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ON THE STRUCTURE OF SOLUTIONS

OF OPERATOR-DIFFERENTIAL EQUATIONS

ON THE WHOLE REAL AXIS

V. M. GORBACHUK

Dedicated to Yu. M. Berezansky on the occasion of his 90th birthday

Abstract. We consider differential equations of the form
(

d
2

dt2
−B

)m

y(t) = f(t),

m ∈ N, t ∈ (−∞,∞), where B is a positive operator in a Banach space B, f(t)
is a bounded continuous vector-valued function on (−∞,∞) with values in B, and
describe all their solutions. In the case, where f(t) ≡ 0, we prove that every solution

of such an equation can be extended to an entire B-valued function for which the
Phragmen-Lindelöf principle is fulfilled. It is also shown that there always exists a
unique bounded on R1 solution, and if f(t) is periodic or almost periodic, then this
solution is the same as f(t).

1. Let B be a Banach space with norm ‖ · ‖ over the field C of complex numbers, and
let E(B) (L(B)) be the set of all densely defined closed (bounded) linear operators on
B. In what follows

{
etA

}
t≥0

denotes the C0-semigroup of bounded linear operators on B

with infinitesimal generator A (for the theory of semigroups on a Banach space we refer,
for instance, to [1-4]). Recall only that a family {U(t)}t≥0 of operators U(t) ∈ L(B)
forms a semigroup on B if:

1) U(0) = I, the identity operator in B;
2) ∀t, s > 0 : U(t+ s) = U(t)U(s);
3) ∀x ∈ B : lim

t→0
‖U(t)x− x‖ = 0.

The infinitesimal generator A of {U(t)}t≥0, or briefly the generator, is defined as

D(A) =
{
x ∈ B : lim

t→0

1

t
(U(t)x− x) exists

}
,

Ax = lim
t→0

1

t
(U(t)x− x), x ∈ D(A).

This operator is closed, its domain D(A) is dense in B and U(t)-invariant, i.e., U(t)x ∈
D(A) for all x ∈ D(A), t ≥ 0, and AU(t)x = U(t)Ax. Moreover,

d

dt
U(t)x = AU(t)x, x ∈ D(A).

Finally, we assume ker etA = {0} for any t > 0. Without loss of generality it may be
also supposed

{
etA

}
t≥0

to be a contraction semigroup.

A C0-semigroup {U(t)}t≥0 is called analytic with angle θ ∈
(
0, π2

]
if the operator-

valued function U(·) is defined in the sector Sθ = {z : | arg z| < θ} and possesses the
properties:

1) ∀z1, z2 ∈ Sθ : U(z1 + z2) = U(z1)U(z2);
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2) ∀x ∈ B : U(z)x is analytic in Sθ;
3) ∀x ∈ B : ‖U(z)x− x‖ → 0 as z → 0 in any closed subsector of Sθ.

If in addition the family U(z) is bounded on each sector Sψ with ψ < θ, then U(t) is
called a bounded analytic semigroup with angle θ.

Let A ∈ E(B). Denote by G(1)(A) the space of entire vectors of the operator A:

G(1)(A) = proj lim
α→0

G
α
1 (A) =

⋂

α>0

G
α
1 (A),

where

G
α
1 (A) =

{
x ∈

⋂

n∈N0

D(An)
∣∣∃c = c(x) > 0, ∀k ∈ N0 = {0} ∪ N : ‖Akx‖ ≤ cαkkk

}

is a Banach space with respect to the norm

‖x‖Gα
1
(A) = sup

k∈N0

‖Akx‖

αkkk
.

The convergence in G(1)(A) means the convergence in every G
α
1 (A), α > 0. Note that

G(1)(A) may be obtained if we confine ourselves only to α = 1
n
, n ∈ N. So, G(1)(A) is

countably normed (see [5]).

Proposition 1. (See [6]). Let A ∈ E(B). Then the series
∑∞
k=0

zkAkx
k! converges in

the space G(1)(A) for any x ∈ G(1)(A), any z ∈ C, and the operator-valued function

exp(zA) =

∞∑

k=0

zkAk

k!

is entire in G(1)(A). Moreover, the family {exp(zA)}z∈C
forms a one-parameter group

on G(1)(A).

If A is the generator of a bounded analytic semigroup
{
etA

}
t≥0

, then G(1)(A) is dense

in B,

G(1)(A) =
⋂

t≥0

R(etA)

(R(·) is the range of an operator), and

∀x ∈ G(1)(A) : exp(tA)x =

{
etAx, when t ≥ 0,(

e−tA
)−1

x, when t < 0.

Consider the equation

(1)
dy(t)

dt
+Ay(t) = 0, t ∈ (0,∞),

where A is the generator of a bounded analytic semigroup on B. Under a classic solution,
or briefly solution, of this equation on (0,∞) we mean a continuously differentiable vector-
valued function y(t) : (0,∞) 7→ D(A) satisfying (1). The following assertion (see [6]) is
valid.

Proposition 2. A B-valued function y(t) is a solution of equation (1) if and only if it
can be represented in the form

y(t) = exp(−tA)y0, y0 ∈ G(1)(A).

2. Pass now to the equation

(2)

(
d2

dt2
−B

)m
y(t) = f(t), t ∈ R

1,
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where B is a positive operator in B, m ∈ N, f(t) : R1 7→ B is a bounded continuous
vector-valued function. Recall that an operator B ∈ E(B) is called positive if (−∞, 0) ∈
ρ(B) (ρ(·) is the resolvent set of an operator), and there exists a constant M > 0 such
that

∀λ > 0 :
∥∥(B + λI)−1

∥∥ ≤
M

1 + λ
.

In this case, according to [7, 8], the fractional powers Bα, 0 < α < 1, of the operator B

are determined, and the operator A = −B
1
2 generates a bounded analytic C0-semigroup

{etA}t≥0 on B of negative type

ω = ω(A) = lim
t→∞

ln ‖etA‖

t
= −

√
s(B),

where

0 < s(B) = sup
λ∈σ(B)

Reλ,

σ(·) is the spectrum of an operator.
By a solution (classic) of equation (2) on R

1, we mean a 2m times continuously
differentiable vector-valued function y(t) : R1 7→ B such that y(2k)(t) ∈ D(Bm−k) (k =
0, 1, . . . ,m), the vector-valued function Bm−ky(2k)(t) is continuous on R

1, and y(t) sa-
tisfies (2).

Consider first the homogeneous equation

(3)

(
d2

dt2
−B

)m
y(t) = 0, t ∈ R

1.

Theorem 1. A B-valued y(t) is a solution of equation (3) on R
1 if and only if it can

be represented in the form

(4) y(t) =

m−1∑

k=0

tk(exp(tA)fk + exp(−tA)gk),

where A = −B
1
2 , fk, gk ∈ G(1)(A) (k = 0, 1, . . . ,m − 1). The vectors fk and gk are

uniquely determined by y(t).

Proof. It is not difficult to verify that a vector-valued function y(t) of the form (4) is
a solution of equation (3). To prove the converse we use the method of mathematical
induction.

Suppose y(t) is a solution of the equation
(
d2

dt2
−B

)
y(t) =

(
d2

dt2
−A2

)
y(t) =

(
d

dt
+A

)(
d

dt
−A

)
y(t) = 0, t ∈ R

1,

and put z(t) =
(
d
dt

−A
)
y(t). The vector-valued function z(t) is a solution of equation

(1) on the semiaxis (0,∞). By Proposition 2,

z(t) = exp(−tA)h1, h1 ∈ G(1)(A),

that is, (
d

dt
−A

)
y(t) = exp(−tA)h1, t > 0.

Denote

(5) z0(t) = y(t)−
sinh(tA)

A
h1.
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Taking into account that
sinh(tA)

A
=

∞∑

k=0

t2k+1A2k+1

(2k + 1)!
is an entire operator-valued func-

tion in the space G(1)(A), one can directly check that
(
d

dt
−A

)
z0(t) = 0, t ∈ R

1.

Since A is a generator of a C0-semigroup on B, we have (see, for example, [8])

(6) ∀t ≥ 0 : z0(t) = etAh2, h2 ∈ D(A).

As far as the vector-valued function z1(t) = z0(−t) is a solution of equation (1), we
obtain from Proposition 2 that

z1(t) = exp(−tA)h3, h3 ∈ G(1)(A),

whence h2 = z0(0) = z1(0) = h3 ∈ G(1)(A). It follows from (5) and (6) that

y(t) = z0(t) +
sinh(tA)

A
h1 = exp(tA)h2 +

sinh(tA)

A
h1, h1, h2 ∈ G(1)(A),

which is equivalent to

y(t) = exp(tA)f0 + exp(−tA)g0,

where

f0 = h2 +
A−1h1

2
, g0 =

−A−1h1

2
.

Assume now that representation (4) is valid for a solution y(t) of equation (3) with
m = k − 1 and show that this representation holds true for m = k.

Let y(t) be a solution of the equation
(
d2

dt2
−B

)k
y(t) = 0, t ∈ R

1,

with some k > 1. Then the vector-valued function

z(t) =

(
d2

dt2
−B

)k−1

y(t)

satisfies the equation (
d2

dt2
−B

)
z(t) = 0, t ∈ R

1.

So, there exist f̃0, g̃0 ∈ G(1)(A) such that

z(t) = exp(tA)f̃0 + exp(−tA)g̃0.

Then the vector-valued function

(7) ỹ(t) = y(t)− tk−1 exp(tA)fk−1 − tk−1 exp(−tA)gk−1,

where

fk−1 =
A1−k

2k−1(k − 1)!
f̃0, gk−1 =

(−1)k−1A1−k

2k−1(k − 1)!
g̃0 ∈ G(1)(A),

is a solution of the equation
(
d2

dt2
−B

)k−1

ỹ(t) = 0, t ∈ R
1,

and, therefore, ỹ(t) can be represented in the form (4) with m = k − 1, whence, in view
of (7), we arrive at the representation (4) with m = k.
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We prove now the uniqueness of representation (4), i.e., that the identity y(t) ≡ 0
implies the equalities fk = gk = 0, k = 0, 1, . . . ,m− 1. Starting from (4), by the direct
computation we get

(8)

(
d

dt
+A

)m(
d

dt
−A

)m−1

y(t) =

(
d

dt
+A

)m
(m− 1)! exp(tA)fm−1

= 2m(m− 1)!Am exp(tA)fm−1

and

(9)

(
d

dt
−A

)m(
d

dt
+A

)m−1

y(t) =

(
d

dt
−A

)m
(m− 1)! exp(−tA)gm−1

= (−1)m2m(m− 1)!Am exp(−tA)gm−1.

Setting in (8) and (9) t = 0 and taking into account that y(t) ≡ 0, we obtain fm−1 =
gm−1 = 0. Thus,

y(t) =

m−2∑

k=0

tk(exp(tA)fk + exp(−tA)gk).

Repeating the procedurem times, we conclude that fk = gk = 0 for all k = 0, 1, . . . ,m−1,
which is what had to be proved. �

Corollary 1. Every solution of equation (3) on (−∞,∞) admits an extension to an
entire function with values in G(1)(A).

Since the operator A generates a bounded analytic semigroup, it follows from Proposi-
tion 1 and Theorem 1 that the space of all solutions of equation (3) is infinite-dimensional.
Moreover, the following analog of the Phragmen-Lindelöf principle [9] holds for them.

Theorem 2. Let y(t) be a solution of equation (3). If

(10) ∃γ ∈ (0,−ω), ∃cγ > 0 : ‖y(t)‖ ≤ cγe
γt, t ∈ R

1,

where ω = ω(A) is the type of the semigroup
{
etA

}
t≥0

, then y(t) ≡ 0.

Proof. Write representation (4) as

y(t) = y1(t) + y2(t),

where

(11) y1(t) =

m−1∑

i=0

ti exp(tA)fi, y2(t) =

m−1∑

i=0

ti exp(−tA)gi.

Since the semigroup
{
etA

}
t≥0

is bounded analytic, by Proposition 1 we have for t > 0

that exp(tA)fi = etAfi, i = 0, 1, . . . ,m− 1. As it follows from the definition of the type
of a semigroup,

∀δ ∈
(
0,−

ω

2

)
, ∀t ≥ 0, ∃cδ > 0 :

∥∥etA
∥∥ ≤ cδe

(ω+δ)t,

whence

(12) ∀t ≥ 0 : ‖y1(t)‖ ≤

m−1∑

i=0

ti‖ exp(tA)fi‖ ≤

m−1∑

i=0

ciδe
(ω+2δ)t ≤ c̃δe

(ω+2δ)t,

where 2δ ∈ (0,−ω) and the constant c̃δ =
∑m−1
i=0 ciδ depends only on fi.
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Let now g ∈ G(1)(A). Then

∀δ ∈
(
0,−

ω

2

)
, ∀t ≥ 0 : ‖g‖ =

∥∥etA exp(−tA)g
∥∥ ≤

∥∥etA
∥∥ ‖ exp(−tA)g‖

≤ cδe
(ω+δ)t‖ exp(−tA)g‖.

This implies

‖ exp(−tA)g‖ ≥ c′δe
−(ω+δ)t‖g‖ as t ≥ 0,

and, therefore,

∀t ≥ 0 : ‖y2(t)‖ = ‖ exp(−tA)h(t)‖ ≥ c′δe
−(ω+δ)t‖h(t)‖,

where h(t) =
∑m−1
i=0 tigi, c

′
δ = c−1

δ does not depend on t.
Suppose y2(t) 6≡ 0. It follows from this that in representation (11) for y2(t) some

gi 6= 0. Without loss of generality, we may assume gm−1 6= 0. Then

∀t > 0 : ‖y2(t)‖ ≥ c′δe
−(ω+δ)t

(
tm−1‖gm−1‖ −

∥∥∥
m−2∑

i=0

tigi

∥∥∥
)

= c′δe
−(ω+δ)ttm−1

(
‖gm−1‖ −

∥∥∥
m−2∑

i=0

tk−m+1gi

∥∥∥
)
.

Because of
∥∥∥
m−2∑

i=0

tk−m+1gi

∥∥∥ → 0 as t→ ∞

and tm−1 > e−δt for sufficiently large t > 0, we have

(13) ∀t > 0, ∀δ ∈
(
0,−

ω

2

)
: ‖y2(t)‖ ≥ c′′δ e

−(ω+2δ)t,

where c′′δ does not depend on t. Using inequalities (10) and (12), we obtain

(14) ∀t > 0 : ‖y2(t)‖ = ‖y(t)− y1(t)‖ ≤ ‖y(t)‖+ ‖y1(t)‖ ≤ cγe
γt + c̃δe

(ω+2δ)t ≤ ceγt,

where c = cγ + c̃δ. The inequalities (13), (14) imply

∀t > 0 : cδe
−(ω+2δ)t ≤ ‖y2(t)‖ ≤ cγe

γt.

Put

ϕ(t) =
‖y2(t)‖

cδe−(ω+2δ)t
.

Then, for sufficiently large t > 0

1 ≤ ϕ(t) ≤ c̃e(γ+ω+2δ)t, c̃ =
cγ

cδ
.

Setting δ = −γ+ω
4 , we shall have for large t > 0

1 ≤ ϕ(t) ≤ c̃e
γ+ω

2
t.

Approaching the limit as t → ∞ and taking into account that γ+ω
2 < 0, we infer 1 ≤

ϕ(t) ≤ 0, provided that y2(t) 6= 0 for t ≥ 0, which is impossible. So, y2(t) ≡ 0 on the
semiaxis [0,∞). Therefore gi = 0, i = 0, 1, . . . ,m− 1.

If we assume y1(t) 6≡ 0, we shall draw a conclusion that y1(t) 6= 0 as t ≤ 0. Substituting
in (4) −t for t, we obtain y1(t) ≡ 0 on the semiaxis (−∞, 0], whence, by Theorem 1,
fi = 0, i = 0, 1, . . . ,m− 1. This has a consequence that y(t) ≡ 0. �
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Corollary 2. (Analog of the Liouville theorem.) Let y(t) be a solution of the homoge-
neous equation (3) on R

1. Then

sup
t∈R1

|y(t)| <∞ =⇒ y(t) ≡ 0, t ∈ R
1.

3. Consider now a nonhomogeneous equation (2). Denote by Cb(R
1,B) the set of all

bounded continuous on R
1 vector-valued functions with values in B. In what follows we

suppose f(t) ∈ Cb(R
1,B). Under a generalized solution of equation (2) on R

1 we mean
a continuous vector-valued function y(t) : R1 7→ B for which the integral identity

∫

R1

〈( d2
dt2

−B∗
)m

ϕ(t), y(t)
〉
dt =

∫

R1

〈ϕ(t), f(t)〉 dt

holds true, where ϕ(t) is an arbitrary compactly supported infinitely differentiable vector-
valued function with values in D(B∗m such that B∗mϕ(t) is continuous on R

1, 〈·, f〉
denotes the action of a functional f onto a corresponding element. It is obvious that a
classic solution of (2) is its generalized one.

Theorem 3. Let Amf(t) ∈ Cb(R
1,B), and

(15) ym(t) =
A−m

2m

∫

Rm

eA(|t−s1|+|s2−s1|+···+|sm−sm−1|)f(sm) ds1 . . . dsm.

Then y
(i)
m (t) ∈ Cb(R

1,D(A2m−i), i.e. y
(i)
m (t) is a bounded continuous vector-valued func-

tion with values in D(A2m−i), i = 0, 1, . . . , 2m, and ym(t) is a solution of equation (2).

Proof. To prove the assertion, we turn again to the method of mathematical induction.
Put m = 1. Since

∀t > 0 : ‖eAt‖ < ce−γt, 0 < γ < −ω(A),

and Af(t) ∈ Cb(R
1,B), it is not difficult to check that

(16)



y1(t) =
A−1

2

∫

R1

eA|t−s1|f(s1) ds1=
A−2

2

∫

R1

eA|t−s1|Af(s1) ds1 ∈ Cb(R
1,D(A2)),

y′1(t) =
A−1

2

(∫ t

−∞

eA(t−s1)Af(s1) ds1+

∫ ∞

t

eA(s1−t)Af(s1) ds1

)
∈ Cb(R

1,D(A)),

y′′1 (t) = f(t)+
1

2

∫

R1

eA|t−s1|Af(s1) ds1 ∈ Cb(R
1,B).

It follows from this that y1(t) is a classic solution of equation (2) on R
1.

Suppose now that for m = k, under the condition Akf(t) ∈ Cb(R
1,B), the conclusion

of Theorem 3 is valid. Then for m = k + 1 we have

(17) yk+1(t) =
A−(k+1)

2k+1

∫

Rk+1

eA(|t−s1|+|s2−s1|+···+|sk+1−sk|)f(sk+1) ds1 . . . dsk+1

=
A−2

2

∫

R1

eA|t−s|z(s) ds =
A−2

2

∫

R1

eA|s|z(t− s) ds,

where

z(s) =
A−k

2k

∫

Rk

eA(|s−s2|+···+|sk+1−sk|)Af(sk+1) ds2 . . . dsk+1.

As Af(sk+1) ∈ Cb(R
1,D(Ak)), by the assumption specified above, z(i)(t) ∈ Cb(R

1,
D(A2k−i)), i = 0, 1, . . . , 2k, and satisfies (2) with m = k and Af(t) instead of f(t). It
follows from (17) that

y
(2k)
k+1(t) =

A−2

2

∫

R1

eA|t−s|z(2k)(s) ds.
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Therefore, because of (16), we get

y
(2(k+1))
k+1 (t) = z(2k)(t) +

1

2

∫

R1

eA|t−s|z(2k)(s) ds ∈ Cb(R
1,B)

and
( d2
dt2

−A2
)k+1

yk+1(t) =
( d2
dt2

−A2
)A−2

2

∫

R1

( d2
dt2

−A2
)k
eA|t−s|z(s) ds

=
( d2
dt2

−A2
)A−2

2

∫

R1

eA|t−s|
( d2
dt2

−A2
)k
z(s) ds

=
( d2
dt2

−A2
)A−2

2

∫

R1

eA|t−s|Af(s) ds=
( d2
dt2

−A2
)A−1

2

∫

R1

eA|t−s|f(s) ds = f(t).

Thus, the assertion of the theorem is true for yk+1(t). �

Corollary 3. If f(t) ∈ Cb(R
1,B), then y

(k)
m (t) ∈ Cb(R

1,D(A2m−k), k = 0, 1, . . . ,m,
and ym(t) is a generalized solution of equation (2).

Proof. The fact that y
(k)
m (t) ∈ Cb(R

1,D(A2m−k) as k = 1, 2, . . . ,m, is proved on the
basis of (15) by means of the method of mathematical induction in a way like to that
used in Theorem 3. To verify that ym(t) is a generalized solution of (2), consider the

sequence fn(t) = e
1
n
Af(t). By virtue of analyticity of the semigroup

{
eAt

}
t≥0

, fn(t) ∈

Cb(R
1,D(An)) for any n ∈ N, and fn(t) converges uniformly to f(t). So

ym,n(t) =
A−m

2m

∫

R1

e−A(|t−s1|+···+|sm−sm−1|)fn(sm) ds1 . . . dsm

is a classic solution of equation (2) with f(t) = fn(t), and the sequence ym,n(t) converges
uniformly on R

1 to ym(t) as n→ ∞. Passing to the limit in the identity
∫

R1

〈( d2
dt2

−B∗
)m

ϕ(t), ym,n(t)
〉
dt =

∫

R1

ϕ(t)fn(t) dt,

we conclude that ym(t) is a generalized solution of (2). �

Recall that a continuous vector-valued function f(t) : R1 7→ B is called almost periodic
(by Bohr) if for any ε > 0 there exists a constant Lε > 0 such that each interval from R

1

of length less than ε contains a point τ = τ(ε) having the property

∀t ∈ R
1 : ‖f(t)− f(t+ τ)‖ < ε.

As a consequence of Theorem 3, Corollaries 2,3, and the fact that a generalized solution
of equation (3) is classic one we obtain the following theorem.

Theorem 4. Let f(t) ∈ Cb(R
1,D(Am)) (f(t) ∈ Cb(R

1,B). Then there exists only
one bounded classic (generalized) solution y(t), t ∈ R

1 of equation (2), and it can be
represented in the form (15). If f(t) is periodic or almost periodic, then the solution is
the same as f(t).
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