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ON COMPLEX PERTURBATIONS OF INFINITE BAND
SCHRÖDINGER OPERATORS

L. GOLINSKII AND S. KUPIN

Dedicated to Yu. M. Berezanskii on occasion of his 90th birthday

Abstract. Let H0 = − d2

dx2 +V0 be an infinite band Schrödinger operator on L2(�)

with a real-valued potential V0 ∈ L∞(�). We study its complex perturbation H =
H0 +V , defined in the form sense, and obtain the Lieb–Thirring type inequalities for
the rate of convergence of the discrete spectrum of H to the joint essential spectrum.
The assumptions on V vary depending on the sign of Re V .

Introduction

Different characteristics of the distribution of the discrete spectrum for non-self-adjoint
perturbations of model differential self-adjoint operators, e.g., a Laplacian on Rd, a dis-
crete Laplacian on Zd, etc., were studied in a number of papers (see Frank–Laptev–Lieb–
Seiringer [4], Borichev–Golinskii–Kupin [1], Demuth–Hansmann–Katriel [3]). This paper
focuses on complex perturbations of one dimensional Schrödinger operators with infinite
band spectrum and certain behavior of the lengths of its gaps (the case of finite band
Schrödinger operators was studied in [5]).

So, consider a real-valued measurable function V0 on R and denote by MV0 a maximal
multiplication operator by V0. The standing assumption is that the Schrödinger operator

(0.1) H0 = −Δ + MV0 , Δ :=
d2

dx2
,

is self-adjoint, H∗
0 = H0, and its spectrum σ(H0) is an infinite band, i.e.,

(0.2) σ(H0) = σess(H0) = I =
∞⋃

k=1

[ak, bk], ak → +∞.

We say that the gaps are relatively bounded if

(0.3) r = r(I) := sup
k

rk

bk
< ∞, rk := ak+1 − bk

is the length of k’ gap in (0.2). A typical example here is the Hill operator with a periodic
potential (see [10, Section XIII.16]). It is well known (see [9]) that rk → 0 as k →∞ for
potentials V0 from L2 on a period, so (0.3) obviously holds for such potentials.

Furthermore, consider the form sum

(0.4) H = H0 + MV ,

where V is a complex-valued potential. If MV is a relatively compact perturbation
of H0, that is, dom(MV) ⊃ dom(H0), and MV (H0 − z)−1 is a compact operator for
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z ∈ ρ(H0), then, by the celebrated theorem of Weyl (see, e.g., [8, Section IV.5.6]),
σess(H) = σess(H0) and

σ(H) = I ∪̇ σd(H)
(disjoint union), the discrete spectrum σd(H) of H , i.e., the set of isolated eigenvalues of
finite algebraic multiplicity, can accumulate only on I. The main goal of the paper is to
obtain certain quantitative bounds for the rate of this accumulation.

The assumption on the background V0 looks as follows:

(0.5) V0 ≥ 0, V0 ∈ L∞(R).

As for the perturbation V the conditions will vary depending on the sign of ReV . Pre-
cisely, for general V ’s we assume that

(0.6) V ∈ Lp(R), p ≥ 2,

and for accretive perturbations with ReV ≥ 0 we put

(0.7) V ∈ Lp(R), p > 1.

Under assumptions (0.5)–(0.7) H is a well-defined, closed and m-sectorial operator, and
there is a number ω1 ≤ 0 such that

(0.8) σ(H) ⊂ N(H) ⊂ {z : Re z ≥ ω1},
where N(H) = {(Hf, f) : f ∈ dom(H), ‖f‖2 ≤ 1} is the numerical range of H (see, e.g.,
[8, Chapter VI]). Moreover, H appears to be a relatively compact (even Sp) perturbation
of H0, Sp being the Schatten–von Neumann class of compact operators.

Denote by d(z, E) the Euclidean distance from a point z ∈ C to a set E ⊂ R.

Theorem 0.1. Let H0 be the Schrödinger operator (0.1) with V0 satisfying (0.5). Assume
that H0 is an infinite band operator with the spectrum

σ(H0) = σess(H0) =
∞⋃

k=1

[ak, bk], 0 ≤ a1 < b1 < a2 < b2 < . . . , an → +∞,

and the lengths of gaps are relatively bounded (0.3). Then for the perturbation H (0.4)
with V (0.6) and for each ω < ω1 (0.8) the following Lieb–Thirring type inequality

(0.9)
∑

z∈σd(H)

dp(z, I)
(|z − ω|+ |ω|)2p

≤ C(p, I) ‖V ‖p
p

(ω1 − ω)p|ω|p−1/2

(
1 +

‖V0‖∞
a1 + |ω|

)p

,

holds, where the positive constant C(p, I) depends on p and I = σ(H0).

Remark 0.2. If we take ω < ω1 − 1, bound (0.9) can be simplified. Indeed, now
ω1 − ω > 1,

|z − ω| < |ω|(1 + |z|), 1 < a1 + |ω| < |ω|(1 + a1),
and so

(0.10)
∑

z∈σd(H)

dp(z, I)
(1 + |z|)2p

≤ C(p, I)|ω|p+1/2 (1 + ‖V0‖∞)p ‖V ‖p
p.

There is an elementary way to specify ω and eliminate it from the final expression.
The price we pay is an additional factor in the right hand side.

Theorem 0.3. Under assumptions (0.5), (0.6),

(0.11)
∑

z∈σd(H)

dp(z, I)
(1 + |z|)2p

≤ C(p, I)(1 + ‖V0‖∞)p (1 + ‖V ‖p)p 2p+1
2p−1 ‖V ‖p

p,

where the positive constant C(p, I) depends on p and I = σ(H0).

Denote D+ = {|z| < 1}, D− = {|z| ≥ 1}.
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Theorem 0.4. Let Re V ≥ 0. Under assumptions (0.5), (0.7) the following Lieb–
Thirring type inequality holds for each 0 < ε < 1:

(0.12)
∑

z∈σd(H)∩D+

dp(z, I)
|z|1/2−ε

+
∑

z∈σd(H)∩D−

dp(z, I)
|z|1/2+ε

≤ C(p, I, ε)‖V ‖p
p.

Remark 0.5. The only reason we restricted ourselves to the case of one dimensional
Schrödinger operator H0 as a background is that the class of multidimensional Schrödin-
ger operators with spectra (0.2) is not well understood. Our technique works for any
dimension d ≥ 1, and the corresponding problem will be elaborated elsewhere.

1. Distortion for linear fractional transformations

The main analytic tool in the proof of Theorem 0.1 is the following distortion lemma
for linear fractional transformations of the form

(1.1) λω(z) :=
1

z − ω
, ω ∈ R.

The argument here is quite elementary (though, rather lengthy).

Lemma 1.1. Let

(1.2) I = Iz =
∞⋃

k=1

[ak, bk], 0 ≤ a1 < b1 < a2 < b2 < . . . , an → +∞,

and let λω(I) = Iλ be its image under the linear fractional transformation (1.1),

λω(I) = Iλ =
∞⋃

k=1

[βk(ω), αk(ω)], βk(ω) =
1

bk − ω
, αk(ω) =

1
ak − ω

.

Then for ω < a1 the following bounds hold:
for Re z < a1 or Re z ∈ I,

(1.3)
d(λω(z), λω(I)

d(z, Iz)
>

1
3|z − ω|(|z − ω|+ a1 − ω)

;

for bk < Re z < ak+1, k = 1, 2, . . .,

(1.4)
d(λω(z), λω(I)

d(z, Iz)
≥ 1

2|z − ω|2
(

1 +
ak+1 − bk

bk − ω

)−1

.

Moreover, if ω ≤ 0 and the gaps are relatively bounded (0.3), then the unique bound is
valid

(1.5)
d(λω(z), λω(I)

d(z, Iz)
≥ 1

5(1 + r(I))
1

|z − ω|(|z − ω|+ a1 − ω)
, z ∈ C\I.

Proof. With no loss of generality we can assume that a1 > 0.
We begin with the case ω = 0 and put λ0 = λ = z−1. If z = x + iy and x = Re z ≤ 0,

then Re λ = x|z|−2 ≤ 0 and so

(1.6)
d(λ, Iλ)
d(z, Iz)

=
|λ|

|z − a1| =
1

|z||z − a1| ≥
1

|z|(|z|+ a1)
.

Similarly, if x ∈ Iz , then x ≥ a1 and

0 < Re λ =
x

|z|2 ≤
1
x
≤ a−1

1 = α1, d(λ, [0, α1]) = |Im λ| = |y|
|z|2 .

Since now d(z, Iz) = |y|, we have

(1.7)
d(λ, Iλ)
d(z, Iz)

≥ d(λ, [0, α1])
d(z, Iz)

=
1
|z|2 >

1
|z|(|z|+ a1)

.
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Consider now the case when x = Re z /∈ Iz . Fix x in k’s gap,

(1.8) bk < x < ak+1, k = k(x) = 0, 1, . . .

(we put b0 = 0 and treat (b0, a1) as a number zero gap). Then

d(z, Iz) = min(|z − bk|, |z − ak+1|), k = 1, 2, . . . , d(z, Iz) = |z − a1|, k = 0.

Define two sets of positive numbers

uj = uj(x), vj = vj(x), j = k + 1, k + 2, . . .

by the equalities

Re (λ(x + iuj)) =
x

x2 + u2
j

= αj , Re (λ(x + ivj)) =
x

x2 + v2
j

= βj ,

or, equivalently,

uj(x) =
√

x(aj − x), vj(x) =
√

x(bj − x).

We also put vk = 0, so

0 = vk < uk+1 < vk+1 < uk+2 < vk+2 < . . . , un, vn →∞, n →∞.

While the point z traverses the line x + iy, y ∈ R, its image λ(z) describes a circle
with diameter [0, 1/x]. We distinguish the following two cases.

Case 1. Assume that λ lies over the “gaps for λ”. For each k = 0, 1, . . . there are two
options for λ: the interior gaps

(1.9) Re λ ∈ (αj+1, βj) ⇐⇒ vj < |y| < uj+1, j = k + 1, k + 2, . . . ,

and the rightmost gap

(1.10) Re λ ∈ (αk+1, 1/x)⇐⇒ 0 < |y| < uk+1.

For gaps (1.9) we have

(1.11) d(λ, Iλ) = min(|λ− αj+1|, |λ− βj |) =
1
|z| min

( |z − aj+1|
aj+1

,
|z − bj |

bj

)
.

Define an auxiliary function h on the right half-line,

h(t) = h(t, z) :=
|z − t|

t
=

√(x

t
− 1
)2

+ y2, t > 0.

Clearly, h is monotone increasing on (x, +∞) and decreasing on (0, x) with the minimum
h(x) = |y|. Hence (1.11) and (1.8) give

d(λ, Iλ) =
min(h(aj+1, z), h(bj, z))

|z| ≥ h(bj, z)
|z| ≥ h(bk+1, z)

|z|
≥ h(ak+1, z)

|z| =
|z − ak+1|
ak+1|z| .

Since by (1.8) d(z, Iz) ≤ |z − ak+1|, we see that

(1.12)
d(λ, Iλ)
d(z, Iz)

≥ 1
ak+1|z| .

For gaps (1.10) let first k ≥ 1. Then, as above in (1.11),

d(λ, Iλ) =
1
|z| min

( |z − ak+1|
ak+1

,
|z − bk|

bk

)
,

but it is not clear now which term prevails. If |z−ak+1| ≤ |z−bk| then d(z, Iz) = |z−ak+1|
and

d(λ, Iλ)
d(z, Iz)

=
1
|z| min

(
1

ak+1
,

|z − bk|
bk|z − ak+1|

)
=

1
ak+1|z| .



INFINITE BAND SCHRÖDINGER OPERATORS 241

Otherwise |z − ak+1| > |z − bk| implies

d(λ, Iλ)
d(z, Iz)

=
1
|z| min

(
1
bk

,
|z − ak+1|

ak+1|z − bk|
)
≥ 1

ak+1|z| .

Next, for k = 0 one has 0 < x < a1, and in case (1.10),

d(λ, Iλ) = |λ− α1| = |z − a1|
a1|z| , d(z, Iz) = |z − a1|,

and so

(1.13)
d(λ, Iλ)
d(z, Iz)

=
1

a1|z| .

Finally, in the case of “gaps for λ” we come to the bound

(1.14)
d(λ, Iλ)
d(z, Iz)

≥ 1
ak+1|z| , k = 0, 1, . . . .

A modified version of (1.14) will be convenient in the sequel. For k ≥ 1 in view of
|z| ≥ x > bk we have

1
ak+1|z| ≥

bk

ak+1|z|2
and so, for k = 1, 2, . . .,

(1.15)
d(λ, Iλ)
d(z, Iz)

≥ 1
|z|2

(
1 +

ak+1 − bk

bk

)−1

=
1
|z|2

(
1 +

rk

bk

)−1

,

rk = ak+1 − bk is the length of k’s gap. Similarly, for k = 0 one has from (1.13) that

(1.16)
d(λ, Iλ)
d(z, Iz)

≥ 1
|z|(|z|+ a1)

.

Case 2. Assume that λ lies over the “bands for λ”,

(1.17) Re λ ∈ [βj , αj ] ⇐⇒ uj ≤ |y| ≤ vj , j = k + 1, k + 2, . . . .

Now

d(λ, Iλ) = |Im λ| = |y|
|z|2 ,

d(z, Iz) ≤ |z − ak+1| ≤ |y|+ ak+1 − x = |y|+ u2
k+1

x
≤ |y|

(
1 +

uk+1

x

)

= |y|
(

1 +

√
ak+1 − x

x

)
,

so that

(1.18)
d(λ, Iλ)
d(z, Iz)

≥ 1
|z|2

(
1 +

√
ak+1

x
− 1
)−1

.

For k ≥ 1 (interior gap for z) inequality (1.18) can be simplified in view of x > bk,

(1.19)
d(λ, Iλ)
d(z, Iz)

≥ 1
|z|2

(
1 +

√
rk

bk

)−1

.

Let now k = 0, i.e., 0 < x = Re z < a1. In our case d(z, Iz) = |z − a1| and

|y| ≥ u1 =
√

x(a1 − x).

If |y| ≥ 2x then |y| ≥ 2
3 |z| and so

(1.20)
d(λ, Iλ)
d(z, Iz)

=
|y|

|z|2|z − a1| ≥
2
3

1
|z|(|z|+ a1)

.
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Otherwise, |y| < 2x implies

2
√

x >
√

a1 − x, x >
a1

5
.

It follows now from (1.18) with k = 0 that

(1.21)
d(λ, Iλ)
d(z, Iz)

≥ 1
3|z|2 >

1
3

1
|z|(|z|+ a1)

.

We can summarize the results obtained above in the following two bounds from below.
A combination of (1.6), (1.7), (1.16), and (1.21) gives

(1.22)
d(λ, Iλ)
d(z, Iz)

>
1

3|z|(|z|+ a1)
, Re z < a1 or Re z ∈ Iz .

A combination of (1.15) and (1.19) provides
d(λ, Iλ)
d(z, Iz)

≥ 1
γk|z|2 , γk = max

{
1 +

rk

bk
, 1 +

√
rk

bk

}
,

bk < Re z < ak+1, k = 1, 2, . . . .

(1.23)

Since γk < 2(1 + rk/bk), the latter can be written as

(1.24)
d(λ, Iλ)
d(z, Iz)

≥ 1
2|z|2

(
1 +

rk

bk

)−1

, bk < Re z < ak+1, k = 1, 2, . . . .

To work out the general case ω �= 0 and prove (1.3) and (1.4), it remains only to shift
the variable and apply the results just obtained to the shifted sequence of bands

Iz(ω) =
⋃
k≥1

[ak − ω, bk − ω].

The final statement follows from a simple observation that
rk

bk − ω
≤ rk

bk
≤ r.

The proof is complete. �

2. Lieb–Thirring type inequalities

The key ingredient in the proof of our main statements is the following result of
Hansmann [7, Theorem 1]. Let A0 = A∗0 be a bounded self-adjoint operator on the
Hilbert space, and let A be a bounded operator with A−A0 ∈ Sp, p > 1. Then

(2.1)
∑

λ∈σd(A)

dp(λ, σ(A0)) ≤ Kp‖A−A0‖p
Sp

,

Kp is an explicit (in a sense) constant, which depends only on p. We set

A0(ω) = R(ω, H0) = (H0 − ω)−1, A(ω) = R(ω, H) = (H − ω)−1,

ω is defined above, and ω ∈ ρ(H0) ∩ ρ(H) in view of (0.2) and (0.8).
Let λ = λω(z) = (z − ω)−1. The Spectral Mapping Theorem implies that

λ ∈ σd(A(ω)) (λ ∈ σ(A0(ω))) ⇐⇒ z ∈ σd(H) (z ∈ σ(H0)) .

Proof of Theorem 0.1. The second resolvent identity reads

R(z, H)−R(z, H0) = −R(z, H)MV R(z, H0), z ∈ ρ(H) ∩ ρ(H0).

We wish to show that this difference belongs to Sp and to obtain the bound for its
Sp-norm.

First, we have

W = W (z) := MV R(z, H0) = MV (−Δ− z)−1(−Δ− z)(H0 − z)−1

= MV (−Δ− z)−1 (1 −MV0(H0 − z)−1),
(2.2)



INFINITE BAND SCHRÖDINGER OPERATORS 243

and so

‖W (z)‖Sp ≤ ‖MV R(z,−Δ)‖Sp‖I −MV0 R(z, H0)‖, z ∈ ρ(H) ∩ ρ(H0).

It is clear that

‖I −MV0 R(z, H0)‖ ≤ 1 +
‖V0‖∞
d(z, I)

= 1 +
‖V0‖∞
|a1 − z| , Re z < 0.

Next, write

MV (−Δ− z)−1 = V (x)gz(−i∇), gz(x) = (x2 − z)−1, x ∈ R.

By [11, Theorem 4.1]

‖MV (−Δ− z)−1‖Sp ≤ (2π)−1/p‖V ‖p ‖gz‖p, p ≥ 2.

Since 2|t− z|2 ≥ (t + |z|)2 for t ≥ 0 and Re z < 0, we have

‖gz‖p ≤
√

2‖g−|z|‖p

and so

‖MV (−Δ− z)−1‖Sp ≤
C1

|z|1−1/2p
‖V ‖p,

C1 = C1(p) =
√

2
{

1
2π

∫ ∞

−∞

dx

(x2 + 1)p

}1/p

.

(2.3)

Thus,

(2.4) ‖W (z)‖Sp ≤
C1(p)‖V ‖p

|z|1−1/2p

(
1 +

‖V0‖∞
|a1 − z|

)
, Re z < 0.

We put z = ω < ω1. Relation (0.8) implies, in view of [8, Theorem V.3.2], that

(2.5) ‖R(ω, H)‖ ≤ 1
d(ω, N(H))

≤ 1
ω1 − ω

,

and the combination of (2.4) and (2.5) leads to the following bound for each ω < ω1:
‖R(ω, H)−R(ω, H0)‖p

Sp
≤ ‖R(ω, H)‖p ‖W (ω)‖p

Sp

≤ C2(p) ‖V ‖p
p

(ω1 − ω)p|ω|p−1/2

(
1 +

‖V0‖∞
a1 + |ω|

)p

.
(2.6)

We go back to (2.1) with

A0 = A0(ω) = R(ω, H0), A = A(ω) = R(ω, H),

so by the Spectral Mapping Theorem, in the notation of Lemma 1.1, we have

(2.7)

∑
λ∈σd(A(ω))

dp(λ, σ(A0(ω)) =
∑

z∈σd(H)

dp(λω(z), λω(I))

≤ Kp ‖R(ω, H)−R(ω, H0)‖p
Sp

.

We apply Lemma 1.1 in the form (1.5) to obtain∑
z∈σd(H)

dp(z, I)
|z − ω|p(|z − ω|+ a1 + |ω|)p

≤ C3(p, I) ‖V ‖p
p

(ω1 − ω)p|ω|p−1/2

(
1 +

‖V0‖∞
a1 + |ω|

)p

,

and (0.9) follows. The proof is complete. �
The proof of Theorem 0.1 shows that bound (0.9) essentially depends on the parameter

ω. Roughly speaking, it comes from a bound from below of inf Reσ(H), and so it seems
to be rather important to estimate this quantity in terms of V0 and V only.

Proof of Theorem 0.3. Put

Ω = {Re z < 0}
⋂
{|a1 − z| > (1 + ‖V0‖∞)}

⋂{
|z|1−1/2p > 4C1(p)(1 + ‖V ‖p)

}
,
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C1 is defined in (2.3). We wish to show that Ω ⊂ ρ(H0) ∩ ρ(H). Indeed, by (2.4),

(2.8) ‖W (z)‖∞ ≤ ‖W (z)‖Sp ≤
‖V ‖p

2(1 + ‖V ‖p)
<

1
2
, z ∈ Ω,

so I + W (z) is invertible and ‖(I + W (z))−1‖ < 2. An application of the identity
H − z = (1 + W (z))(H0 − z) completes the proof of our claim.

Next, write the difference of the resolvents in another way,

R(z, H)−R(z, H0) = −R(z, H0)(1 + W (z))−1 W (z),

to obtain for z ∈ Ω that
‖R(z, H)−R(z, H0)‖Sp ≤ ‖R(z, H0)‖ ‖(1 + W (z))−1‖ ‖W (z)‖Sp

≤ ‖V ‖p

|a1 − z|(1 + ‖V ‖p)
≤ ‖V ‖p

(1 + ‖V0‖∞)(1 + ‖V ‖p)
.

It is clear by the definition of Ω that if t ∈ Ω, t < 0, then {Re z ≤ t} ⊂ Ω. Take
z = ω′ < 0 so that

(2.9)
|ω′|
2

=
a1

2
+ 1 + ‖V0‖∞ + (4C1(1 + ‖V ‖p))

1/(1−1/2p)
.

It is easy to check that {z : Re z < ω′
2 } ⊂ Ω, so, in particular, ω′ ∈ Ω and hence

‖R(ω′, H)−R(ω′, H0)‖Sp ≤
‖V ‖p

(1 + ‖V0‖∞)(1 + ‖V ‖p)
.

Once again, (2.1) says

(2.10)
∑

λ∈σd(A(ω′))

dp(λ, σ(A0(ω′))) ≤ Kp

( ‖V ‖p

(1 + ‖V0‖∞)(1 + ‖V ‖p)

)p

for p > 1 and, using Lemma 1.1, we come to∑
z∈σd(H)

dp(z, I)
|z − ω′|p(|z − ω′|+ a1 + |ω′|)p

≤ C4(p, I)
( ‖V ‖p

(1 + ‖V0‖∞)(1 + ‖V ‖p)

)p

.

By the choice of ω′ (2.9), we have Re z ≥ ω′/2 for z ∈ σd(H), and so

|z − ω′| ≥ |ω′|
2

>
|a1|+ |ω′|

4
,

and
|z − ω′|+ a1 + |ω′| < 5|z − ω′|,

|z − ω′|(|z − ω′|+ a1 + |ω′|) < 5|z − ω′|2.
Next, |z − ω′| ≤ (1 + |z|)(1 + |ω′|) ≤ 2|ω′|(1 + |z|) and hence∑

z∈σd(H)

dp(z, I)
(1 + |z|)2p

≤ C5(p, I)|ω′|2p

( ‖V ‖p

(1 + ‖V0‖∞)(1 + ‖V ‖p)

)p

≤ C6(p, I)(1 + ‖V0‖∞)p(1 + ‖V ‖p)p 2p+1
2p−1 ‖V ‖p

p.

The proof is complete. �
Proof of Theorem 0.4. For accretive perturbations we have σ(H) ⊂ {z : Re z ≥ 0}, so
one can take ω1 = 0.

The lower bound for the difference of the resolvents is the same as above in Theorem
0.1. It is a consequence of the result of Hansmann and Lemma 1.1,

‖R(ω, H)−R(ω, H0)‖p
Sp
≥

∑
z∈σd(H)

dp(z, I)
(|z − ω| − ω)2p

, p > 1.
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As for the upper bound, we follow the line of reasoning from [6, Proof of Theorem 3.2],
where such a bound was proved in the case V0 = 0. As a matter of fact, the argument
goes through under assumption (0.5) as well. At any rate, we have

‖R(−a, H)−R(−a, H0)‖p
Sp
≤ C5(p)

a2p−1/2
‖V ‖p

p , a := −ω > 0.

Since
√

2|z + a| ≥ |z|+ a for Re z > 0 and a > 0, we come to the following inequality:

(2.11)
∑

z∈σd(H)

dp(z, I)
(|z|+ a)2p

≤ C6(p)
a2p−1/2

‖V ‖p
p , a > 0.

As in [6, Proof of Theorem 3.3], we multiply (2.11) through by (1+a)2ε, ε > 0, to obtain∑
z∈σd(H)

dp(z, I) a2p−3/2+ε

(|z|+ a)2p(1 + a)2ε
≤ C6(p)‖V ‖p

p

a1−ε(1 + a)2ε
, a > 0,

and then integrate the latter inequality with respect to a ∈ (0,∞). The proof is complete.
�
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