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SOME APPLICATIONS OF ALMOST ANALYTIC EXTENSIONS
TO OPERATOR BOUNDS IN TRACE IDEALS

FRITZ GESZTESY AND ROGER NICHOLS

Dedicated with deep admiration to Yurij Makarovich Berezansky
on the occasion of his 90th birthday

AstrAcT. Using the Davies—Helffer-Sjostrand functional calculus based on almost an-
alytic extensions, we address the following problem: Given a self-adjoint operator S in
H, and functions f in an appropriate class, for instance, f € C§’(R), how to control the
norm [|f(S )|l in terms of the norm of the resolvent of S, ||(S —z0l4¢)7! llg(#), for some
20 € C\R. We are particularly interested in the case where B(H) is replaced by a trace
ideal, B,(H), p € [1, c0).

1. INTRODUCTION

Yurij M. Berezansky’s contributions to analysis in general, and areas such as functional
analysis, operator theory, spectral and inverse spectral theory, harmonic analysis, analysis
in spaces of functions of an infinite number of variables, stochastic calculus, mathematical
physics, quantum field theory, integration of nonlinear evolution equations, in particular,
are legendary and of a lasting nature. The list of fields his ground breaking work changed
in dramatic fashion can easily be continued in many directions as is demonstrated by
the extraordinary breadth revealed in his highly influential monographs [2]-[8]. Since
operator theoretic methods frequently play a role in his research interests, we hope our
modest contribution to operator bounds in trace ideals will create some joy for him.

This paper has its origins in the following question: Given a self-adjoint operator S in
H, and functions f in an appropriate class, for instance, f € Cy (R), how to control the
norm ||£(S )|l in terms of the norm of the resolvent of S, |[(S — zol¢) " lg1), for some
zo € C\R? In particular, the question is just as natural with B(#H) replaced by a trace
ideal, B,(H), p € [1, o). More precisely, since we are particularly interested in questions
related to convergence of operator sequences, we will study pairs of self-adjoint operators
S, j=1,2,in H and attempt to control || f(S2) — f(S Dllgw and [|f(S2) — f(S Dlls, ) in
terms of [|(S2 — 2ol0)™" = (S1 — 20d#) gy and (2 — 20l ™" = (S1 = 201#) Iz, 240
respectively.

In fact, our interest in these questions stems from computations of the Witten index
(a suitable extension of the Fredholm index) for a class of non-Fredholm model operators

(1.1 D, = dit +A, dom(D,)=W"3(R;H) N dom(A),
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in the Hilbert space L*(R; H), where
(A1) = AW f(1) forae. 1 €R,

(1.2) f edom(A) = {g € LZ(R; ﬂ)‘g(t) € dom(A(r)) for a.e. t € R;

t — A(?)g(?) is (weakly) measurable; f dtIIA(t)g(t)II?H < oo},
R

with A(?), t € R, a family of self-adjoint operators in H with asymptotes A, (in norm
resolvent sense). Interesting concrete examles for A, are given by massless Dirac-type
operators in H = L*(RY), d € N (the latter are known to be non-Fredholm), see, [10]-[15].
More precisely, given the sequence of self-adjoint operators H;,, H; in L*(R; dt; H),
Jj = 1,2, n € N, and self-adjoint operators A, ,, A, A_ in H, n € N, and a Pushnitski-
type relation between the spectral shift functions &(-; H,,,H,,) and &(-;A.,,A_)
for the pairs, (H,,, H1 ,) and (A, ,, A_) of the form

1 A by
(1.3) (f(/l; H2,naH1,n) —JrnJar -2 fora.e. 1> 0, neN,
0, 1<0,

we were interested in performing the limit n — oo in (1.3) to obtain the analogous relation
for the limiting spectral shift functions &(-; H,, Hy) and &(-; A, A_) corresponding to
the limiting pairs (H,, H;) and (A4, A_), respectively. The latter is instrumental in
computing the Witten index for D,. The task of performing the limit n — oo in
(1.3) is considerably complicated since due to the nature of the approximations involved,
no suitable bounds on &(-; H,,,H;,) and &(-;A,,,A_) (independent of n € N) are
readily available. To circumvent this difficulty one can resort to a distributional approach
considering

1
(14) fd/l f(/l, H2,ns Hl,n)f’(/l) = 7_1_ fdvé:(y;AhnaA—)F,(V), ne N,
R R
where f € C7°(R) is arbitrary, and F” € C°(R) is given by

(1.5) F'(v) = fm dA f/(D)A =) veR,

details will appear in [13]. Focusing now on the left-hand side of (1.4), one recalls Krein’s
trace formula,

(1.6)  trg 2wy (f(Hapn) —f(Hl,n))=f[O )dﬁf(/l; H,, . H,,)f'(A), feCyR).

Thus, given control of resolvents in the form

lim ”[(Hzﬂ - ZI)7m2 - (Hl,n - ZI)imz]
(1.7) e

- [(Hy—zD)™ —(H; —zD)™ 0, zeC\R.

2]||81(L2(R;‘H)) -
one can hope to control
(1.8) Lim [I[f(H2,0) = f(H1,01 = [f(HR) = f(HD]llg,@2@:00) = 0,

and hence obtain

lim dAEA; Hopy Hy ) (1) =lim trg, @2e.00) (f (Ho0) = f(H10))

n—oo [0’00)

(1.9)
= trfBI(L2(R;’H))(f(H2)_f(H1)):j[;) )d/lf(ﬂ; Hy, H)f'(D), fe€CyR).
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Together with controlling the limit # — oo on the right-hand side of (1.4), this leads to

(1.10) f dAEQ Ho, H)F () = © f dvEW; Ay, ALF'(v).
R T Jr

Without going into further details we note that (1.10) in turn can be used to prove the
limiting relation in (1.3) and the latter leads to a compution of the semigroup regular-
ized Witten index, W (D), of D ,: Assuming that O is a left and a right Lebesgue point
of &(-;A;,A_), denoting the corresponding values by &(0.;A;,A_), the semigroup
regularized Witten index is found to be

Wi(D,) := limtrpzggp (e H - e7H2)
(1.11) oo
=[£(0;A4,A0) +£(0,;A,,A)]/2,

see, for instance, [10]-[15]. (We here use the semigroup regularized Witten index rather
than the resolvent regularised one as the former is applicable in the case of d-dimensional
Dirac-type operators A., d € N.) We trust this sufficiently illustrates our interest in using
control of resolvents of self-adjoint operators to gain control over their Ci’-functions.

We also note a further complication lies in the fact that when studying multi-dimensi-
onal Dirac-type operators A, resolvents alone are not sufficient in the trace class context
and hence sufficiently high powers (depending on the space dimension involved) of resol-
vents have to be employed.

Our principal tool to gain control over Cg’-functions of § in terms of (powers of) re-
solvents of S is furnished by a suitable application of almost analytic extensions ]F‘ZU of
f in the form of a Davies—Helffer—Sjostrand functional calculus [18], [20, Ch. 2], [40,
Proposition 7.2], of the form

Ofro

N
oz @S —zlw)™,

(1.12) f(S)=n" fdxdy
c
and a refinement due to Khochman [43] of the type

Ofrer

oz @)z = 20)"(S = 2002)™"(S —2ly)”', meNU({0},

(1.13)  f(S) = }chdxdy

to be discussed in some detail in Section 2. Section 3 contains our principal results and
some applications. Finally, Appendix A recalls various useful facts concerning (powers
of) resolvents.

We conclude with some comments on the notation employed in this paper: Let H be
a separable complex Hilbert space, (-, )¢ the scalar product in H (linear in the second
argument), and I the identity operator in H.

Next, if T is a linear operator mapping (a subspace of) a Hilbert space into another, then
dom(7) and ker(7) denote the domain and kernel (i.e., null space) of 7. The spectrum
and resolvent set of a closed linear operator in a Hilbert space will be denoted by o7(-) and
p(+), respectively. t

The convergence of bounded operators in the strong operator topology (i.e., pointwise
limits) will be denoted by s-lim.

The Banach spaces of bounded and compact linear operators on a separable complex
Hilbert space H are denoted by B(H) and B..(H), respectively; the corresponding £-
based trace ideals will be denoted by B,(?H), their norms are abbreviated by || || B,(H)s P 2
1. Moreover, tre;(A) denotes the corresponding trace of a trace class operator A € B (H).

The symbol C7’(R) represents C*-functions of compact support on R; continuous func-
tions on R vanishing at infinity are denoted by C(R).
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2. BASIC FACTS ON ALMOST ANALYTIC EXTENSIONS AND THE FUNCTIONAL CALCULUS FOR
SELF-ADJOINT OPERATORS

In this preparatory section we briefly recall the basics of almost analytic extensions
and the ensuing functional calculus for self-adjoint operators, following Davies’ detailed
treatment in [18], [20, Ch. 2].

One introduces the class SA(R), B € R, consisting of all functions f € C*(R) such that

2.1 () o O(xy’™),  m €Ny,

where (z) = (|z* + 1)"/%, z € C. Then in obvious notation, with “” denoting pointwise
multiplication, S#(R) - SY(R) € S#*Y(R), B,y € R, and the space

2.2) AR) = U SAR)
B<0
is an algebra under pointwise multiplication with
2.3) CyR) c AR).
In particular, f € AR) implies f € C(R) (the continuous functions vanishing at +oo)
and f™ € L'(R), m € N. _
Given f € A(R), one defines an almost analytic extension fi, of f to C by

(k) k
(24) fro(@) = o (x, y)ZM, z=x+iyeC, (€N,
where
0 1, |s|<1,
2.5) o(x,y) =10/{x), x,yeR, 1eCyR), (s)= {
0, Is|>2

The precise structure of ]F‘;,U will not be important and other expresssions for it are possible
(cf., [18]).
We note the formula

af[ oa _ 6f€ o f€ o
@=5(2 )+ (z))
1 ) k L1 (i E
CO =l ] Z T L. L2
z€C,
implying the crucial fact,
@7 | f e+ i) = 01,
in particular,
3fc’a

(2.8) (x)=0, xeR.

Following Helffer and Sjéstrand [40, Proposition 7.2], particularly, in the form pre-
sented by Davies [18], [20, Ch. 2], one then establishes a functional calculus for self-
adjoint operators S in a complex, separable Hilbert space H via the formula

(2.9) fS)=n f dxdy g"_"(z)(s 27"
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Since the integrand is norm continuous, the integral in (2.9) is norm convergent, in partic-
ular, one notes that (2.7) and (2.8), together with the standard estimate ”(S —zly) 7! H BEH) <

[Im(z)|~", overcome the apparent singularity of the integrand in (2.9) for z € o°(S) C R (cf.
also (2.8)).

The justification for calling this a functional calculus follows upon proving the follow-
ing facts:

e The left-hand side of (2.8) is independent of the choice of £ € N and the precise form
of oin (2.5).

o If f € C7°(R) with supp(f) N o (S) = 0, then f(S) =0
o If f, g € AR), then (£g)(S) = £(S)g(S), £(S)* = FS) Nf Sllsz = Ifll=).
eletze C\Rand f.(x) = (x —2)~!, then £, € AR) and £.(S) = (S — zl) "

In addition, we note that Khochman [43] proved the following extension of (2.9):

Lemma 2.1. ([43]). Let m € N, f € Cy’(R), and suppose that S is self-adjoint in H.
Then,

f“(z)(z = 20)"™(S = 20l90)™™(S — zlyy) "

1
(2.10) fS) = —fdxdy
T Jc
We will employ (in fact, rederive) (2.10) in the proof of Theorem 3.8. Next, we discuss
another extension focusing on semigroups rather than powers of resolvents.

Lemma 2.2. Lett > 0, f € Cy°(R), and suppose that S is self-adjoint and bounded from
below in H. Then,

(2.11) f(S) = :;L fm(z)e’ze (S = zlg)”!

Proof. We start by noting that if f, g € Cj°(R), it is proved in [20, p. 28] that

(2.12) f dxdy &(z)(s — g = f dxdy M( )S —zly)7".
C aZ c 8

Next, suppose that f € C7’(R) and let E, € Cj’(R) denote a function which coincides
with €™ on an open interval I with supp(f) C I. Then

it k
(2.13) Eco(2) = o(x, y)e’XZ( bl z=x+iy, xel.

Let fr , denote an almost analytic extension of f. Setting g = fE,, with gz~ an almost
analytic extension of g, in light of the identity f(S) = g(S Ye ™S, one infers from the
Davies—Helffer—Sjostrand functional calculus (2.9) applied to g,

£(S) = 7—1r f dxdy agg_(, (2)e™5(S — 2ly)""

1 f dxdy M( Ve S (S — zlz)!
C

bis 0z

(2.14)

1 6~’ load =
- f dxdy ]3_‘ (DEi1o(2)eS (S — zlp) ™!

1 f dxdy fp. 0"(2) ”"(z) (S — zly) !
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1 6ﬁwﬂn i £ lty)k = _
=+ Ly 2 (@auomz(Ej )5 (s =zl

0z —

71r fdxdy Jeo (z){ [O'X(x y)e' (Zgé lt)i)k)
+o(x,y)e x( Z[: (z;y)k )]

=0
-1 ¢ .
O'(x y)e“zt( kz(; G y)k) + oy (x, y)e”‘( 24 (lziv)k)]}
X eSS —zly) 7L

Exploiting the fact that f(S) is independent of £, we now take the limit £ — oo in
(2.14). Since j‘;a has compact support and takes care of the singularity of the resolvent,
¢S is bounded and z-independent, and the exponential series converges uniformly on
compact sets, one may pass the limit under the integral to obtain

£(S) = }T f dxdy {;’ T o (x, y)e e ™S (S — zly)"
{fw@ﬁm@@ﬁiﬁﬁfﬁswmﬂ
T 0z

(2.15) 1
+ [ sty Lo @ eSS -zt
C 0z

T

1 0 ~
—fwwfwam%“wﬁmﬂ,
T Jc (91

where & = 0’0 (which corresponds to choosing 7 = 7/7). It is a simple matter to verify
that

(2.16) 3'(f{’ F(2)e") = f“— e,
which then shows
1
(2.17) £(S) = ;fdxd ffz" oIS (S — zly)7!
and hence (2.11) (renaming ¢’ and 7). O

Historically, the idea of almost analytic (resp., pseudo-analytic) extensions appeared
in Hoérmander [39] and Dynkin [28], [29], Melin and Sjostrand [46] (see also [26, Ch. 8],
[45, Sect. II1.6] for expositions and [42] for an alternative approach). The functional
calculus was used by Helffer and Sjostrand in their seminal 1989 paper on Schrodinger
operators with magnetic fields [40], which in turn was the basis for the systematic treat-
ment by Davies [18], [20, Ch. 2]. Since these early developments, there has been a large
body of literature in connection with spectral theory for Schrodinger and Dirac-type oper-
ators applying this functional calculus. While a complete list of references in this context
is clearly beyond the scope of this paper, we want to illustrate the great variety of ap-
plications that rely on this functional calculus a bit and hence refer to [16], [21], [22],
[23], [24], [25], [27], [30], [31], [34], [35], [37], [41], [43], [47], [48], [52], [53], and the
references cited therein.

While we here exclusively focus on linear operators in a Hilbert space, this functional
calculus applies to operators in Banach spaces with real spectrum, see, for instance, [1],
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[17], [18], [19], [32], [33]. Extensions to the case where the spectrum is contained in the
unit circle or contained in finitely-many smooth arcs were also treated in [28].

3. SOME APPLICATIONS

In this section we apply the almost analytic extension method and its ensuing func-
tional calculus for self-adjoint operators to derive various norm bounds and convergence
properties of operators in trace ideals.

We start with the following estimates established in the proof of [20, Theorem 2.6.2]
(more precisely, (3.1) is proved in [20], but then the rest of Lemma 3.1 is obvious):

Lemma 3.1. Let zg € C\R, f € AR) and suppose that S j, j = 1,2, are self-adjoint in
H. Then

8 Ofro | lzol* + I2P]
If(S2) = f(SDllsrn < — fcd)‘dy ‘ 7z 9 IIm(z)[?

X “(52 = 20l3) ™" = (S1 = 200307 ||B(‘H)'

In addition, if for some p € [1,00), [(S2 = z0l20)™" = (S1 — 20lp) "] € B,(H) for some
(and hence for all) zy € C\R, then

(3.2 [f(S2) = f(S1] € Bp(H)

and

3.1)

] dfro, |llzol +12P]
1f(S2) = f(S Dlls, 0 < — fcd’“ly ’ 7z @ Im(z)[?

x[|(S2 = zols) ™" = (S1 = 20050)™" By (H)'
If[(S, - 20le) ™' = (S, - zolfﬂ)’l] € Boo(H), the inclusion (3.2) extends to p = oo.
Proof. Combining (2.9), (A.1), and (A.2) one obtains,

b
0z

(3.3)

@S2 = 2lp)™ = (S1 = 2ls)7"]

G4 fS)-fS)=n" fc dxdy

and hence

1£(S2) = f(S Dllse)

0o - -
<ﬂ_ldedy gzz @S2 = 2l7) ™" = (S1 = 2ln) 1||B(‘H)

0z
X [(S2 = 20120 ™" = (S1 = 20820~ 1S 1 = 200501 = 213 || g0,

Ofro
<n! f dxdy| 2 @S2 = 2005)(S2 = 2lz) ™"
C

3.5) 6]7
<7r"fcdxdy ;Z’a(z)||(Sz—Z(>171{)(52—Z1'H)_1 BH)
[|6S1 = 2080 1 = 23| g IS 2 = 20120~ = (S = 200207 |
8 0fe | llaoP + I2P]
Sl —(z
(ﬂdedy‘ 0z @ [Im(z)|? )

X ||[(S2 = 2000)™" = (S1 = 20040)”"]

Precisely the same chain of estimates applies to B(H) replaced by $B,(H), relying on the
ideal properties of B,(H), p € [1,00). The case p = co in (3.2) is a consequence of the
norm convergent integral on the right-hand side of (3.4). O

B(H)"
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Combined with a Stone—Weierstrass approximation argument and the fact that
IfSMsery = lfllism, f € AR), Lemma 3.1 yields the following well-known fact,
recorded, for instance, in [20, Theorem 2.62], [50, Theorem V.II1.20(a)]:

Lemma 3.2. Let S, n € N, and S be self-adjoint in H, and suppose that S, converges to
S in norm resolvent sense as n — oo. Then,

(3.6) Tim [1£(S,) = f(S)llar = 0
forall f € C(R).

Remark 3.3. We note that the functional calculus based on almost analytic extensions is
not the only possible approach to address estimates such as (3.1) and (3.3). As a powerful
alternative we mention the theory of double operator integrals (DOI), which can prove
stronger inequalities of the type (cf. [9], [12], [56])

BT IfS2) = fS Dllsye < C[[(S2 = 20850 ™" = (1= 20150 ™" || g, s

for m € N odd, and some constant C = C(f, zg,m,S10rS,) > 0 (i.e., C can be chosen
independently of one of the self-adjoint operators S, and S ).
Repeatedly differentiating

feCyR),

_ -l ‘917&0 -1
(3.8) fQO=mn dxdy ——(2)(1-2)"", A€R,
C 6Z
with respect to A yields
m-1) gy — 1 m-1 aﬁ,tf -m
(3.9) S = D" - D! | dxdy oz @S -2, A€k
c

This leads to estimates of the type (3.7) but with f replaced by f"~1. o
We recall a useful result:

Lemma 3.4. Let p € [1,) and assume that R,R,,T,T, € B(H), n € N, satisfy
s-lim, e R, = Rands-lim,_,oo T, = T and that S, S, € B,(H), n € N, satisfy lim,_,c IS ,—
S”B,,(‘H) = 0. Then lim,l_,m ||RnSnT;: - RS T*”BF(’H) =0.

This follows, for instance, from [38, Theorem 1], [51, p. 28-29], or [55, Lemma 6.1.3]

with a minor additional effort (taking adjoints, etc.).
Next, we describe a typical convergence result:

Theorem 3.5. Let S ;,, n €N, and S j, j = 1,2, be self-adjoint in H, and assume that S ;,
converges in strong resolvent sense asn — oo to S j, j = 1,2, respectively.
(i) Suppose that for some (and hence for all) zp € C\R,

}’}1—{21 “[(SZ,n = 20l7)7" = (S2 = 20030 7"]

(3.10) . -1
S =207 = (1= 20020 ||| gy = O-
Then,
3.11) Tim I[f(S2,) = fS10] = [£(S2) = fS Dlllsr = 0, f € CF(R).

(ii) Let p € [1, ) and suppose that for some (and hence for all) zo € C\R,
[(S20=200207" =S 10 = 201207 ], [(S2 =200 ™' = (S 1~201307'] € B, (H),

3.12
( ) neN,
and

fim [[[(S2 = 2002~ = (S2 = z005)™']
(3.13) e

— [(S In— Z()I']—{)_1 (S - ZOI(H)_I]”BP((H) =0.



ALMOST ANALYTIC EXTENSIONS TO OPERATOR BOUNDS 159

Then,
(3.14) r}l_{g NS 20) = (S 1] = [f(S2) = fSDIs,x) =0, f€CTR).

Proof. As usual, a combination of identity (A.1), Lemma 3.4, and the assumed strong
resolvent convergence of S ;, to S jasn — oo, j = 1,2, proves sufficiency of the conditions
(3.10) and (3.12) for just one zp € C\R. Thus, assumption (3.10) actually implies

lim ||[(S 2, — 2l#) ™ = (S2 = 2l)7']
(3.15) e » .
~[Sin=2) " =1 =) gy =0, 7€ C\R.
Next, mimicking (3.4), one obtains,

Lf(S2n) = f(S 1] = [f(S2) = f(S1)]
3.16) =x fc dxdy %(Z)[[(Sz,n — 2y = (S1a— 2]

—[S2-2lw) = (S1=2lp) ]|, feCTM),
and hence,

nh_)fg ILACS2.0) = f(S 1] = [f(S2) = fF(S Dllsen

)
(3.17) <a'lim | dxdy J:

()

@[S 20 =2t = S 1= 2t
n—o00 C

~[S2 =l =S =2ty |, £ ECTR.

In this context one observes that f € C7(R) implies E(r € C;(0). Since the excep-

tional set R in (3.15) has dxdy-measure zero (in addition to the fact that by (2.8), 6]‘;0 10z
vanishes on R), an application of the Lebesgue dominated convergence theorem to in-
terchange the limit n — co with the integral on the right-hand side of (3.17) requires
establishing an n-independent integrable majorant of the integrand in (3.17). Employing
identity (A.1) and estimate (A.2), this majorant can be obtained as follows:

(S 2 = 2l3)™ = (S 1 = 2lg) ™' 1= [(S2 = 2ls)™ = (S1 = 2l30) ™ | g0,
< H(SZ,n —zp) " = (S0 - ZI'H)_IHB(’H)
82 =2t = (81 = 2hp)™!
< S 2 = 20150 20 = 2l |
X ||(S 2 = 200207 = (S 10 — ZOIW)_l”B(fH)
X [|(S 1.0 = 20d9)(S 10 — ZI"H)_IHB('H)
+ |52 = 20030)(S2 — 2lp) ™! BH)
X ||(S2 —20lp) ™" = (S1 = z003)”!
xS = 205051 = 230l g
< 8l + P @I2[[[(S 20 = 20507 = (S 10 = 20820
+ ||(Sz = 20l3) ™" = (S1 = 20030 ”B(‘H)]

< 8[Iz0l* + 2I)IIm(z)| > C(z0),

B(H)

(3.18)

B(H)
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for some 0 < C(zp) < o0, independent of n € N, since by assumption (3.10),

(3.19) 6520 = 20830 ™" = (S 10 = 20050 ™| gy < Cl20)

B(H)

for some 0 < C(zg) < oo, independent of n € N. Together with the properties (2.7), (2.8)
of 8]";0/82, this establishes the sought integrable majorant, independent of n € N, and
thus permits the interchange of the limit n — oo with the integral on the right-hand side
of (3.17). This completes the proof of (3.11).

The proof of (3.14) proceeds exactly along the same lines employing once more the
ideal properties of B,(H), p € [1, 00). O

We remark in passing that double operator integral techniques permit one to enlarge
the class of functions f to which Theorem 3.5 applies (cf. also Remark 3.9).

Remark 3.6. The proof to Theorem 3.5 uses dominated convergence and given (3.18), the
crucial observation is that

lzol* + |z
IIm(z)[?

s

(3.20) f dxdy ’af[_’” @)
c 0z

which is obvious if f € C7(R), since then ﬁ,(r is compactly supported. However, it is
possible to once again prove (3.20) if f € SA(R) for some 8 < —1. Indeed, following [20,
p. 25], and setting

(3.21) U={(yx) <Pl <2}, V={xy]0<lyl<2(x}
one infers
(3.22) oy + iy < c{x) yu(x,y), z=x+iyeC,

for some constant ¢ > 0. Then for f € SAR),

'%(z)

{
< C{ D o, y)} + CO v, ),
(3.23) e

z=x+1iyeC,

where C > 0 is an appropriate constant. Therefore,

Ofeo . |lzol + 122 { STV R |zO|2+|x|2+|y|2}
7 (2) < N Py e, ) T TR
‘ﬁz Im()P ; MAVEITT R
2 2 2
+ C<x>ﬁ’f’lly|”)(v(x,y)—|z°| +||y)j|2 * b
4 2 4 5(x)2
< sz{ 3 @, y)M}
(3.24) = (x)

+ CEP 2w (e lzol + 5¢x)%)

¢
< C2f{ Z(x)ﬁ_3)(u(x, Wlzol* + 5<x>2}}

k=0
+ C272 Y v (e, o + 5¢x)?)
< P yu(ny) +xv(xny)), z=x+iyeC\R,
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where C = C( (z0) > O is a constant. Here, we used 70> + 5(x)? < C (x)2, for an appropriate
constant C = C(zg) > 0. Given (3.24), (3.20) holds if 8 < —1 since

fcdxdy P v y) + xv(x, )

:f dx(x)ﬁ_lf dy {xu(x,y) + xv(x, y)}

00 - 2(x) 2(x)
=2f dx(x}ﬁ_l{f a’y+f dy}
—00 0 {x)

=6foodx(x>ﬁ<oo.

0o

(3.25)

Thus, the majorant (3.24) is integrable as long as f € SA(R) for some 8 < —1 and hence
Theorem 3.5 extends from C7°(R) to § BR), 8 < —1.

Next, we briefly apply Theorem 3.5 to a concrete (1 + 1)-dimensional example treated
in great detail in [10] and [11] by alternative methods.

Example 3.7. Assuming the real-valued functions ¢, 6 satisfy
(3.26) ¢ € ACioe(R)NLY(R)NLY(R), ¢ € L°(R),

0 € ACi.(R)N L R), ¢ € L (R) N L\(R),

(327) Ihm 9([) = ], llil_n 9(1‘) = O’

we introduce the family of self-adjoint operators A(t), t € R, in L*(R),

d
(3.28) A@r) = —id— +0(t)¢, dom(A(r)) = W'A(R), reR,
X
and its self-adjoint asymptotes as t — oo,
d d
(3.29) A, =-i—+¢, A_=—-i—, dom(A.)=W"(R).
dx dx

In addition, we introducing the operator d/dt in L*(R; dt; L*(R; dx)) by

(dit f)(t) = f'(t) forae. t€R,
(3.30) [ € dom(d/dr) = (g € LA(R; dr; LA(R)) | g € ACioe(R: LA(R),
g € LA(R;dr; L*(R))
(3.31) = W' (R; dt; L*(R; dx)).

Next, we agree to identify Lz(R; de; L2(R; dx)) with L*(R?; dtdx) (denoting the latter by
L*(R?) for brevity) and introduce D 4 in L*(R?) by

d
(3.32) D, = =t A, dom(D,) = W' (R?),

with A defined as in (1.2) and A(¢), t € R, given by (3.28). Moreover, we introduce the
nonnegative, self-adjoint operators H;, j = 1,2, in L*(R?) by

(3.33) H, =D,D,, H,=D,D},.
As shown in [10], the assumptions on ¢ and 0 guarantee that

(3.34) [(Ay —zD' = (A_ —zD) '] e BiI(L*(R)), z€C\R
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(for simplicity, we adopt the abbreviation I = Ij»xy throughout this example), and thus,
the spectral shift function £(-; A, A_) for the pair (A, A_) exists and is well-defined up
to an arbitrary additive real constant, satisfying

(3.35) (1AL A e LNR; 02 + )7 lav).
Introducing y,(A_) = n(A2 + n* ™2 and A, = A_ + xu(A)@xn(A), n €N, the fact
(3.36) Avn = A = XalA)xa(A) € BI(LXR)), neN,

implies that also the spectral shift functions &(-; Ay, AZ), n € N, exist and are uniquely
determined by

(3.37) E(-;AumAL) € L'(R;dv), neN.

In fact, as has been shown in [10], the open constant in £(-;A,,A-) can naturally be
determined via the limiting procedure

(3.38) lim é(v; Ay, AL) = % fdx(b(x) =¢év;A4LAL), veER
n—oo R

In particular, £(-; Ay, A_) turns out to be constant in this example.
Replacing A(t) by A, (t) = A_ + x,(A)0(t)pxn(A-), n € N, t € R, and hence, A by A,,
D,byDy,H;byH;, j=1,2,n¢€N, oneverifies the facts,

(3.39) [(Hy-zD™' = (H, - zD7'] € Bi(L*(R?), z € C\[0, ),
(3.40) (Hy, —zD7" = (Hy, - z)7'] € Bi(L*(R?), neN, zeC\[0,),

showing that the spectral shift functions &(-; Hy, Hy) and €(-; Hyp, Hy ) for the pairs
(Hy, Hy) and (H,, Hy), n € N, respectively, are well-defined and satisfy

(3.41) E(3Hay Hy), €3 Hyp Hyy) € L'(R; (A2 +1)71d2), neN.

Since H; > 0, H;,, > 0, n € N, j = 1,2, one uniquely introduces &(-; H,, H) and
E(-3Hyy Hyy), n €N, by requiring that

(3'42) E(/l; H2’ Hl) = 0’ é‘:( : ;Hz,n7 Hl,n) = 07 /l < 07 ne N'

As shown in [10], one can now prove the following intimate connection between
EC3 AL AL) and E(- s Hy y, Hy ), n € N, the Pushnitski-type formula [36], [49],

1Y & Ay, AD)dy
3.43 A Hy  Hy ) = — -
(3.43) & Hyp, Hy ) P s w T

Moreover, as shown in [10] and [11], one indeed has the convergence property

lim ”[(Hz,n -z = (Hy, -zD7']
(3.44) e

fora.e. 1>0,neN.

~(Hy -z = (H, —zI)" 0, zeC\R.

1 —
]||81(L2(R2)) -
Thus, Theorem 3.5 applies and hence yields,

(3.45) r}g{}g ILf(Ha,) = f(Hy )] = Lf(Hy) = fHD]llg,2@2) =0, f € CoR).
This, in turn permits one to take the limit n — oo in (3.43), implying

1 (" & A, Ay
3.46 A Hy Hy) = — S A 20V
(3.46) SGH )= | T

as will be discusssed in detail in [13]. Equation (3.46) combined with (3.38) yields

forae. A1>0,neN.

1
(3.47) f(/l;Hz,H1)=§(V;A+,A7)=ZLC”MX)
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fora.e. 1 > 0 and a.e. v € R. As a consequence of (3.47), the semigroup regularized
Witten index Ws(D ,) of the non-Fredholm operator D , exists and equals

1
(3.48) W.Y(DA)=§(0+;H2,H1)=§(0;A+,A7)=ﬂfRdeb(X).

This yields an alternative proof of the principal Witten index results in [10] and [15] we
will reconsider in [13].

The following result provides an extension of Theorem 3.5 to higher powers of resol-
vents (necessitated by applications to d-dimensional Dirac-type operators as hinted at in
the introduction).

Theorem 3.8. Let S ;,, n €N, and S j, j = 1,2, be self-adjoint in ‘H, and assume that S ;,
converges in strong resolvent sense asn — oo to S j, j = 1,2, respectively. Suppose that
for some m € N and some p € [1, 00),

(S0 = 2ls)™ = S10 = 2g) ™" [(S2 = 2lp)™ = (S1 = 2lp) "] €B,(H),

(349) z€ C\R, neN.
If
lim ||[(S2 — 2g) ™ = (S 10 — 2l3) ™
(3.50) e ) )
—[S2—z2y)™ = (St —2du)™] 8,H) = 0, zeC\R,

and for some 7y € C\R,

(1 = 20190 " [(S 20 = 20030) ™" = (S 10 — 20020) '],

(3.51) . O .

(Sl — ZOI’H) [(S2 - ZOI(H) - (Sl - ZO) ] € Bp(q—()9 ne N’
with

lim ”(S 1 = 20130 [(S 2 = 20190) ™" = (S 1 — 201907
(3.52) e _ 1 -1
= (1= 20007182 = 20150 = (1 =20l gy = O

then
(3.53) Hm [ILf(S2) = f(S 1] = [f(S2) = fS Dlllg, 20 = 0, f € CF'(R).

In addition, these results hold upon systematically replacing B,(H) by B(H) in (3.49)-
(3.53).

Proof. Let f € C7(R) be fixed and JF’ZU €eCy (R?) a compactly supported almost analytic
extension. Following a device due to Khochman [43], one introduces

(3.54) g(x) = f()(x = z0)",
concluding g € C7(R). By the Davies—Helffer-Sjostrand functional calculus (2.9) applied
to g, one obtains for any self-adjoint operator S in H,

Ofrr

1
(3.55) g(8) = - dedy 6_Z(Z)(Z —z0)"(S - ZI«H)_l,

and hence,
f(S) = (S —zolp)™"g(S)

(3.56) f
_! fdxdy af#(z)(z = 20)"(S = z20l3)™™(S — zly) .
T Jc aZ
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Applying (3.56) multiple times choosing H € {S2, S 1, S 24,5 1.4}, one infers
LS 2m) = £S 1] = [£S2) = FS D i

1 feer
< - f dxdy f—{z(z)(z —zo)"
T Jc 62

X ||[(S 20 = 2022 ™™ (S 20 = 2lg) ™" = (S 10 = 20I#) ™ (S 10 — 2h) "]
~[(S2 = 201307 (S2 = 2l3)™" = (S1 = 20150 ™"(S1 = 2050 W5
neN.

(3.57)

In order to prove the convergence claim in (3.53), the idea is to take the limit n — oo
and apply dominated convergence in (3.57). However, doing so requires one to obtain
an n-independent integrable majorant for the expression under the integral in (3.57) and
then to show that the integrand converges to zero pointwise with respect to z as n — oo.
In order to carry this out, one expresses the difference in the || - ||g,#)-norm in (3.57) as
follows:

[(S 2. = 20190) ™" (S 2 = 2d3) ™" = (S 10 = 20030 " (S 10 — 270) "]
—[(S2 = 2002)™(S2 = 2p)™" = (S1 = 20l3)"(S1 — 2hy)”"]
= (San = 2001) " (S2m = 1) = (S 1 = 20I30) " (S 20 — 2lp)”!
+ (S 1= 20140 " S 2n = 2d3) ™ = (S 1 — 20090) (S 1 — )™
—[(S2 = 20l)™(S2 = 2ly) ™ = (S1 = 20I3) " (S2 = 2lp) ™!
+(S1 = 2003 (S2 = 2ly) ™ = (S1 = 2003 (S 1 — 2hy)7]
= [S2n = 20170 ™" = (S 10 = 2019) ™" 1(S 2.0 — 23) ™"
+ (S 1 = 20050 " [(S 20 — 2hg) ™ = (S 1 — 2hp) "]
—{[(S2 = 20I5) ™ = (S1 = 20I70)™"1(S2 — 2lp) ™"
+(S1 =20l ™"[(S2 = 2lp) " = (S1 = 2lw) ']}
= {[(S2m = 20L#) ™" = (S 11 = 20d70) " 1(S 20 — 2hp) ™!
—[S2 = 20l9)™ = (S1 = 2002)™|(S2 — 2ly)™")
+{(S 1 = 20020 " [(S 20 = 2hp) ™ = (S1 = 2hp0)”
—(S1 = 20l5)"[(S2 —zlp) ' = (S1—zlx)']}, z€C\R, neN.
For the first term in braces after the final equality in (3.58), one has a bound of the type
(0CS 20 = 20Z2)™ = (S 10 = 20d90) ™ (S 20 = )"
(3.59) = [(S2 = 20l50™ = (S1 = 20l ™" 1S 2 = 2l3) |
< C(zIm(z)[”", ze€C\R, neN,

(3.58)

for a constant Ct (zo) > 0 which does not depend on n € N or z € C\R. The estimate in
(3.59) follows at once from the triangle inequality, basic properties of the Schatten—von
Neumann trace ideals, the standard resolvent estimate

(3.60) IS = z40) gy < Im2)I™',  z € C\R,

for an arbitrary self-adjoint operator S in H, and assumption (3.50). Moreover, by Lemma
3.2, one also infers

im [|[(S 20— 20220 ™" = (S 10— 20130) " |(S 20— 2130) ™

G6n i i ,
—[(S2—z0l3)™ = (S1 — zoda) " |(S2—2l3) 0, zeC\R.

By(H)
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For the second term in braces after the final equality in (3.58),
(S 10 = 20050 ™" [(S 2 = 2l3)™" = (S 1, = 2ly)™
= (S1=20l2)"[(S2 =2l = (St —zly) ]
= (S1 =20l [(S1 = 2ly) ™ = (S2 = 2ly)7']
~ (S 10 = 20050 " [S 10 = 2lp) ™ = S0 = 2l20) ']
= g + (2= 20)(S 1 =2ly) NS 1 =201 " [(S1 =20 050~ =(S2~20030) "]
X Iy + (2= 20)(S2 = 2dg) ™) =y + @ = 20)(S 10— 2y ™)
X (S 1= 201207 [(S 1 = 20190 ™" = (S2n — 200307 ]
X Iy + (2= 20)(S2n —2p)”), z€C\R, neN.
Using (3.60), one finds for any self-adjoint operator H,
3 + (20 = D)(H = 2l3) gy < 1+ (20l + [2hIm(z)] ™!
< 2(lzol + [2DIm(2)[™",  z € C\R.

(3.62)

(3.63)

As aresult of (3.52), (3.62) and (3.63),
1S 10 = 2000) ™ [(S 2 = 2h) ™" = (S 1 = 2hp) ™"

364 =St~ 20150 ™"[S2 = 2l = S1 =2l g g0

lzol> + Iz
IIm(z)]?
for a constant C( (zo) > 0 which does not depend on n € N or z € C\R. Moreover, (3.52)
and another application of Lemma 3.4 immediately imply
lim [(S 10 = 20020 ™" [(S 20 = 2lp0)™ = (S 1 = 2l30) ™!
3.65 "% . » .
= (S1 = 20lw)"[(S2 = 2lp)” = (S1—2lw)" ||,

The estimates in (3.60) and (3.64) show that away from R, which has dxdy-measure equal
to zero, the integrand in (3.57) is bounded above by

O, (T + e
o |1m<z>| 7 lm@)P
which is integrable with £ = 2 in light of (2.7) and the fact that ﬁ:’(, is compactly supported.
Therefore, taking the limit n — oo on both sides of (3.57) and then applying dominated
convergence in combination with (3.59), (3.61), and (3.65) yields (3.53).
Clearly, the proof remains valid with 8,(7H) replaced by B(H). |

< E(Zo) zeC\R, neN,

=0, zeC\R.

C(z0) [lzol* + Izlz])

(3.66) e —zo|" €C\R,

Remark 3.9. Although applicable to the Witten index computation described in the intro-
duction, Theorem 3.8 is far from optimal. Indeed, upon communicating Theorem 3.8 to
G. Levitina, D. Potapov, and F. Sukocheyv, they subsequently pointed out to us [44] that
an application of the double operator integral method permits one to extend the classes of
functions f to the one employed in [56], and more importantly, the DOI approach permits
one to dispense with the conditions (3.51) and (3.52) altogether. (Conditions (3.51) and
(3.52) are clearly an artifact of the resolvent term (S — z/4)~! in formula (3.56)). This will
be further pursued elsewhere [13].

Remark 3.10. While we exclusively focused on applications to self-adjoint operators S,
as long as o(T) C R and the singularity of the resolvent (T — zl4)~' of T as z approaches
the spectrum is uniformly bounded by [Im(z)|™" for some fixed N € N, choosing £ € N
sufficiently large in ﬁ,(,, one can handle such classes of non-self-adjoint operators T,
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particularly, operators in Banach spaces with real spectrum. In fact, a functional calculus
for the case of a non-self-adjoint operator T with o7(T") C R and a resolvent that satisfies
an estimate of the type

(2) )”
, z€C\R,

IIm(z)|

for some ¢ > 0 and @ > 0, was discussed in [18], [19], and in subsequent developments in
[1], [17], [32], [33]. Moreover, the case where the spectrum is contained in the unit circle

or contained in finitely-many smooth arcs was discussed in [28]. o

(3.67) T = 230 g < c|1m<z)|-‘(

APPENDIX A. SOME USEFUL RESOLVENT IDENTITIES

In this appendix we recall some well-known, yet useful relations for (powers of) resol-
vents.
We start by recalling the well-known identity (see, e.g., [54, p. 178]),

(T2 = 2ly)™ = (Ty = 2g) ™" = (To = 20l94 /(T — 2ly0) ™"
(A1) X [(T2 = z0lp)™" = (T1 = 20d9) "' |(T1 = 20l9:)(T1 = zlg0) ™",
2,20 € p(T1) N p(T>),

where T';, j = 1,2, are linear operators in H with p(T1) N p(T>) # 0. In addition, if S is
self-adjoint in H, we recall the elementary estimate,

IS = 20120(S = 213 g, = 1t + @ = 200S = 230 || g0,
<821z + 122 Mm@, 2,20 € C\R.
In addition, for m € N, we note (cf. [55, p. 315]),
(Ty = 2ly) "D = (Ty = 2ly)™ "D
(A3) = (T2 = 2dy)™ = (T = 2hg) " (T1 = 2lp) ™"
+(Ty — 2dy) " (T2 = 2lg)™ = (T = 2ly)™"), 2 € p(T)) N p(T2),

(A2)

and
(T2 = 2dy)™ "V = (T = 2lp)™ ™
= (T2 = 2ly) (T2 = 2ly)™ = (T1 = 2l30)™"]
(Ad) + (T2 = 2ly)™ = (Ty = 2lp)” (T2 = 2ly)™"
= (T2 = 2lp)™ = (T1 = 2lp) " (T2 = 2lp)™ = (T1 = 2l3)™"];
z€ p(T1) N p(T2).
Next, by applying Cauchy’s integral formula,
!
(A5) ) = —% 9§d§ ﬁ% zeQ,
where f is an analytic function in the open set QQ ¢ C, and I' is a counterclockwise-oriented
contour encompassing the point z € Q, to a densely defined, closed linear operator 7 in

H with nonempty resolvent set, one obtains a formula for higher powers of the resolvent
of T in terms of a fixed lower power as follows,

k—m)l(m—1)!
ae T )™ = —% gg d¢ (& =" NT = L™,
z € p(Hy),
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where for each z € p(T), I, is any counterclockwise-oriented circular contour centered at
z which does not intersect or encompass points of o-(7).
The following lemma (cf. [55, p. 210]) states an elementary, yet useful, fact:

Lemma A.1. Let S j, j € {1,2} be self-adjoint operators in H. If

(A7) [(S2—zls)™ = (S1—2lx)™"] € By(H), z€C\R,
for some p € [1,00) U {oo} and some m € N, then
(A.8) [S2—zle)™" = (S1 —2dpn) ™" € By(H), z€C\R, nzm.

Proof. 1t suffices to apply the Cauchy-type formula (A.6) and note that
(S2—zlp)™ = (S1 —2lp)™"

—m)lm = 1)!
_ _(n—mlm-D! Al (&= 2" NS, = CIp)™ = (St — zly)™],
I

(A-9) 2nil(n — 1)!]
ze€C\R, n>=m,

where I'; is a counterclockwise-oriented circular contour centered at z that does not inter-
sect R. O
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