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Abstract. The last decade saw an appearance of a series of papers containing a very
interesting development of the Tannaka-Krein duality for compact quantum group
coactions on C�-algebras. The present survey is intended to present the main ideas
and constructions underlying this development.

1. Introduction

According to the Pontryagin’s duality for abelian locally compact groups, such a group
can be reconstructed if its dual (i.e., the group of its continuous characters) is known.
Extending this result to non-commutative groups, T. Tannaka [30] showed that a compact
group G can be reconstructed if the set Rep�G� of its continuous finite dimensional
representations is known. In 1949, M. G. Krein [13] gave an abstract description of
Rep�G�.

Later on, mainly due to works by A. Grothendieck, P. Deligne, and N. Saavedra
Rivano, these results referred to as ”Tannaka-Krein duality for compact groups” were
formulated in the language of symmetric monoidal (or tensor) categories and extended
to affine algebraic groups.

After the discovery of quantum groups by V. G. Drinfeld and M. Jimbo, there was a
number of papers on the Tannaka-Krein duality for this new class of objects in a purely
algebraic context – see [12] and the references therein. Here the representation categories
were not symmetric, in general.

Motivated by superselection principles in quantum field theory, S. Doplicher and
J. E. Roberts introduced the notion of a C�-tensor category with conjugates [8] and
proved that any such a category with permutation symmetry is equivalent to the repre-
sentation category of a unique compact group. In the setting of compact quantum groups
(CQG) [40], [42], the S. L. Woronowicz’s Tannaka-Krein duality [43] claims that any
C�-tensor category with conjugates and a unitary tensor functor to the category Hf of
finite dimensional Hilbert spaces (fiber functor), is equivalent to the category Rep�G� of
unitary finite dimensional representations of a unique CQG G with the canonical fiber
functor sending any representation to the Hilbert space where it acts. This can be viewed
as a reconstruction of a regular coaction of G via its coproduct on the C�-algebra C�G�
”of all continuous functions on G”.

As for a general continuous coaction α of a CQG G on a unital C�-algebra B, the
problem is to find a structure on the category Rep�G� which would replace the above
mentioned canonical fiber functor in order to be able to reconstruct B and α from this
structure.
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The results by A. Wassermann [37], [38] and M. B. Landstad [15] concerning usual
group actions on C�-algebras mean that there is a bijection between ergodic actions
of full multiplicity of a compact group G and arbitrary fiber functors Rep�G� � Hf .
In particular, A. Wassermann [39] proved that any erogdic action of SU�2� is obtained
by induction from a projective representation of its closed subgroup. Thus, there are
countably many isomorphism classes of such actions. The Hopf algebraic version of the
above mentioned general result is due to K.-H. Ulbrich [34] and P. Schauenburg [28].

The general theory of ergodic coactions of CQG’s on C�-algebras has been initiated
by F. Boca [5] and Landstad [16]. P. Podleś [25] showed that there is a continuum of
non-isomorphic ergodic coactions of the famous compact quantum group SUq�2���q� � 1�
[41] on the coideal C�-subalgebras of C�G� called ”quantum 2-spheres” which do not
necessarily correspond to quantum subgroups of SUq�2�. More generally, R. Tomatsu
[32] classified all the coideal C�-subalgebras of C�SUq�2��.

The bijection between unitary fiber functors of Rep�G� and ergodic coactions of full
multiplicity of a CQG G has been established by J. Bichon, A. De Rijdt, and S. Vaes [4];
using this, they classified all such coactions for universal orthogonal and unitary quantum
groups and constructed, for �q� small enough, a family of such coactions of SUq�2� which
are not coideals.

It is clear that in order to extend the categorical duality to wider classes of coactions,
one has to replace fiber functors by some more general structure. In particular, C. Pinzari
and J. E. Roberts [24] introduced spectral functors F : Rep�G� � Hf which are not
tensor, but only quasi-tensor which means that, for any U, V � Rep�G�, F �U� � F �V �
is isometric to a subspace of F �U � V � and not to the whole space. They showed that
spectral functors exactly correspond to all ergodic coactions of G.

Later on, A. De Rijdt and N. Vander Vennet [9] obtained similar result for non-ergodic
coactions, but in other terms. Finally, S. Neshveyev [18] introduced weak tensor functors
and established the categorical duality for arbitrary CQG coactions. Note that this new
notion in ergodic case is equivalent to the one of a quasi-tensor functor and that in both
[24], [18] the reconstruction procedure follows the lines of [43].

There is an alternative formulation of the Tannaka-Krein duality for CQG coac-
tions motivated by reconstruction theorems for finite semisimple tensor (or fusion) cate-
gories [11]. In particular, the notion of a module category [23] has been adopted by
K. De Commer and M. Yamashita to C�-tensor category context [6]. They showed that
there is a one-to-one correspondence between ergodic coactions of a CQG G and semi-
simple irreducible module categories over Rep�G� with a simple generator, which enabled
them to classify all ergodic coactions of SUq�2� in terms of weighted graphs.

This approach was extended by S. Neshveyev [18] to general coactions, he also showed
that the two versions of the duality are equivalent. Finally, S. Neshveyev and M. Ya-
mashita [21] proved that the module category in question can be defined by a unitary
tensor functor if and only if G coacts on a Yetter-Drinfeld C�-algebra.

In this short survey, we briefly discuss the main ideas and constructions contained
in the cited papers, especially, in the recent ones because they give the most clear and
general picture of the categorical duality for CQG coactions. The survey is organized as
follows. Section 2 contains necessary definitions, results and notations concerning CQG’s,
their representation categories, and also abstract C�-tensor categories and unitary tensor
functors, our main reference is [19]. Here we freely use without special explanations the
standard language of the tensor category theory [17]. Next we remind the reader of the
relations between continuous and algebraic CQG coactions on C�-algebras – see [5], [32]
and [6] for ergodic and [18] for nonergodic case.

Section 3 is devoted to the presentation of the categorical duality. First, we explain
the construction of the functor from the category of G-coactions to the category of pairs
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�M, M�, where M is a Rep�G�-module category and M its generator. The discussion is
based on the ideas from [6] and uses essentially G-equivariant Hilbert modules introduced
earlier in K-theory [1]. Conversely, such a pair �M, M� gives rise to an algebraic G-
coaction on a unital �-algebra B – see [6], [18], and then to a continuous G-coaction.
These two functors define an equivalence of the categories in question, i.e., the Tannaka-
Krein duality for G-coactions. Then we present an alternative construction in terms of
weak tensor functors introduced in [18], which are, in the ergodic case, equivalent to
spectral functors studied earlier in [24]. If a C�-algebra carries coactions of both, CQG
and its dual, compatible in a special way (Yetter-Drinfeld algebra), the Tannaka-Krein
duality can be formulated in terms of a unitary tensor functor. The discussion of this
situation is based on [21].

Section 4 presents two applications of the Tannaka-Krein duality. The first of them
is a characterisation of subalgebras of C�G� invariant with respect to coactions of a
CQG G and its dual as coideals of quotient type, which was obtained in [21]. Next we
briefly explain, in which way the categorical duality was used in [7] in order to reduce
the classification of ergodic SUq�2�-coactions to the classification of weighted oriented
graphs. The discussion of the last problem is beyond the scope of this survey, so we only
mention some of the nice results obtained in this way.

We call a triple �B, G, α�, where α is a continuous coaction of a CQG G on a unital
C�-algebra B, a G�C�-algebra, this terminology is different from the one used in some
other papers, for example, in [6], [7], and [32]. We consider only coactions on C�-algebras
and do not discuss their von Neumann algebraic counterparts.

All Hilbert spaces and C�-algebras are supposed to be separable.
Notations. For an object X of a category C, we write X � C. The set of mor-

phisms between X, Y � C is denoted by C�X, Y � except for C � Rep�G�, where we write
Mor�X, Y �. If E is a right Hilbert module over a C�-algebra A, L�E� is the space of all
bounded adjointable A-linear operators acting on E and K�E� is its closed ideal of ”com-
pact” operators [14]. In the context of C�-algebras, � means the minimal C�-tensor
product. The algebraic tensor product is denoted by �alg. M�A� is the multiplier alge-
bra of a C�-algebra A and �B	 is the norm closure of a vector subspace B 
 A. K�H� is
the C�-algebra of all compact operators on a Hilbert space H , B�H, K� is the space of
all bounded operators between Hilbert spaces H and K. ωξ,η is the linear functional on
B�H� :� B�H, H� defined by ωξ,η�A� �� Aη, ξ �.

Acknowledgments. I am grateful to Kenny de Commer for helpful discussions on the
Tannaka-Krein duality.

2. Preliminaries

2.1. Representation category of a CQG. 1. A compact quantum group G [40]–[43]
is defined by a unital C�-algebra C�G� equipped with a coproduct, i.e., a unital C�-
monomorphism Δ : C�G� 
 C�G� � C�G� satisfying the coassociativity �Δ � id�Δ �
�id � Δ�Δ and the cancellation properties: ��1 � C�G��Δ�C�G��	 � C�G� � C�G� �
��C�G��1�Δ�C�G��	. There is a unique state h on C�G� satisfying �h� id�Δ�a� � h�a�1
(and/or �id � h�Δ�a� � h�a�1), for all a � C�G�, called the Haar state. If h is faithful,
G is called reduced.

A unitary representation of G on a Hilbert space HU is a unitary U � M�K�HU � �
C�G�� such that �id�Δ��U� � U12U13 (we use the standard leg notation). In particular,
1 is the trivial representation of G on C, and the unitary W defined by W��a � b� :�
Δ�b��a � 1� �a, b � C�G�� is the regular representation of G acting on the GNS Hilbert
space L2�G, h�. We have

W12W13W23 � W23W12 and Δ�a� � W��1� a�W,
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for all a � C�G�. The tensor product of unitary representations U and V acting on
Hilbert spaces HU and HV , respectively, is defined by U � V :� U13V23. Let Mor�U, V �
be the set of intertwiners between U and V :

Mor�U, V � :� �T � B�HU , HV ��V �T � 1� � �T � 1�U	.

We say that U and V are equivalent (resp., unitarily equivalent) if Mor�U, V � contains
an invertible element (resp., a unitary). In general, U �V and V �U are not equivalent.
By definition, dim�U� :� dim�HU �. U is called irreducible if Mor�U, U� � Cid.

The regular 
-subalgebra C�G� 
 C�G� is defined as the linear span of matrix coeffi-
cients uξ,η :� �ωξ,η � id��U� �ξ, η � HU �, where U runs through the finite dimensional
unitary representations of G. Denote by Ĝ the (countable) set of equivalence classes of
irreducible unitary representations of G (all of them are finite dimensional), and choose
a representative Ux of x � Ĝ acting on a Hilbert space Hx. As a linear space,

(1) C�G� � �x�ĜHx �Hx � �x�ĜB�Hx�.

It is known that C�G� is a Hopf 
-algebra with coproduct Δ, antipode S and counit ε,
it is norm dense in C�G�, and the state h is faithful on C�G�. Every finite dimensional
representation U defines a 
-representation πU of the algebraic dual of C�G� acting on
HU : μ �� �id� μ��U�.

We also denote by C�G�U the linear span of matrix coefficients of U (in particular,
C�G�x :� C�G�Ux), and by 1 the class of the trivial representation.

The C�-algebra Cr�G� generated by C�G� in the GNS-representation defined by h,
is called the reduced form of G. The universal C�-algebraic envelope Cf �G� of C�G� is
called the universal form of G.

The C�-algebra of the dual (discrete) quantum group denoted by c0�Ĝ� is isomorphic
to c0��x�ĜB�Hx� and can be viewed as part of the algebraic dual of C�G� with respect
to the duality

� ux
i,j, e

y
k,l �� δx,yδi,kδj,l, �x, y � Ĝ,

where ux
i,j are matrix coefficients of Ux and ey

k,l are matrix units in B�Hy� with respect
to some orthogonal basis in Hy.

We say that a CQG G is of Kac type, if either the antipode S of C�G� satisfies S2 � id
or h is a tracial state. In this case, it is a G. I. Kac algebra in the sense of [10].

2. From an abstract point of view, the category Rep�G� of unitary finite dimensional
representations of G with the above mentioned tensor product and morphisms is a semi-
simple rigid tensor C�-category in the sense of the following definitions (for the details
see [19]).

Definition 2.1. A C�-categoryD is a C-linear category whose morphism spaces D�X, Y �
are Banach spaces such that �S � T � � �S��T � (� is a composition of morphisms),
admitting antilinear contravariant “conjugation” 
 : D�X, Y � � D�Y, X� : T �� T �, and
satisfying the C�-condition �T �T � � �T �2 for any morphism T . A linear functor between
two C�-categories preserving the 
-operation is called a unitary C�-functor. An object
X � D is called simple if End�X� :� D�X, X� � C. D is called semisimple if it admits
finite direct sums and if any its object is isomorphic to a finite direct sum of simples.

Definition 2.2. A strict C�-tensor category C � �D,�,1� is a C�-category D with a
bilinear C�-functor � : D � D � D and an object 1 � D, which is also a strict tensor
category in the sense of [17]. We say that an object X � D admits a conjugate or dual if
there exists a triple �X, RX , RX�, where X � C and RX : 1 � X �X, RX : 1 � X �X
are morphisms satisfying the conjugate equations:

�R
�

X � idX��idX �RX� � idX , �R�

X � idX��idX �RX� � idX .

The category C is called rigid if any its object admits a conjugate.
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Remark 2.3. (see [19], 2.2). A rigid C�-tensor category C is automatically semisimple
and End�X� is finite dimensional, for all X � C. If X is a simple object of such a
category, then the number dimq�X� � �RX��RX� is independent on the solution of the
conjugate equations and is called the quantum (or intrinsic) dimension of X . In general,
if X � �iXi with Xi simples, put dimq�X� :� Σi dimq�Xi�.

Example 2.4. 1. The category H of Hilbert spaces with H�H, K� :� B�H, K�, 1 � C

and usual tensor product, is a C�-tensor category. Its maximal rigid subcategory Hf is
formed by finite dimensional Hilbert spaces. If H � Hf , its complex conjugate space H
gives a dual,

R�

H : H �H �	 C : ζ � η �	
 η, ζ �, R
�

H : H �H �	 C : ζ � η �	
 ζ, η � .

Here 
 ζ, η � is the scalar product in H . Then dimq�H� � dimH, �H � Hf .
2. Rep�G� with intertwiners as morphisms, and 
 as a tensor product, is a rigid

C�-tensor category. If U � Rep�G�, its conjugate is

U :� �j�πU �ρ�
1�2� � 1��j � id��U���j�πU �ρ�

�1�2� � 1� � B�HU � � C�G�,

(2) RU �1� :� Σi�ζi � πU �ρ
�1�2��ζi��, RU �1� :� Σi�πU �ρ

1�2��ζi� � ζi�,

where ρ � f1 is the Woronowicz character [40], j : B�HU � 	 B�HU � is the canonical
�-anti-isomorphism defined by j�T �ζ � T �ζ and �ζi�i is an orthonormal basis in HU (see
[19]). Note that dimq�U� � dim�HU �.

3. A correspondence over a C�-algebra A is a right Hilbert A-module E (see [14]) with
a �-homomorphism ϕ : A 	 L�E� such that ϕ�A��E� is dense in E . A-correspondences
form a C�-tensor category Corr�A� with tensor product �A and adjointable A-bilinear
maps as morphisms [18].

Definition 2.5. A unitary tensor functor F : C1 	 C2 between C�-tensor categories is
a �-functor C1 	 C2 which is also a linear tensor functor whose natural transformations
F �X� � F �Y � 	 F �X � Y � and 1C2 	 F �1C1� are unitary. It is called a tensor C�-
equivalence if F is an equivalence.

CQG’s G and G� are said to be monoidally equivalent if Rep�G� � Rep�G��.

Example 2.6. 1. Let G be a CQG and F : Rep�G� 	 Hf the forgetful functor f : U �	
HU (HU is the underlying Hilbert space of U) acting as the identity on morphisms. The
above transformations are identities and F is a faithful unitary tensor functor.

The Woronowicz’s Tannaka-Krein duality claims that any rigid C�-tensor category
admitting a unitary tensor functor to Hf (called a fiber functor), is equivalent to the
category Rep�G� of some CQG G. The corresponding Hopf �-algebra C�G� is unique up
to isomorphism – see [19], Theorem 2.3.2.

2. By a closed quantum subgroup of a CQG G we mean a CQG H together with
a surjective homomorphism PH : C�G� 	 C�H� of Hopf �-algebras (this definition is
slightly less restrictive than the one in [26]). Then the restriction functor Rep�G� 	
Rep�H� is a unitary tensor functor.

Any CQG G has a unique maximal Kac quantum subgroup, i.e., a CQG of Kac type K
and a surjective homomorphism PK as above, and if �H, PH � is any other closed quantum
subgroup of Kac type of G, then PH factors through PK [29]. Indeed, the ideal I � C�G�
generated by the elements a � S2�a�, for all a � C�G�, is clearly a Hopf �-ideal. Hence
the quotient C�K� :� C�G��I is a unital Hopf �-algebra with involutive antipode, so it
defines a closed quantum subgroup K of Kac type of G. Clearly, K is maximal in the
above sense, and C�K� is called the canonical Kac quotient of C�G�.
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Definition 2.7. [19]. The fusion ring of a rigid tensor C�-category C is the universal
ring R�C� generated by the equivalence classes of its objects with operations of the direct
sum and of the tensor product.

Let I be the set of the equivalence classes of simple objects of C. Choose a represen-
tative Uα in every class, then the fusion rule is the decomposition

U ζ � Uη � �α Nα
ζ,ηUα, �ζ, η � I,

where the multiplicities Nα
ζ,η � Z

�, only finitely many nonzero. The conjugation α �	 α

is a bijection of I which extends to a Z-linear anti-multiplicative involution of R�C�. We
also have the Frobenius reciprocity

Nα
ζ,η � Nη

ζ,α
� N ζ

α,η , �ζ, η, α � I,

which follows from the Frobenius reciprocity for morphisms in C [19], Theorem 2.2. The
map dimq : I 	 
1,�
 is such that dq�ζ� � dq�ζ� and extends to a Z-linear multiplicative
map R�C� 	 R.

Remark 2.8. A fusion ring R�C� is an example of a hypercomplex system with dis-
crete basis in the sense of Yu. M. Berezanskij and A. A. Kaljuzhnyi [2] (also called a
hypergroup) with the structural constants

Cα
ζ,η � Nα

ζ,η

d�α�

d�ζ�d�η�
.

2.2. G� C�-algebras.

Definition 2.9. A unital left G � C�-algebra is a triple �B, G, α�, where B is a unital
C�-algebra and α : B 	 C�G��B is a left continuous coaction of a CQG G on B, i.e., an
injective unital 
-homomorphism such that �id�α�α � �Δ�id�α and 
�C�G��1�α�B�� �
C�G� � B. The C�-subalgebra Bα :� �b � B�α�b� � 1 � b� is called the fixed point
subalgebra of B.

An algebraic coaction of a CQG G on a unital 
-algebra B is a Hopf 
-algebra coaction
α : B 	 C
G��alg B such that �ε�alg id� �α � id, the fixed point subalgebra Bα :� �b �
B�α�b� � 1�b� is a unital C�-algebra, and the map E � �h�id��α : B 	 Bα is completely
positive. So, B is a right pre-Hilbert Bα-module with inner product � a, b �� E�a�b�.
In this case, we call �B, G, α� a unital left G� 
-algebra.

Right G� C�-algebras and G� 
-algebras are defined similarly.

For any U � Rep�G�, HU is a left C
G�-comodule via δU : ξi �	 Σku�i,k�ξk, where �ξi�

is an orthonormal basis in HU . Given a unital G�C�-algebra B, the spectral subspace BU

of B is the linear span of the images of all comodule maps S : HU 	 B. Put Bx � BUx ,
so B1 � Bα and α�Bx� � C
G�x �alg Bx with C
G�x spanned by matrix coefficients of
Ux. It was proved essentially in [5], [26] that BxBy � span�Bz�, � x, y � Ĝ, where z are
the classes of direct summands Uz of Ux�Uy and that B :� �x�ĜBx is a unital 
-algebra
B norm dense in B. It is also characterized either as B :� �b � B�α�b� � C
G� �alg B�
or, equivalently, as B :� ��h � id�
�a � 1�α�b��� � a � C
G�, b � B�. The conditional
expectation E as above is faithful on B and clearly E�B� � E�B�. Thus, B is a unital
G� 
-algebra called the regular subalgebra of B.

Conversely, see [6], Proposition 4.4:

Proposition 2.10. Given an algebraic coaction α of a CQG G on a unital 
-algebra B,
there is a unique C�-completion B of B to which α extends as a coaction of the reduced
form of C�G� with the same fixed point subalgebra.

Indeed, for any b � B, there are U � Rep�G�, an intertwiner S : HU 	 B, and
ξ � HU such that b � Sξ, so there are bi � B and zi � C such that b � Σizibi and
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α�bi� � Σku�i,k � bk. Then one shows that Σib
�

i bi � Bα which implies that all bi and
b can be faithfully represented by left multiplication operators on the right pre-Hilbert
Bα-module B, which defines a C�-completion B � �B�. Further, one shows that the map
V defined on C�G� � B by V �a � b� :� α�b��a � 1� extends to a unitary on a Hilbert
Bα-module L2�G, h� � B, and that α�b� � V �1 � b�V �, so α extends to a continuous
coaction of G on B. Finally, if B̃ is any C�-completion of B for which the assertion of
the proposition holds, then the map E as above is faithful because h is faithful on C�G�.
Then B̃ is presented faithfully on the Hilbert Bα-module B, from where the unicity
follows.

A coaction α is said to be universal (resp., reduced) if B is the universal enveloping
C�-algebra of B (resp., E is faithful on B). In particular, if B � C�G� and α � Δ, we
have B � C�G�� which leads to the usual notions of universal and reduced forms of G.

2.3. The ergodic case. A G�C�-algebra �B, G, α� is called ergodic if the coaction α is
ergodic, i.e., if Bα � C1B. In this case, the state ω on B defined by ω�b�1B � E�b�, for
all b � B, is the unique α-invariant state (i.e., such that �id� ω�α�b� � ω�b�1, 	b � B),
the spectral subspaces are finite dimensional and orthogonal for both scalar products
ω�b�c� and ω�cb�� �b, c � B� [5]. An ergodic coaction is reduced if and only if the above
ω is faithful on B.

Example 2.11. Let G be a CQG and H its closed quantum subgroup (see Example 2.6,
2). Then the norm closure C�G
H� of the �-algebra C�G
H� :� �x � C�G�
�id�P �Δ�x� �
x � 1� is called an algebra of continuous functions on the quantum homogeneous space
G
H . The triple �C�G
H�, G, Δ
B� is an ergodic G � C�-algebra. Indeed, C�G
H�Δ

is the same for both, continuous and algebraic coactions, so it suffices to consider b �
C�G
H�Δ for which we have �id� P �Δ�b� � b� 1 and Δ�b� � 1� b, so b � C1.

However, there is an example of a commutative ergodic G � C�-algebra, where α is
not a quotient action as above [36].

Let �B, G, α� be an ergodic G�C�-algebra and x � Ĝ. We call dim�Bx� the multiplicity
of x in α. It is known [5] that dim�Bx� � dimq�x�.

3. Categorical duality

3.1. Tannaka-Krein reconstruction in terms of Rep�G�-module categories.

Definition 3.1. [6]. Let C be a C�-tensor category with unit object 1. A C�-categoryM
is called a right C-module C�-category if there is a bilinear �-functor� : M�C � M with
natural unitary transformations M � �X �Y � � �M �X��Y and M �1 � M �X, Y �
C, M � M� making M a right module category over C viewed as tensor category, i.e.,
making some pentagonal and triangular diagrams commutative – see [23]. We say that
M is strict (resp., indecomposable) if these natural transformations are identities (resp.,
if, for all non-zero M, N � M, there is X � C such that M�M �X, N� � 0).

We say that an object M � M generates M if any object of M is isomorphic to a
subobject of M � X for some X � C. M is said to be semisimple if the underlying
C�-category is semisimple.

We will always consider C�-categories closed with respect to subobjects, i.e., such that
for any object M and any projection p � End�M�, there are an object N and isometry
v � M�N, M� satisfying p � vv� (if necessary, one can complete given C�-category with
respect to subobjects).

One naturally defines a morphism F : M1 � M2 between two C-module C�-categories
as a morphism of the underlying C�-categories equipped with a unitary natural equiva-
lence F �M �X� � F �M��X, 	 X � C, M � M satisfying some coherence conditions
(see [6], 2.17).
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Example 3.2. Let F : C � D be a unitary tensor functor. Then M � D has a
structure of a C-module C�-category with M �X :� M � F �X�, for all X � C, M � D.
For particular examples of this kind see Example 2.6.

Definition 3.3. [1]. Let �G, α, B� be a unital G�C�-algebra . A G-equivariant Hilbert
B-module is a right Hilbert B-module E with a coaction αE : E � C�G��E (C�G��E is
considered as a right Hilbert C�G��B-module), such that ��C�G��1�αE �E�	 � C�G��E ,
and

1. αE�ζ 
 b� � αE�ζ�α�b�, � b � B, ζ � E .

2. � αE�ζ�, αE �η� 
C�G��B� α�� ζ, η 
B�, � ζ, η � E .

E is called irreducible if dim�LG�E�� � 1, where

LG�E� :� �T � L�E��αE�Tζ� � �1 � T �αE�ζ�, � ζ � E�.
Example 3.4. Let MB be the category of finitely generated G-equivariant right Hilbert
B-modules, its morphisms are G-equivariant maps of Hilbert B-modules (they are au-
tomatically adjointable since Hilbert B-modules are finitely generated). If E � MB and
U � Rep�G�, construct a new object E � U � MB by taking the right Hilbert B-module
HU � E with the coaction

α̃ : HU � E � C�G� � �HU � E� : α̃�ζ � η� � U�
21�ζ � αE�η��213.

One can check that �E�U��V � E� �U �V � and that this operation is natural in both
U and E , so it defines a strict right Rep�G�-module C�-category structure on MB. If α
is ergodic, MB is semisimple and indecomposable [6], Proposition 3.11. The equivariant
version of Kasparov’s stabilisation theorem (see [35], 3.2 or [20], Lemma 3.2) shows that
B is its generator.

The next theorem has been proved in ergodic case in [6], and then in general case
in [18]:

Theorem 3.5. Let G be a reduced CQG. Then the following two categories are equivalent:
(i) The category G � Alg of unital G � C�-algebras with unital G-equivariant �-

homomorphisms as morphisms.
(ii) The category Rep�G��Mod of pairs �M, M�, where M is a right Rep�G�-module

C�-category and M is its generator, with equivalence classes of unitary Rep�G�-module
functors respecting the generators as morphisms.

The coactions in (i) are ergodic if and only if the Rep�G�-module C�-categories in (ii)
are semisimple, indecomposable, and with simple generators.

The idea of the proof is as follows (for the details see [6], [18]).
1. The construction of the functor T : G � Alg � Rep�G� � Mod on the level of

objects was explained in Example 3.4: given B � G � Alg, construct the category MB

with generator B. Now, if f : B0 � B1 is a morphism in G � Alg, then the morphism
T �f� : MB0 � MB1 is given by E �� E �B0 B1.

2. Next, in order to define the functor S : Rep�G� �Mod � G� Alg�G�, we have to
construct a unital G � C�-algebra B from a given pair �M, M�. According to Proposi-
tion 2.10, it suffices to construct a unital G � �-algebra B. Looking at the construction
(1) of C�G	, considering Hf as a Rep�G�-module category with generator C via the for-
getful fiber functor U �� HU , �U � Rep�G� (see Example 3.2), and identifying HU with
Hf �C, HU �, it is natural to define B as a vector space by

B � �x�Ĝ�Hx �M�M, M � Ux��.

The next reasoning follows [18], [21]. In order to simplify notations, it is convenient to
replace M by an equivalent Rep�G�-module C�-category N as follows. Identify M with
1 � Rep�G�, M �U with 1�U � U , and define N �U, V � :� M�M �U, M�V �, �U, V �
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Rep�G�. We have also to complete N with respect to subobjects, so that N can be
considered as the completion of Rep�G� with larger morphism spaces than in Rep�G�. In
particular, the generator 1 is not necessarily simple in N , and the definition of B gives:

(3) B � �x�Ĝ�Hx �N �1, Ux��.

Now, it is convenient to introduce a much larger auxiliary vector space

(4) B̃ � �U�Rep�G��HU �N �1, U��,

which is an associative unital algebra with respect to the product defined by

�ζ�T ��η�S� � �ζ�η���T�id�S, �ζ � HU , η � HV , T � N �1, U�, S � N �1, V �.

Note that �T � id�S � N �1, U � V �. Define now an antilinear map 	 : B̃ 
 B̃ :

�ζ � T �� :� �id� ζ�RU �1� � �T � � id�RU ,

where RU and RU were defined in (2). Note that �T � � id�RU � N �1, U�.
Then, for any U � Rep�G�, choose isometries wx : Hx 
 HU defining the decomposi-

tion of U into irreducibles and define the projection p : B̃ 
 B by

(5) p�ζ � T � � Σx�w�
xζ � w�

xT �, �ζ � HU , T � N �1, U�,

which is independent of the choice of wx. One checks that B is a unital �-algebra with
the product p�b�p�c� :� p�bc� and the involution p�b�� :� p�b��, for all b, c � B̃. It is
also a C�G
-comodule via the map α : B 
 C�G
 � B defined as follows. If �ξi� is an
orthonormal basis in HU (U � Rep�G�), put

α�p�ξi � T �� :� Σj�ui,j � p�ξj � T ��, where ui,j � �ωξi,ξj � id�U.

One shows that α is an algebraic coaction with Bα � EndN �1� � EndM�M� that gives
rise to a continuous G-coaction. Clearly, this construction allows to get a morphism in
G�Alg from a given morphism in Rep�G� �Mod.

3. Equivalence. In order to explain the equivalence of the Rep�G�-module categories
N and MB, replace the last one by an equivalent Rep�G�-module category NB, which is
a completion of Rep�G� with respect to subobjects, with generator 1. Now it suffices to
explain why NB�U, V � � N �U, V �, for all U, V � Rep�G�. One can check, as in [18], that
the first of them consists of elements S � B�HU , HV ��B, such that V �

12�id�α��S�U12 �
S13, and if T � N �U, V �, the needed isomorphism can be given explicitly by:

S � Σi,jθζj ,ηiπU �ρ
�1�2� � p��ζj � ηi� � �T � id�RU �,

where �ζj� and �ηi� are orthonormal bases in HV and HU , respectively, and θζj ,ηi�η� :��
η, ηi � ζj is a rank 1 operator from HU to HV (see [21]).

Example 3.6. 1. The regular coaction Δ of G on C�G� corresponds to the Rep�G�-
module category M � Hf with the generator C via the forgetful fiber functor U �
 HU .
Namely, identifying M�C, HU � with HU , we see that the algebras B̃ and B constructed
from the pair �Hf , C� are isomorphic to �C�G
 � �U�Rep�G��HU � HU � and to C�G
,

respectively. Then the map p : B̃ 
 B turns into the map pG :�C�G
 
 C�G
 sending
ζ � η (where ζ, η � HU ) to the matrix coefficient �ωη,ζ � id�U of U .

2. If G is a CQG and H its closed quantum subgroup H (see Example 2.6, 2), the
G�C�-algebra C�G�H� corresponds to the category Rep�H� with generator 1 viewed as
a Rep�G�-module category via the restriction tensor functor Rep�G� 
 Rep�H�. Namely,
identifying MorH�C, HU � with a subspace of HU , we can view the corresponding algebra
B̃ as a subalgebra of�C�G
. Then the above map pG induces a G-equivariant isomorphism
B � C�G�H
.
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3.2. Spectral functors. Let �B, G, α� be a unital G � C�-algebra and U � Rep�G�.
Consider the tensor product comodule HU�B and its subcomodule of G-invariant vectors

�HU �B�G :� �X � Σi�ξi � bi��α�bi� � Σjui,j � bj	,

where �ξi	i is an orthonormal basis in HU and ui,j are the matrix coefficients of U with
respect to this basis. The spectral subspaces can be recovered from �HU �B�G using the
canonical surjective maps

HU � �HU �B�G 
 BU : ξ �X �
 �ξ � id��X�,

which are isomorphisms for irreducible U . The space �HU �B�G is a Bα-bimodule and a
right Hilbert Bα-module with inner product � X, Y 
� Σib

�

i ci for X � Σi�ξi � bi� and
Y � Σi�ξi�ci� (note that the element � X, Y 
 is in Bα and is independent of the choice
of �ξi	i - we will write it as X�Y ). So, �HU �B�G � Corr�Bα� (see Example 2.4, 3).

Remark also that for all U, V � Rep�G�, the map X � Y �
 X13Y23 is an isometry
from �HU �B�G �Bα �HV �B�G to �HU�V �B�G.

Definition 3.7. [18]. Given a G�C�-algebra �B, G, α�, the associated spectral functor
is the unitary functor F : Rep�G� 
 Corr�Bα� defined by

F �U� � �HU �B�G, for all U � Rep�G�,

F �T � � T � id, for all morphisms, together with the Bα-bilinear isometries

F2�U, V � : F �U� �Bα F �V � 
 F �U � V � : X � Y �
 X13Y23.

The spectral functor is not, in general, a tensor functor because the maps F2 are not
surjective. It was abstractly characterized in [18], Definition 2.1 as a weak tensor functor
F : C 
 Corr�A� (where C is a strict C�-tensor category and A is a C�-algebra). The only
difference between such F and a unitary tensor functor is that F2 are not isomorphisms
but just A-bilinear isometries satisfying some coherence condition.

Let us explain the relation between Rep�G�-module C�-categories and spectral func-
tors. Let G be a reduced QCG G and M be a strict right Rep�G�-module C�-category
with generator M . Put A � End�M� and consider the functor F : Rep�G� 
 Corr�A�
defined by F : U 
 M�M, M � U� with the right and left A-module structures on
F �U� given by, respectively, composition of morphisms and by aX � �a � id�X , and
the inner product � X, Y 
� X�Y . The action of F on morphisms is defined by
F �T �X � �id�T �X , and F2 : F �U��AF �V � 
 F �U�V � is given by X�Y �
 �X�id�Y .
Then it was shown in [18], Theorem 2.2 that �BF , G, αF � is a unital G � C�-algebra,
where

BF � �x�ĜHx � F �Ux�, αF �ξi �X� � Σj�ui,j � ξi �X�.

Here �ξi	i is an orthonormal basis in Hx and ui,j are the corresponding matrix coefficients
of Ux. Moreover, A � Bα, M � MB with M � B, and the functor F is a spectral
functor (there are canonical isomorphisms �HU�B�G �MB�B, B�U� sending Σi�ξi�bi�
to the morphism b �
 Σi�bib� ξi�). The module B � U is just HU �B discussed above.

Remark 3.8. 1. The main part of the proof of [18], Theorem 2.2 is the construction of
a G�C�-algebra �BF , G, αF � from a given weak tensor functor F which can be viewed
as another version of the Tannaka-Krein reconstruction. It follows the lines going back
to [43].

2. In the ergodic case, the definition of a weak tensor functor is equivalent to the one
of a quasitensor functor introduced earlier in [24]. An example of such a functor is the
functor sending any x � Ĝ to the corresponding spectral subspace – see [24], Definition 7.2
and Theorem 7.3. These results imply that isomorphism classes of ergodic coactions of
monoidally equivalent CQG’s are in canonical correspondence with each other.
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In particular, when F2�U, V � are unitary, F is a unitary tensor functor and the corres-
ponding ergodic coaction is said to be of full quantum multiplicity. This situation was
studied systematically in [4] in other terms.

3.3. Yetter-Drinfeld G�C�-algebras [21]. Yetter-Drinfeld (YD) C�-algebras consti-
tute a special class of G�C�-algebras for which one can formulate the categorical duality
in terms of a unitary tensor functor. Let �B, G, α� be a unital G�C�-algebra equipped
with a continuous right coaction β : B � M�B � c0�Ĝ�� of the dual discrete quantum
group Ĝ, where c0�Ĝ� is viewed as a subalgebra of the algebraic dual of C�G�. Similarly
to the definition of a YD algebra for a general locally compact quantum group G given
in [22], Definition 3.1, we will say that �B, G, α, β� is a unital YD C�-algebra, if

�α � id�β�b� � W31�id� β�α�b�W�

31,

where W is the fundamental unitary of G and b 	 B. However, it is more convenient to
formulate this condition, like in [21], in terms of the left action 
 : C�G� �alg B � B
defined by u 
 b � �id � u�β�b�, for all u 	 C�G�, b 	 B. Then B is a left C�G�-module
unital �-algebra, i.e., for all u 	 C�G�, b, c 	 B:

(6) u
 �bc� � �u�1� 
 b��u�2� 
 c�, u
 b� � �S�u�� 
 b��, u
 1 � ε�u�1.

Definition 3.9. We say that �B, G, α,
� is a YD C�-algebra if, for all u 	 C�G� and b
from the regular subalgebra B:

(7) α�u 
 b� � u�1�b�1�S�u�3�� � �u�2� 
 b�2��.

We used here the Sweedler’s leg notations: Δ�u� � u�1� � u�2�, α�b� � b�1� � b�2�. A YD
C�-algebra is said to be braided-commutative if

(8) ab � b�2��S
�1�b�1�� 
 a�, for all a, b 	 B.

The coaction β can be reconstructed from the action 
 as follows:

Proposition 3.10. ([21], Proposition 1.3). Let �B, G, α� be a G � C�-algebra, where
G is a reduced CQG, such that B is a left C�G�-module unital �-algebra and (7) holds.
Then there is a unique continuous right coaction β : B � M�B � c0�Ĝ�� such that
u
 b :� �id � u�β�b�, for all u 	 C�G�, b 	 B.

Indeed, if U � Σi,j�ei,j�ui,j� 	 Rep�G� and b 	 B, the map βU �b� :� Σi,j�ui,j
b��ei,j

defines a unital �-homomorphism B � B �B�HU � satisfying

U�
31�α � id�βU �b�U31 � �id� βU �α�b�.

Then the map y �� U�
31�α � id��y�U31 extends to a continuous left coaction of G on

�βU �B�� 	 B � B�HU �. This implies that α viewed as an algebraic coaction of G on
B, extends to a continuous coaction of G on the completion of B with respect to the
C�-norm max
�βU ����, � � ��, but due to the unicity statement in Proposition 2.10, this
completion equals to B.

Since c0�Ĝ� � c0 � �xB�Hx�, the family of homomorphisms βUx �x 	 Ĝ� define a
unital �-homomorphism β : B � M�B � c0�Ĝ�� � l� � �x�B � B�Hx�� such that
�id � u�β�b� � u 
 b for all u 	 C�G�, b 	 B. Finally, one checks that it is a continuous
coaction, and the unicity is clear.

Remark 3.11. 1. One can regard a YD G�C�-algebra as a D�G��C�-algebra for the
Drinfeld double D�G� of G – see [22], Proposition 3.2.

2. If b 	 Bα, then (8) gives ab � ba, so Bα � Z�B�.
Example 3.12. Let G be a CQG and H its closed quantum subgroup (see Exam-
ple 2.6, 2). Then B � C�G�H� is a braided commutative YD G � C�-algebra with
α � Δ�B and u
 b � u�1�bS�u�2�� – the adjoint action of C�G�.
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Let us formulate the Tannaka-Krein duality for Yetter-Drinfeld G� C�-algebras.

Theorem 3.13. ([21], Theorem 2.1). Let G be a reduced compact quantum group. Then
the following two categories are equivalent:

(i) The category Y Dbrc�G� of unital braided-commutative YD G � C�-algebras with
unital G- and Ĝ-equivariant �-homomorphisms as morphisms.

(ii) The category Tens�Rep�G�� of pairs �C, F �, where C is a tensor C�-category and
F : Rep�G� � C is a unitary tensor functor such that C is generated by the image of F .
Its morphisms �C, F � � �C�, F �� are equivalence classes of pairs �F , η�, where F : C � C�
is a unitary tensor functor and η : F�F � � F � is a natural unitary monoidal isomorphism
of functors.

Moreover, given a morphism �F , η� : �C, F � � �C�, F �� , the corresponding homomor-
phism of YD G � C�-algebras is injective (resp., surjective) if and only if F is faithful
(resp., full).

Here is the idea of the proof (for the corresponding calculations see [21]).
1. Functor T̃ : Y Dbrc�G� � Tens�Rep�G��. Apply the functor T from the proof of

Theorem 3.5 to B � Y Dbrc�G� and turn the corresponding category MB into a tensor
C�-category by showing that any M � MB is an object of the tensor C�-category
Corr�B� – see Example 2.4, 3. As B is a generator of MB, it suffices to consider
M � HU � B, 	 U � Rep�G�, and to construct a non-degenerate �-homomorphism
ϕU : B � EndB�HU �B� � B�HU ��B. As B � Y Dbrc�G�, one can check that the map

b 
� ϕU �b� :� Σi,jei,j � �ui,j � b�,

where b � B, U � Σi,jei,j � ui,j and ei,j are the matrix units in B�HU � related to an
orthonormal basis �ei
 in HU , gives the needed �-homomorphism. Here ϕU �b� � L�M�
acts on any regular vector ζ � M (i.e., such that αM �ζ� � C�G� �alg M� as follows:
ϕU �b�ζ � ζ�2��S

�1�ζ�1�� � b�. We have also αM �ϕU �b�ζ� � �id� ϕU �b��α�b�αM �ζ� – see
[21], Lemma 2.2.

Thus, M is a G-equivariant B-correpondence. Moreover, if M, N � MB, then M �B

N � MB, and C � �MB,�B, B� is a full tensor C�-subcategory of Corr�B� (see [21],
Theorem 2.4). Note that C is generated by the image of the unitary tensor functor
F : Rep�G� � MB : U 
� HU �B.

If f : B0 � B1 is a morphism in Y Dbrc�G�, the morphism T �f� : MB0 � MB1 maps
any M to M �B0 B1 (see the proof of Theorem 3.5), and the tensor structure of T is
described by the isomorphisms

�M �B0 B1� �B1 �N �B0 B1� � �M �B0 N� �B0 B1, for all M, N � MB0 ,

which are defined, for all a, b � B1, and regular ξ � M, ζ � N , as follows:

�ξ � a� � �ζ � b� 
� ξ � ζ�2� � �S�1�ζ�1�� � a�b.

Together with the obvious isomorphisms ηU : �HU �B0� �B0 B1 � HU �B1, we define
a morphism �MB0 , FB0� � �MB1 , FB1�.

2. Functor S̃ : Tens�Rep�G�� � Y Dbrc�G�. Conversely, given a pair �C, F � as
above, C has a structure of a singly generated Rep�G�-module C�-category coming from
F . As in the proof of Theorem 3.5, identify C with a completion N of Rep�G�, and its
generator with 1. The functor F is automatically faithful because the category Rep�G�
is rigid (indeed, F �1� is the direct summand of F �U� � F �U�, for any U � Rep�G�). So
we can assume that it is just the embedding functor.

Now, define a C�G�-module algebra structure on B (see (3)) using the algebra homo-
morphisms p : �B � B from (5) and pG : �C�G� � C�G� from Example 3.6. First, define a
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linear map �̃ :�C�G� � �B � �B by

�ξ � ζ��̃�η � T � � �ξ � η � πU �ρ�1�2��ζ�� � �id� T � id�RU ,

where ξ, ζ 	 HU , η 	 HV , U, V 	 Rep�G�, T 	 N �1, V �, RU was introduced in (2). Note
that �id � T � id�RU 	 N �1, U 
 V 
 U�. Then define an action � : C�G� � B � B by
pG�u� � p�b� :� p�u�̃b�, for all u 	 �C�G� and b 	 B̃. Finally, one shows by direct but
tedious calculations that the norm completion B of B is in Y Dbrc�G�.

Considering the category of pairs �C, F � as above, we may assume that the restriction
of any morphism F : C � C� on Rep�G� is the identical tensor functor, and that η � id.
Then the construction of the algebras B and B� shows that the maps HU � C�1, U� �
HU �C��1, U�, defined by ξ�T �� ξ�F�T �, give a unital �-homomorphism B � B� that
respects the C�G�-comodule and C�G�-module structures. It extends to a homomorphism
f of C�-algebras by [6], Prop. 4.5. The above definition of morphisms in the category of
pairs �C, F � shows that f depends only on the equivalence class of �F , η�, and this gives
the needed functor.

Furthermore, it is clear from the construction that the morphism f : B � B� defined
by a morphism �F , η� : �C, F � � �C�, E�� is injective (resp., surjective) if and only if the
maps C�1, Ux� � C��1, Ux�, T �� F�T �, are injective (resp., surjective), for all x 	 Ĝ. It
follows from the Frobenius reciprocity for morphisms and the fact that the categories C
and C� are generated by Rep�G�, that f is injective (resp., surjective) if and only if F is
faithful (resp., full).

Finally, it can be proved by direct calculations that the functors T̃ and S̃ define an
equivalence of the categories in question.

Example 3.14. If H is a closed quantum subgroup of a CQG G, then B � C�G
H� 	
Y Dbrc�G� with α � Δ�B and u� b � u�1�bS�u�2�� – see Example 3.12. It corresponds to
the tensor C�-category Rep�H� with generator 1 viewed as a Rep�G�-module category
via the restriction unitary tensor functor Rep�G� � Rep�H� – see Example 3.6. Indeed,
identifying MorRep�H��C, HU � with a subspace of HU , we can view the corresponding

algebra B̃ as a subalgebra of �C�G� � �U�Rep�G��HU �HU �. Then the map pG : �C�G� �
C�G� induces a G-equivariant isomorphism B � C�G
H�.

Conversely, the action of C�G� on C�G
H� defined by the tensor functor Rep�G� �
Rep�H� is exactly the adjoint one. Indeed, it suffices to consider the trivial H correspond-
ing to the functor Rep�G� � Hf , while the general case corresponds to the intermediate
functor Rep�G� � Rep�H�. Let U, V 	 Rep�G�, �ξi� 	 HU and �ηk� 	 HV be ortho-
normal bases, and ui,j (resp., vk,l) their matrix coefficients. Then the definitions of the
maps �̃ and � imply

ui,j � vk,l � Σmui,mvk,lS�um,j�

(see [21], 3.1), which is exactly our claim.
For more examples of braided commutative YD G� C�-algebras see [22].

4. Some applications

4.1. Invariant subalgebras of compact quantum groups.

Theorem 4.1. [21], [27], [29]. Let G be a CQG. Then any unital left G- and right
Ĝ-invariant C�-subalgebra B of C�G� is of the form C�G
H� for some closed quantum
subgroup H of G.

To prove this, note that B is a subobject of C�G� in Y Dbrc�G�, and applying the
functor T̃ to this inclusion, we get a morphism in Tens�Rep�G��:

�CB, FB� � �CC�G�, FC�G�� � �Hf ,F�,
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where F : Rep�G� � Hf is the fiber functor. So, there is a unitary fiber functor E :
CB � Hf , and by Woronowicz’s Tannaka-Krein duality theorem, the pair �CB, E� defines
a CQG H . Then the functor FB defines a functor Rep�G� � Rep�H� whose composition
with E is F . This factorization of F corresponds to the inclusion C�G�H� � C�G�, so
H is a closed quantum subgroup of G. As T̃ is an equivalence of categories, we have
B � C�G�H�.

As for the uniqueness, we have to show that the inclusion C�G�H� � C�G� determines
the kernel of the restriction map C�G� � C�H�. Here are the main arguments: (i)
C�G�H� is spanned by matrix elements uξ,ζ of U � Rep�G� with ξ, ζ � HU invariant with
respect to H ; (ii) from uξ,ζ and the duality morphisms in Rep�G�, one can recover the
spaces MorRep�H��U, V � for all U, V � Rep�G�; (iii) a finite combination Σiuξi,ζi of matrix
coefficients in C�G�, with ξi, ζi � HU , is in the kernel of the restriction map C�G� � C�H�
if and only if Σiωξi,ζi vanishes on the commutant of EndRep�H��HU � in B�HU �.

To extend this result, consider a forgetful fiber functor F : Rep�G� � Hf and another
unitary fiber functor F � : Rep�G� � Hf which gives rise to a CQG G� monoidally
equivalent to G. Denote by B�F ,F �� the C�-algebra constructed as above from the pair
�Hf ,F ��. Its regular subalgebra is B�F ,F �� � 	x�Ĝ�Hx � H �

x�, from where one can
see that B�F ,F �� carries commuting coactions of both G and G�. This is exactly the
linking C�-algebra introduced in [4] (and in purely algebraic setting earlier in [28]), and
its regular subalgebra is a Hopf-Galois extension of C over C�G� – see [3].

Now, using the same arguments as above, one shows that any unital left G- and
right Ĝ-invariant C�-algebra of B�F ,F �� is of the form B�F ,F ��H

�

, where the last C�-
subalgebra of B�F ,F �� is constructed by a closed quantum subgroup H � of G� exactly in
the same way as C�G�H� � C�G�.

4.2. SUq�2� ergodic coactions [7]. A lot of papers devoted to the study of CQG-
coactions were motivated by their classification in the extremely important special case
of ergodic coactions of G � SUq�2� �0 	 
q
 � 1�. Recall the basic definition [41], [43].

Definition 4.2. The �-algebra P �SUq�2�� of polynomials on the CQG SUq�2� is the
universal unital �-algebra over C with generators uij �i, j 
 �1, 2��, subject to the relations

(9)
�

u�11 u�12
u�21 u�22

�
�

�
u22 �qu21

�q�1u12 u11

�
,

(10)
�

u�11 u�21
u�12 u�22

��
u11 u12

u21 u22

�
�

�
u11 u12

u21 u22

��
u�11 u�21
u�12 u�22

�
�

�
1 0
0 1

�
.

It is a Hopf �-algebra with the coproduct

Δ�uij� � ui1 � u1j � ui2 � u2j, for all i, j 
 �1, 2�.

These generators and relations give rise to the CQG SUq�2� defined by the unital
C�-algebra C�SUq�2��, which is the completion of P �SUq�2��, and the extension of Δ to
it. It is known that Ĝ is labelled by the set J � 1

2N � �0, 1�2, 1, 3�2, . . .�. The fusion
rule in Rep�SUq�2�� is as follows:

Um � Un � U�m�n� � U�m�n��1 � � � � � Um�n, for all m, n 
 Ĝ.

Now, any semisimple C�-category M whose set J of equivalence classes of simple objects
is countable, is equivalent to the category of finite dimensional J-graded Hilbert spaces
HJ

f (see [6], Lemma A.1.6). Then the category Endf �M� of its adjointable endofunctors
is equivalent, as a rigid semisimple C�-tensor category, to the category EJ

f of J � J-
graded Hilbert spaces H � �r,s�JHrs, where all Hrs are finite dimensional and only
finitely many of them in each row and column are non-zero (see [6], Lemma A.3.3).
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On the other hand, for any C�-category M, there is an equivalence between
Rep�SUq�2��-module C�-category structures on M and unitary tensor functors

Rep�SUq�2�� � End�M�

given by U �� � � U and M � U :� F �U��M�, for all U � Rep�SUq�2��� and M � M.
So that, there is an equivalence between Rep�SUq�2��-module C�-category structures on
C�-categories M with countable J and unitary tensor functors F : Rep�SUq�2�� � EJ

f

which can not be decomposed as a direct sum F1�F2 with the Fi unitary tensor functors
into Ji-bi-graded Hilbert spaces, J � J1	J2 with J1 and J2 disjoint (see [6], Prop. A.4.2).

This result and Theorem 3.5 imply that the classification of ergodic unital SUq�2�
C�-
algebras is the same as the classification of the above tensor �-functors Rep�SUq�2�� �
EJ

f . The construction of unitary tensor functors from Rep�SUq�2�� to a strict C�-tensor
category C in terms of so called q-fundamental solutions in C was known earlier (see, for
example, [33], [24]), it is summarized in [7], Theorem 1.4. For C � EJ

f , it is convenient
to translate it into the language of weighted graphs, this was done also in [7].

Definition 4.3. An oriented graph Γ consists of two countable sets, Γ�0� of vertices and
Γ�1� of (oriented) edges, and two maps, s, t : Γ�1� � Γ�0� called the source and the target
map. A cost (or weight) on Γ is a function W : Γ�1� � R�. When v is a vertex, the
source cost W �v� � �0,
� is the sum of the costs of all the edges leaving from v. We
call Γ symmetric if there is an involution e � e on the edge set interchanging source
and target vertex of each edge. We call a cost on a symmetric graph balanced if one can
choose an involution satisfying W �e�W �e� � 1.

A fair and balanced T -cost on Γ (where T � R 
 �0�) is a balanced cost such that
the source cost at any vertex is equal to �T �, and with an even number of loops at each
vertex if T � 0. A graph with a fair and balanced T -cost is also called a fair and balanced
T -graph.

Recall also that two ergodic unital SUq�2� 
 C�-algebras, A and B, are called equi-
variantly Morita equivalent if there is an irreducible equivariant Hilbert B-module E and
an equivariant C�-algebra isomorphism A � K�E� [6], Definition 3.7. Now we are ready
to formulate the following:

Theorem 4.4. ([7], Theorem 2.4). For 0 � �q� � 1, the ergodic unital SUq�2� 
 C�-
algebras are classified, up to equivariant Morita equivalence, by connected fair and ba-
lanced q � q�1-graphs.

A classification of these graphs is a separate combinatorial problem which we do not
discuss here but we want to mention some nice classification results for ergodic unital
SUq�2�
C�-algebras obtained in this way. Namely, it was shown in [7], Propositions 4.1
and 4.2, and Theorem 4.3 that there is a number 0 � q0 � 1 such that for q satisfying
q0 � �q� � 1, all such algebras are coideals of C�SUq�2��. In particular, for q � 1 this
gives a new proof of A. Wassermann’s classification of SU�2�-actions.

When �q� is smaller, the picture is more complicated: in [4] a family of ergodic SUq�2�-
coactions of non-coideal type was constructed, their interpretation in terms of graphs is
given in [7], Example 7.5.

It is also worth to mention that an ergodic unital SUq�2� 
 C�-algebra is necessarily
nuclear (this follows from [5], Corollary 23), and it is of type I if and only if it is equi-
variantly Morita equivalent to a coideal [7], Proposition 7.2. As the property of being of
type I is stable under the passage to a C�-subalgebra and to a strong Morita equivalent
C�-algebra, the part ”if” of the last statement is clear. The proof of the part ”only if”
is based on the analysis of the underlying graphs.
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Université de Caen, LMNO, Campus II, B.P. 5186, F-14032 Caen Cedex, France
E-mail address: leonid.vainerman@unicaen.fr

Received 01/02/2015


