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ABSTRACT. Contractive selfadjoint extensions of a Hermitian contraction B in a
Hilbert space $) with an exit in some larger Hilbert space $ & H are investigated.
This leads to a new geometric approach for characterizing analytic properties of
holomorphic operator-valued functions of Krein-Ovcharenko type, a class of functions
whose study has been recently initiated by the authors. Compressed resolvents of
such exit space extensions are also investigated leading to some new connections to
transfer functions of passive discrete-time systems and related classes of holomorphic
operator-valued functions.

1. INTRODUCTION

Let S be a closed symmetric, possibly nondensely defined, linear operator in a (com-
plex separable) Hilbert space $. As is well known, the operator S admits selfadjoint
extensions possibly in a larger Hilbert space $ = H®H [1], [36]. Let A be such an exten-
sion. Then there are two compressed resolvents Pg (A — AI)™1 $ and Py (A — X))~ 'H.
As is well known, the function Py(A — X))~ § is called generalized resolvent of S.
First results related to descriptions/parameterizations of canonical and generalized re-
solvents of densely defined closed symmetric operator with equal and finite deficiency
indices, and their applications to the moment and interpolation problems were obtained
by M. A. Naimark [37, 38] and M. G. Krein [27, 28, 30]. Krein’s approach has been fur-
ther developed in M. G. Krein and H. Langer [31, 32], where densely defined symmetric
operators in a Pontryagin space setting were considered. A. V. Shtraus in [40] suggested
another approach for the investigation and parametrization of all generalized resolvents
of an arbitrary symmetric, not necessary densely defined, operator. The Shtraus repre-
sentation [40] for Py (A — AI)~!] § takes the form

Po(A=XD)"'19H=(AN) —AD)~!, AeC\R,,

where A(A) is a holomorphic family of quasi-selfadjoint extensions of S (S C A(X) C §%),
A()) is maximal dissipative for Im A < 0, and maximal anti-dissipative for Im A > 0. A
recent survey on Shtraus approach, its developments, and corresponding references can
be found in [45]. Extensions of symmetric linear relations and their generalized resolvents
have been studied in [17, 18, 22, 34]. Furthermore, M. G. Krein and I. E. Ovcharenko [33]
and H. Langer and B. Textorius [35] obtained descriptions of all generalized resolvents of
selfadjoint contractive extensions and contractive extensions of dual pair of contractions.

The main objective in this paper is to study compressed resolvents Pﬁ(zg )
and Py (2B — I)~1| H of selfadjoint contractive extensions (sc-extensions) B (with exit
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in some larger complex separable Hilbert space $@®H) of a nondensely defined Hermitian
contraction B in §) and investigate the interplay that occurs in certain associated analytic
operator functions. This investigation is motivated by some further applications which
involve boundary triplets, boundary relations, and the corresponding Weyl functions and
Weyl families; cf. [19, 20, 21]. In this paper some new connections between compressed
resolvents and transfer functions of corresponding passive selfadjoint discrete-time sys-
tems are established; see Theorems 4.1, 4.3 with a further consequence established in
Theorem 4.4. There are also a couple of other new properties that complement some
well-known results established in [29, 33] and are related to the shorted operators and
selfadjoint contractive extensions; see Theorems 3.2 and 3.3. These results lead to a new
construction of special pairs of sc-extensions of B without exit by means of sc-extensions
with exit with certain prescribed geometric properties. The main result in this connection
is established in Theorem 3.6. The interest in studying such special pairs of sc-extensions
of S possessing certain specific geometric properties comes from the fact that they play a
central role in characterizing analytic properties of Krein-Ovcharenko type holomorphic
operator functions which originally appeared in [33] and whose systematic study was
initiated in [10].

2. PRELIMINARIES

2.1. Linear fractional transformation of sectorial operators and linear rela-
tions. On the set of all linear relations (l.r.) in a Hilbert space $) define the linear
fractional transformation (the Cayley transform)
(2.1) CS)=T={{zx+2,2—2"): (z,2') € S}.
Clearly, C(C(S)) = S. Let S be an accretive L.r. in $), i.e., Re (¢/,z) > 0 for all (z,z') € S;
see [26, 39]. Then it follows from the identity

lz +2'||* = [l = 2'||* = 4Re (2, )
that T is the graph of a contraction T in 9, ||T|| < 1, and domT = dom T is a subspace
in . Conversely, if T' is a contraction in $) defined on a subspace dom T C §, then

S = {{(I +T)h,(I —T)h), h € domT}

is an accretive l.r. in $. The transformation C can be rewritten in operator form as
follows

CS)=T=-T+20+8S)"', S=I-TI+T) ' =-T+20+T)"
The following properties are clear from the above formulas:

e S is the graph of an accretive operator if and only if ker(Ig + T) = {0},

e S is m-accretive if and only if domT = H,

e S is nonnegative selfadjoint relation if and only if T is a selfadjoint contraction.
In the sequel we will denote by L($)1, 2) the set of all linear bounded operators acting
from $; into H7 and by L($)) the Banach algebra L($), $).

Recall that for a contraction T € L($1,$2) the nonnegative square root Dy =

(I —T*T)"/? is called the defect operator of T and D7 (the so-called defect subspace)
denotes the closure of the range ran Dp. For the defect operators one has the well-known
commutation relation T Dy = Dp+T. Since

[T Dp-]|[T D] =TT*+ D3 = I,
one has ranT + ran Dy« = $)5. In general this sum is not direct: one has

(2.2) ranT Nran Dy« = ranT D7 = ran Dp-T,
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as can be checked directly. It is also easily seen that
(23) T(ker DT) = ker DT* 5 T* (ker DT* ) = ker DT.
Hence, ker Dy = {0} if and only if ker Dy« = {0}.

Definition 2.1. [5]. Let o € (0,7/2) and let A be a linear operator in the Hilbert space
H defined on a subspace dom A. If

(2.4) [|Asina +icosalyl|| <1,

then in the case dom A = H we say that A belongs to the class Cy (), and in the case
dom A # H we say that A is Cy(a)-suboperator.

The condition (2.4) is equivalent to
(2.5) 2llm (Af, )| < tana(|f]12 - [|Af]2), f € dom A.

Therefore, Cp(a)-suboperator is a contraction. Due to (2.5) it is natural to consider
Hermitian (selfadjoint) contractions in H as C(0)-suboperators (operators of the class
C(0), respectively). In view of (2.5) one can write

CH(O)Z ﬂ C’H(a).

a€(0,7/2)

Analogously, the convex hull C'(«) = {z € C: |zsina £ i cosa| < 1} in the complex plane
is denoted by C(a). If & = 0, then the above intersection equals C(0) = [—1,1]. Notice
that the linear fractional transformation (2.1) establishes a one-to-one correspondence
between a-sectorial (m — a-sectorial) Lr. (as defined in [26, 39]) in H and Cg(«)-
suboperators (operators of the class C'y (), respectively). In addition, T' € Cy(«) if and
only if the operator (I —T™*)(I + T') is a sectorial operator with the vertex at the origin
and the semiangle «; see [6]. Denote

Cy = U Cu (a)
a€l0,7/2)
Properties of operators of the class Cy were studied in [5, 6]. In [5] it was proved that
if T'e Cy, then
(1) ran (Dpn) = ran (Dpsn) = Dp, for all natural numbers n, where T = (T+77)/2
is the real part of T,
(2) the subspace D1 reduces the operator 7', and, moreover, the operator T'| ker(Dr)

is a selfadjoint and unitary, and T| ®p is a completely nonunitary contraction
of the class Cog [44], i.e., lim T"f = lim T*"f =0 for all f € Dr.
n—oo n—oo

Let T € Cy. Then, clearly, the operators Iy + T are m-sectorial (bounded) operators.
It follows that Iy + T = (Iy + Tr)"?(I +iG)(Ig + Tr)'/?, where Tg = (T + T*)/2 is
the real part of T, G' is a bounded selfadjoint operator in the subspace Tamn (I +Tr)"/?,
and I is the identity operator in Tan (Iy + Tr)"Y/?. Let

M=—I+2(Ig+T)"'={{Ig+T)f,(In —T)f}, f € H}.

Then M is m-sectorial linear relation, dom M = ran (Iy + T). The closed sectorial form
M][u, v] generated by M can be described now explicitly.

Proposition 2.2. The closed sectorial form associated with m-sectorial linear relation
M is given by

(2.6)  Miu,v] = —(u,v) +2 ((I FiG) " (I + Tr) ™Y, (I + TR)—1/2U)

for all u,v € DM] = ran (Iy + Tr)"/?.



202 YU. M. ARLINSKII AND S. HASSI

Proof. Let g=(Ig+T)f, ¢ = (I —T)f. Then {g,¢9'} € M. With u = g one gets
(Mu,u) = (¢',9) = (In = T)f,(In +T)f)
=—(Ug +T)f,(Iu +T)f) +2(f,(In + T)f)
= —|[ull® +2((In +T) " u,u)
= —||u|? 4+ 2((Ig + Tr)"2(I +iG) " (Ig + Tr) ™" ?u,u)
= —|[ull® + 2((I +iG) " (I + Tr)™*u, (I + Tr)™/?u).
It follows that the righthand side of (2.6) coincides with M[u, v] for u,v € dom M.
Let Hy =tan (Ig +T). Then ran (Iy + TR)l/2 is dense in Hy. Denote
7l o] = =lJul 2 +2 (1 +iG) ™ (I + Tr)~2u, (I + Tr)~/2v)

with u,v € ran (Ir +Tr)'/2. Clearly, the form 7 is closed and sectorial (with a vertex at
the point —1 at least). Let u = (Iy +Tg)"/?h, h € Hy, and choose a sequence {h,,} C Hy
such that lim (I + Tg)?h, = (I +iG)~'h € Hy. Then ¢, = (Ig 4+ T)h, € domM

and HILH;O ¢on = (I +Tr)Y?h = u. Moreover,
T[u — n]
= —lu = ull? +2 (L +iG) " (Inr +Tr)™(u = n), (Ut + Tr) /(= o0))
= —|Ju— on]|? +2 ((1 +iG) " h = (I + Tr) ", b — (I +iG)(Iu + TR)1/2hn)) .

Hence lim 7[u — ¢,] = 0. This shows that the form 7 is the closure of the form (M-, )
and this completes the proof. O

2.2. Passive discrete-time systems and their transfer functions. Let 91,0, and

D C] ;I ‘ﬁ,ﬁ} with bounded

9 be separable Hilbert spaces. A linear system 7 = { [ B A

linear operators A, B, C, D of the form

o = Chy + D&y,
higt1 = Ahy + B,

where {{x} C M, {0k} C N, {hi} C 9 is called a discrete time-invariant system. The
Hilbert spaces 90t and 9 are called the input and the output spaces, respectively, and
the Hilbert space $) is called the state space. Associated with 7 is the block operator

k € Ny,

m N
0295 - .
) 9

If U is contractive, then the corresponding discrete-time system is said to be passive [16].
If U is unitary, then the system is called conservative. The transfer function
0,(\):= D+ 20(I — 2A)"'B, zeD,

of a passive system 7 belongs to the Schur class S(9,M) [16]. Recall that the Schur
class S(M, M) is the set of all holomorphic and contractive L(9N, 91)-valued functions on
the unit disk D = {z € C: |z]| < 1}.

Define the following subsets of the complex plane

IIi (@) :={2€C: |zsina+icosa| <1}, [I_(a) :={z € C: |zsina —icosa| < 1},

(o) :== 4 (o) UII_(c).

Then, in particular II(0) = C \ ((—o0, 1] U [1,4+00)) and C(«) = I () N TI_ ().
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Theorem 2.3. [6]. Suppose that M =M and that the operator

N N
029 % -5
9 9

belongs to class Cqgg(a) for some a € [0,7/2). Then the function ©, possesses the
following properties:

(1) ©, is holomorphic in TI(«);

(2) there exist strong non-tangential limits ©,(£1) and O,(£1) € Cn(a);

(3) the implications

z €Il (a) = ||0,(2)sina + icosaln|| <1,
z€ell_(a) = ||©,(2)sina —icosaln|| <1

are valid. Therefore, z € C(8) = O,(z) € Cn(B) for each B € (o, 7/2).
A particular case is self-adjoint passive system, i.e., the case when o = 0 <= the

operator U = is a self-adjoint contraction in 9N P H.

D C
5 4

A more general class of passive systems is formed by passive quasi-selfadjoint systems
(pgs-systems for short). The passive system

{8 Goxna

is called a pgs-system if the operator U = [B i] is a quasi-selfadjoint contraction (gsc-

operator for short), i.e., U is a contraction and ran (U — U*) C 9 x {0}, cf. [11]. This
last condition alone is equivalent to A = A* and C = B*; for contractivity of U see
Theorem 2.4 below. If 7 is a pgs-system, then the transfer function of 7 takes the form

O,(z) =W(z)+ D,

where the function W(z) belongs to the class N(91) of Herglotz-Nevanlinna functions and
it is defined on the domain Ext {(—oo, —1] U [1,00)}. The class S?°(N) is the class of all
transfer functions of pgs-systems 7 = {U; M, 91, H}. A complete description of the class
S%() is given in [13]. Denote by S*(N) the subset of Herglotz-Nevanlinna functions
from the class of S7°(91). Clearly,

O(z) € 89 (M),

O(z) € S*(M) { 0(0) — 6(0)

The following equivalent statements for L(9t)-valued Herglotz-Nevanlinna function ©,
holomorphic in C\ {(—o0,—1]U[1,00)}, can be derived with the aid of the integral
representation of ©; see also [33, Theorem 4.2]:

(1) © € 8*(N);

(2) ©(xz) is selfadjoint contraction for each z € (—1,1);

(3) © is the transfer function of a passive selfadjoint discrete-time system

D B

2.3. The Schur-Frobenius formula for the resolvent. Let

D C m m
u:BA e — &
) 9
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be a bounded block operator. Then an applications of the Schur-Frobenius formula gives
the following formula for the resolvent Ry (\) = (U — M)t of U:

—V7I(\) VHA)CRA(N)

B ROZ Ry BV ) Rah) (1 - BV CRa () | AP0 0 P
where

(2.8) V(A) :=XMom — D+ CRa(N)B, Xep(A).

Moreover, A € p(U) N p(A) < V~Y(\) € L(M). In particular, (2.7) and (2.8) imply
(2.9) (PmRuN)9M) ' = D — CRA(N)B — M.

2.4. Krein shorted operators. For every bounded nonnegative operator S in the
Hilbert space H and every subspace K C H M.G. Krein [29] defined the operator Sk by
the relation

Sc=max{Ze€L(H): 0<Z<S,ranZCK}.

An equivalent description is

(210) (Schp)= nf (S(F+e)f+e)}. fen,

where K+ := H © K. The properties of Sk, have been studied by M.G. Krein and by
other authors (see [7] and references therein): in [2, 4] Sk is called a shorted operator.
The following representation of Sk was also established in [29):

Sk =82 PS8,

where Py is the orthogonal projection in H onto Q = {f € tanS : SV2f € K} =
fanS © S'/2KL. Moreover, it was shown in [29] that

(2.11) ranS,lc/2 = ran (§'/?Py) = K NranS/2.
Hence,
(2.12) Sk =0 <= ranSY?n K ={0}.
As a bounded selfadjoint operator & admits the block operator representation
K K
S Sl
S= S Sl e - & .
12 22 Kt j

Tt is well known (see [25, 33, 42]) that the operator S is nonnegative if and only if
S22 0, ranSfy Cran S}, Sn > (8" 28;‘2)* (52%512)
and the operator Sk can be expressed in the block operator form
(2.13) Sc = lSH - (3;21/23f2)* (3;21/23f2) 0] 7
0 0

where 82_21/2 is the Moore-Penrose pseudo-inverse of Sgo. If S55' € L(K1) then

Sk = {811 - 810282_218ik2 8}

and Sy — 812855 Siy is called a Schur complement of S. From (2.13) it follows that

Sk =0 < ranS}, CranSY> and Sy = (5;;/23;‘2) (3;21/ 23;<2) .
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2.5. Selfadjoint and quasi-selfadjoint contractive extensions of a nondensely
defined Hermitian contraction. Let B be a closed nondensely defined Hermitian
contraction in the Hilbert space $). Denote

Ho:=dom B, N:=HOH.

A description of all selfadjoint contractive extensions (sc-extensions [33]) of B in $) was
given by M. G. Krein [29]. In fact, he showed that all sc-extensions of B form an operator
interval [B,,, Ba], where the extensions B, and By can be characterized by

(2.14) (I+Bu)yy=0, (I-=Bum)py=0
respectively. The operator B admits a unique sc-extension if and only if
(By, h)?

SUp 9 s 15 —
pedom B ||¢]]? — || Be||?

for all h € M\ {0}.
The operator interval [B,,, Bas] can be described as follows (cf. [29, 33]):

(2.15) B = (Bu + B,)/2+ (Bu — B)Y?Y (Bys — B,)Y?)2,

where Y = Y™ is a contraction in the subspace Tan (By; — B,,) € M. It follows from
(2.14), for instance, that for every sc-extension B of B the following identities hold:

(2.16) (I-B)w=Bu—-B, (I+B)n=B-B,,
cf. [29]. Hence, according to (2.11)

ran (I — B)Y/2 00N = ran (By — B)Y/2,

ran (I + B)Y/2 NN = ran (B — B,)'2.
Let Py, and Py be the orthogonal projections in $ onto $o and 9, respectively. Then
the operator By = Pg,B is contractive and self-adjoint in the subspace §)¢. Let Dp, =
(I — B2)'/? be the defect operator determined by By. The operator By, = Py B is also
contractive. Moreover, it follows from B*B < I that B3 By < DQBD. Therefore, the
identity

KODBOf:Pme7 deOHlB:fjo,
defines a contractive operator Ky from ®p, :=ran(Dp,) into N, cf. [23, 24]. This gives
the following decomposition for the Hermitian contraction B

_ _| Bo |.
(217) B =DBy+ KoDp, = l:KODBO:| :Ho— H.

An extension B of B in $ is called quasi-selfadjoint if also B* is an extension of B and
B is said to be a quasi-selfadjoint contractive extension of B (gsc-extension for short) if
dom B = §, ||B|| < 1, and ker(B — B*) D dom B = §; cf. [14, 15].

For a proof of the following result and some history behind the well-known formula
therein; see [8, Theorem 9.2.3], [12, Theorem 4.1], [25, Corollary 3.5].

Theorem 2.4. Let B be a Hermitian contraction in $ = Ho N with dom B = Hy and
decompose B as in (2.17). Then the formula

$o $o
= By Dp,K}
2.18 B= 0
( ) KoDp, —KoByoKj; +DK5XDK5 ?t - ?t

gives a one-to-one correspondence between all gsc-extensions B of the Hermitian contrac-
tion B = By + KoDp, and all contractions X in the subspace D := m(DKS) c .
Furthermore, the following statements hold:

(i) B has a unique sc-extension if and only if Ky is an isometry (Dk; = {0});
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(ii) if D # {0}, then the following equivalences hold
ker Dg; = {0} < ker(By — B,) = $o;
(iil) if Dz # {0}, then the following equivalences hold
ran Dz =M <= ran(By — B,) =N
Moreover, Be Cy(a), a €10,7/2), if and only if X € C@KS ().
From (2.18) it follows that

[ B Dy, K¢ [ Bo Dy, K
(219) B, = [KODBO ~KoBoKj — Dy, " PM = |KoDp, —KoBoKg+ D%,
with X = —I[Df; and X = I Dg;, respectively. From (2.19) it is seen that

B,+Buy | Bo Dp,Kj By —-B, (0 0
2 o KODBO —I{()B()I{ék ’ 2 {0 D26

Finally, we mention the following implications

X e L(®k;), |[|[Xsina+icosall<1= |IBsina + icosal| <1,

(2.20) : : 5 :
X € L(®k;), |[Xsina—icosall|<1=||Bsina—icosall <1,
where B is given by (2.18).

Remark 2.5. Let X be a selfadjoint contraction in the Hilbert space H1 & Ho. From
Theorem 2.4 one can derive the following two block representations for X :

x| Xu Dx,, L*
LDx,, —LXyL*+ Dy.YDp.
. H H
_ [-UXU* + Dy-VDy- UDx,, @1 . @1
Dx,,U* Xoo H, Hy

where L € L(®x,,,Hs2) and U € L(®x,,,H1) are contractions and Y € L(Dr«) and
V € L(®y~) are selfadjoint contractions. From (2.14), (2.16), and (2.19) we get

(I+X Ha — DL*(I+Y)DL*PH27 (I_X)Hz = DL*(I_Y)DL*Psz
(I+X H1 = DU*(I+V)DU*PH17 (I_X)H1 = DU*(I_V)DU*PHM

—UX1U* UDx,,
Dx,,U* X |’

Xy Dy, L*
LDx,, —LXyL*

In addition, for the defect operators the following identities hold (cf. [12, Theorem 4.1]):
2
hy
|+ (i)

2.6. Special pairs of selfadjoint contractive extensions and corresponding Q-
functions. The so-called @, and @Qp-functions of a Hermitian contraction B of the
form

Qu(§) = (Im + (Bym — Bﬂ)l/2 (B, — €Is) " (By — Bu)1/2) I,

Qui(§) = (~In+ (B = B (Bu — €15) " (Ba = B)'/?) [, €€ C\[-1,1],

~— —

I-X), =TI+ X))y, =0 UU*:IH1=>X:{

I-X)y=(U+ X))y, =0 = LL*:IH2:>X:[

= ||DL (Dx, b1 — X11L*hg) — L*Y Dy« hy||” + || Dy Dp+ho)?

= ||DU (DX22I’L2 — XQQU*I’Ll) — U*VDU*I’L1H2 + HD\/DU*I’L1||2 .
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were introduced and studied in [33]. These functions belong to the Herglotz-Nevanlinna
class and they are connected to each other via

Qu)Qm(E) = —In, §€C\[-1,1]
They possess the following further properties:

s— Jim Qu§) =1, lim (Qu(§)h, h) = +oovh € M\ {0}, s —1im Qu(&) =0,
s = Jim Qui(§) = —Im,  1m(Qu(§)h,h) = —oovh € M\ {0}, 5= lim Qur(€) = 0.

The following resolvent formula has been established in [33].

Theorem 2.6. Let C' = By — By. The formula
Re= (B = &0 = (B, = €D OYV2K () (I + (Qu(€) — DK () CY2(B, — €)™

gives a bijective correspondence between the generalized resolvents ﬁg = Pﬁ(E—U)—l 9
of sc-extensions B of B with exit and the L(N)-valued operator functions K (&) holomor-
phic on Ext [—1,1] and possessing the following two further properties:

1) =K (&) is a Herglotz-Nevanlinna function,

2) K(&) is a nonnegative selfadjoint contraction for every & € R\ [—1,1].
Here canonical resolvents correspond to constant functions K(§) = K and vice versa.

A further study of functions of Krein-Ovcharenko type was initiated in [10] Given
an arbitrary pair {Bo, Bl} of sc-extensions of B in §) satisfying the condition BO < Bl,
define a pair of Herglotz-Nevanlinna functions via

(2.21) Qo(€) = [(By = Bo)/2(Bo — 1) (B - Bo) 2 + 1] I

(2.22)  O.(€) = [(El — Bo)Y2(B, — 1) Y (B, — Bo)Y? — 1} ', €€ Ext[-1,1].

It is easy to verify that @0(5)@1(5) = @1(5)@0(5) = —In, & € Ext[-1,1]. Now proceed
by introducing the classes of Krein-Ovcharenko type Herglotz-Nevanlinna functions.

Definition 2.7. [10]. Let 91 be a Hilbert space. An L(M)-valued function Q&) is said
to belong to the subclass &, (M) (respectively, S (N)) of Herglotz-Nevanlinna operator
functions if it is holomorphic on Ext [—1,1] and, in addition, has the following properties:

1) s — glim @(5) =TI (respectively, s — glim @(5) =-I);
2) f1%1_111(C§(§)h, h) = +oo for all h € M\ {0} (respectively, s — 51%1211 Q) =0);
3) s— lglfrll Q(&) =0 (respectively, lgfrll(@(g)h, h) = —oo for all h € M\ {0}).

The function @, belongs &,,(91) while Qs is of the class G/ (N). It is stated in [33]
that if the function @ belongs to S, (M) (respectively, Qe Sp(N)), then it is a Q-
function (respectively, @ p-function) of some nondensely defined Hermitian contraction
B. However, it is shown in [10] that this statements is true only when dim 9t < oco.

Theorem 2.8. [10]. Assume that Q € & 2(N) (@ € &3 (N)). Then there exist a
Hilbert space $) containing N as a subspace a Hermitian contraction B in ) deﬁned

on domB = 6N, and a pair {BO,B1} of sc-extensions of B, satisfying Bo < By,
ker(B; — By) = dom B, such that Q(£) admits the representation in the form (2.21)
(in the form (2.22), respectively). Moreover, the pair {Bo, B1} possesses the following
properties:

(2.23) ran (By — Bo)"/?Nran (By — B,)'/? = ran (B, — By)"/*Nran (By — B1)"/? = {0},

If dim 9 < oo, then necessarily Bo = B, and 31 = Byy.
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In particular, in the case that dim9 = oo [10] (see also [9]) contains a construction
of pairs { By, B1 } of sc-extensions which differ from {B,,, By} and satisfy the conditions
in (2.23): in other words, the corresponding Q-functions given by (2.21) and (2.22)
belong to 6,(N) and &, (M), respectively, but they do not coincide with the @Q,- and
Q p-functions of B.

To finish this section the following simple observation is mentioned: if V' is an isometry
in 91 and Eo < El are sc-extensions, then the operator-valued functions

0u(©) = (1 + V(B B (B et (BB v 1o
QKOZZ<_L“+‘q§1_§®LQ(El_f%)_%§1—§®”%”>fm,£eEm4—Ln,

belong to the Herglotz-Nevanlinna class and @fl(ﬁ) = —@o(f), ¢ e Ext[-1,1].

Remark 2.9. If F and G are bounded nonnegative selfadjoint operators, then the parallel
sum F : G can be defined [3], [24]. The conditions F : G = 0 and ran F*/? Nran G'/? =
{0} are equivalent.

3. SELFADJOINT CONTRACTIVE EXTENSIONS OF NONDENSELY DEFINED HERMITIAN
CONTRACTIONS WITH EXIT

Let B be a nondensely defined Hermitian contraction in the Hilbert space $ and let
H be an auxiliary Hilbert space. If B is given by (2.17), then all gsc-extensions of B in
the extended Hilbert space $ @ H can be described as follows. Let

H=NaH,

let j be the canonical embedding operator 91 — ’fl, and define IA(O = j5Ko. Then

D 0 N N
DA*:IA—IA(IA(’””:{ K } ® o .
K (H 0K() 0 Iy Y - Y

Clearly, 91?5 =Dg; ®HC H. In what follows we identify B with its image in o ® H.

By Theorem 2.% a gsc-extension B of B in § ® H with respect to the decomposition
HDH = Ho P H takes the block form

E:EX: ABO R ADBDI?S : ?90 . go
KODBO _KOBOKS_'_DIA((’;XDIA((’; ﬁ ﬁ ’

where X : © R: ™ 9 =, is a contraction. Let

K;
D D
(3.1) X = B((“ ;12]: & - &
21 22 H H

be the block representation of the operator X. Then

$o $o

_ Bo Dp,K; 0 < &

(32) B = KODBO —I{()B()I{ék + DK(’;XIIDK(’)‘ DK(’)“X]Q N — N
0 Xo1 Dk Xoo ® ®

H H
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Let K be a Hilbert space. Associate with any selfadjoint contraction

K K
x = | Xl o g
Xik2 KXoz - H H

two further selfadjoint contractions in K via

Zo =T+ X)c—I)1K=X1, — ((I+X22)(71/2)Xf2) (I + X20) V2 X1y,
(33) .
Zy= (1= (I = X)) 1K = Xuy + ((T = Xa2) V20, ) (1= Xao) VDX

By Remark 2.5 selfadjoint contractions X in IC & H are of the form

. K K
(3.4) x = |[TUARU A Do-VDy UDxp| gy
Dx,, U Xoo H H

where Xg2 € L(H), U € L(9Dx,,,K), V € L(®y~) are contractions, and Xgp and V are
selfadjoint. Then from (3.3) and (3.4) one obtains

Zo = Dy-VDy- —UU*, Z = Dy-VDy- + UU*.
Hence,

1o = 1,5 =
(3.5) UU* = 5(Z ~ %), Du-VDy- = 3(Zy + Zy).

Then clearly 20 < 21 and, moreover,
(3.6) ker(Zy — Zo) = {0} <= ker X}, = {0}.
With £ = D as above, 20 and 21 determine two sc-extensions §0 and El of B in $:

By Dp,K;

3.7 By = -
(3.7) 0 {KODBO —KoBoKg§ + Dk ZoDk;

] =By + Dk (I + ZO)DKg,

~ B Dp K}
(3.8) By = [ 0 “Bao
KoDp, —KoBoKj+ Dk;Z1Dk;
From definitions and Remark 2.5 we get

(I + Bo)m = Dgs Pu(I + X)pe: Dicg P, (I = Bi)w = D Pn(I — X)o,.; Dic; P

} = By — Di; (I — Z,) D .

Proposition 3.1. Let 20 and 21 be two selfadjoint contractions in a Hilbert space IC,
such that 20 < 21. If the Hilbert space H satisfies dim H > dimra_n(21 — Zo), then all
selfadjoint contractions X in K & H possessing the properties (I + X)x — 1) 1K = Z,
and (I — (I — X)x) [ K = Zy are given by the formula
B (Bgh) vy (B52) 7 (250) Tvow,| KK
1/2 e - D,
DXzzv(Zl ZO) Xoo H H

X =

where Xog is an_ arbitrary selfadjoint contraction in H and V s an arbitrary isometry
from Tan (21 Zo) into Dx,,. In particular, if Zo = —Ix and Z1 = I, then

VXY VD] XK
X=1p.v x = 9,
Xoo 22 H H

where V is an arbitrary isometry from K into D x,,.

Proof. Conclusions in the proposition follow from relations (3.3), (3.4), and (3.5). O
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The next result clarifies the definitions of By and By in (3.7), (3.8) by establishing an
exit space version for the identities in (2.16).

Theorem 3.2. Assume that Dz =N, let X = (Xi;)7 =, be a selfadjoint contraction
in MBS H as in (3.1), and let

By Dp, K}

E = ~ ~ ~
X7 | KoDg, ~KoBoK§ + D X Dg.

9 9
e — @ .
H H

Then By and By defined in (3.7) and (3.8) satisfy the relations
(3.9) By=Bu+(I+Bx) 19, Bi=Bu—(I-Bx)_ 19
Proof. Let gu = B, Py & (—Py), By := By Pg @ Py Then it follows from (2.19) that
Bx = B, + Dg.(I+ X)Dg. = By — Dy (I = X) D
Moreover, using (2.10) and (2.14) it is seen that for all f € H P H
((1+Bx) r.0)= it ((1+Bx)(f+fo+h) S+ o+h)
B Ji

0 € 5o
heH
= inf ((+By)(f+fo), f + fo) + jnf, ((I+X) Dg.(f +h), D, (f + h))
= inf ((I+X) Dy (f + 1), D (f +1) = (I + X) Dicg Puf, Dic; Puf)

In view of (3.3) (I + X)y = I + Zo which combined with the identity (3.7) leads to
Dg: (I + Zy)Dgy = By — B,
This proves the first identity in (3.9). The second identity in (3.9) is proved similarly. [
It is also useful to describe shortenings of I + By to the exit space H.

Theorem 3.3. Let X = (Xij)?,j:1 be a selfadjoint contraction in Dz & H as in (3.1)
and let

s [ B o 1%
KoDp, —KoBoKj+ DI?(’)‘XDIA((’; ﬁ ,}/_Z
Then
(3.10) (I+Bx)nlH=(I+X)yH.
Proof. Rewrite EX as in (3.2)
$o o
N By Dp,Kj 0 &) @
Bx = KODBO —K()B()Kg "‘DKSXllDKg DK5X12 N — N
0 Xi9Dky X2 ® ®
H H

Let X be the Hermitian contraction determined by the first column of X,

Dg»
X:{Xn} 5®Kg—> o 0 .
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Then one can consider X as an sc-extension of X'. Analogously, define the Hermitian
contraction By by

$o

By Dp,K{ Ho @

BX = KODBD _KOBOKS + DK(’)‘XIIDK(’; e - N
0 Xi,Drcs n ®

H

Now we consider sc-extensions of X’ in the Hilbert space H=29 K ©H and sc-extensions
of By in the Hilbert space $§ ® H = Ho & N E H. It is evident that

Bx DBy < X DX.
All sc-extensions of X form the operator interval [(X),, (X)ar]. On the other hand, the
form of Bx shows that
X1 <X, <= Bx, < Bx,.
Hence,
X € [(X). (X)) = Bx € [Bv),. Bray ]

On the other hand, every sc-extension B of B in 9 ® H is of the form EXLWhere
X is a selfadjoint contraction in D @ H; see (3.1), (3.2). It follows that if B is an

sc-extension of By, then B is also an sc-extension of B (C By), ie., B = By, where X
is the sc-extension of X. Hence,

Bx € [(Bx)u, Bx)m] = X € [(X),, (X)u].
One concludes that
(3.11) (Bx)u = Bx,. (Bx)ar = Bay,,-
Since for all X1, X5 € [(X),, (X)a] one has

(EX1 - EXz) IH=(X1—-X2)H,
the equalities (2.16) applied to I + By and (I + X) yield (3.10) in view of (3.11). [

Corollary 3.4. The following statements are equivalent:
(i) (I + Bx)» =0 and (I — Bx)y = 0;
(ii) (I+X)H =0and (I —X)y =0;
(iii) Bx is a unique sc-extension of Hermitian contraction By ;
(iv) X is a unique sc-extension of Hermitian contraction X .

Theorem 3.3 and Corollary 3.4 have important implications on the contractions Zo,
Zl, therefore, also on the sc-extensions BO, B of B in the original Hilbert space §.

Theorem 3.5. Let

X — X11 X12 . K - K
Xiy Xoa| @ @
H
be a selfadjoint contraction. Suppose that
(3.12) I-X)u=I+X)x=0

and

(3.13) | Xaal] < 1.
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Let the selfadjoint contractions 20 and Z; in K be defined by (3.3). Then

ran (Z1 — Zo)Y/2 Nran (I + Zo)Y/% = {0},
ran (Zy — Zo)Y/2 Nran (I — Z1)Y/? = {0}.

Proof. By (3.3) we have
Ix+Zo=U+X)cIK, Iic—2,=1I-X)clK.
Due to the assumption (3.12), the operator X takes the form

(3.14)

. K K
x_ [ Xu  Dx,L S
LDx, —LXulL'|’ o v

where LL* = Iy; see Remark 2.5. On the other hand, X2 = Dx,,L* = UDx,, for
a contraction U € L(Dx,,,K). From the assumption (3.13) it follows that Dx,, has a
bounded inverse. Hence U = D XML*D;(;2 and

ranU = Dx,,ran L*.
Furthermore, since Z, — Zo = 2UU*, see (3.5), one obtains
ran (21 - 20)1/2 =ranU = Dx, ran L*.
On the other hand, from the formula for X above it is clear that

(I +X11)Y/? } [ (I + X1,)V/2 }

IT£X= {L(I;Xll)lm LI F X11)Y/2

This gives a description of ran (I & X)'/?

ran (I 4+ Zo)'/? = (I + X11)"?(I — X11)""/?ker L,
ran (I — Z1)Y? = (I — X11)Y2(I + X11)" "/ ker L.
Since ran L* | ker L, one concludes that

(I — X)) ?ran L* N (I — X11)~ /% ker L = {0},
(I + X11)Y?ran L* N (I 4+ X11)~/? ker L = {0}.

This implies the equalities (3.14). O

and now an application of (2.11) leads to

Observe that if B is a Hermitian contraction in §), if Zo and Z1 are belfadJomt con-
tractions in M(= H © dom B) satisfying (3.14), and if the sc-extensions By and By of B
are given by

~ B Dp K}
Bj:[ ) D ] i=01,
KODBO —KoBoKO +DK5ZJ‘DK5
then the pair {Eo, §1} possesses the properties in (2.23). If Dx; = 9 and ker(Zl - 20) =
{0}, then ker(B; — By) = dom B. We also note that if

aq K K
X:B %}:@HEB,
H H

where V is an isometry from K into H, then (I + X)x = 0 and 20 = —Ix, 7, = Ix. On
the other hand, (I + X)3 = I — VV* and hence (I £ X)» = 0 if and only if V is unitary,
i.e., ranV = H. Therefore, it is possible that (3.13) and (3.14) are satisfied, while (3.12)
fails to hold.

The next result completes the role of exit space extensions in the study of pairs
{EO, §1} of sc-extensions of B in the original Hilbert space $) whose @-functions belong
to the classes 6,(MN) and &y;(MN); see Definition 2.7 and Theorem 2.8.
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Theorem 3.6. 1) Let dim K = dimH = oo. Then there exists a selfadjoint contractive
block operator

Xiy Xn] ® T @
H H
satisfying the conditions (3.12), (3.13), and the additional conditions
(3.15) ker X7, = {0},

20 75 —I)C, 21 75 I;C, ker(21 - 20) = {0},
where Zo and Zy are as in (3.3), ie., Zo= (I + X)c = I) K, Zy = (I — (I — X)) | K.
2) Let dim K = oo and suppose that Zog and Z1, Zg < Z7, are two selfadjoint contrac-
tions in K which satisfy the conditions (3.14) and the condition

(3.16) ker(Zy — Zo) = {0}.

Then there exists a selfadjoint contractive block operator X in the Hilbert space K & H,
dimH = dim IC, such that

(I:l:X)HZO, HX22H<1
and Zo = (I + X)c = I) 1K, Z1 = (I — (I - X)x) [ K.

Proof. 1) We give a construction of a required X in two steps.

Step 1. In K choose an infinite dimensional subspace €y with an infinite dimensional
orthogonal complement My = K © . In this step we construct a special selfadjoint
contraction Xi; in K = Qg ® My.

Let A be a selfadjoint operator in g such that ||A|| < 1. Then choose a contraction
M € L(Q0,Mp) such that ker Dag» = {0} and ran Dag= # My, ie., [|MS]| < ||f]] (&
ker Dypg = {0}) for all f € Qo \ {0}, while [[M]| = 1; cf. (2.3). Moreover, let £ be a
subspace in My such that

(3.17) £oNran Dy = {0} and £5 Nran D= = {0}
cf. [41]. Next define the selfadjoint and unitary operator Jy in My by
(3.18) Jo = 2Ps, — I, .
Due to (3.17) Jy satisfies
(3.19) Joran D g+ Nran D = {0}.
Now, introduce

A D_AM* Q0 Q0

X1 = X :d - &
MDDy —MAM* + D= JoDpg-
Mo My

We claim that X;; satisfies the equalities

(3.20) ker Dx,, = {0}
and
(321) I‘anl))(11 ﬂmo = {O}

Since Jp in (3.18) is unitary, Dy, = 0 and hence Remark 2.5 shows that for all @ = {Z}

(3.22) IDx,@)|* = Dt (Dah — AM*g) = M*JoDps-g* .
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Hence, if ||Dx,,@|* = 0 then it follows from (2.2) that there exists z € 9 such that
Dah — AM*g = M*z and JoDag+g — D=z € ker M* C ran Dpg-. Now (3.19) gives
JoD g = 0 and, hence, g = 0 and h = 0, since also ker D4 = 0. So (3.20) holds true.

On the other hand, by applying (2.10) to (3.22) it is seen that (Dgfu)zmo = 0, and
hence (3.21) is obtained from (2.12). Furthermore, an application of Remark 2.5 shows
that when £ # {0} # £3 then, equivalently,

(3.23) (I + X11)gmo #0, (I — X11)gmo £ 0.

Step 2. Let H be an infinite-dimensional Hilbert space, let L* be an isometry from H
into K such that ran L* = g, and define

K K
x| Xu Dx,, L* O — @
LDy, —LXuL*)' 5 7 0

It follows from ran L* = Qg that Xoo = —LPq, AL* and thus || X22|| < 1 by the choice
of A. Since ker L = 9, the equalities (3.20), (3.21) yield ker LDx,, = {0}. Therefore,

(I :|:X)H = O, HXQQH < 1, kerXf2 = {0}, keI‘X12 = {0},

where the first equality holds by Remark 2.5. By applying Theorem 3.5 one concludes
that Zo and Z; have properties (3.14). Moreover, from (3.23) it follows that Zo # —1Ix,
Zy # Irc. Thus, relations in (3.12), (3.13), (3.15) are valid for X. Finally, the condition
ker(Zy — Zo) = {0} is obtained from (3.15) and (3.6).

2) Define X by

Z1+2 21—20)1/2);* K K
X= e i L
v (2%) 0 H  H

where V : H — K is unitary. Clearly, X is a selfadjoint contraction in H @ K; cf.
Theorem 2.4, Proposition 3.1. Next observe that

~ 5 5\1/2 - SN 1)2 *
T+ x = |T+20)7 (ﬁ) Ve (T + Zo)V/? (ZIEZO) e
I I
and
- 5 = \1/2 . . oo \1/2 ) N
I - X = (I - ZO)1/2 - <Z12Z0) V (I - 20)1/2 — (%) V

0 1 0 1

I+ X)'/? and ran (I — X)'/2, respectively.
one concludes that

These two formulas give descriptions for ran (
Now using the assumptions (3.14) and (3.16)

ran (I £ X)'? N ({0} & H) = {0}.
According to (2.11) this means that (I £ X)» = 0.

Finally, the equalities Zo = (I + X)x — I) [ K and Z; = (I — (I — X)x) | K are clear
from Proposition 3.1. O

In particular, Theorem 3.6 contains an improvement of Theorem 2.8: given any Her-
mitian contraction B in ) with dim 9 = dim (9 © dom B) = oo it enables to construct
pairs { By, By} of sc-extensions of B in §, which differ from the pair {Eu, By} and satisfy
the conditions (2.23), directly from one exit space extension Bx of B via the formulas
(3.2)—(3.8). Furthermore, all the key properties of { By, By } are expressed in simple terms
and the choice of appropriate parameters X is specified explicitly.
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4. COMPRESSED RESOLVENTS

Let B be Hermitian contractiog in 5§~and let B be a gsc-extension of B in the Hilbert
space $) @ H. Recall that then B = Bx can be rewritten in the form (3.2) for some
contractive block operator X of the form (3.1). To formulate the next result it is useful
to associate with X the operator function

(4.1) Px(2) = X1 + 2X12(I — 2X22) ' Xo1, 2| < 1.

If, in addition, Xs9 is selfadjoint, then ®x (z) admits a holomorphic continuation to all
points z € C\ {(—o0,—1] U [1,+00)}. Observe, that ®x(z) can be also interpreted as
the transfer function of the passive system

X Xaof
U_{|:X21 X22 7®K67®K87H )
see Section 2.2. In particular, ®x(z) is contractive on the unit disk D.

Theorem 4.1. Let B be Hermitian contraction in ), let B= EX be a gqsc-extension of
B in @ H rewritten in the form (3.2) with X given by (3.1), and let Px(z) be as in
(4.1). Then

(4.2) Po(:B-1)"'1$ = (zéx(z)—fﬁ)_l, 2] < 1,

where

~

1 1
Bx(2) = 5 (Bu+ Bu) + 5 (Bur = B) ' ®x (=) (Bus — Bo)"/?

_[ B Dy, K¢
KODBD _KOBOK6+DK§(I)X(Z)DK5 ’

(4.3)

With z fixed, the operator EX (2) is a gsc-extension of B in the Hilbert space $).
Furthermore, if B € Cogn(a), then ®x(z) and Bx(z) can be defined for z € I(a)
and

(1) the implications
S HJr(ﬁ)v Z 7é :l:]-v
B € la,m/2)
zell(B), z # +1,
B € |a,m/2)

are valid, therefore

— ||Bx (2)sin 8 +icos B| < 1,

— ||Bx(2)sin 8 —icosf|| <1

z € C(B) = Bx(z) € Cs(P);
(2) there exist strong limits

Bx(£1) € Op,, (), Bx(£1) € Cq(a).

In particular, for o = 0 the operator functions ®x(z) and ﬁx(z) are defined for
z € C\ {(—o0,—1]U[1,4+00)} and ®x(£1) are selfadjoint contractions given by

(4.4) x(-1)=Zy, ®x(1) =7,

where Zo and Zy are as in (3.3), and the sc-extensions §X(—1) and §X(+1) of Bin$
coincide with By and By in (3.7) and (3.8), respectively.
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Proof. Since ||®(z)|| < 1, the operator Bx(z) in (4.3) is a gsc-extension of B for each z,
|z| < 1; see Theorem 2.4. Using (2.9) and (3.2) we get for |A| > 1

_ -1_[ B D, Ko
B . _ 0 By 0 _
(Pﬁ(B A) [ﬁ) {KODBO —KoBoKj + DKSXUDKS] Mo

0 .
— Xoo — A 0 Xo1Dg-
[DKS X12]( =N [0 XoDi:]

_[ Bo D, Kq Y
KoDp, —KoBoK;+ Dk; (X11 — X12(Xo2 — )\)_1X21) Dg: o

Consequently, with |z| < 1 this leads to

B 1 B Dp K2
B 1 _ 0 Bo 0 —
(Py,(zB I) ffJ) < |:KODBO —KoBoK§ + DKgq)X(Z)DKS] fo

and this proves (4.2).
Suppose that B € Cyg(a). Then X € C@KS aH (@) by Theorem 2.4 and this implies
that X € C©K6‘ an(0) for B € [a,7/2). Theorem 2.3 combined with (2.20) shows that

z € IL (), R

z # +1, = ||®Px(z)sinf +icosf|| <1=||Bx(z)sin3+icosf|| <1,
B € la,m/2)

z eIl (p), R

z # +1, = [|Px(2)sinf —icosf|| <1 = ||Bx(z)sin —icosf|| <1.
B € [a,m/2)

Moreover, according to Theorem 2.3 the strong limit values ® x (+1) exist and in view of
(4.3) EX(:I:I) exist, too, and they satisfy the inclusions in (2). For a = 0 the equalities in
(4.4) can be obtained directly from the formulas in (3.3) and (4.1). Finally, by comparing
(3.7), (3.8) and (4.3) one concludes that §X(—1) = By and §X(+1) = By. O

Let X and Bx be given by (3.1) and (3.2). Define the operator C in § = £y ® 9N by

_ B Dn K* o $o
(45) ¢= |:KODOBD —KoBoKj iODIO(anDKg : SE)% - ?t ’
and let M : H — $ and its adjoint M~ $ — 'H be given by
N 0 $o — . $o
M = {DKSXH} tH— ?{ , M*= [0 X12DK;;] : ?{ — H.

Let the operator B = Bx be given by (3.2). We rewrite it in the form

N R A 9
Bx = g* M o — D .
M X22 H H
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Consider a passive pgs-system Tx = {Ex;fj,ﬁ,H} with the state space H and the
input-output space $); see Subsection 2.2. The transfer function of 7x is given by

5 + ZM(I — ZXQQ)_1M*

By Dp,K} 0 _1
— _ X5 Dps
|:K0DBO —KoBoK§ + Dz X11 D e Dy X1z (I = 2X2) 71 0 XD
_ By Dp,K§
KODBD _KOBOKS + DKS (I)X(Z)DK(’)«

Comparing this with (4.3) it is seen that the transfer function of 7x is in fact Bx (2).
Now consider the passive selfadjoint discrete-time system X x = {é x;H, H,.‘f")} with

the state space $ and the input-output space H. The transfer function © of the system
Y x is given by

(4.6)  O(2) = Xaz + 2M*(Ig — 2C) "M = Xop + 2X{5 D Pu(Ig — 2C) ' Dig; X1o-

The function Qz(\) = Pn(C — M)~ 190, X € p(C) is called the Q-function [11] of C.
Hence,

@(Z) = Xoo — XTQDK‘;«QC’,(I/Z)DKSXQ, 1/2’ S p(C')
The transfer function © possesses the following properties (see Subsection 2.2):

(1) © belongs to Herglotz-Nevanlinna class for z € C\ ((—oo0, —1] U [1, +00)),
(2) O is a contraction for z e D ={z€ C: |z] < 1},

(3) O has strong limit values ©(%1),

(4) if 8 € [0,7/2), then

|zsin 8 +icosB| <1
z# +1

|zsin 8 —icos ] <1
z# +1

= [|©(2)sin § +icos Iy, <1,
(4.7)
= [|©(2)sin f —icos B In]l, < 1.

Furthermore, it follows from Theorem 3.3 and the formula (4.6) that

O(-1) =+ Bx)n|H —Ipg = (I + X)) | H — Inq,

O() =Ix— I —-Bx)nlH=1Ix—I—-X)xlH.
Using the Schur-Frobenius formula (2.7) one gets the following analog of Theorem 4.1.
Corollary 4.2. The relation
Py(zBx —I)"'[H=(20(2) =)', ze€C\{(—o00,—1]U][l,+00)}
18 valid.

In the next theorem we show that a simple Hermitian contraction B and its sc-
extension B can be recovered up to the unitary equivalence by means of B(z) or O(z).

Theorem 4.3. 1) Let $ be a Hilbert space and let the Herglotz-Nevanlinna function
B(z) be from the class S*(9). Then there exist a Hermitian contraction B in $ and its
sc-extension B in the Hilbert space $ @ H such that

Py(zB—1)"'1 9= (2B(z) —I)~".

2) Let H be a Hilbert space and let the Herglotz-Nevanlinna function ©(2) be from the
class S*(H). Then there exist a Hilbert space $), a simple Hermitian contraction B in )

and its sc-extension B in the Hilbert space H @& H such that
Py(zB—1)"'"1H = (20(z) = I) "



218 YU. M. ARLINSKII AND S. HASSI

Proof. 1) It is well known that the function B(z) can be realized as the transfer function
of a minimal passive selfadjoint system

-

with input-output space $) and the state space H. Here the operator

cC M
M* Y

755756,7'[}

T R )
H M

is a selfadjoint contraction, Span {Y”M*sﬁ i neE No} =H, and

B(z)=C+ zM(I - 2Y) ' M*.

The minimal system 7 is determined by B(z) uniquely up to unitary equivalence (see
[13]). For the derivative B’(0) one has B’(0) = MM*. Now introduce

o = kerE’(O) = kerM*, B = 5[550.

Then B is a Hermitian contraction, C is an sc-extension of B in 9, and B is an sc-
extension of B in ) @ H. Notice, that B is nondensely defined precisely when

Ho#£H < M+#0 < H+{0}.

Therefore, one can write (cf. (2.15))

-1 1
C = §(BM +B,)+ 5(BM — B,)Y2X11(By — Bo)Y?
and
By + B
5o M;r £oof L (By —B)Y2 0 1 [X11 Xio] [(By—Bu)Y2 0
0 o] 2 0 V2I| | Xf, Y 0 V2I|’

where X711 is selfadjoint contraction in Tan (By; — B,,) and [ } is a selfadjoint

contraction in Tan (Bas — B,,) ® H. Thus

B— %(BM + B/L) + %(BM - BH)I/QXH(BM - B/L)I/Q %(BM - Bu)1/2X12
J3Xia(Bar — B,)'? v '
Hence M = \/LE(BM — B/L)1/2X12’ M* = %XTQ(BM — BH)1/27 and

~ ~ 1
B(z) = C + ~(By — Bu)Y?2X12(I — 2Y) " X}y (By — B,)Y?

—_
[\

1
= —(Bum + B,) + 5(BM — B)Y? (X1 + 2X12(I — 2Y)71X},) (Bu — Bu)'2.

Therefore, ﬁ(z) is of the form (4.3). Applying Theorem 4.1 and the formula (4.2) one
gets the first statement of the theorem.
2) The function © can be realized as the transfer function of the minimal passive

selfadjoint system
M* Y

\V]

,H,H,ﬁ}
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with input-output space H and the state space §). Again the operator

_ i ) 9
v S TS
H H
is a selfadjoint contraction,
(4.8) Span {G"MH, n e NO} =9,

and
O(2) =Y + 2M*(I5 — 2C)"'M, z€C\ {(—o00,—1]U[l,+00)}.

The minimal system ¥ is determined by © uniquely up to unitary equivalence; see [13].
Define

‘ﬁ::raTnM, o ::ﬁ@m:kerﬂ*, B::é[.‘?)o.

Then B is a Hermitian contraction, dom B = $)g, and B is an sc-extension of B. More-
over, (4.8) means that the operator B is simple, i.e., it has no reducing subspace on
which B is selfadjoint. To complete the proof it remains to apply Corollary 4.2. (]

The last part of this section is devoted to the study of the following linear fractional
transformation of the transfer function ©(z) of the form (4.6):

—1
- -a(mera(2)
(4.9)

Lo () G5) o) oo,

where A € C\ [0, 400). From the properties in (4.7) it follows that for all 8 € (0,7/2)
argA € [r — B, + ] = Im (NS, f)n| < tan SRe (N (NS, flw, [ € domN(N).

Hence, the linear relation N(\) is m-sectorial for each Re A < 0 and, in particular, if
A < 0 then A/(\) is nonnegative and selfadjoint. In the next theorem the main analytic
properties of N'(\) are established and an explicit representation for A'()\) is obtained.
Using the terminology in [26] the result shows in particular that A(A\) forms a holomor-
phic family of the type (B) in the left open half-plane.

Theorem 4.4. The domain £ := DIN()\)] of the closed form N (N[, -] associated with
the family N'(\) in (4.9) does not depend on X\, Re A < 0, and the form N (X)[h, g] admits
the representation

NNk, g]

- 1= -
= ((IH + V(B — Bo)/? (Bo 1T Iﬁ) (B1 — Bo)l/QV*> Yh7Yg> ,

ReX <0, h,ge £:=ran (I} +0(0))2
where By and By are as defined in (3.7) and (3.8),
Y = (I — ©(0)2(In + ©(0) "2 : £ - ¢,

and V :1an (B, — By) — M is an isometry. Here (Iny+©(0))(=1/2) is the Moore-Penrose
pseudo inverse.
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Proof. Since © is the transfer function of a passive selfadjoint discrete-time system, see
(4.6), ||©(2)|] <1 for all |z| < 1 and ©*(z) = O(Z). Then the real part

Re(6(2)) = ,(O(z) +©°(2))

satisfies I3y + Re (©(z)) > 0 for all z € D. Since I3; + Re (O(z)) are harmonic functions,
a result of Yu.L. Shmul’yan [43] yields the following invariance equalities

ran (Ir; + Re ©(2))"/? = ran (I + ©(0))/?,
ran (Iy — Re ©(2)))Y/? = ran (Iy — ©(0))'/2
for all z € D; observe that ©(0) = ©(0)*. From Douglas Theorem [23] we get
(Ing + Re ©(2))'/? = (I + ©(0))/?F (2),

where F~1(z) is bounded for all z € I in Tan (I, +©(0)). Since O(z) € Cy, for all z € D,
the operators Iy + O(z) are m-sectorial bounded operators. Therefore,

I +0(2) = (Iy + Or(2))2(I +iG(2))(In + Or(2))Y?, zeD,

where G(z) = G*(z) in the subspace Tan (I3; + ©r(0)) and I is the identity operator in
tan (Iy; + Or(0)). Hence

i+ 0(2) = (Ing + O(0)2F(2)(I +iG(2)) F*(2)(Ine + ©r(0))/?, 2 € D.
In addition, the function © can be represented in the form (see [43])
O(z) = ©(0) + Do(y®(2) Do), =z €D,
where ®(z) is holomorphic in D. Since Dg(gy = (I3 + ©(0))*/?(I; — ©(0))/? we obtain
O(z) = ©(0) + (I + ©(0))/2W(2) (I + ©(0))"/%, 2 €D,
where
U(z) = (In — ©(0))/2@(2) (I — ©(0))"/.
On the other hand,
(4.10) I+ 0(2) = (Ing + 0(0))/2(I + W(2)) (I + ©(0))"/>.
Thus I + ¥(z) = F(2)(I +iG(2))F*(z). It follows that I + ¥(z) has bounded inverse in

tan (I, + ©(0))'/2. Furthermore we use Proposition 2.2. For A with Re A < 0 we get

1/
1+
D[N (N\)] = ran (IH + Re© <H>> =ran (I; + ©(0))/2, Re\ < 0.
Consequently, the domain D[N ()] of the closed sectorial form N(A)[-,] is constant if
Re\ < 0. For u € ran (I, + ©(0))/2 if ReA < 0 and A = (2 — 1)(z +1)~! we get
(4.11)
NW[u]=—lulP+2((I+iG(2)) " (I +Re ©(2)) "/ ?u, (I +Re O(2)) ")

= —[[ullP4+2((1+iG(2) " F () (I +©(0) ™ 2u, F~(2) (1 +0(0)) ™/ 2u)
= |l PE2(I+U(2)) " (I +0(0)) Y 2u, (I +O(0)) Y/ 2u).

Therefore, N'(\)[u] is holomorphic in A in the left half-plane. Consequently, A'(A\) forms
a holomorphic family of type (B) in the left half-plane in the sense of [26].
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Next the representation of the form A'(A)[-, -] is derived. Let B = By be as in (3.2), let
Zy and Z; be given by (3.3), and let By and B; be given by (3.7) and (3.8), respectively.
Then using the representation

N N
¥ — X11 UDx,,
- * EB - @ 9
Dx,, U Xoo 'y Y

where U € L(Dx,,,MN) is a contraction, see Remark 2.5, one can write
Zo=Xn ~Ulloy,, — X22)U*, Z1 =Xy +U(ln,,, + Xao)U".
Moreover, By — By = 2Dy; UU*Dycs Py and if C is an in (4.5) then
C — By = Di; (X11 — Zo)Ds Pn = Dz U(In,, — X22)U*Dics P
Define
Qa(6) = Pn(C =€) 1M, €€ p(C).
Then it follows from (2.7) that
~ ~ —1
Qal6) = Q5, () (I + (C = Bo)Q5, (), ¢eC\[-1,1],
cf. [11]. Furthermore, for £ € C\ [-1,1]
X19Dk; Qz(6) Dy X12 = Dx,, U D Qz(€) Dy U D,y

= DU Dic; @5, (€) (In+ Di Ul ., — X22)U Di; Q. (6))

1
Dg;UDx,,

-1
= (I + Xa2)'/? <IH + (I — X22)1/2U*DK5Q§0(5)DK5 UPsp,,, (In — X22)1/2)

X (I — X22)'?U* Dic; Q 5, (§) Dic; UD o,

where Pgp . is the orthogonal projection in H onto Dx,, and the last identity follows
from

(IH + (I — X22)"/*U* Di; Q5 (€) Dics U P o, (I — X22)1/2)
x (I, — X22)"?U* Die; Q3. (€)
= Iy — X22)1/2U*DK5Q1§0 €3] (Im + Dz U(lny,, — X22)U'Di; Qp, (5)) .
This yields, see (4.6),
I +©(1/8) = Iyt + Xoo2 — X{5 Dk Qz(§) Dis X2
= (I +X29)'/? (IH+(IH_X22)1/2U*DK§Q§D(£)DK5UP®x22 (IH_X22)1/2)_1
x (I +Xa2)'/2.
Since ©(0) = Xoo, it follows from (4.10) that
T+ (1/8)
= (I+(I=X22)20" Di; Q5 (§) Dic; U Pox,, (I—X22)1/2)71 | T (I +©/(0)),
where I = Izn (1, +0(0))- The equality By — By = 2D; UU* Dz Py implies that

\/iU*DKSPm = V(B\l - §0)1/27
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holds for some isometry V mapping Tan (B; — By) onto ran U*(C Dx,, C H). Hence,
(I+ 0 (1/€) " =T+ (I - X02)/*U" Dz Qp, (€) Dicg U P, (I — Xo)'/?

1 ~ ~ ~ ~

=1+ 5(I = X2)"/V(B1 = Bo)"/*Q, (€)(B1 — Bo) /?V*(I — X22)'/2
1

= §(I+X22)

1 ~ ~ ~ ~
+ 5 (1= Xo)'/2 (T4 V(By = Bo) Qg (&)(By — Bo)/2V") (I = Xa) /2.

It remains to substitute this expression into the representation of A'(A) in (4.11) to
conclude that for h, g € ran (I + X22)*/? and for Re A < 0 with &€ = (1 — A\)(1 + )1,

where

Y = (I — Xoo)Y2(I + Xp2)TV?) = (Iny — 0(0))2 (I + ©(0)) "2 . g - €.

NIk, g) = ((T+V(Br = Bo)/2Q5,(§)(Br — Bo)2V™) Y, Yg),

This completes the proof. O
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