ON THE STRUCTURE OF SOLUTIONS OF OPERATOR-DIFFERENTIAL EQUATIONS ON THE WHOLE REAL AXIS

V. M. GORBACHUK

Dedicated to Yu. M. Berezansky on the occasion of his 90th birthday

Abstract

We consider differential equations of the form $\left(\frac{d^{2}}{d t^{2}}-B\right)^{m} y(t)=f(t)$, $m \in \mathbb{N}, t \in(-\infty, \infty)$, where B is a positive operator in a Banach space $\mathfrak{B}, f(t)$ is a bounded continuous vector-valued function on $(-\infty, \infty)$ with values in \mathfrak{B}, and describe all their solutions. In the case, where $f(t) \equiv 0$, we prove that every solution of such an equation can be extended to an entire \mathfrak{B}-valued function for which the Phragmen-Lindelöf principle is fulfilled. It is also shown that there always exists a unique bounded on \mathbb{R}^{1} solution, and if $f(t)$ is periodic or almost periodic, then this solution is the same as $f(t)$.

1. Let \mathfrak{B} be a Banach space with norm $\|\cdot\|$ over the field \mathbb{C} of complex numbers, and let $E(\mathfrak{B})(L(\mathfrak{B}))$ be the set of all densely defined closed (bounded) linear operators on \mathbb{B}. In what follows $\left\{e^{t A}\right\}_{t>0}$ denotes the C_{0}-semigroup of bounded linear operators on \mathfrak{B} with infinitesimal generator A (for the theory of semigroups on a Banach space we refer, for instance, to [1-4]). Recall only that a family $\{U(t)\}_{t \geq 0}$ of operators $U(t) \in L(\mathfrak{B})$ forms a semigroup on \mathfrak{B} if:
1) $U(0)=I$, the identity operator in \mathfrak{B};
2) $\forall t, s>0: U(t+s)=U(t) U(s)$;
3) $\forall x \in \mathfrak{B}: \lim _{t \rightarrow 0}\|U(t) x-x\|=0$.

The infinitesimal generator A of $\{U(t)\}_{t \geq 0}$, or briefly the generator, is defined as

$$
\begin{aligned}
\mathcal{D}(A) & =\left\{x \in \mathfrak{B}: \lim _{t \rightarrow 0} \frac{1}{t}(U(t) x-x) \text { exists }\right\}, \\
A x & =\lim _{t \rightarrow 0} \frac{1}{t}(U(t) x-x), \quad x \in \mathcal{D}(A)
\end{aligned}
$$

This operator is closed, its domain $\mathcal{D}(A)$ is dense in \mathfrak{B} and $U(t)$-invariant, i.e., $U(t) x \in$ $\mathcal{D}(A)$ for all $x \in \mathcal{D}(A), t \geq 0$, and $A U(t) x=U(t) A x$. Moreover,

$$
\frac{d}{d t} U(t) x=A U(t) x, \quad x \in \mathcal{D}(A)
$$

Finally, we assume ker $e^{t A}=\{0\}$ for any $t>0$. Without loss of generality it may be also supposed $\left\{e^{t A}\right\}_{t>0}$ to be a contraction semigroup.

A C_{0}-semigroup $\{\bar{U}(t)\}_{t \geq 0}$ is called analytic with angle $\theta \in\left(0, \frac{\pi}{2}\right]$ if the operatorvalued function $U(\cdot)$ is defined in the sector $S_{\theta}=\{z:|\arg z|<\theta\}$ and possesses the properties:

1) $\forall z_{1}, z_{2} \in S_{\theta}: U\left(z_{1}+z_{2}\right)=U\left(z_{1}\right) U\left(z_{2}\right)$;

[^0]2) $\forall x \in \mathfrak{B}: U(z) x$ is analytic in S_{θ};
3) $\forall x \in \mathfrak{B}:\|U(z) x-x\| \rightarrow 0$ as $z \rightarrow 0$ in any closed subsector of S_{θ}.

If in addition the family $U(z)$ is bounded on each sector S_{ψ} with $\psi<\theta$, then $U(t)$ is called a bounded analytic semigroup with angle θ.

Let $A \in E(\mathfrak{B})$. Denote by $\mathfrak{G}_{(1)}(A)$ the space of entire vectors of the operator A :

$$
\mathfrak{G}_{(1)}(A)=\underset{\alpha \rightarrow 0}{\operatorname{proj} \lim } \mathfrak{G}_{1}^{\alpha}(A)=\bigcap_{\alpha>0} \mathfrak{G}_{1}^{\alpha}(A),
$$

where

$$
\mathfrak{G}_{1}^{\alpha}(A)=\left\{x \in \bigcap_{n \in \mathbb{N}_{0}} \mathcal{D}\left(A^{n}\right) \mid \exists c=c(x)>0, \forall k \in \mathbb{N}_{0}=\{0\} \cup \mathbb{N}:\left\|A^{k} x\right\| \leq c \alpha^{k} k^{k}\right\}
$$

is a Banach space with respect to the norm

$$
\|x\|_{\mathfrak{G}_{1}^{\alpha}(A)}=\sup _{k \in \mathbb{N}_{0}} \frac{\left\|A^{k} x\right\|}{\alpha^{k} k^{k}}
$$

The convergence in $\mathfrak{G}_{(1)}(A)$ means the convergence in every $\mathfrak{G}_{1}^{\alpha}(A), \alpha>0$. Note that $\mathfrak{G}_{(1)}(A)$ may be obtained if we confine ourselves only to $\alpha=\frac{1}{n}, n \in \mathbb{N}$. So, $\mathfrak{G}_{(1)}(A)$ is countably normed (see [5]).
Proposition 1. (See [6]). Let $A \in E(\mathfrak{B})$. Then the series $\sum_{k=0}^{\infty} \frac{z^{k} A^{k} x}{k!}$ converges in the space $\mathfrak{G}_{(1)}(A)$ for any $x \in \mathfrak{G}_{(1)}(A)$, any $z \in \mathbb{C}$, and the operator-valued function

$$
\exp (z A)=\sum_{k=0}^{\infty} \frac{z^{k} A^{k}}{k!}
$$

is entire in $\mathfrak{G}_{(1)}(A)$. Moreover, the family $\{\exp (z A)\}_{z \in \mathbb{C}}$ forms a one-parameter group on $\mathfrak{G}_{(1)}(A)$.

If A is the generator of a bounded analytic semigroup $\left\{e^{t A}\right\}_{t \geq 0}$, then $\mathfrak{G}_{(1)}(A)$ is dense in \mathfrak{B},

$$
\mathfrak{G}_{(1)}(A)=\bigcap_{t \geq 0} \mathcal{R}\left(e^{t A}\right)
$$

$(\mathcal{R}(\cdot)$ is the range of an operator), and

$$
\forall x \in \mathfrak{G}_{(1)}(A): \exp (t A) x=\left\{\begin{aligned}
e^{t A} x, & \text { when } \quad t \geq 0 \\
\left(e^{-t A}\right)^{-1} x, & \text { when } \quad t<0
\end{aligned}\right.
$$

Consider the equation

$$
\begin{equation*}
\frac{d y(t)}{d t}+A y(t)=0, \quad t \in(0, \infty) \tag{1}
\end{equation*}
$$

where A is the generator of a bounded analytic semigroup on \mathfrak{B}. Under a classic solution, or briefly solution, of this equation on $(0, \infty)$ we mean a continuously differentiable vectorvalued function $y(t):(0, \infty) \mapsto \mathcal{D}(A)$ satisfying (1). The following assertion (see [6]) is valid.

Proposition 2. A \mathfrak{B}-valued function $y(t)$ is a solution of equation (1) if and only if it can be represented in the form

$$
y(t)=\exp (-t A) y_{0}, \quad y_{0} \in \mathfrak{G}_{(1)}(A)
$$

2. Pass now to the equation

$$
\begin{equation*}
\left(\frac{d^{2}}{d t^{2}}-B\right)^{m} y(t)=f(t), \quad t \in \mathbb{R}^{1} \tag{2}
\end{equation*}
$$

where B is a positive operator in $\mathfrak{B}, m \in \mathbb{N}, f(t): \mathbb{R}^{1} \mapsto \mathfrak{B}$ is a bounded continuous vector-valued function. Recall that an operator $B \in E(\mathfrak{B})$ is called positive if $(-\infty, 0) \in$ $\rho(B)(\rho(\cdot)$ is the resolvent set of an operator), and there exists a constant $M>0$ such that

$$
\forall \lambda>0:\left\|(B+\lambda I)^{-1}\right\| \leq \frac{M}{1+\lambda}
$$

In this case, according to [7, 8], the fractional powers $B^{\alpha}, 0<\alpha<1$, of the operator B are determined, and the operator $A=-B^{\frac{1}{2}}$ generates a bounded analytic C_{0}-semigroup $\left\{e^{t A}\right\}_{t \geq 0}$ on \mathfrak{B} of negative type

$$
\omega=\omega(A)=\lim _{t \rightarrow \infty} \frac{\ln \left\|e^{t A}\right\|}{t}=-\sqrt{s(B)}
$$

where

$$
0<s(B)=\sup _{\lambda \in \sigma(B)} \operatorname{Re} \lambda
$$

$\sigma(\cdot)$ is the spectrum of an operator.
By a solution (classic) of equation (2) on \mathbb{R}^{1}, we mean a $2 m$ times continuously differentiable vector-valued function $y(t): \mathbb{R}^{1} \mapsto \mathfrak{B}$ such that $y^{(2 k)}(t) \in \mathcal{D}\left(B^{m-k}\right)(k=$ $0,1, \ldots, m)$, the vector-valued function $B^{m-k} y^{(2 k)}(t)$ is continuous on \mathbb{R}^{1}, and $y(t)$ satisfies (2).

Consider first the homogeneous equation

$$
\begin{equation*}
\left(\frac{d^{2}}{d t^{2}}-B\right)^{m} y(t)=0, \quad t \in \mathbb{R}^{1} \tag{3}
\end{equation*}
$$

Theorem 1. A \mathfrak{B}-valued $y(t)$ is a solution of equation (3) on \mathbb{R}^{1} if and only if it can be represented in the form

$$
\begin{equation*}
y(t)=\sum_{k=0}^{m-1} t^{k}\left(\exp (t A) f_{k}+\exp (-t A) g_{k}\right) \tag{4}
\end{equation*}
$$

where $A=-B^{\frac{1}{2}}, f_{k}, g_{k} \in \mathfrak{G}_{(1)}(A)(k=0,1, \ldots, m-1)$. The vectors f_{k} and g_{k} are uniquely determined by $y(t)$.

Proof. It is not difficult to verify that a vector-valued function $y(t)$ of the form (4) is a solution of equation (3). To prove the converse we use the method of mathematical induction.

Suppose $y(t)$ is a solution of the equation

$$
\left(\frac{d^{2}}{d t^{2}}-B\right) y(t)=\left(\frac{d^{2}}{d t^{2}}-A^{2}\right) y(t)=\left(\frac{d}{d t}+A\right)\left(\frac{d}{d t}-A\right) y(t)=0, \quad t \in \mathbb{R}^{1}
$$

and put $z(t)=\left(\frac{d}{d t}-A\right) y(t)$. The vector-valued function $z(t)$ is a solution of equation (1) on the semiaxis $(0, \infty)$. By Proposition 2,

$$
z(t)=\exp (-t A) h_{1}, \quad h_{1} \in \mathfrak{G}_{(1)}(A)
$$

that is,

$$
\left(\frac{d}{d t}-A\right) y(t)=\exp (-t A) h_{1}, \quad t>0
$$

Denote

$$
\begin{equation*}
z_{0}(t)=y(t)-\frac{\sinh (t A)}{A} h_{1} \tag{5}
\end{equation*}
$$

Taking into account that $\frac{\sinh (t A)}{A}=\sum_{k=0}^{\infty} \frac{t^{2 k+1} A^{2 k+1}}{(2 k+1)!}$ is an entire operator-valued function in the space $\mathfrak{G}_{(1)}(A)$, one can directly check that

$$
\left(\frac{d}{d t}-A\right) z_{0}(t)=0, \quad t \in \mathbb{R}^{1}
$$

Since A is a generator of a C_{0}-semigroup on \mathfrak{B}, we have (see, for example, [8])

$$
\begin{equation*}
\forall t \geq 0: z_{0}(t)=e^{t A} h_{2}, \quad h_{2} \in \mathcal{D}(A) \tag{6}
\end{equation*}
$$

As far as the vector-valued function $z_{1}(t)=z_{0}(-t)$ is a solution of equation (1), we obtain from Proposition 2 that

$$
z_{1}(t)=\exp (-t A) h_{3}, \quad h_{3} \in \mathfrak{G}_{(1)}(A)
$$

whence $h_{2}=z_{0}(0)=z_{1}(0)=h_{3} \in \mathfrak{G}_{(1)}(A)$. It follows from (5) and (6) that

$$
y(t)=z_{0}(t)+\frac{\sinh (t A)}{A} h_{1}=\exp (t A) h_{2}+\frac{\sinh (t A)}{A} h_{1}, \quad h_{1}, h_{2} \in \mathfrak{G}_{(1)}(A)
$$

which is equivalent to

$$
y(t)=\exp (t A) f_{0}+\exp (-t A) g_{0}
$$

where

$$
f_{0}=h_{2}+\frac{A^{-1} h_{1}}{2}, \quad g_{0}=\frac{-A^{-1} h_{1}}{2}
$$

Assume now that representation (4) is valid for a solution $y(t)$ of equation (3) with $m=k-1$ and show that this representation holds true for $m=k$.

Let $y(t)$ be a solution of the equation

$$
\left(\frac{d^{2}}{d t^{2}}-B\right)^{k} y(t)=0, \quad t \in \mathbb{R}^{1}
$$

with some $k>1$. Then the vector-valued function

$$
z(t)=\left(\frac{d^{2}}{d t^{2}}-B\right)^{k-1} y(t)
$$

satisfies the equation

$$
\left(\frac{d^{2}}{d t^{2}}-B\right) z(t)=0, \quad t \in \mathbb{R}^{1}
$$

So, there exist $\widetilde{f_{0}}, \widetilde{g_{0}} \in \mathfrak{G}_{(1)}(A)$ such that

$$
z(t)=\exp (t A) \widetilde{f_{0}}+\exp (-t A) \widetilde{g_{0}}
$$

Then the vector-valued function

$$
\begin{equation*}
\widetilde{y}(t)=y(t)-t^{k-1} \exp (t A) f_{k-1}-t^{k-1} \exp (-t A) g_{k-1} \tag{7}
\end{equation*}
$$

where

$$
f_{k-1}=\frac{A^{1-k}}{2^{k-1}(k-1)!} \widetilde{f}_{0}, \quad g_{k-1}=\frac{(-1)^{k-1} A^{1-k}}{2^{k-1}(k-1)!} \widetilde{g}_{0} \in \mathfrak{G}_{(1)}(A)
$$

is a solution of the equation

$$
\left(\frac{d^{2}}{d t^{2}}-B\right)^{k-1} \widetilde{y}(t)=0, \quad t \in \mathbb{R}^{1}
$$

and, therefore, $\widetilde{y}(t)$ can be represented in the form (4) with $m=k-1$, whence, in view of (7), we arrive at the representation (4) with $m=k$.

We prove now the uniqueness of representation (4), i.e., that the identity $y(t) \equiv 0$ implies the equalities $f_{k}=g_{k}=0, k=0,1, \ldots, m-1$. Starting from (4), by the direct computation we get

$$
\begin{align*}
\left(\frac{d}{d t}+A\right)^{m}\left(\frac{d}{d t}-A\right)^{m-1} y(t) & =\left(\frac{d}{d t}+A\right)^{m}(m-1)!\exp (t A) f_{m-1} \tag{8}\\
& =2^{m}(m-1)!A^{m} \exp (t A) f_{m-1}
\end{align*}
$$

and

$$
\begin{align*}
\left(\frac{d}{d t}-A\right)^{m}\left(\frac{d}{d t}+A\right)^{m-1} y(t) & =\left(\frac{d}{d t}-A\right)^{m}(m-1)!\exp (-t A) g_{m-1} \tag{9}\\
& =(-1)^{m} 2^{m}(m-1)!A^{m} \exp (-t A) g_{m-1}
\end{align*}
$$

Setting in (8) and (9) $t=0$ and taking into account that $y(t) \equiv 0$, we obtain $f_{m-1}=$ $g_{m-1}=0$. Thus,

$$
y(t)=\sum_{k=0}^{m-2} t^{k}\left(\exp (t A) f_{k}+\exp (-t A) g_{k}\right)
$$

Repeating the procedure m times, we conclude that $f_{k}=g_{k}=0$ for all $k=0,1, \ldots, m-1$, which is what had to be proved.

Corollary 1. Every solution of equation (3) on $(-\infty, \infty)$ admits an extension to an entire function with values in $\mathfrak{G}_{(1)}(A)$.

Since the operator A generates a bounded analytic semigroup, it follows from Proposition 1 and Theorem 1 that the space of all solutions of equation (3) is infinite-dimensional. Moreover, the following analog of the Phragmen-Lindelöf principle [9] holds for them.

Theorem 2. Let $y(t)$ be a solution of equation (3). If

$$
\begin{equation*}
\exists \gamma \in(0,-\omega), \exists c_{\gamma}>0:\|y(t)\| \leq c_{\gamma} e^{\gamma t}, \quad t \in \mathbb{R}^{1} \tag{10}
\end{equation*}
$$

where $\omega=\omega(A)$ is the type of the semigroup $\left\{e^{t A}\right\}_{t \geq 0}$, then $y(t) \equiv 0$.
Proof. Write representation (4) as

$$
y(t)=y_{1}(t)+y_{2}(t)
$$

where

$$
\begin{equation*}
y_{1}(t)=\sum_{i=0}^{m-1} t^{i} \exp (t A) f_{i}, \quad y_{2}(t)=\sum_{i=0}^{m-1} t^{i} \exp (-t A) g_{i} . \tag{11}
\end{equation*}
$$

Since the semigroup $\left\{e^{t A}\right\}_{t \geq 0}$ is bounded analytic, by Proposition 1 we have for $t>0$ that $\exp (t A) f_{i}=e^{t A} f_{i}, i=0,1, \ldots, m-1$. As it follows from the definition of the type of a semigroup,

$$
\forall \delta \in\left(0,-\frac{\omega}{2}\right), \forall t \geq 0, \exists c_{\delta}>0:\left\|e^{t A}\right\| \leq c_{\delta} e^{(\omega+\delta) t}
$$

whence

$$
\begin{equation*}
\forall t \geq 0:\left\|y_{1}(t)\right\| \leq \sum_{i=0}^{m-1} t^{i}\left\|\exp (t A) f_{i}\right\| \leq \sum_{i=0}^{m-1} c_{i \delta} e^{(\omega+2 \delta) t} \leq \widetilde{c_{\delta}} e^{(\omega+2 \delta) t} \tag{12}
\end{equation*}
$$

where $2 \delta \in(0,-\omega)$ and the constant $\widetilde{c_{\delta}}=\sum_{i=0}^{m-1} c_{i \delta}$ depends only on f_{i}.

Let now $g \in \mathfrak{G}_{(1)}(A)$. Then

$$
\begin{aligned}
\forall \delta \in\left(0,-\frac{\omega}{2}\right), \forall t \geq 0:\|g\| & =\left\|e^{t A} \exp (-t A) g\right\| \leq\left\|e^{t A}\right\|\|\exp (-t A) g\| \\
& \leq c_{\delta} e^{(\omega+\delta) t}\|\exp (-t A) g\|
\end{aligned}
$$

This implies

$$
\|\exp (-t A) g\| \geq c_{\delta}^{\prime} e^{-(\omega+\delta) t}\|g\| \quad \text { as } \quad t \geq 0
$$

and, therefore,

$$
\forall t \geq 0:\left\|y_{2}(t)\right\|=\|\exp (-t A) h(t)\| \geq c_{\delta}^{\prime} e^{-(\omega+\delta) t}\|h(t)\|,
$$

where $h(t)=\sum_{i=0}^{m-1} t^{i} g_{i}, c_{\delta}^{\prime}=c_{\delta}^{-1}$ does not depend on t.
Suppose $y_{2}(t) \not \equiv 0$. It follows from this that in representation (11) for $y_{2}(t)$ some $g_{i} \neq 0$. Without loss of generality, we may assume $g_{m-1} \neq 0$. Then

$$
\begin{aligned}
\forall t>0:\left\|y_{2}(t)\right\| & \geq c_{\delta}^{\prime} e^{-(\omega+\delta) t}\left(t^{m-1}\left\|g_{m-1}\right\|-\left\|\sum_{i=0}^{m-2} t^{i} g_{i}\right\|\right) \\
& =c_{\delta}^{\prime} e^{-(\omega+\delta) t} t^{m-1}\left(\left\|g_{m-1}\right\|-\left\|\sum_{i=0}^{m-2} t^{k-m+1} g_{i}\right\|\right)
\end{aligned}
$$

Because of

$$
\left\|\sum_{i=0}^{m-2} t^{k-m+1} g_{i}\right\| \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty
$$

and $t^{m-1}>e^{-\delta t}$ for sufficiently large $t>0$, we have

$$
\begin{equation*}
\forall t>0, \forall \delta \in\left(0,-\frac{\omega}{2}\right):\left\|y_{2}(t)\right\| \geq c_{\delta}^{\prime \prime} e^{-(\omega+2 \delta) t} \tag{13}
\end{equation*}
$$

where $c_{\delta}^{\prime \prime}$ does not depend on t. Using inequalities (10) and (12), we obtain
(14) $\forall t>0:\left\|y_{2}(t)\right\|=\left\|y(t)-y_{1}(t)\right\| \leq\|y(t)\|+\left\|y_{1}(t)\right\| \leq c_{\gamma} e^{\gamma t}+\widetilde{c_{\delta}} e^{(\omega+2 \delta) t} \leq c e^{\gamma t}$, where $c=c_{\gamma}+\widetilde{c_{\delta}}$. The inequalities (13), (14) imply

$$
\forall t>0: c_{\delta} e^{-(\omega+2 \delta) t} \leq\left\|y_{2}(t)\right\| \leq c_{\gamma} e^{\gamma t}
$$

Put

$$
\varphi(t)=\frac{\left\|y_{2}(t)\right\|}{c_{\delta} e^{-(\omega+2 \delta) t}}
$$

Then, for sufficiently large $t>0$

$$
1 \leq \varphi(t) \leq \widetilde{c} e^{(\gamma+\omega+2 \delta) t}, \quad \widetilde{c}=\frac{c_{\gamma}}{c_{\delta}}
$$

Setting $\delta=-\frac{\gamma+\omega}{4}$, we shall have for large $t>0$

$$
1 \leq \varphi(t) \leq \widetilde{c} e^{\frac{\gamma+\omega}{2} t}
$$

Approaching the limit as $t \rightarrow \infty$ and taking into account that $\frac{\gamma+\omega}{2}<0$, we infer $1 \leq$ $\varphi(t) \leq 0$, provided that $y_{2}(t) \neq 0$ for $t \geq 0$, which is impossible. So, $y_{2}(t) \equiv 0$ on the semiaxis $[0, \infty)$. Therefore $g_{i}=0, i=0,1, \ldots, m-1$.

If we assume $y_{1}(t) \not \equiv 0$, we shall draw a conclusion that $y_{1}(t) \neq 0$ as $t \leq 0$. Substituting in (4) $-t$ for t, we obtain $y_{1}(t) \equiv 0$ on the semiaxis $(-\infty, 0]$, whence, by Theorem 1 , $f_{i}=0, i=0,1, \ldots, m-1$. This has a consequence that $y(t) \equiv 0$.

Corollary 2. (Analog of the Liouville theorem.) Let $y(t)$ be a solution of the homogeneous equation (3) on \mathbb{R}^{1}. Then

$$
\sup _{t \in \mathbb{R}^{1}}|y(t)|<\infty \Longrightarrow y(t) \equiv 0, \quad t \in \mathbb{R}^{1}
$$

3. Consider now a nonhomogeneous equation (2). Denote by $C_{b}\left(\mathbb{R}^{1}, \mathfrak{B}\right)$ the set of all bounded continuous on \mathbb{R}^{1} vector-valued functions with values in \mathfrak{B}. In what follows we suppose $f(t) \in C_{b}\left(\mathbb{R}^{1}, \mathfrak{B}\right)$. Under a generalized solution of equation (2) on \mathbb{R}^{1} we mean a continuous vector-valued function $y(t): \mathbb{R}^{1} \mapsto \mathfrak{B}$ for which the integral identity

$$
\int_{\mathbb{R}^{1}}\left\langle\left(\frac{d^{2}}{d t^{2}}-B^{*}\right)^{m} \varphi(t), y(t)\right\rangle d t=\int_{\mathbb{R}^{1}}\langle\varphi(t), f(t)\rangle d t
$$

holds true, where $\varphi(t)$ is an arbitrary compactly supported infinitely differentiable vectorvalued function with values in $\mathcal{D}\left(B^{* m}\right.$ such that $B^{* m} \varphi(t)$ is continuous on $\mathbb{R}^{1},\langle\cdot, f\rangle$ denotes the action of a functional f onto a corresponding element. It is obvious that a classic solution of (2) is its generalized one.

Theorem 3. Let $A^{m} f(t) \in C_{b}\left(\mathbb{R}^{1}, \mathfrak{B}\right)$, and

$$
\begin{equation*}
y_{m}(t)=\frac{A^{-m}}{2^{m}} \int_{\mathbb{R}^{m}} e^{A\left(\left|t-s_{1}\right|+\left|s_{2}-s_{1}\right|+\cdots+\left|s_{m}-s_{m-1}\right|\right)} f\left(s_{m}\right) d s_{1} \ldots d s_{m} \tag{15}
\end{equation*}
$$

Then $y_{m}^{(i)}(t) \in C_{b}\left(\mathbb{R}^{1}, \mathcal{D}\left(A^{2 m-i}\right)\right.$, i.e. $y_{m}^{(i)}(t)$ is a bounded continuous vector-valued function with values in $\mathcal{D}\left(A^{2 m-i}\right), i=0,1, \ldots, 2 m$, and $y_{m}(t)$ is a solution of equation (2).

Proof. To prove the assertion, we turn again to the method of mathematical induction.
Put $m=1$. Since

$$
\forall t>0:\left\|e^{A t}\right\|<c e^{-\gamma t}, \quad 0<\gamma<-\omega(A)
$$

and $A f(t) \in C_{b}\left(\mathbb{R}^{1}, \mathfrak{B}\right)$, it is not difficult to check that
(16)

$$
\left\{\begin{array}{l}
y_{1}(t)=\frac{A^{-1}}{2} \int_{\mathbb{R}^{1}} e^{A\left|t-s_{1}\right|} f\left(s_{1}\right) d s_{1}=\frac{A^{-2}}{2} \int_{\mathbb{R}^{1}} e^{A\left|t-s_{1}\right|} A f\left(s_{1}\right) d s_{1} \in C_{b}\left(\mathbb{R}^{1}, \mathcal{D}\left(A^{2}\right)\right), \\
y_{1}^{\prime}(t)=\frac{A^{-1}}{2}\left(\int_{-\infty}^{t} e^{A\left(t-s_{1}\right)} A f\left(s_{1}\right) d s_{1}+\int_{t}^{\infty} e^{A\left(s_{1}-t\right)} A f\left(s_{1}\right) d s_{1}\right) \in C_{b}\left(\mathbb{R}^{1}, \mathcal{D}(A)\right), \\
y_{1}^{\prime \prime}(t)=f(t)+\frac{1}{2} \int_{\mathbb{R}^{1}} e^{A\left|t-s_{1}\right|} A f\left(s_{1}\right) d s_{1} \in C_{b}\left(\mathbb{R}^{1}, \mathfrak{B}\right)
\end{array}\right.
$$

It follows from this that $y_{1}(t)$ is a classic solution of equation (2) on \mathbb{R}^{1}.
Suppose now that for $m=k$, under the condition $A^{k} f(t) \in C_{b}\left(\mathbb{R}^{1}, \mathfrak{B}\right)$, the conclusion of Theorem 3 is valid. Then for $m=k+1$ we have

$$
\begin{align*}
y_{k+1}(t) & =\frac{A^{-(k+1)}}{2^{k+1}} \int_{\mathbb{R}^{k+1}} e^{A\left(\left|t-s_{1}\right|+\left|s_{2}-s_{1}\right|+\cdots+\left|s_{k+1}-s_{k}\right|\right)} f\left(s_{k+1}\right) d s_{1} \ldots d s_{k+1} \tag{17}\\
& =\frac{A^{-2}}{2} \int_{\mathbb{R}^{1}} e^{A|t-s|} z(s) d s=\frac{A^{-2}}{2} \int_{\mathbb{R}^{1}} e^{A|s|} z(t-s) d s,
\end{align*}
$$

where

$$
z(s)=\frac{A^{-k}}{2^{k}} \int_{\mathbb{R}^{k}} e^{A\left(\left|s-s_{2}\right|+\cdots+\left|s_{k+1}-s_{k}\right|\right)} A f\left(s_{k+1}\right) d s_{2} \ldots d s_{k+1} .
$$

As $A f\left(s_{k+1}\right) \in C_{b}\left(\mathbb{R}^{1}, \mathcal{D}\left(A^{k}\right)\right)$, by the assumption specified above, $z^{(i)}(t) \in C_{b}\left(\mathbb{R}^{1}\right.$, $\left.\mathcal{D}\left(A^{2 k-i}\right)\right), i=0,1, \ldots, 2 k$, and satisfies (2) with $m=k$ and $A f(t)$ instead of $f(t)$. It follows from (17) that

$$
y_{k+1}^{(2 k)}(t)=\frac{A^{-2}}{2} \int_{\mathbb{R}^{1}} e^{A|t-s|} z^{(2 k)}(s) d s
$$

Therefore, because of (16), we get

$$
y_{k+1}^{(2(k+1))}(t)=z^{(2 k)}(t)+\frac{1}{2} \int_{\mathbb{R}^{1}} e^{A|t-s|} z^{(2 k)}(s) d s \in C_{b}\left(\mathbb{R}^{1}, \mathfrak{B}\right)
$$

and

$$
\begin{aligned}
& \left(\frac{d^{2}}{d t^{2}}-A^{2}\right)^{k+1} y_{k+1}(t)=\left(\frac{d^{2}}{d t^{2}}-A^{2}\right) \frac{A^{-2}}{2} \int_{\mathbb{R}^{1}}\left(\frac{d^{2}}{d t^{2}}-A^{2}\right)^{k} e^{A|t-s|} z(s) d s \\
& \quad=\left(\frac{d^{2}}{d t^{2}}-A^{2}\right) \frac{A^{-2}}{2} \int_{\mathbb{R}^{1}} e^{A|t-s|}\left(\frac{d^{2}}{d t^{2}}-A^{2}\right)^{k} z(s) d s \\
& \quad=\left(\frac{d^{2}}{d t^{2}}-A^{2}\right) \frac{A^{-2}}{2} \int_{\mathbb{R}^{1}} e^{A|t-s|} A f(s) d s=\left(\frac{d^{2}}{d t^{2}}-A^{2}\right) \frac{A^{-1}}{2} \int_{\mathbb{R}^{1}} e^{A|t-s|} f(s) d s=f(t)
\end{aligned}
$$

Thus, the assertion of the theorem is true for $y_{k+1}(t)$.
Corollary 3. If $f(t) \in C_{b}\left(\mathbb{R}^{1}, \mathfrak{B}\right)$, then $y_{m}^{(k)}(t) \in C_{b}\left(\mathbb{R}^{1}, \mathcal{D}\left(A^{2 m-k}\right), k=0,1, \ldots, m\right.$, and $y_{m}(t)$ is a generalized solution of equation (2).
Proof. The fact that $y_{m}^{(k)}(t) \in C_{b}\left(\mathbb{R}^{1}, \mathcal{D}\left(A^{2 m-k}\right)\right.$ as $k=1,2, \ldots, m$, is proved on the basis of (15) by means of the method of mathematical induction in a way like to that used in Theorem 3. To verify that $y_{m}(t)$ is a generalized solution of (2), consider the sequence $f_{n}(t)=e^{\frac{1}{n} A} f(t)$. By virtue of analyticity of the semigroup $\left\{e^{A t}\right\}_{t \geq 0}, f_{n}(t) \in$ $C_{b}\left(\mathbb{R}^{1}, \mathcal{D}\left(A^{n}\right)\right)$ for any $n \in \mathbb{N}$, and $f_{n}(t)$ converges uniformly to $f(t)$. So

$$
y_{m, n}(t)=\frac{A^{-m}}{2^{m}} \int_{\mathbb{R}^{1}} e^{-A\left(\left|t-s_{1}\right|+\cdots+\left|s_{m}-s_{m-1}\right|\right)} f_{n}\left(s_{m}\right) d s_{1} \ldots d s_{m}
$$

is a classic solution of equation (2) with $f(t)=f_{n}(t)$, and the sequence $y_{m, n}(t)$ converges uniformly on \mathbb{R}^{1} to $y_{m}(t)$ as $n \rightarrow \infty$. Passing to the limit in the identity

$$
\int_{\mathbb{R}^{1}}\left\langle\left(\frac{d^{2}}{d t^{2}}-B^{*}\right)^{m} \varphi(t), y_{m, n}(t)\right\rangle d t=\int_{\mathbb{R}^{1}} \varphi(t) f_{n}(t) d t
$$

we conclude that $y_{m}(t)$ is a generalized solution of (2).
Recall that a continuous vector-valued function $f(t): \mathbb{R}^{1} \mapsto \mathfrak{B}$ is called almost periodic (by Bohr) if for any $\varepsilon>0$ there exists a constant $L_{\varepsilon}>0$ such that each interval from \mathbb{R}^{1} of length less than ε contains a point $\tau=\tau(\varepsilon)$ having the property

$$
\forall t \in \mathbb{R}^{1}:\|f(t)-f(t+\tau)\|<\varepsilon
$$

As a consequence of Theorem 3, Corollaries 2,3, and the fact that a generalized solution of equation (3) is classic one we obtain the following theorem.

Theorem 4. Let $f(t) \in C_{b}\left(\mathbb{R}^{1}, \mathcal{D}\left(A^{m}\right)\right)\left(f(t) \in C_{b}\left(\mathbb{R}^{1}, \mathfrak{B}\right)\right.$. Then there exists only one bounded classic (generalized) solution $y(t), t \in \mathbb{R}^{1}$ of equation (2), and it can be represented in the form (15). If $f(t)$ is periodic or almost periodic, then the solution is the same as $f(t)$.

References

1. E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc., Providence, RI, 1957.
2. K. Yosida, Functional Analysis, Springer, Berlin—Góttingen-Heidelberg, 1965.
3. V. V. Vasilyev, S. G. Krein, and S. I. Piskariov, Semigroups of operators, cosine operator functions, and linear differential equations, Itogi Nauki i Techniki, Ser. Math., Math. Anal. 28 (1990), 87-202. (Russian)
4. K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, SpringerVerlag, Berlin—New York, 2000.
5. I. M. Gelfand and G. E. Shilov, Generalized Functions, Vol. 2: Spaces of Test and Generalized Functions, Fizmatgiz, Moscow, 1958. (Russian)
6. M. Gorbachuk and V. Gorbachuk, On extensions and restrictions of semigroups of linear operators in a Banach space and their applications, Math. Nachr. 285 (2012), no. 14-15, 1860-1879.
7. H. Komatsu, Fractional powers of operators, Pacific J. Math. 19 (1966), no. 2, 285-346.
8. S. G. Krein, Linear Differential Equations in a Banach Space, Nauka, Moscow, 1967. (Russian); English transl. Transl. Math. Monographs, Vol. 29, Amer. Math. Soc., Providence, RI, 1971.
9. P. D. Lax, A Phragmen-Lindelöf theorem in harmonic analysis and its application to some questions in the theory of elliptic equations, Comm. Pure Appl. Math. 10 (1957), 361-389.

National Technical University "KPI", 37 Peremogy Prosp., Kyiv, 06256, Ukraine
E-mail address: v.m.horbach@gmail.com
Received 29/01/2015

[^0]: 2000 Mathematics Subject Classification. Primary 34G10.
 Key words and phrases. Positive operator, differential equation in a Banach space, classic and generalized solutions, C_{0}-semigroup of linear operators, bounded analytic C_{0}-semigroup, entire vector of a closed operator, entire vector-valued function, Phragmen-Lindelöf principle.

