Proc. Steklov Inst. Math., vol. 268, 2010, pp. 32-48.
- W. Boothby, The topology of the level curves of harmonic functions with critical points, Amer. J. Math. 73 (1951), 512-538.
- 3. W. Boothby, The topology of regular curve families with multiple saddle points, Amer. J. Math. 73 (1951), 405–438.
- 4. W. Kaplan, Regular curve-families filling the plane. I, Duke Math. J. 7 (1941), 154–185.
- J. A. Jenkins, M. Morse, Contour equivalent pseudoharmonic functions and pseudoconjugates, Amer. J. Math. 74 (1952), 23–51.
- J. A. Jenkins, M. Morse, Topological methods on Riemann surfaces. Pseudoharmonic functions. Contributions to the theory of Riemann surfaces, Annals of Mathematics Studies, no. 30, Princeton University Press, Princeton, N.J., 1953, pp. 111–139.
- J. A. Jenkins, M. Morse, Conjugate nets on an open Riemann surface, Lectures on Functions of a Complex Variable, ed. W. Kaplan et al., The University of Michigan Press, 1955, pp. 123-185.
- 8. M. Morse, The topology of pseudo-harmonic functions, Duke Math. J. 13 (1946), 21–42.
- M. Morse, Topological Methods in the Theory of Functions of a Complex Variable, Annals of Mathematics Studies, no. 15, Princeton University Press, Princeton, N.J., 1947.
- A. A. Oshemkov, Morse functions on two-dimensional surfaces. Encoding of singularities, Proc. Steklov Inst. Math., vol. 205, 1995, pp. 119–127.
- E. Polulyakh, I. Yurchuk, On the preudo-harmonic functions defined on a disk, Proceedings of the Institute of Mathematics of NAS of Ukraine, Kyiv, vol. 80, 2009.
- V. V. Sharko, Smooth and topological equivalence of functions on surfaces, Ukrainian Math. J. 55 (2003), no. 5, 832–846.
- V. V. Sharko, Topological equivalence of harmonic polynomials, Zb. prac' Inst. mat. NAN Ukr., Kyiv 10 (2013), no. 4–5, 542–551. (Russian)

Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs'ka, Kyiv, 01601, Ukraine

E-mail address: sharko@imath.kiev.ua

Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

E-mail address: soroka.yulya@ukr.net