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PERCOLATIONS AND PHASE TRANSITIONS IN A CLASS OF
RANDOM SPIN SYSTEMS

ALEXEI DALETSKII

Dedicated to Yuri Berezansky on occasion of his 90th Birthday

ABSTRACT. The aim of this paper is to give a review of recent results of Yu. Kon-
dratiev, Yu. Kozitsky, T. Pasurek and myself on the multiplicity of Gibbs states
(phase transitions) in infinite spin systems on random configurations, and provide a
‘pedestrian’ route following Georgii-Haggstrom approach to (closely related to phase
transitions) percolation problems for a class of random point processes.

1. INTRODUCTION

In recent papers [3, 4] we studied equilibrium states of the following random particle
system. A countable number of point particles is chaotically distributed over a Euclidean
space X and modeled by a random point process in X. Realisations v of this process
belong to the space I'(X) of all locally finite subsets (configurations) of X, that is,

INX)={yCX: N(ya) < oo forany A € B.(X)},

where B.(X) is the collection of compact subsets of X and N () denotes cardinality of
YA =y NA.

Each particle x € 7 possesses internal structure described by a mark (spin) o(z)
taking values in a single-spin (Euclidean) space S, and is characterized by a single-spin
probability measure x on S. The system as a whole is described by the law p of the
underlying point process and a spin-spin pair interaction Wy, : Sx S — R, which depends
on the location of the particles z,y € X.

For a fixed configuration -, the ‘quenched’ system is described by the formal energy

Z WCM/ J(y))7 0= (o-(x))z‘e'y N
{z,y}Cy
The equilibrium states of the system are given by the corresponding Gibbs measures
7y on the product space S7 = HweY Sy, Sy = S. Heuristically, these are probability
measures defined by the formula

(1) ny(do) == Z ' exp (-BE (o ®X (do(x

rey

where 3 denotes the inverse temperature of the system and Z is the normalizing fac-
tor. Clearly, E7(o) and thus the right-hand side of (1) has only heuristic meaning for
all but finite configurations v (which form null-set for the majority of interesting point
processes). The rigorous definition of 7, is based on the Dobrushin-Lanford-Ruelle ap-
proach, see Section 3.1. We denote by G(S7, W, x) the space of all such Gibbs measures.
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In the spirit of [2], the elements of G(S7, W, x) can be called quenched Gibbs states of
our system.

The study of the structure of the set G(S7, W, x) is of a great importance. In particular,
there are three fundamental questions arising here:

(E) Ezistence: is G(S7, W, x) not empty?

(U) Uniqueness: is G(S7, W, x) a singleton?

(M) Multiplicity: does G(S7, W, x) contain at least two elements? Positive answer

indicates the appearance of phase transition in the system.

Sufficient conditions of the existence of n € G(S7, W, x) have been derived in [3] for a
wide class of underlying point processes 7. In [4], we discussed question (M) for Poisson
~v and ferromagnetic interaction

(2) Way(u,v) = =¢(|z — y|)uv,

where S = R! and ¢ : R — R, is a bounded measurable function with supp ¢ C [0, R]
for some fixed R > 0, by using the relationship with bond percolation problem (see [10]).
Observe that any n € G(S7, W, x) with W given by (2) can be understood as a Gibbs
measure with nearest neighbour interaction on the geometric graph (v)5 = (v,¢) with
vertex set v and edge set € = {{z,y} C v: |z —y| < R}. It turns out that the methods
developed in [4] can be applied to a wider class of underlying random point processes,
once the occurrence of bond percolation for a typical realisation of (v)p is known.

For a general infinite graph with vertex set G and edge set £ CG x G the classical
bond percolation problem is posed in the following way. Declare each edge e € £ open
with probability ¢ and closed otherwise, independently of all other edges. Construct a
random graph (G,&), by removing all closed edges. If there exists g. < 1 such that
(G,€) 4+ 4 > de, contains an infinite connected component with positive probability, we
say that the bond percolation with critical value g. occurs. In this case, the infinite
connected component is unique and occurs with probability 1 (which follows from the
Kolmogorov 0 — 1 Law).

In a situation when the underlying graph is random itself, it is important to understand
whether bond percolation can be found in its typical realisation. In particular, the
question of occurrence of bond percolation in the geometric graph (), for p-a.a. 7 is
indirectly related to the continuum percolation problem for y, see [14]. This relationship
was used in the proof of the appearance of bond percolation for a.a. ~ distributed
according to a Poisson measure on I'(X) in [15]. For a class of Gibbs measures on I'(X),
the proof is given in [8] as the particular case of a more general result. In Section 2 we
show that the approach of [8] is applicable to a wider class of point processes.

In Section 3 we discuss the application of the above results to the study of the multi-
plicity of Gibbs measures 7, € G(S7, W, x), for a typical realisation v of a random point
process that satisfies conditions of Section 2.

Acknowledgment. 1 am grateful to my coauthors Yuri Kondratiev, Yuri Kozitsky and
Tanja Pasurek for the pleasure of working with them; in addition, I would like to thank
Yuri Kozitsky for explaining to me many aspects of percolation theory.

2. PERCOLATIONS IN A RANDOM GEOMETRIC GRAPH

In this section, we discuss the problem of occurrence of bond percolation for a typical
configuration v € I'(X) endowed with a natural graph structure. We closely follow the
scheme proposed in [8].

Recall that the configuration space I'(X) is endowed with the vague topology, which
is the weakest topology that makes continuous all mappings

PX) 57y (£7) = S f(@), feCo(X),

Trey
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where Cy(X) is the set of all continuous functions on f: X — R with compact support.
It is known that this topology is completely metrizable, which makes T'(X) a Polish
space (see, e.g., [11, Section 15.7.7] or [17, Proposition 3.17]). An explicit construction
of the appropriate metric can be found in [13]. By P(I'(X)) we denote the space of all
probability measures on the Borel o-algebra B(I'(X)) of subsets of I'(X).

2.1. Setting and the main result. We start with the construction of the probability
space associated with the random graph (v)g, cf. [4]. Let X (2) be the space of two-
element subsets of X and F :=T'(X()), so that ¢ € E for any v € T'(X). Any probability
measure w € P(E) can be characterized by its Laplace transform

Lol = [exp | 32 log(1+ f(w.9) | wlae).

{z,y}ee

where f runs the set of all measurable symmetric functions X x X — (—1,0].
For a given v € I'(X), let w, € P(E) be the Dirac measure concentrated at e,. Its
Laplace transform has the form

Lo (f)=exp | > log(l+1r(z—y)f(zy)|,

{z,y}€e

where 1g is the indicator of the ball of radius R centered at zero in X.
For a constant ¢ € [0, 1], let us consider the independent g-thinning of w., that is, a
measure w! € P(E), cf. [6, Section 11.2], defined by the relation

Lay(f) = La, (af).

The g-thinning of w, means that each configuration ¢ distributed according to w, is
‘thinned’ in the sense that {z,y} € € is removed from the edge configuration with proba-
bility 1 — ¢ and is kept with probability q. The probability distribution of such ‘thinned’

configurations is then w?. In these notations, the occurrence of bond percolation on

(v, &) with critical probability g. means that
@? ({e: (7,¢) contains infinite connected component}) > 0.

Assume now that v is distributed according to a probability measure w on I'(X'). Then
the probability distribution of the graph (v,¢) is defined by the measure

¢(dy, de) = wy(de)w(dy).
Denote
) ¥y, de) 1= i (de)uo(d).

In what follows, the notation x < oo will indicate that = € + belongs to the infinite
connected component of (v, €).

We assume from now on that the underlying point process depends on a parameter
z € RT, that is, w = w,. We will omit the subscript z whenever possible.

Definition 1. We say that w is I-dense, { > 0, if for any M € (0,1) and n, € N there
exists z, = z.(M, n,) such that

wz(N(vQ) = n«|vge =n) > M,

for all z > z,, any cube @ C X with side length [ (cf. (5)) and a.a. boundary conditions
nel(X\Q).

Let lp := 2-'d~Y2R. Our aim is to prove the following result.
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Theorem 2. Assume that w is lg-dense. Then for any q. € (0,1) there exist z. > 0 and
0 > 0 such that

(4) ¢ ({(v,€) 1@ 00 for allz € vg}) > 0,
for all z > z., ¢ > q. and any cube Q with side length lR.

The proof of this result will be given in Section 2.3 after some technical preparations.
The next statement follows directly from Theorem 2 and establishes the existence of
bond percolation for a class of configurations ~.

Corollary 3. For any z, q and Q as above there exists a set C = C(z,q,Q) C T'(X) such
that w.(C) > 0/2 and for any ~y € C its restriction yg # 0, and

wd ({e: @ < 00 for all x € 7q}) > 6/2.

Proof. The statement follows directly from the disintegration formula (4(dy,ds) =
@i (de)w,(dy) (cf. (3)) and bound (4). Indeed, for A, := {¢:x « oo for all z € 7}
set

By :={v: wi(A)) >0/2}, B_:={y: wl(4,) <0/2}

and assume that w(By) < 9;2. Then '
H{re) o oo forallwenal) = [ @A e+ [ =A@
. )
Sw(By)+ 5 (1 —w(B)) <0 (Z) <0,
which contradicts (4). O

Corollary 4. Assume in addition that w, is ergodic with respect to translations by ele-
ments of X. Then

@ ({e: (v,€) contains infinite connected component}) = 1,
for wy-a.a. v € T(X).

Proof. Observe that the set C := UAC(z,q, Q) is translation invariant, which implies that
w;(C) = 1. The statement follows now from the Kolmogorov 0 — 1 Law applied to the
bond percolation problem on ~. O

2.2. Auxiliary facts. In this section we give some general known facts, see [8].
2.2.1. Combinatorics.

Lemma 5. Let G be a n-element set. Introduce a random graph structure on G by
declaring any two elements x,y € G connected by an edge with probability q, independently
of other edges. Then

p(n,q) = Prob (G is connected) — 1, n — oo.

Proof. Tt is obvious that p(1,q) = 1 and p(2,q) = ¢q. For n > 3, p(n, q) is bounded from
below by the probability that a fixed element of G is connected to any other element by
a path of length 2, which is greater than 1 — (n — 1)(1 — ¢*)(»~2). Thus we have

pn,g) > 1—(n—-1)(1-¢)"? =1, n— o0

Corollary 6. We have
p(n,q) = infr>nplk,q) = 1, n— oo.
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2.2.2. Bond-Site percolation. The mixed bond-site percolation problem on Z := Z? is
posed in the following way, see [8]. Declare each vertex k € Z¢ and each edge (k,j),
|k — j| = 1, open with probability p and closed otherwise, independently of other vertices
and edges. Construct a random graph (2), = (G,€) € T(Z) xT(2®) (with 23 := the
space of two-element subsets of Z) by setting

G := {all open vertices}, & := {all open edges}.
The corresponding probability space can be introduced in a similar way to Section 2.1.

Lemma 7. [8]. There exists a critical value p. < 1 such that, for any p > p., the origin
o € Z belongs to an infinite connected component of (Z), with probability 6(p) > 0, that
18,

P (0 00 in (2),) = 6(p).
Corollary 8. Let us denote by (Z)>, the class of random graphs (G,€) € T'(Z)xT'(Z2?)

satisfying the relations
P(keG |[G\k=g) = p,

P((k,j) € € |k,j open, E\ (k,j) =€) = p,
foranyk € Z and (k,j) € Z@ | |k — j| = 1, and all boundary conditions g € T(Z\k), e €
T(Z@N\ (k,7)). It can be proved that the distribution of any (G, E) € (Z)s, stochastically
dominates the distribution of random graph (Z),. Thus for any (G,E) € (Z)>p we have

P (o = o0 in (G,€)) = 0(p),

cf. [9].
2.2.3. Cell model. Our next goal is to construct an embedding (v, ) — (G, E). We start
with the following definitions.

Definition 9. Define the collection of sets
G(v,e5m) :={A C X : N(ya) > n, (ya,€4) is connected} .

)

Definition 10. We say that two sets A, B C X are (7, £)-connected and write A e B

if the exists a € y4 and b € yp such that a and b are connected by a path in (v, €).

Let us introduce a partition of X by ‘elementary’ volumes. For a fixed [ > 0, denote
by Qg the cube in X with side length [, centered at point Ik, k = (k... k(@) c 74,
defined by the formula

(5)  Qui= {x:(x(l),...,x(d))eX: 2@ ¢ z(k@)—1/2),z(k<i>+1/2))}.

We will use the notation vz := g, -
In what follows, we choose | = lp := 27'd~'/2R, so that the distance between any
two elements of adjacent cubes is no more than R.

Proposition 11. Assume that w is lg-dense. Then for any n. € N and M € (0, 1) there
exists z. such that for all z > z. we have

(1)

(6) Cg ({(’775) : Qk € G(’)/,E)} ‘77) > Mﬁ(n*,q),

for any boundary condition n € T'(X \ Q) and all k € Z%;

(ii)

@ t ({ne1:0 % QNG 2 0N ) 2 1) 2 M),

where A(n,q) :=1— (1 — q)”z, for all k,j such that |k — j| = 1.
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Proof. We have

O ({(1.e): Que G} ) = / p(N (), ) (7 )
> p(ns, q) wa(N () > nan).

Estimate (6) follows now from [g-density of w,.
Observe that |a — b| < R for any a € vy, and b € ;. Then, for a fixed v € T'(X) such
that N (%) >n, N(v;) > n we have

ot (0.0 21-a- g
and the bound (7) follows. O

2.3. Occurrence of the percolation. Now we are in a position to prove Theorem 2.

Proof. For any configuration (vy,¢) € I'(X) x T'(X®)) define a graph (Vo €y with
vertex set

Vive) = {Qk: Qr € G(v,¢), ke Z}
and edge set

Ere) = {{Qk,czj}:@k D Q. kjezd k—jzl}.

This is a random graph with the probability distribution induced by the measure (2 on
I'(X) x T(X®),
Fix ¢. € (0,1) and choose n, such that A(n.,g.) > p., where p, is defined in Lemma 7.

Then set M = ﬁ(n’ch) and z. = z.(M,n.), cf. Definition 1. Observe jp(n., q) and A(n., q)

are non-decreasing functions of g. Then

p«(q) = min (Mp(ns, q), N1, q)) > pe,
for any g > g.. Then, according to estimate (6),

G {(r,8): Qi € G(v,8)} ) =2 pey MED(X\Qr), 22 ze
On the other hand, for any k, j such that |k — j| = 1 the probability of the event that

Qr (1) Q; depends only on the number of elements in the cells Qx,Q; and not on the
fact that the graphs g, ,7q, are connected, so that

¢ ({w,e) ., ) Qj} 100Q, € G(%E))

(7,€)
~a ({0902 Qb N 2 n NG 20 ) 2 A0 2 90
Thus (V(4,e), €(v,¢)) €(Z)>p. The statement follows now from Corollary 8. O

2.4. Examples. In this section, we give several examples of [-dense random point fields
on X.

2.4.1. Poisson measure. A Poisson measure on the configuration space I'x is defined
descriptively as follows (cf. [5, §2.4]). Let 7 be a o-finite measure in (X, B(X)). The
Poisson measure 7, with intensity 7 is a probability measure on B(I'x) satisfying the
following condition: for any pairwise disjoint sets By, ..., By € B(X) such that 7(B;) <
oo (1 =1,...,k), and any ni,...,ng € Z4, we have

T(Bl)m e~ 7(Bi)

(8) WT({ViN(W’BiZTLi,i=1,~~ak})=HT~
i=1 v
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That is, for disjoint sets B; the values N(vp,) are mutually independent Poisson random
variables with parameters 7(B;), respectively.

Theorem 12. Assume supycze T(Qr) < 00, ¢f. (5) (which obviously holds in the case
where T is translation invariant). Then 7., z > 0, is l-dense.

Proof. The result follows directly from (8). O

2.4.2. Gibbs measures. Fix a measurable function ® : X x X — R. For any A € B.(X)
consider the relative local interaction energy

Ha(yaln) = Z O(z,y) + Z Z O(x,y).
{z.y}€va TEYA YENAC

Introduce a measure IIa (-|n) on I'(X) via the integral relation

/ F()a (dy 1) = Za ()" / Flya Unac)exp (—Ha(va ) Ax(dya),

where F is a positive measurable function on I'(X). Here )\, is the Lebesgue-Poisson
measure on the space of finite configurations I'g(X) defined by the formula

ok
F(y)\.(dy) = F(0) + Z—/ F(zy,...,x5)dz ... dx
L D3 f, Flen e

and
Za(n) = / exp (—Ha(va 1)) Ae(dra)

is the normalizing factor (called the partition function) making IIa (- |n) a probability
measure on I'(X).

The family II := {Ila (- [7)} aep. (x)ner(x) i @ Gibbsian specification on I'(X) (see
e.g. [7,16]). We say that a probability measure v on I'(X) is a Gibbs measure associated
with the specification II if it satisfies the Dobrushin-Lanford-Ruelle (DLR) equation

() v(B) = / o Ta (Bl ()

for all B € B(I'(X)) and A € B.(X). We denote by G(I'(X),®) the set of all such
measures.
Assumptions on the interaction potentials are as follows:

(i) ®(z,y) = p(x —y); p(x) <0if |z| > r, for some r > 0, and
/ py(x)dx < oo, for any § > 0,
|z|=6

where @4 is the positive part of ¢;
(ii) ¢ > 0 or ¢ is lower regular and superstable in the sense of Ruelle, see [19] and [8].

It is known that G(T'(X), ®) # @ under conditions (i) and (ii). The following result
has been proved in [8].

Theorem 13. Any Gibbs measure p € G(I'(X), @) is l-dense provided | > r/2.

2.4.3. Cluster measures. Let us recall the notion of a cluster point process with indepen-
dent clusters (see, e.g., [5]). Its realisations are constructed in two steps: (i) a background
random configuration of (invisible) ‘centres’ is obtained as a realisation of some point
process 7. governed by a probability measure p on I'(X), and (ii) relative to each cen-
tre © € 7., a set of observable secondary points (referred to as a cluster centred at x)
is generated, independently of all other clusters, according to a point process 7, with
distribution p, on the space of finite configurations I'o(X). The resulting (countable)
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assembly of random points, called the cluster point process (CPP), can be expressed
symbolically as

(10) v=1] %

TEYe

where the disjoint union signifies that multiplicities of points should be taken into ac-
count. Note that CPP configurations (10) may in principle have accumulation and/or
multiple points due to the overlapping contributions from different clusters. In what
follows we assume that CPP configurations are proper, that is, v € T'(X) a.s. (see
[1] for necessary and sufficient conditions of properness of Gibbs CPP), and denote by
ter € P(T'(X)) the corresponding distribution.

In addition, we assume that random clusters are independent and identically distrib-
uted, being governed by a common probability law translated to the cluster centres, so
that py(A) = po(A —2) (x € X, A € BTo(X))).

For a fixed K C X introduce the set

Xk ={{eTo(X): &k # 0}.
Theorem 14. Assume that p is I'-dense for some I! < 1. Then e is l-dense.

Proof. Fix a cube Q" with side length {” < [ — [’ such that p(X¢g~) > 0. Then, for any
cube @ with side length [, there exists a cube Q' with site length I’ such that Q'+ Q" C Q.
It is clear that

pret (N(vQ) = ns) = p (N(7Qr) 2 ma) po(XQr )™

and the statement follows. O

3. PHASE TRANSITIONS IN INFINITE SPIN SYSTEMS ON RANDOM GEOMETRIC GRAPHS

In this section, we consider a class of spin systems on a typical geometric graph (),
where v € T'(X) is governed by a random point process p € P(I'(X)), and derive sufficient
conditions of the multiplicity of their equilibrium (Gibbs) states, following [3], [4].

3.1. Construction of Gibbs measures on geometric graphs. To each x € v, we
assign a variable (spin) o, € R. Then the configuration of spins corresponding to =y
is 0 = (0z)zey € R7. The set of spin configurations R is equipped with the product
topology and with the corresponding Borel o-field B(RY). For A € B(R?), by oa we

denote the ‘configuration in A’; i.e., op = (O’z)xe,m. Given two configurations o and &,

Im T €N pe . Rd \ A. We assume that the
Oz,% € YA,
spin-spin interaction is given by pair potential (2).

Let x be a finite symmetric measure on R. Our aim is to construct Gibbs measures
on R” corresponding to the single-spin measures x, = x and to the following relative
energy functionals

(11)  El(oaloas) == > oz —yhowoy— > > élz —yl)owoy,
{z,y}Cy TEYA yEDTNYAC
|[z—y|<R

set op X Tae = (Sg)zey With s, = {

where ¢ : [0, R] — R} is a bounded measurable function. For any compact A C X and
o € R7, we define

1

Ix(Alo) = RG]

/ Ia(oa X Gac) exp(—E} (oa|oac))xa(doy),
R7A
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where I4 is the indicator of A € B(R?Y), EJ is as in (11), and

xa(dop) == ) x(dow),

TEYA

Z\(7) = /RW exp(—E} (oaloac))xa(don).

Thus, for any A € B(R7), IIx(A|-) is B(R”)-measurable, and, for each & € R, IIx(+|7)
is a probability measure on (R7,B(R”)). The family {II5 : A € B.(X)} is the Gibbs
specification of the model (see e.g. [7, 16] and Introduction in [12]).

Similar to the case of continuum systems (Section 2.4.2), a probability measure 1 on
(R7, B(RY)) is said to be a Gibbs measure associated with IT if it satisfies the Dobrushin-
Lanford-Ruelle equation

n(A) :/w Ty (Alo)n(do), for all A e B(RY).

The set of all such measures will from now on be denoted by G(R?Y, ¢, x) (with certain
abuse of previous notations, cf. Introduction).

We study Gibbs measures with a priori prescribed support properties. We call them
tempered Gibbs states. For an o > 0, we define

Y(ayq) = {0’ eRY: Z | |Temol7l < oo}
ey
and set G ¢(R7,0,x) = {p € GR",¢,x) : u(E(e,q)) = 1}. The following result has
been proved in [3].

Theorem 15. Let the single-spin measure x be such that
[ exp Gelult) () < .
R

for some ¢ > 2 and s > 0. Then there exists a set C CI'(X) such that:
(i) for all v € C, we have Goq(RY,0,x) # 0 and any n € G(RY, ¢, x) satisfies the
following estimate:

(12) / exp (192 |0I1’ea|I|> n(do) < oo,
RY rey
for any a > 0;
(i1) for any measure p € P(I'(X)) with bounded correlation functions we have p(C) = 1.

Remark 16. The existence of Gibbs measures 1t € Go ¢(R7, ¢, x) follows from the re-
lative compactness of the family I = {II5(:|5) : A C X, compact} in the topology of
local set convergence, for a certain class of boundary conditions & € R". It can be shown
by standard arguments that the corresponding accumulation points obey the Dobrushin-
Lanford-Ruelle equation (9) and estimate (12). A typical choice of & is constant boundary
condition 7, = s € R for all © € .

Remark 17. The framework of the paper [3] is more general: the spin space is assumed
to be a general Euclidean space, and the existence result is proved for a general pair
interaction potential W, (u,v) of polynomial growth in w,v and finite range in x,y.
Moreover, the existence of measurable selections v — 1, € G(R7, ¢, x) is shown.

Definition 18. For a > 0, by nt® € G(R", ¢, x) we denote the accumulation point of
the family IT with constant boundary condition +a respectively.

Now we turn to the single-spin measure y and give two (quite different by their nature)
examples.
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Example 19. Set
. 1
X = XISIHg = 5 ((5_1 + 6-‘1—1) )

where §; is the Dirac measure centered at s € R. This example corresponds to an
Ising magnet and is very well studied. We denote by G'"&(R7, ¢) the set of all the
corresponding Gibbs measures.

Example 20. An example of a natural single-spin measure x with non-compact support
is given by the formula

x(du) = exp (—V(u)) du,
where V' : R — R is a measurable symmetric function such that: (a) the set {u € R :
V(u) < 400} is of positive Lebesgue measure; (b) V(u) increases at infinity faster than
|u]?. This includes the case where V is a polynomial.

3.2. The Phase Transition. By a phase transition in our model we mean that the
set of Gibbs measures G, ¢(R?, ¢, x) contains at least two (and hence infinitely many)
elements for p-a.a. v € T'(X).

In the case where p is the Poisson measure, cf. Example 2.4.1, a sufficient condition
of occurrence of phase transition has been derived in [4]. This result is based on (i) the
relationship between the occurrence of Bernoulli bond percolation on a graph and the
existence of multiple Gibbs states in the corresponding Ising model on that graph, see
[10], on the one hand, and (ii) the Wells inequality that allows to estimate first moments
of a Gibbs measure with general interaction by first moments of its Ising counterpart,
see [20] and [4], on the other hand. We follow this scheme and prove the occurrence of a
phase transitions v governed by a general [g-dense measure pu.

Theorem 21. Let the measure x be as in Theorem 15 and such that x({0}) < x(R) and
¢(x) > B > 0 for all x € [0, R]. Assume that the underlying point process p is lg-dense.
Then there exists z. > 0 (which may depend on B ) such that for any z > z. and p-a.a.
v the set Go q(RY, ¢, x) contains at least two elements.

Proof. Observe that it is sufficient to prove the existence z. > 0 and a > 0 such that for
any z > z. the estimate

(13) /W aont(do) > 0

holds for some o € v (for p-a.a. v € T'). Indeed, in this case, by the symmetry of x and
of the interaction in (11), we have

/ oon” (do) = —/ oot (do) <0,
RY

RY
so that nT¢ #£ =2,

In order to prove bound (13), let us first consider the Ising model associated with the
single-spin measure x = "8, cf. Example 19.

We denote by l/;)H the element of G®"8(RY,¢) that corresponds to the boundary
condition +1, cf. Remark 18.

First assume that the function ¢ is constant, ¢(x) = 8 > 0, € Ry. It is known (see
[10, Theorem 2.1]) that the following statements are equivalent (for an arbitrary graph,
and thus in particular for (y)g):

e the graph (v)r admits bond percolation with critical probability ¢. < 1;
e forany g > . := —% log(1—gq.) there exists a vertex o € =y such that the estimate

(14) /aougl(da) >0
holds.
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Let us now set g. = 1 — e~ so that 8. = .. Theorem 2 implies that there exist
z. > 0 such that for any z > z. a typical geometric graph (v)r admits bond percolation
with critical probability g., which in turn implies that (14) holds for p-a.a. ~.

In the case of a non-constant pair potential ¢ satisfying the inequality ¢ > G, an
application of the GKS inequality shows that

(15) / oo} (do) > / oot (do),

so that the corresponding inequality holds for y;rl.

Next, we will estimate the integral in (13) by the corresponding integral for the Ising
model. Fix a > 0 such that

x([av'2, +00)) > x([0, a])

and consider Gibbs measures ™ € G(R?, ¢, x) and 1/:214) € G¥"8(R", a?¢). Then, for
each x € v, we have the estimate

/ o.nT(do) > a/ Umvi;b)(da)
R RY

(the Wells inequality, see [20] and [4]). This inequality combined with (14) and (15)
completes the proof of (13). O

Remark 22. This phase transition is achieved by choosing the intensity z of the under-
lying distribution of v sufficiently large, for a fixed inverse temperature (., in contrast
to [4], where z is fixed and S, required to be large.
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