Methods of Functional Analysis and Topology
Vol. 21 (2015), no. 2, pp. 189-198

THE PROJECTION SPECTRAL THEOREM AND JACOBI FIELDS

EUGENE LYTVYNOV

Dedicated to Yuri Makarovych Berezansky on the occasion of his 90th birthday

ABSTRACT. We review several applications of Berezansky’s projection spectral the-
orem to Jacobi fields in a symmetric Fock space, which lead to Lévy white noise
measures.

1. INTRODUCTION

The projection spectral theorem for a family of commuting self-adjoint (or more ge-
nerally, normal) operators and the corresponding Fourier transform in generalized joint
eigenvectors of this family play a fundamental role in functional analysis and its ap-
plications, in particular, to infinite dimensional (stochastic) analysis and mathematical
physics. In the case where the operators family has additionally a cyclic vector, these
results allow to realize the operators from the family as multiplication operators in an
L2-space with respect to a probability measure. While this theory has been studied by
quite a few authors, including Yu. Berezansky, L. Garding, I. Gelfand, A. Kostyuchechko,
G. Kats, and K. Maurin, in the most general setting, this result was proved by Berezan-
sky in [2], see also [3, 4] and Chapter 3 in [7]. In particular, the theorems of Berezansky
allow the operators family to be uncountable, which is a very natural assumption for
many applications.

In the simplest case where there is just one self-adjoint operator, this theory is deeply
connected with the theory of orthogonal polynomials on the real line, see Chapter VII
in [1]. More precisely, one starts with a Hermitian operator J in ¢5 defined on all finite
vectors. The operator J is assumed to be defined by an infinite Jacobi (i.e., tridiagonal)
matrix. Under proper conditions on this matrix, the operator .J is essentially self-adjoint
and its closure, J, can be realized (through a unitary isomorphism) as an operator of
multiplication in a space L?(R, du), where i is a probability measure on R. Furthermore,
the set of polynomials is dense in L?(RR, du), while the elements of the Jacobi matrix .J are
precisely the coefficients of the recursive formula satisfied by the orthonormal polynomials
in L2(R, du).

This theory admits important extensions to an infinite dimensional setting. More
precisely, instead of {5, one considers a Hilbert space F of the form

(1) F= éf7z
n=0

and a family of (generally speaking unbounded) commuting self-adjoint operators A(y),
@ € ¥, where ¢ is an index set (in many applications, ® is a nuclear space). The
operators A(yp) are assumed to have a tridiagonal structure with respect to the orthogonal
decomposition (1). Such a family of operators, (A(¢))yca, is called a (commutative)
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Jacobi field, see [8]. An application of the projection spectral theorem to the family
(A(p))pco leads to a unitary isomorphism between F and an L?-space with respect to a
probability measure p (if @ is a nuclear space, then typically u is a probability measure
on @’ the dual space of ®). This approach was first proposed by Berezansky in [5], see
also [9].

In this paper, we will review three examples of application of the projection spectral
theorem to commutative Jacobi fields, which lead to important classes of probability
measures on an infinite dimensional space. All these measures will be Lévy white noise
measures, or more generally, generalized stochastic processes with independent values in
the sense of [13].

The paper is organized as follows. In Section 2, we will formulate the projection
spectral theorem in the form which is convenient for our studies. In Section 3, we will
show how the projection spectral theorem leads to the standard Gaussian measure. In
Section 4, we will discuss the case of Poisson measure, and in Section 5 we will discuss
the case of a Lévy white noise measure. (The latter case will generalize the results of
Sections 3 and 4.) Finally, in Section 6 we will shortly discuss further developments
related to the application of the projection spectral theorem and free (noncommutative)
Lévy white noise.

2. THE PROJECTION SPECTRAL THEOREM

Let us first recall the spectral theorem in the case of one self-adjoint operator. Let
H be a real, separable Hilbert space and let (A, D(A)) be a self-adjoint operator. Let
Q € H and assume that ) is cyclic for A, i.e., Q € D(A™), n € N, and the linear span of
the set {Q, AQ, A%2Q, ...} is dense in H. Then, the spectral theorem implies that there
exists a unique probability measure p on R such that the mapping I given by

(IQ)@) =1, (IA"Q)@)=2", z€R, neN,
extends by linearity and continuity to a unitary operator
I:H — L*(R, p).

Furthermore, TAI~! is the operator of multiplication by x in L?(R, u). In fact, the
measure p is given by
pla) = (E(@)Q,Qu, «ocBR),

where E(-) is the resolution of the identity of A and B(R) is the Borel o-algebra on R.
The measure p is called the spectral measure of A (at Q).

The following theorem generalizes the above result to the case of a family of commuting
self-adjoint operators indexed by elements of a nuclear space. This theorem follows
immediately from Chapter 3 of [7].

Theorem 1. Assume that we have two standard triples
dPCHCP and VCFCVW,

where H and F are real separable Hilbert spaces, ® and ¥ are nuclear spaces, which are
densely embedded into H and F, respectively, and ®' (V' respectively) is the dual space
of ® (U respectively) with respect to the center space H (F respectively). Forw € ® and
v € ©, we denote by (w, ) the dual pairing between w and .
Assume that we have a family (A(p)),co of Hermitian operators in F which satisfy
the following conditions:
(1) D(A@) =V, o€ @,
(2) A(p)¥ C ¥ for each ¢ € ®, and furthermore A(p) : ¥ — W is continuous.
(3) A(p1)A(p2)f = Alp2)A(p1)f, [ € U (i.e., the operators A(p) algebraically
commute on ¥ ).
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(4) For all f,g € U, the mapping
2359 (Alp)f.9)Fr €R

18 cOntinuous.
(5) There exists a vector Q in F which is cyclic for (A(¢))pca, t.e., the linear span
of the set

{Q, A(p1) - Aler)Q | p1,..., 0k €P, k €N}

is dense in F.
(6) for any f € U and ¢ € ®, the vector [ is analytic for the operator A(p), i.e.,
for some t > 0,

> EIGTIE

Then, each operator A(p), ¢ € ®, is essentially self-adjoint on ¥ and we denote its
closure by (A(p), D(A(p))). These operators commute in the sense of their resolutions
of the identity. Furthermore, there exists a unique probability measure p on (9',C(P"))

such that the linear operator I : F — L*(®', ) given by I =1 and

I(A(p1) -+ Alen)2) = I(A(p1) - - A(pn)S2)
= (1) 0n) € L2(<I>’,,u)
is unitary. Here, C(®'") denotes the cylinder o-algebra on ¥'.

Under the action of I, each operator (A(p), D(A(g))), ¢ € ®, becomes the operator
of multiplication by (-, p) in L?(®', 1), denoted by M(p) and given by

D(M(p)) = {F € L@, 1) : (-, p)F € L*(®', )}
and for each F € D(M(yp)),
(M(p)F)(w) = (w, p) F(w).

3. (GAUSSIAN MEASURE

Let us now discuss how a standard Gaussian measure appears as a result of application
of the projection spectral theorem, see [9] for details and proofs.

For a real separable Hilbert space H, we denote by F(H) the (real) symmetric Fock
space over H:

F(H) = H"n!.
n=0

Here ® denotes symmetric tensor product, and for a Hilbert space $) and a positive
constant «, $H denotes the Hilbert space which coincides with $) as a set, and with
scalar product (g,h)sa = (g,h)s . We also used the notation H®Y = R.
Let ® C H C @ be a standard triple as in Theorem 1. Since ® is a nuclear space, it

admits a representation

® = projlim H,,

TeT

where (H;) e is a family of Hilbert spaces which is directed by embedding (i.e., for any
7,79 € T there exists 73 € T such that H,, is densely and continuously embedded both
into H,, and into H.,), and for any 71 € T there exists 75 € T such that H,, C H,, and
the operator of embedding of H,, into H,, is of Hilbert—Schmidt type. Note that

&' =indlim H_,,

TeT

where H_, is the dual space of H, with respect to the center space H.
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Then

®°" = projlim HO"
TeT

is called the n-th symmetric tensor power of ®, ®©™ being a nuclear space. We thus get
the standard triple
(I)(Dn C H@n C (I)/(Dn

where

@' = ind lim H®".
TeT

We denote by Fgn(®) the topological direct sum of the ®®" spaces. Fgn(®) is a
nuclear space which consists of all sequences (f ("))zo:o with f(") € ®®" and for some
N e N, we have f(® =0, n > N. Convergence in this space means uniform finiteness
of non-zero components and coordinate-wise convergence. Thus, we can construct the
standard triple

(2) Fin(®) C F(H) C Fgy(®),

where F (®) is the dual space of Fgn(®) with respect to the center space F(H). The
space Fi (®) consists of all sequences (F(™)2  with F(™) € & ©" and convergence in
this space means coordinate-wise convergence in the respective ® ©" spaces.
For each ¢ € ® we define a creation operator a*(¢) and an annihilation operator
a~ (¢) on Fgn(P) by
at (@) =po fM, peen
a” (@)h®" =n(p,h)g 27D, hed.

The following theorem was proved in [9].
Theorem 2. For each ¢ € @, we set
Alp) =a"(p) +a” (¢).

Then conditions of Theorem 1 are satisfied with F = F(H) and ¥ = Fg,(®). The
corresponding measure u is the standard Gaussian measure on ®’:

) 1
e dut) —esp |31l ] e

Let us consider the special case of a Gaussian white noise. Let X be a smooth
Riemannian manifold and let dr be the volume measure on it. Let H = L?(X,dz) and
let ® = D(X) be the space of all smooth functions on X with compact support. D(X)
can be represented as a projective limit of weighted Sobolev spaces on X, which shows,
in particular, that D(X) is a nuclear space. For z € X, we denote by 0, and 9] the
annihilation and creation operators at point x, respectively. Thus,

0o = nfM (@), O™ =d 0, " eD),
where §, € D'(X) is the delta function at z. We then have
0 Atp) = [ @)@l +0,)ds, e DY)
The measure p from Theorem 2 is then called a Gaussian white noise measure, and the

operators Jf + 0, (x € X) can be thought of as a Gaussian white noise (see e.g. [14] for
details).
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4. POISSON MEASURE

Let us again assume that H = L?(X,dz) and ® = D(X). For ¢ € D(X), we de-
fine a neutral operator a’(p) as the differential second quantization of the operator of
multiplication by ¢. Thus, a®(y) is the linear operator on Fg,(D(X)) defined by

ao(w)f(n)(xlw .o ,J)n) = (‘P(xl) +ee Tt @(xn))f(n)(xl’ ce 7xn)7 f(n) € D(X)Qn

Let now

(4) Awﬁ=a+w»+&@ﬂ+a*wy+/;m@dm

It is easy to see that
a® () :/ ()10, d.
X

Hence, analogously to (3), we get
5) A@) = [ o@)@}+810, + 0.+ 1)do. o€ DY),
X

The following theorem was proved in [18], see also [6].

Theorem 3. For each ¢ € D(X), let A(p) be defined by (4). Then conditions of
Theorem 1 are satisfied with F = F(H) and ¥ = Fg,(®). The corresponding measure
is the Poisson measure on D' (X):

/ et{w,) dp(w) = exp {/ (ew(x) —1) dx] , @ €DX).
D' (X) X

According to (5) and Theorem 3, the operators
N +910, 40, +1=(01+1)(0,+1), z€X,

can be thought of as Poisson white noise, see e.g. [15] for details.
Let T'(X) denote the configuration space over X:

I'(X) ={y C X | for each compact A C X, yN A is a finite set}.

One usually identifies each v € I'(X) with the Radon measure ), .. (Here §, denotes
the Dirac measure with mass at z.) This gives the inclusion I'(X) C D'(X). It can be
shown that I'(X) is a measurable set in D’(X), and furthermore the trace o-algebra of
C(D'(X)) on I'(X) coincides with the Borel o-algebra on I'(X) generated by the vague
topology on I'(X). It can be shown that u(I'(X)) = 1, so that p is (the distribution of)
a Poisson point process in X with intensity measure dz, e.g. [16].

Remark 4. More generally, let us fix a parameter A\ > 0 and consider the operators
(@5 + VN (0 +VA) = VAL + 010, + VA, + A, z€X,

and the corresponding smeared operators (A(y)),ep(x)- The application of Theorem 1
to these operators yields a Poisson point process in X with intensity measure A dz:

/ IR dp(w) = exp {/ (eisa(w) - 1A dm} , @ €eDX).
0(X) X
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5. LEVY WHITE NOISE

Assume that o is a finite (nonzero) measure on (R, B(R)). We also assume that the
measure o satisfies the estimate

(6) / |s|"do(s) < C™"nl, neN,
R

for some C > 0. Equivalently, there exists an ¢ > 0 such that fR eflsl do(s) < .

Let P denote the set of polynomials on R. One can easily introduce a nuclear space
topology on P which yields the following convergence: p, — p in P as n — oo if and
only if the degree of all polynomials p,, is bounded by some finite constant and, for each
k € Ny, we have a,, — ai as n — 00, where p,(s) = >, 50 anks® and p(s) = Y k>0 ays®.

If the measure o has an infinite number of points in its support, we can consider P as a
subset of L2(R, o), and due to estimate (6) P is a dense subset of L?(R, o). Furthermore,
P is continuously embedded into L?(R, o). If the support of the measure o is finite, we
may instead use the factorization of P with respect to the set

{peP|p=0oc-ae}.

We will still use P to denote this factorization. Note that in this case, P is just the set
of all real-valued functions on the support of measure o.

Thus, in any case, we get a nuclear space P which is topologically (i.e., densely and
continuously) embedded into L?(R, o). We then consider the nuclear space

D=D(X)®P,

where D’'(X) is the nuclear space as in Section 3. The space D consists of all functions
of the form

fa,5) =3 sfan(@), (v,5)€ X xR,
k=0
where n € N and ag(z),a1(x),...,an(z) € D(X). The nuclear space D is topologically
embedded into the Hilbert space
(7) Hy = L*(R* x R, dx do(s)).
Thus, we get a Gel’fand triple
DCHycD,

where D’ is the dual space of D with respect to the zero space Hj.
For each ¢ € D(X), we define p ® 1, ® id € D by

(cp®1)(x,s) :cp(x), (‘P®ld)(gj35) :<p(‘r)53 (:L’,S) € X xR
Just as in Section 3, formula (2), we construct the standard triple
Fiin(D) C F(Ho) C Fn(D).

The following theorem was proved in [12]. It contains Theorems 2 and 3 as special
cases.

Theorem 5. Set ® = D(X), H = L*(X,dz), ® = D'(X), ¥ = Fsu(D), F = F(Hy),
U = Ff (D). For each ¢ € @, we define a linear operator

(8) Alp) =aT(e®1) +ad’(p®id)+a (¢ ®1)

acting on V. Then conditions of Theorem 1 are satisfied. The corresponding measure p
is the Lévy white noise measure with Kolmogorov measure o:

9) / "9 ?) dp(w) = exp [/ (e?#(®) 1 — zsc,o(x))i2 dedo(s)|, ¢ € DX).
D' (X) X xR S



THE PROJECTION SPECTRAL THEOREM AND JACOBI FIELDS 195

The function under the integral sign on the right hand side of formula (9) takes, for
s =0, the limiting value —(1/2)¢*(z).

Let us assume that o({0}) = 0 and the measure o additionally satisfies fR\{O} Ldo(s) <
oo. Instead of (8), we may consider the operators

A(<p):a+(g0®1)+a0(cp®id)+a_(<p®1)+/X<p(x)dx/ }da(s).

The corresponding measure p has the Fourier transform
. . 1
/ @) du(w) = exp / (ePs# (@) ) dxdo(s)|, ¢ €DX).
D/(X) Xx(B\{0}) 5
Let K(X) denote the set of all discrete signed Radon measures on X:
K(X) = {17 = 28151» | s; € Ry, z; € R, nis a signed Radon measure on X} .

Evidently, K(X) C D'(X). Furthermore, it can be shown that K(X) € C(D'(X)). The
measure p is concentrated on K(X), i.e., u(K(X)) = 1, cf. [17]. Analogously, if the
measure o is concentrated on (0,00), then u(Ky (X)) = 1. Here

Ki(X) ={n € K(X) | n is a Radon measure on X }.

If the measure % do(s) is finite, then p-a.s. the set of atoms of 7 = }_, s;0,, is locally
finite in X, i.e., {a;} € I'(X). Thus, the measure p is a marked Poisson process. In
particular, we recover the Poisson measure p when o = 4;.

On the other hand, if the measure S% do(s) is infinite, then p-a.s. the set of atoms of
n=>,5i0y,, i.e., the set {z;}, is dense in X.

For example, let «, 5 > 0 and let

do(s) = Bse™*/“ds.
Then p is a gamma measure, cf. [22]. It can be easily calculated that its Laplace transform

is given by

/ exp[—(n, ¢)] du(n) = exp [—,8/ log(1+ ap(z))dz|, ¢ €DX), px)>—1/a.
K (X) X

6. FURTHER DEVELOPMENTS

6.1. Generalized stochastic processes with independent values. It is possible to
consider the case where the measure ¢ from Section 5 depends on x. That is for each
r € R, o(x,ds) is a probability measure on (R, B(R)). We also assume that for each
A € B(R),

(10) RY >z o(z,A)

is a measurable mapping. (Note that, if d = 1, o(z,ds) is just a Markov kernel on
(R, B(R)).) Hence, we can define a o-finite measure dz o(x,ds) on (R? x R, B(R? x R)).
By analogy with estimate (6), one assumes that, for each locally compact A € B(X),
there exists a constant Cy > 0 such that

(11) //S”U(x,ds)dngXn!, n € N.
AJR
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Then the family of operators A(yp) of the form (8) satisfies the conditions of Theorem 1
and the corresponding spectral measure ;1 has Fourier transform

) , 1
/ @) du(w) = exp [/ /(ezw(m) —1)5do(z,s)dx|, ¢€DX),
D'(X) x Jr s

see [12] for further details. Thus, u is a generalized stochastic process with independent
values [13].

For example, let o, 8 : X — (0,00) be measurable functions. Furthermore, let us
assume that the function « is locally bounded and af € L{ (X, dx). We define

loc
o(z,ds) = B(x)se™/ @) ds,

As easily seen, (11) holds. The corresponding measure 4 is concentrated on K, (X) and
has Laplace transform

[ el dutn) = exp [— [ w0 1+ ate)e(w) dal
Ky (X) X

v € D(X), p(z) > —1/a(z).

Remark 6. In some cases, for a given family of Hermitian operators A(y), ¢ € ®,
one cannot find a nuclear space ¥ for which the conditions of Theorem 1 are satisfied.
Instead, one has to use a linear topological space ¥ which is topologically embedded into a
Hilbert space F. In such a case, one cannot derive existence of a corresponding spectral
measure p directly from the projection spectral theorem, so additional considerations
are required. Still, in papers [19, 20] determinantal (fermion) and permanental (boson)
point processes were derived by using such an approach. This, in particular, showed
that each determinantal point process is the spectral measure of a family of operators
obtained by smearing out the particle density for a quasi-free representation of Canonical
Anticommutation Relations.

6.2. Free Lévy white noise. A principal assumption of the projection spectral theo-
rem is the commutation of the operators A(p). However, there are important situations
when self-adjoint operators A(p) which form a Jacobi field do not commute. So there
is no corresponding spectral measure p. Still, in some cases, it is possible to study a
noncommutative Jacobi field (A(y)),ce within the framework of noncommutative prob-
ability. In particular, there is a deep theory of Lévy white noise in free probability. Let
us very briefly mention some elements of this theory and refer the reader to [10, 11] for
a detailed discussion of it.

Let Hy be a real separable Hilbert space and let F(Hj) denote the full Fock space
over Hy:

F(Hy) = HE™.
n=0
For each ¢ € Hy we define a creation operator a™* () and an annihilation operator a™ ()
as bounded linear operators on F(H) satisfying
() f" =g, f™eHg",
a” (p)h1 @ha ® - @hp = (p,h1) g, ha ® -+ @ hpy  ha,ha, ... hy € Ho.

Assume that Hy is an L?-space and ¢ € H is a bounded function. Then, we define a
neutral operator ag(p) as a bounded linear operator on F'(H) satisfying

a’(P)h1 @ ha @+ @ hyy = (ph1) @ ha @ -+ @ hyy,  h1,ha,. .., hy € Ho.

Let o be a finite, nonzero measure on R with compact support and let the Hilbert
space Hy be given by (7). For each ¢ € D(X), we define a self-adjoint bounded linear
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operator A(p) on F(Hp) just as in formula (8). Let A denote the real algebra generated
by the operators (A(y)),ep(x). We define a free expectation on A by

7(a) = (a0, Q) p(y), ac€A,

where Q = (1,0,0,...) is the vacuum vector in F(Hy).

Recall that a set partition 7 of a set Y is a collection of disjoint subsets of ¥ whose
union equals Y. Let NC(n) denote the collection of all non-crossing partitions of
{1,...,n}, i.e., all set partitions 7 = {By,...,Br}, k > 1, 0f {1,...,n} such that there do
not exist B;, B; € w, B; # B, for which the following inequalities hold: by < b3 < by < by
for some by, by € B; and b3, by € B;.

For each n € N, we define a free cumulant C™ as the n-linear mapping C(™ :
D(X)™ — R given recurrently by the following formula, which connects the free cumu-
lants with moments:

(12) T(Alp)A(p2) - Alpn) = D> T CBp1s- - 0m),

T€NC(n) BET

where for each B = {b1,...,b5} C {1,2,...,n}, by <by < -+ < by,

C(B)S017"' 7S0n) = C(k)(¢b17"'7@bk).

It can be shown that, in our case C(!) =0 and

(13) C’(”)(gol, ceyon) = /R,srh2 do(s) /X o1(x) - pn(x) de,

where ¢1,...,¢p, € D(X) and n > 2. Hence, by (12) and (13), the expectation 7 on A
is tracial, i.e., for any a,b € A, 7(ab) = 7(ba).

Let ¢1,...,¢n € D(X) be such that p;¢; = 0if i # j. Then, by (13), for each k > 2
and any indices i,...,i; € {1,...,n} such that 4; # 4,, for some I,m € {1,... k},
C®) (i, .., i) = 0. This means that the operators A(y),...,A(p,) are freely in-
dependent with respect to the expectation 7, see [21]. Hence, if we introduce (at least
informally) operators A(x) (z € X), so that A(¢) = [, ¢()A(x) dz, then we may think
of A(x) as a free Lévy white noise.

Let us recall that, in classical probability, the cumulant transform of a probability
measure can be expressed as the logarithm of the Laplace transform of the measure. In

particular, for a probability measure p on D'(X), the cumulant transform of u is given
by

Coto) =1oz | [ e ). ¢ e Dx)

The counterpart of the cumulant transform in free probability is the free cumulant trans-
form. In our case, the free cumulant transform is defined by

(14) Cle) =Y _C™(p,...,¢)

for ¢ € D(X) such that the series on the right hand side of (14) converges.
It is shown in [10] that there exists € > 0 such that, for each ¢ € D(X) with |¢| < €,
we have

(15) Clp) = /X . %dx do(s).

In particular, for the free Gaussian white noise, we have o = dg and so
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Note, for comparison, that for the Gaussian white noise measure p from Theorem 2, we

have

Cu(p) = %/Xwg(w)dw-

For the free Poisson white noise, we have o = §; and so

_ [ 2@ N o) de
clo) = [ 5 —/X;gomd.

x 1=

Again, for comparison, for the centered Poisson measure p, we have

n!

Cul) = [ (9 1= p@) o= [ 3 E D an

Finally, for a general free Lévy white noise, we get, by (15),

C(e) =§_Oj [ints) [ @,

while for a classical Lévy white noise u, we get by (9),

Culy) = f_oj o [amrant) [ @
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