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THE MULTI-DIMENSIONAL TRUNCATED MOMENT PROBLEM:
MAXIMAL MASSES

KONRAD SCHMÜDGEN

To Professor Ju. M. Berezanskii, on the occasion of his ninetieth birthday

Abstract. Given a subset K of �d and a linear functional L on the polynomials
�

d
2n[x] in d variables and of degree at most 2n the truncated K-moment problem

asks when there is a positive Borel measure μ supported by K such that L(p) =�
p dμ for p ∈ �d

2n[x]. For compact sets K we investigate the maximal mass of
all representing measures at a given point of K. Various characterizations of this
quantity and related properties are developed and a close link to zeros of positive

polynomials is established.

1. Introduction

The one-dimensional full moment problem ([1], see e.g. [3, Chapter VII] or [22, Chap-
ter 16]) and the one-dimensional truncated moment problem [14] are well-developed
classical fields. In contrast a theory of the multi-dimensional truncated moment problem
is still at the beginning. Since the appearance of the work by R. Curto and L. Fialkow
[8], [9] this problem is an active area of research, see e.g. [10], [12], [15], [16], [5], [13].

Let K be a closed subset of R
d and n ∈ N. Given a finite real multi-sequence sα, where

α ∈ N
d
0, |α| ≤ 2n, the multi-dimensional truncated K-moment problem asks if there is a

positive Borel measure μ supported by K such that

sα =
∫

xα dμ for α ∈ N
d
0, |α| ≤ 2n.(1)

If L denotes the corresponding Riesz functional L on the polynomials R
d
2n[x] of degree

at most 2n defined by L(xα) = sα, then equation (1) is equivalent to

L(p) =
∫

p dμ for p ∈ R
d
2n[x].

The main new contribution of the present paper is a study of the maximal mass ρL(t)
at a point t ∈ K among all representing measures for the functional L.

Probably the first study of the truncated multi-dimensional moment problem was in
the unpublished thesis of John Matzke [17]. Several results from this thesis occur in the
present paper, while others have been later rederived in the literature. In any case we
establish a number of additional results and give new proofs.

In Section 2 we review and develop basic notions and some known results on the
truncated K-moment problem which are needed later. Sections 3–7 are devoted to a
detailed study of maximal mass representations of atomic measures. In Section 3 a dual
characterization of the quantity ρL(t) is given. Section 4 deals with atomic solutions of
the moment problem. Several notions of representing measures (weakly maximal mass,
maximal mass, and strongly maximal mass measures) and related properties of points
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are defined and investigated. A close interplay between maximal masses and properties
of zeros of positive polynomials on K is established. A number of examples are discussed
in Section 5. In Section 6 a general method for constructing weakly maximal mass
representing measures is proposed. In Section 7 we use Robinson’s ternary sextic [20] to
develop an example of a weakly maximal mass measure which is not maximal mass.

Let us fix some notation. Let d ∈ N and n ∈ N. We denote by R
d
n[x] the real vector

space of polynomials p ∈ R[x1, . . . , xd] such that deg(p) ≤ n. Clearly,

dim R
d
n[x] =

(
n + d

d

)
.

Let Z(p) = {x ∈ R
d : p(x) = 0} denote the real zero set of a polynomial p. For a subset

K of R
d we define

Pos(K)2n = {p ∈ R
d
2n[x] : p(x) ≥ 0 for x ∈ K}.

Throughout this paper L denotes a nonzero linear functional on R
d
2n[x] and K

is a closed subset of R
d.

2. The truncated K-moment problem

For a positive Borel measure μ on R
d such that R

d
2n[x] ⊆ L1(μ) we denote by Lμ the

linear funtional on R
d
2n[x] defined by

Lμ(p) =
∫

p dμ, p ∈ R
d
2n[x].

Definition 1. A linear functional L on R
d
2n[x] is called a truncated K-moment func-

tional if there exists a positive regular Borel measure μ on R
d supported by K such that

L = Lμ, that is, p ∈ L1(μ) and

L(p) =
∫

p(x) dμ(x) for p ∈ R
d
2n[x].(2)

The set of such measures μ is denoted by ML,K.
We say that a functional L resp. a measure μ ∈ ML,K is K-determinate if the set

ML,K is a singleton. In the special case K = R
d a K-determinate functional or measure

is called determinate.

The following simple fact is used in the proof of the next proposition. We use the
standard multi-index notation xα = xα1

1 . . . xαd

d for α ∈ N
d
0 and abbreviate by

∑2
n the

cone in R
d
2n[x] of all finite sums of squares

∑
i f2

i , where fi ∈ R
d
n[x].

Lemma 2. R
d
2n[x] =

∑2
n−

∑2
n.

Proof. One inclusion is trivial. For the other it suffices to show that xα ∈∑2
n−

∑2
n for

|α| ≤ 2n. To prove this we write xα as xα = x2βxi1 . . . xir with i1, . . . , ir ∈ {1, . . . , d}
and r ≤ d. We write r = 2s if r is even and r = 2s−1 if r is odd. Since |α| = 2|β|+r ≤ 2n,
we then have |β|+ s ≤ n. Using the identities

xi2j−1xi2j =
1
4
[(xi2j−1 + xi2j )

2 − (xi2j−1 − xi2j )
2],

xi2s−1 =
1
4
[(xi2s−1 + 1)2 − (xi2s−1 − 1)2]

we conclude that xi1 . . . xir ∈ ∑2
s −

∑2
s. Therefore, since |β| + s ≤ n and xα =

x2βxi1 . . . xir , it follows that xα ∈∑2
n−

∑2
n. �



268 KONRAD SCHMÜDGEN

Let us recall the notion of an adapted space in the sense of Choquet [6]. Let X be
a locally compact topological Hausdorff space. Let C(X ; R) denote the continuous real-
valued functions on X and Cc(X ; R) the functions of C(X ; R) with compact support. A
linear subspace E of C(X ; R) is called an adapted space if the following conditions are
satisfied:

(i) E = E+ − E+, where E+ := {f ∈ E : f(x) ≥ 0 for x ∈ X}.
(ii) For each x ∈ X there exists fx ∈ E+ such that fx(x) > 0.
(iii) For f ∈ E+ there exists g ∈ E+ such that for ε > 0 there is hε ∈ Cc(X : R)

satisfying f(x) ≤ εg(x) + hε(x), x ∈ X .
The following proposition is crucial for our treatment. Assertion (i) follows from the

paper [23] by V. Tchakaloff. We give another approach of this result.

Proposition 3. Suppose that K is a compact subset of R
d.

(i) The linear functional L is a truncated K-moment functional if and only if

L(p) ≥ 0 for all p ∈ Pos(K)2n.

(ii) If L is a truncated K-moment functional, then the set ML,K is compact in the weak
topology.

Proof. Set K = X . The linear subspace E := R
d
2n[x] of C(X ; R) is an adapted space.

Indeed, since
∑2

n ⊆ E+, condition (i) follows from Lemma 2. Condition (ii) holds by
setting fx = 1 and condition (iii) is obviously satisfied with f = g and hε = f , because K
is compact. Therefore, both assertions follow from Choquet’s theory of adapted spaces
[6], see e.g. [4, Section 2.2]. �

For t ∈ R
d let δt denote the delta measure at t, that is, δt(M) = 1 if t ∈ M and

δt(M) = 0 if t /∈ M . Clearly, lt := Lδt is the evaluation functional at t, that is,

lt(p) = p(t), p ∈ R
d
2n[x].

A measure μ is called k-atomic if there are k pairwise different points t1, . . . , tk ∈ R
d and

positive numbers m1, . . . , mk such that

μ =
k∑

j=1

mjδtj .

The points ti are called atoms and the numbers mi masses of μ.
The next proposition shows that truncated K-moment functionals have always atomic

solutions and gives a justification for the study of atomic solutions.

Proposition 4. Suppose that the linear functional L on R
d
2n[x] is a truncated K-moment

functional. Then there exists a k-atomic measure μ ∈ ML,K, where k ≤ (
d+2n
2n

)
, with

all atoms in K, that is, there are pairwise different points t1, . . . , tk ∈ K and positive
numbers m1, . . . , mk such that μ =

∑k
j=1 mjδtj and

L(p) =
∫

p(x) dμ(x) ≡
k∑

j=1

mjp(tj), p ∈ R
d
2n[x].

Proposition 4 was first proved by H. Richter [19, p. 151]. It was shown almost si-
multaneously for compact sets by V. Tchakaloff [23, Theorem 2], and independently and
slightly later for closed sets by W. W. Rogosinski [21, p. 4]. It seems that both references
[19] and [21] have been overlooked in the literature, since several versions for closed sets
have been published later.

Also we will use the following well-known fact.



THE MULTI-DIMENSIONAL TRUNCATED MOMENT PROBLEM: MAXIMAL MASSES 269

Proposition 5. Let μ ∈ ML,K. Suppose that p ∈ Pos(K)2n and L(p) = 0. Then we
have supp μ ⊆ Z(p) ∩ K.

Proof. Suppose that t ∈ K\Z(p). Then there exist a ball U around t and a number ε > 0
such that p(x) ≥ ε on U . Then

0 = L(p) =
∫
K

p dμ ≥
∫

U∩K
p dμ ≥ εμ(U ∩ K) ≥ 0.

Therefore, μ(U ∩K) = 0, that is, t is not in the support of μ. This proves that suppμ ⊆
Z(p) ∩K. �

At the end of this Section we briefly discuss the truncated moment problem for the
real projective space P

d(R). Recall that the points of P
d(R) are equivalence classes of

(d + 1)-tuples (t0, . . . , td) �= 0 of real numbers by the equivalence relation

(t0, . . . , td) ∼ (t′0, . . . , t
′
d) if (t0, . . . , td) = λ(t′0, . . . , t

′
d)(3)

for some nonzero real λ. Thus, P
d(R) = (Rd+1\{0})/ ∼ . The map

ϕ : (t1, . . . , td)→ (1, t1, . . . , td)

is an injection of R
d into P

d(R). We identify t ∈ R
d with its image ϕ(t) in P

d(R). In this
manner R

d becomes a subset of P
d(R).

Let R
d
2n[x0] denote the homogeneous polynomials from R[x0, x1, . . . , xd] of degree 2n.

Recall that R
d
2n[x] are the polynomials from R[x1, . . . , xd] of degree at most 2n. It is not

difficult to verify that the map

φ : p(x0, . . . , xd)→ p̌(x1, . . . , xd) := p(1, x1, . . . , xd)

is a bijection of the vector spaces R
d
2n[x0] and R

d
2n[x] with inverse given by

φ−1 : q(x1, . . . , xd) → qh(x0, . . . , xd) := x2n
0 q

(
x1

x0
, . . . ,

xn

x0

)
.(4)

It is well-known that P
d(R) is a compact topological Hausdorff space and that R

d is
dense in P

d(R). Each homogeneous polynomial q ∈ Rd[x0, . . . , xd]2n can be be considered
as a continuous function, denoted by q̂, on the projective space by

q̂(t) :=
q(t0, . . . , td)

(t20 + · · ·+ t2d)n
, t = (t0, . . . , td) ∈ P

d(R).(5)

(The fraction in (5) is invariant under the relation (3) and continuous on R
d+1\{0}.)

For a subset K of P
d(R) we define

Pos(K)2n = {p ∈ R
d
2n[x0] : p̂(x) ≥ 0 for x ∈ K}.

If we replace R
d
2n[x] by the homogeneous polynomials R

d
2n[x0], for each closed subset

K of P
d(R) the truncated K-moment problem can be defined in a similar manner as for

R
d. The notions and results of this paper remain valid in this setting. We shall use this

projective truncated moment problem on P
d(R) in Section 7.

3. Maximal masses

Suppose that L is a truncated K-moment functional on R
d
2n[x].

For any t0 ∈ K we define two nonnegative numbers ρL(t0) and πL(t0) by

ρL(t0) = sup {μ({t0}); μ ∈ ML,K},(6)

πL(t0) = inf
{

L(p)
p(t0)

; p ∈ Pos(K)2n

}
(7)

= inf{ L(p); p ∈ Pos(K)2n, p(t0) = 1}.(8)
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where we set c
0 := +∞ for c ≥ 0. The equality in (8) is obvious.

The number ρL(t0) is the supremum of all point masses of solutions of the truncated
K-moment problem for L. Note that ρL(t0) ≤ L(1) <∞, since

μ({t0}) ≤
∫

1 dμ = L(1) for μ ∈ML,K.

Remark. Determining the number πL(t0) in (8) is a linear conic optimization problem
with linear functional L, cone C := Pos(K)2n in the vector space R

d
2n[x], and constraint

p(t0) = 1. From the duality theory of conic optimization (see e.g. [2]) it is known that
the infimum in (8) is attained if L is an interior point of the dual cone C∗. A more
important result of this kind is Theorem 24 below.

The following Propositions 6, 11, and 12 are taken from [17].

Proposition 6. Let t0 ∈ K. Then we have πL(t0) ≥ ρL(t0). If K is compact, the
supremum in equation (6) is a maximum and

ρL(t0) = πL(t0).(9)

Proof. Let ν ∈ ML,K. For any p ∈ Pos(K)2n we have

L(p) =
∫

p dν ≥ ν({t0})p(t0)

and hence L(p)
p(t0) ≥ ν({t0}). Taking the infimum over p ∈ Pos(K)2n and the supremum

over ν ∈ ML,K, we conclude that

πL(t0) ≥ ρL(t0).(10)

Suppose now that K is compact. Let (μi)i∈J be a net from ML,K which converges
weakly to some measure μ ∈ ML,K. Then limi μi({t0}) ≤ μ({t0}) by the portmanteau
theorem [4, p. 46]. That is, the map μ→ μ({t0}) is an upper continuous functions on the
compact set ML,K (by Proposition 3(ii)) with respect to the weak topology. Since such
a function on a compact set has always a maximum, the supremum in (6) is attained.

Define a linear functional L0 := L− πL(t0)lt0 on R
d
2n[x], that is,

L0(f) = L(f)− πL(t0)f(t0), f ∈ R
d
2n[x].

From (7) it follows at once that L0(p) ≥ 0 for p ∈ Pos(K)2n. Therefore, by Proposi-
tion 3(i), L0 is a truncated K-moment funtional, that is, there exists a measure μ0 ∈
ML0,K. Then

L(f) = πL(t0)f(t0) + L0(f) = πL(t0)f(t0) +
∫

f dμ0, f ∈ R
d
2n[x].

This shows that the measure μ := πL(t0)δt0 + μ0 belongs to ML,K. Therefore, ρL(t0) ≥
μ({t0}) ≥ πL(t0). Combined with the converse inequality (10) proved above we obtain
ρL(t0) = πL(t0). This proves (9). �

Now we introduce two basic objects associated with L and K.

Definition 7. For a closed subset K of R
d we define

N+(L,K) = {p ∈ Pos(K)2n : L(p) = 0 },
V+(L,K) = {t ∈ R

d : p(t) = 0 for p ∈ N+(L,K)}.
Note that it may happen that N+(L,K) = {0}; in this case V+(L,K) = R

d.
Clearly, V+(L,K) is a real algebraic variety. The importance of this variety for the

truncated moment problem stems from the following result.
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Proposition 8. If K is a compact subset of R
d and L is a truncated K-moment functional

on R
d
2n[x], then V+(L,K) ∩ K is the smallest subset of R

d which contains the supports
of all measures μ ∈ML,K.

The proof of Proposition 8 is defered to Section 6 after Theorem 23.

The following two objects are often used in the literature:

N (L) := {p ∈ R
d
2n[x] : L(p2) = 0 },

V(L) = {t ∈ R
d : p(t) = 0 for p ∈ N (L)}.

Obviously, if p ∈ N (L), then p2 ∈ N+(L,K). Hence V+(L,K) ⊆ V(L).
If L is a positive functional (that is, L(p2) ≥ 0 for all p ∈ R

d
n[x]), it follows easily from

the Cauchy-Schwarz inequality that N (L) is a vector space. Further, there is a natural
bijection of N (L) on the kernel of the Hankel matrix Hn(L) = (L(xi+j))n

i,j=0 associated
with L.

The real algebraic variety V+(L) is of fundamental importance for the truncated mo-
ment problem. The following example illustrates the difference between both varieties
V+(L) and V(L). We shall use the projective versions of both sets.

Example 9. Set d = 2, n = 3, and K = P
2(R). Let R denote the homogeneous Robinson

polynonomial [20] used in Section 7 below. As noted therein, R̂ ∈ Pos(K)6 and R has
precisely 10 projective zeros t1, . . . , t10 ∈ P

2(R). Putting μ =
∑10

i=1 δti and L := Lμ =∑10
i=1 lti , we clearly have R̂ ∈ N+(L,K) and {t1, . . . , t10} ⊆ V+(L,K). (We have even

equality, but we do not need this here.) Since there is no cubic that vanishes at all ten
points ti (see e.g. [7]), we have N (L) = {0} and V(L) = P

2(R).

The next example deals with the one-dimensional case.

Example 10. Consider a k-atomic measure μ =
∑k

j=1 mjδtj on R and set L = Lμ.
Let K = R. Since each polynomial of Pos(R)2n is a sum of squares from Rn[x],

N (L) = N+(L,K) and hence V(L) = V+(L,K). It is easily verified that N (L) �= {0} if
and only if k ≤ n; in this case L is determinate and V(L) = {t1, . . . , tk}.

Now let K = [−1, 1], k = n + 1. Assume that t1, . . . , tk ∈ [−1, 1]. Then N (L) = {0}
as just noted. If at least n atoms tj are in (−1, 1), then N+(L,K) = {0}. But if both
end points −1 and 1 are atoms of μ, then N+(L,K) �= {0}.
Proposition 11. Suppose that K is compact and let t0 ∈ K.
(i) If ρL(t0) > 0, then t0 ∈ V+(L,K).
(ii) If the infimum in (7), or equivalently in (8), is a minimum, then t0 ∈ V+(L,K) if
and only if ρL(t0) > 0.
(iii) Suppose that N+(L,K) = {0}. Then t ∈ V+(L,K) and ρL(t) > 0 for all t ∈ K.

Proof. (i): Suppose that ρL(t0) > 0 and assume to the contrary that t0 /∈ V+(L,K).
Then there exists a p0 ∈ N+(L) such that p0(t0) �= 0. Upon scaling we can assume that
p0(t0) = 1. Since L(p0) = 0, we then have πL(t0) = 0 by (8) and hence ρL(t0) = 0 by
(9) which is the desired contradiction.

(ii): By (i) it suffices to prove that t0 ∈ V+(L,K) implies ρL(t0) > 0. Let t0 ∈
V+(L,K) and assume that the infimum in (8) is a minimum. Let p0 be a polynomial for
which this infimum is attained. If L(p0) would be zero, then p0 ∈ N+(L,K) and hence
p0(t0) = 0, since t0 ∈ V+(L,K). But p0(t0) = 1 by (8). Hence L(p0) > 0 and therefore
L(p0) = πL(t0) = ρL(t0) > 0 again by (9).

(iii) follows by combining (i) and (ii). �



272 KONRAD SCHMÜDGEN

4. Atomic solutions

Let μ ∈ ML,K. Then R
d
2n[x] is contained in L1

R
(μ). Let Jμ denote this embedding of

R
d
2n[x] into L1

R
(μ). The next proposition is a simple consequence of a well-known fact of

Douglas [11].

Proposition 12. For any measure μ ∈ ML,K the following are equivalent:
(i) μ is an extreme point of the set ML,K.
(ii) J(Rd

2n[x]) = L1
R
(μ).

(iii) μ is atomic, that is, μ =
∑k

l=1 mlδtl
with t1, . . . , tk ∈ K, and there are polyno-

mials p1, . . . , pk ∈ R
d
2n[x] such that pj(tl) = δjl for j, l = 1, . . . , k.

Proof. By a result of Douglas [11], μ is an extreme point of ML,K if and only if the
image of R

d
2n[x] is dense in L1

R
(μ). Since R

d
2n[x] is finite dimensional, the latter holds

if and only if Jμ(Rd
2n[x]) = L1

R
(μ). This proves that (i) and (ii) are equivalent. Then

Jμ(Rd
2n[x]) = L1

R
(μ) is finite dimensional, so that μ is atomic, say μ =

∑k
l=1 mlδtl

with
t1, . . . , tk ∈ K. Clearly, Jμ(Rd

2n[x]) = L1
R
(μ) if and only if the characteristic function χtj

of each point {tj}, j = 1, . . . , k, is in the image Jμ(Rd
2n[x]), that is, χtj is equal to Jμ(pj)

for some polynomial pj ∈ R
d
2n[x], or equivalently, pj(tl) = δjl, where j, l = 1, . . . , k. This

proves the equivalence of (ii) and (iii). �

Proposition 13. Let μ =
∑k

l=1 mlδtl
∈ML,K be k-atomic with all atoms in K and let

j ∈ {1, . . . , k}.
(i) The number mj is the maximal mass ρL(tj) if and only there is a sequence (pr)r∈N

of polynomials pr ∈ Pos(K)2n such that pr(tj) = 1 and limr pr(tl) = 0 for all l �= j.
(ii) If there exists a polynomial p ∈ Pos(K)2n such that p(tj) = 1 and p(tl) = 0 for

l �= j, then mj = ρL(tj).
(iii) If mj = ρL(tj) for all j = 1, . . . , k, then k ≤ (

d+2n
2n

)
= dim R

d
2n[x].

Proof. (i): From the definition of ρL it is obvious that mj ≤ ρL(tj). Suppose that there
exists a sequence (pr) of polynomials as above. Since pr(tj) = 1, we have ρL(tj) =
πL(tj) ≤ L(pr) by (7). Combined with

lim
r

L(pr) =
k∑

l=1

ml

(
lim

r
pr(tl)

)
=

k∑
l=1

mlδjl = mj

we conclude that ρL(tj) ≤ mj by (7). Thus, mj = ρL(tj).
Conversely, suppose that mj = ρL(tj) = πL(tj). By the definition of πL(tj), there

is a sequence (pr) of polynomials pr ∈ Pos(K)2n such that pr(tj) = 1 and mj =
limr L(pr). Since pr(xl) ≤ m−1

l L(pr) and the sequence ((L(pr))r∈N converges, the se-
quence (pr(tl))r∈N is bounded. By passing to some subsequence if necessary we can
assume that al := limr pr(tl) exists for all l. Since pr ∈ Pos(K)2n, we have al ≥ 0. Then

mj = lim
r

L(pr) = mj +
k∑

l=1,l �=j

mlal.

Since ml > 0 for all l, this implies that al = limr pr(tl) = 0.
(ii) follows at once from (i).
(iii): Since mj = ρL(tj), there is a sequence (pjr)r∈N of polynomials as in (i). We

define a linear functional Fj on R
d
2n[x] by Fj = ltj . To prove that k ≤ dim R

d
2n[x] it

suffices to show that the functionals F1, . . . , Fk are linearly independent. Assume that
there are numbers λ1, . . . , λk ∈ R such that 0 =

∑
j λlFl(f) for f ∈ R

d
2n[x]. Setting



THE MULTI-DIMENSIONAL TRUNCATED MOMENT PROBLEM: MAXIMAL MASSES 273

f = pjr and passing to the limit r →∞, we obtain

0 = lim
r

k∑
l=1

λlFl(pjr) =
k∑

l=1

λl

(
lim

r
pjr(tl)

)
=

k∑
l=1

λlδjl = λj . �

Let t0, . . . , tk ∈ R
d be pairwise different points and let n ∈ N. Consider the following

three properties:
(SP )2n (Separation property)

There are polynomials p0, . . . , pk ∈ R
d
2n[x] such that pj(tl) = δjl, j, l = 0, . . . , k.

Suppose in addition that t0, . . . , tk ∈ K.

(PSP )2n,K (Positive separation property)
There are polynomials q0, . . . , qk ∈ Pos(K)2n such that qj(tl) = δjl, j, l = 0, . . . , k.

(APSP )2n,K (Asymptotic positive separation property)
There are sequences (qjr)r∈N, j = 1, . . . , k, of polynomials qjr ∈ Pos(K)2n such that
qjr(tj) = 1 for r ∈ N and limr qjr(tl) = 0 for j �= l and j, l = 0, . . . , k.

Note that the two last properties depend on the fixed closed subset K of R
d. In

the important special case K = R
d we write (APSP )2n and (PSP )2n, respectively.

Obviously, (PSP )2n,K implies (APSP )2n,K and (SP )2n.
These properties are closely related to the following concepts.

Definition 14. A k-atomic measure μ =
∑k

l=1 mlδtl
∈ ML,K with all atoms in K is

called
• maximal mass for L if mj = ρL(tj) for all j = 1, . . . , k.
• weakly maximal mass for L if mj+1 = ρLj (tj+1) for j = 0, . . . , k − 1, where Lj is the
functional defined by Lj(f) =

∑k
l=j+1 mlf(tl) and L0 := L.

• strongly maximal mass for L if there are polynomials pj ∈ Pos(K)2n such that pj(tl) =
δjl for j, l = 1, . . . , k.

We briefly discuss these concepts. Suppose that μ =
∑k

l=1 mlδtl
∈ ML,K and all

atoms of μ are in K. Let Lj be the K-truncated moment functional defined by Lj(f) =∑k
l=j+1 mlf(tl). Note that L0 := L.
That μ is maximal mass means that the masses mj of all atoms tj coincide with the

maximal masses ρL(tj). By Proposition 13(ii), if μ is strongly maximal mass, then μ is
maximal mass. Further, μ is an weakly maximal measure if and only if m1 is the maximal
mass ρL(t1), m2 is the maximal mass ρL1(t2) etc. It is easily checked that if μ is maximal
mass, it is also weakly maximal mass. The converse is not true as shown in Section 7
below. The reason for introducing the notion of weakly maximal mass measures is that
such measures can be constructed easily by a general and simple procedure. This will be
developed in the next Section.

The next proposition reformulates the preceding results in terms of these properties.

Proposition 15. Suppose that μ =
∑k

l=0 mlδtl
∈ML,K with all atoms in K.

(i) μ is an extreme point of ML,K if and only if t0, . . . , tk satisfy (SP )2n.
(ii) μ is maximal mass, that is, mj = ρL(tj) for j = 0, . . . , k, if and only if (APSP )2n,K
holds for t0, . . . , tk.
(iii) μ is strongly maximal mass, that is, for all atoms tj the infimum in the definition
(7) of ρL(tj) is a minimum, if and only if (PSP )2n,K holds for t0, . . . , tk.

Proof. Proposition 12 yields (i). (ii) follows by comparing Proposition 13(i) and Defini-
tion 14. (iii) follows from the proof of Proposition 13(ii). �
Proposition 16. Let p ∈ Pos(K)2n. Suppose that Z(p) = {t0, . . . , tk}, where t0, . . . , tk ∈
K are pairwise different points, and t0, . . . , tk satisfy (SP )2n. Assume that I is a subset
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of {0, . . . , k} such that μ =
∑

i∈I miδti is an |I|-atomic measure in ML,K. Then μ is
K-determinate and hence maximal mass.

Proof. Let ν be another measure from ML,K. Since p ∈ Pos(K)2n and∫
p dν = L(p) =

∫
p dμ =

∑
i∈I

mip(ti) = 0,

it follows from Proposition 5 that supp ν ⊆ Z(p) = {t0, . . . , tk}. Hence ν is of the form
ν =

∑k
j=0 njδtj for some numbers nj ≥ 0.

Now fix i ∈ {0, . . . , k} and write mi = 0 if i /∈ I. By assumption, t0, . . . , tk satisfy
(SP )2n, so there exists a polynomial q ∈ R

d
2n[x] such that q(tj) = δij for j = 1, . . . , k.

Then we have L(q) =
∫

q dμ = mi and L(q) =
∫

q dν = ni which implies that mi = ni.
This proves that μ = ν, that is, μ is K-determinate. �

Remark. If k ≤ 2n in Proposition 16, then the points t0, . . . , tk satisfy (SP )2n by
Proposition 17(ii) below.

5. Examples and Discussion

Let t0, . . . , tk be pairwise different points of R
d.

First we note that if (SP )2n holds for t0, . . . , tk, it is easily seen that the polynomials
p0, . . . , pk are linearly independent, so that k + 1 ≤ (

2n+d
2n

)
= dim R

d
2n[x].

Further, since tj �= tl, there is a number ijl ∈ {1, . . . , d} such that tjijl
�= tlijl

. Define
the interpolation polynomial

pj(x) =
k∏

l=0,l �=j

xjijl
− tlijl

tjijl
− tlijl

, j = 0, . . . , k.(11)

Then we have pj ∈ R
d[x], k = deg pj and pj(tl) = δjl, j, l = 0, . . . , k. Therefore, if k ≤ 2n,

then pj ∈ R
d
2n[x] and t0, . . . , tk satisfies (SP )2n.

For k ≤ n, it is obvious that p2
j ∈ Pos(K)2n and p2

j(tl) = δjl, j, l = 0, . . . , k. Hence, if
t0, . . . , tk ∈ K and k ≤ n, then t0, . . . , tk obey (PSP )2n,K. Instead of p2

j we could have
also taken the polynomials

qj(x) =
k∏

l=0,l �=j

‖x− tl‖2
‖tj − tl‖2 , j = 0, . . . , k.(12)

The following proposition summarizes the preceding discussion.

Proposition 17. Suppose that μ =
∑k

l=0 mlδtl
is k + 1-atomic.

(i) If (SP )2n is satisfied for t0, . . . , tk, then k + 1 ≤ (
d+2n
2n

)
.

(ii) If k ≤ 2n, then (SP )2n holds for t0, . . . , tk.
(iii) If k ≤ n and t0, . . . , tk ∈ K, then t0, . . . , tk obey (PSP )2n,K.

We now develop a number of simple examples.

Example 18. Let d = 2 and t0 = (0, 0), t1 = (1, 0), t2 = (0, 1), t3 = (1, 1). Then the
polynomials

p0 = (1− x1)(1− x2), p1 = x1(1 − x1), p2 = x1(1− x2), p3 = x1x2

satisfy pj(tl) = δjl for j, l = 0, . . . , 3, that is, the points t0, . . . , t3 obey (SP )2. Hence
the 4-atomic measure μ :=

∑3
j=0 δtj is an extreme point of the set MLμ,K for any set K

containing t0, . . . , t3.
Let K be a rectangle containing the points t0, . . . , t3. It is not difficult to verify that

there is a 3-atomic measure ν ∈ MLμ,K. In particular, μ is not determinate.
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Example 19. (Points on a line)
Suppose that t0, . . . , tk are pairwise different points lying on a line in R

d. Upon a linear
transformation we can assume that this line is the x1-axis, so that tj = (tj1, 0, . . . , 0) for
j = 0, . . . , k. Fix j and suppose that pj ∈ R

d[x] satisfies pj(tl) = 0 for all l �= j. Then
pj(x1, 0, . . . , 0) has at least k pairwise different zeros tl1, l �= j. Hence deg pj ≥ k. On
the other hand, the polynomials

pj(x) :=
k∏

l=0,l �=j

(x1 − tl1)(tj1 − tl1)−1

satisfy pj(tl) = δjl for j, l = 0, . . . , k and deg pj = k. That is, (SP )2n holds for t0, . . . , tk
if and only if k ≤ 2n.

Let [a, b] be an interval which contains all numbers tj1 and suppose that K contains a
neighbourhood of the set {(y, 0, . . . , 0); y ∈ [a, b]}. If p ∈ Pos(K) and p(y0, 0, . . . , 0) = 0
for some y0 ∈ [a, b], then y0 is a zero of even order. From this fact it follows easily that the
points t0, . . . , tk obey (PSP )2n,K if and only if k ≤ n. Therefore, by Proposition 15(iii),
if k ≤ n, each k+1-atomic measure μ =

∑k
l=0 mlδtl

∈ MLμ,K is strongly maximal mass.

Example 20. Let d = n = 1 and K = [0, 1]. Set t0 = 0, t1 = 1
2 , t2 = 1 and define

L(f) =
∑2

j=0 f(tj), f ∈ R2[x]. That is, μ =
∑2

j=0 mjδtj , where m0 = m1 = m2=1, is in
ML,K. One easily checks that the 2-atomic measure μ0 = 6

5δ0 + 9
5δ 5

6
is also in ML,K,

so that ρL(0) = 6
5 �= m0 by the preceding example.

The next example gives a simple recipe for constructing sequences of points satisfying
(PSP )2n.

Example 21. (Products of squares of polynomials of degree one)
First we take points t0, . . . , td of R

d and assume that these points are not contained in
a (d− 1)-dimensional affine subspace. This assumption is equivalent to the requirement
that for any (and then for all) i ∈ {0, . . . , d} the d vectors tl − ti, l �= i, do not lie in a
(d− 1)-dimensional linear subspace of R

d.
Now fix j ∈ {0, . . . , d}. Take an index i ∈ {0, . . . , d} such that i �= j. We choose a

vector aj ∈ R
d, aj �= 0, which is orthogonal to the d−1 vectors tl− ti, where l = 0, . . . , d,

l �= j, i. That is, aj ·(tl − ti) = 0, where · is the usual scalar product of R
d. Further, aj is

not orthogonal to tj− ti, since otherwise the vectors tl− ti, l �= i, would be contained in a
(d−1)-dimensional linear subspace. Upon scaling aj we can assume that aj ·(tj−ti) = 1.
Putting

qj(x) := (aj · x− aj · ti)2,
we have qj(t1) = δjl for j, l = 0, . . . , d by construction. This means that the points
t0, . . . , td satisfy (PSP )2.

The predecing construction can be extended to the case (PSP )2n for n ∈ N. Let
us take 1 + dn points t0, . . . , tdn of R

d and assume the following: For each index j ∈
{0, . . . , dn} there is a decomposition of the remaining indices into a disjoint union of
subsets Nj1, . . . , Njn such that each set Njl consists of d numbers and the points tj and
all ti for i ∈ Njl do not lie in a (d−1)-dimensional affine subspace of R

d. Then the points
t0, . . . , tdn obey (PSP )2n. Therefore, if t0, . . . , tk ∈ K and μ =

∑k
l=0 mlδtl

∈ ML,K,
then μ is strongly maximal mass by Proposition 15(iii).

For notational simplicity we only construct a polynomial q0 ∈ Pos(Rd)2n such that
q0(t0) = 1 and q0(tl) = 0 for l = 1, . . . , dn. Interchanging indices we get the family
q0, . . . , qdn of polynomials needed for (PSP )2n. By assumption the set {1, . . . , dn} is
a disjoint union of sets N01, . . . , N0n such that {t0, ti; i ∈ N0l} is not contained in a
(d − 1)-dimensional affine subspace for each l = 1, . . . , n. Therefore, as shown above,
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there is a polynomial pl ∈ Pos(Rd)2 such that pl(t0) = 1 and pl(ti) = 0 for i ∈ N0l. Then
q0 := p1 . . . pn has the required properties.

6. Constructing weakly maximal mass measures

Let L be a truncated K-moment functional on R
d
2n[x] such that L �= 0 and suppose

that K is compact. The following construction was proposed in [17].
By Proposition 4, there is an atomic measure in ML,K such that all atoms are in

K. Hence ρL(t) > 0 for some t ∈ K. Set L0 := L. We choose a point t1 ∈ K such
that ρL(t1) > 0 and define L1(f) = L(f) − ρL(t1)f(x1), f ∈ R

d
2n[x]. If L1 = 0, we are

done and set Lj = 0 for all j ∈ N, j ≥ 2. Suppose that L1 �= 0. Since L1(f) ≥ 0 for
f ∈ Pos(K)2n by definition and the set K is compact, L1 is also a nonzero truncated
K-moment functional by Proposition 3(i) and we can apply the preceding construction
with L replaced by L1. Continuing this procedure, we obtain functionals Lm and points
tj ∈ K such that ρLj−1(tj) > 0 and

Lm(f) = L(f)−
m∑

j=1

ρLj−1(tj)f(tj), f ∈ R
d
2n[x].

Lemma 22. There is a number k ∈ {1, . . . ,dim R
d
2n[x]} such that Lk+1 = 0.

Proof. We modify the reasoning used in the proof of Proposition 13(iii). Put m :=
dim R

d
2n[x] and assume to the contrary that Lm+1 �= 0. We define linear functionals

Fj , j = 1, . . . , m + 1, on R
d
2n[x] by Fj = ltj . Since m + 1 > dim R

d
2n[x], the functionals

F1, . . . , Fm+1 must be linearly dependent. Henc there is are numbers λ1, . . . , λk ∈ R

such that at least one is nonzero and
∑m+1

j=1 λjFj = 0. Let s be the smallest index for
which λs �= 0. By definition ms := ρLs−1(ts). Therefore, by Proposition 13(i), there is a
sequence (pr)r∈N of polynomials pr ∈ Pos(K)2n such that pr(ts) = 1 and limr pr(tl) = 0
for l > s. Applying the functionals to pr and passing to the limit r →∞, we obtain

0 = lim
r→∞

m+1∑
j=1

λjFj(pr) =
m+1∑
j=s

λj

(
lim

r→∞ pr(tj)
)

=
m+1∑
j=s

λjδjs = λs,

This contradicts the choice of s and proves the assertion. �

Lemma 22 shows that this procedure terminates. More precisely, there is an index k
such that 1 ≤ k ≤ dim R

d
2n[x] and Lk+1 = 0. Then we have

L(f) =
k∑

l=1

ρLl−1(tl)f(tl),(13)

Lj(f) =
k∑

l=j+1

ρLl−1(tl)f(tl),(14)

for j = 1, . . . , k and f ∈ R
d
2n[x]. Equation (13) means that the k-atomic measure

μ :=
k∑

j=1

mjδtj , where mj := ρLj−1(tj), j = 1, . . . , k,

belongs to ML,K. The functionals Lj in equation (14) are precisely the corresponding
linear functionals Lj associated with L as in Definition 14. Therefore, from the pre-
ceding construction it is clear that the k-atomic measure μ is weakly maximal mass for
L according to Definition 14. Moreover, μ can be chosen such that an arbitary point
t1 ∈ K satisfying ρL(t1) > 0 appears as an atom of μ. In particular we have proved the
following.
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Theorem 23. Suppose that K is compact. Let t1 ∈ K be such that ρL(t1)>0. (In
particular, then t1 ∈ V+(L,K).) Then for any truncated K-moment functional L �= 0
the preceding construction leads to a k-atomic measure μ =

∑k
j=1 mjδti ∈ ML,K, k ≤

dim R
d
2n[x], such that all atoms of μ are in K and μ is weakly maximal mass.

Proof of Proposition 8:
Proposition 5 implies that suppμ ⊆ V+(L,K) ∩ K for any measure μ ∈ ML,K. If K
is compact, Theorem 23 applies and shows that each point of V+(L,K) ∩ K is in the
support of some measure μ ∈ML,K. �

As an application of the preceding construction we derive the following result.

Theorem 24. Let L be a truncated K-moment functional and t0 ∈ K. Suppose that K
is compact and ρL(t0) > 0. Then the infimum in (7) is a minimum.

Proof. Since K is compact and ρL(t0) > 0 by assumption, it follows from Theorem 23
that there exists a k-atomic measure μ ∈ ML,K such that t0 is an atom of μ. Let p be the
seminorm on the vector space R

d
2n[x] given by p(f) :=

∫ |f | dμ, f ∈ R
d
2n[x], and let E be

the quotient space R
d
2n[x]/ ker(p) equipped with quotient norm defined by p̃(f̃) := p(f),

where f̃ denotes the equivalence class f̃ = f + ker(p). Further, let C̃ be the cone of
elements f̃ , f ∈ Pos(K)2n. Since L(ker(p)) = {0} by the definition of p and f(t0) = 0 for
f ∈ ker(p) because t0 is an atom of μ, it follows that L̃(f̃) := L(f) and L̃0(f̃) := f(t0)
are well-defined (!) linear functionals on E. By these definitions we have

inf {L(f) : f ∈ Pos(K)2n, f(t0) = 1} = inf {L̃(f̃) : f ∈ Nt0},(15)

where Nt0 := {f̃ ∈ C̃ : L̃0(f̃) = 1}. In addition let us consider the set

Mt0 = {f̃ ∈ C̃ : L̃(f̃) ≤ L̃(1̃), L̃0(f̃) = 1}.
Since 1̃ ∈ Nt0 , we have inf {L̃(f̃) : f ∈ Nt0}) = inf {L̃(f̃) : f ∈ Mt0}. Obviously,
1̃ ∈Mt0 , so Mt0 is not empty. For f̃ ∈Mt0 , we can choose f ∈ Pos(K)2n, so that

p̃(f̃) = p(f) =
∫
|f | dμ =

∫
f dμ = L(f) = L̃(f̃) ≤ L̃(1̃) = L(1),

that is, the set Mt0 is bounded in the normed space (E, p̃). Since each linear functional
on the finite dimensional space (E, p̃) is continuous, Mt0 is closed and hence compact in
(E, p̃). Therefore, L̃ has a minimum on the compact set Mt0 and hence on the set Nt0 .
By (15) this means that the infimum in (7) is attained. �

Combining Theorem 24 and Proposition 11(ii) yields the following.

Corollary 25. Suppose that K is compact. For t ∈ K, we have ρL(t) > 0 if and only if
t ∈ V+(L,K).

Example 26. Let us consider Robinson’s polynomial [20]

R(x1, x2) = x6
1 + x6

2 + 1− x4
1(x

2
2 + 1)− x4

2(x
2
1 + 1)− x2

1 − x2
2 + 3x2

1x
2
2.

It is well-known (see [7]) that R has precisely eight zeros in R
2 which are given by

Z(R) = {t1 = (−1,−1), t2 = (0,−1), t3 = (1,−1), t4 = (−1, 1),

t5 = (0, 1), t6 = (1, 1), t7 = (−1, 0), t8 = (1, 0)}.
It is straightforward to check that the polynomials

q1 = (x1 − 1)x1x2(x2 − 1), q2 = (x2
1 − 1)x2(x2 − 1), q3 = x1(x1 + 1)x2(x2 − 1),

q4 = x1(x1 − 1)x2(x2 + 1), q5 = (x2
1 − 1)x2(x2 + 1), q6 = x1(x1 + 1)x2(x2 + 1),

q7 = (x1 − 1)(x2
2 − 1), q8 = (x1 + 1)(x2

2 − 1)
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of R
2
6[x1, x2] satisfy qj(tl) = 0 for j �= l and qj(tj) �= 0. This implies that the points

t1, . . . , t8 satisfy (SP )6.
Let t0 ∈ R

2\Z(p) and choose a compact subset K which contains t0, . . . , t8. Define
L(f) =

∑8
j=0 f(tj) for f ∈ R

2
6[x1, x2]. Then μ :=

∑8
j=0 δtj ∈ ML,K. Since R(tj) = δj0,

we have ρL(t0) = 1. Then μ1 =
∑8

l=1 δtl
is a representing measure for the functional

L1 = L− lt0 . Since the points t1, . . . , t8 form the zero set of R and obey (SP )6, it follows
(by arguing as in the proof of Proposition 16) that L1 is determinate. Therefore, μ1 =∑8

l=1 δtl
is maximal mass. Hence μ =

∑8
j=0 δtj is a weakly maximal mass representation

of the functional L according to the preceding construction.

7. An Example

The example constructed below shows that the procedure from the preceding Section
gives only weakly maximal mass measures but not maximal mass measures. (This
example has been used in [17] in a different context.) In particular this proves that there
exist weakly maximal mass measures that are not maximal mass. In order to keep the
beauty of Robinson’s sextic and its zero set we prefer to work on the real projective plane
P

2(R) (see the discussion at the end of Section 2) and use the projective counter-parts
of Proposition 13(iii) and Theorem 24.

We now consider the homogeneous Robinson polynomial [20]

R(x0, x1, x2) = x2
0 + x6

1 + x6
2 − x4

0(x
2
1 + x2

2)− x4
1(x

2
0 + x2

2)− x4
2(x

2
0 + x2

1) + 3x2
0x

2
1x

2
2.

It is well-known that R̂(x0, x1, x2) ≥ 0 for all (x0, x1, x2) ∈ P
2(R) and that the projective

zero set of R (see e.g. [7]) and so of R̂ consists of ten projective zeros

Z(R) = {t1 = (1,−1,−1), t2 = (1, 0,−1), t3 = (1, 1,−1), t4 = (1,−1, 1), t5 = (1, 0, 1),

t6 = (1, 1, 1), t7 = (1,−1, 0), t8 = (1, 1, 0), t9 = (0, 1, 1), t10 = (0,−1, 1)}.
First we note that the points t1, . . . , t10 satisfy (SP )6. Indeed, the polynomials

q1 = x2
0(x0 − x1)x1x2(x0 − x2), q2 = x2

0(x
2
0 − x2

1)x2(x0 − x2),

q3 = x2
0x1(x0 + x1)x2(x0 − x2), q4 = x2

0x1(x0 − x1)x2(x0 + x2),

q5 = x2
0(x

2
0 − x2

1)x2(x0 + x2), q6 = x2
0x1(x0 + x1)x2(x0 + x2),

q7 = x2
0(x0 − x1)(x2

0 − x2
2), q8 = x2

0(x0 + x1)(x2
0 − x2

2),

q9 = (x2
0 − x2

1)(x
2
0 − x2

2)(x1 − x2)2, q10 = (x2
0 − x2

1)(x
2
0 − x2

2)(x1 + x2)2

belong to R
2
6[x0] and satisfy q̂j(tl) = 0 for j �= l and q̂j(tj) �= 0. This implies that the

points t1, . . . , t10 satisfy (SP )6.
Set K = P

2(R) and g0(t) := (t20 + t21 + t22)
3. Then, by (5), we have f(t) = f̂(t)g0(t)

for f ∈ R
2
6[x0] and t ∈ R

3. Now take a point t0 ∈ R
3 such that R(t0) �= 0. Setting

mj = g0(tj) we define a inear functional L by

L(f̂) =
10∑

j=0

mj f̂(tj) ≡
10∑

j=0

f(tj) , f ∈ R
2
6[x0].

Then p := g0(t0)R(t0)−1R satisfies p̂(tj) = δj0, so ρL(t0) = m0 by the projective version
of Proposition 13(ii). Then μ1 =

∑10
j=1 mjδtj is a representing measure for the linear

functional L1 = L −m0lt0 . Since the points t1, . . . , t10 form the zero set of R and obey
(SP )6, it follows (as in the proof of Proposition 16) that L1 is determinate. Hence
μ1 =

∑10
j=1 mjδtj is maximal mass, so that μ =

∑10
j=0 mjδtj is a weakly maximal

mass representing measure on P
2(R) for the functional L.
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Now we set t0 = (1, 0, 0) and prove that μ =
∑10

j=0 mjδtj is not maximal mass. For this
it suffices to show that ρL(t5) > m5, where t5 = (1, 0, 1). It is obvious that ρL(t5) ≥ m5.
Assume to the contrary that ρL(t5) = m5. Then, by the projective variant of Theorem
24, the infimum is attained in (7), so there exists a polynomial p ∈ R

2
6[x0] such that

p̂(x0, x1, x2) ≥ 0 on P
2(R), p̂(t5) = 1 and p̂(tl) = 0 for l = 0, . . . , 10, l �= 5. This implies

that p(x0, x1, x2) ≥ 0 on R
3, p(t5) = m5 and p(tl) = 0 for l �= 5. Put

q(x0, x1, x2) := p(x0, x1, x2) + p(x0,−x1, x2) + p(−x0, x1,−x2) + p(−x0,−x1,−x2).

Since the polynomial q and the zero set of p are invariant under the mappings
(x0, x1, x2) → (x0,−x1, x2) and (x0, x1, x2) → (−x0, x1,−x2), q is of the form q =
q0 + x0x2q1, where q0 ∈ R

2
6[x0] and q1 ∈ R

2
4[x0] are even in each variable, and q has the

zeros

t0 = (1, 0, 0), t2 = (1, 0,−1), t3 = (1, 1,−1), t6 = (1, 1, 1), t8 = (1, 1, 0), t9 = (0, 1, 1).

Further, we have q(1, 0, 1) = 4m5 and q(x0, x1, x2) ≥ 0 on R
3. The latter implies that

q and all partial derivatives of q vanish at the zeros t0, t2, t3, t6, t8, t9. This leads to a
number of linear equations which will determine q up to a constant factor. In fact, we
prove that these equations imply that q = m5q̃, where is

q̃ := − x2
1(x

2
1 − x2

2)
2 + 2x0x2(x2

1 − x2
2)(x

2
1 − x2

0)(16)

+ x2
0x

2
1(−x2

0 + 2x2
1 − x2

2) + x2
0x

2
2(x

2
0 − 2x2

1 + x2
2).

Let us write

q0 = ax6
0 + bx6

1 + cx6
2 + dx4

0x
2
1 + ex4

0x
2
2 + fx4

1x
2
0 + gx4

1x
2
2 + hx4

2x
2
0 + kx4

2x
2
1 + lx2

0x
2
1x

2
2,

x0x2q1 = Ax5
0x2 + Bx3

0x
2
1x2 + Cx3

0x
3
2 + Dx0x

2
1x

3
2 + Ex0x

4
1x2 + Fx0x

5
2.

From q(0, 0, 1) = 0 and ∂q
∂x0

(0, 0, 1) = 0 we obtain c = 0 and F = 0. Since c = 0,

q(0, 1, 1) = b + c + g + k = 0, and
∂q

∂x2
(0, 1, 1) = 6c + 2g + 4k = 0,

we obtain b = k and g = −2k. That is, we have

cx6
2 + bx6

1 + gx4
1x

2
2 + kx4

2x
2
1 = kx2

1(x
2
1 − x2

2)
2.(17)

Now ∂q
∂x0

(0, 1, 1) = D + E + F = 0 gives D = −E. Further,

q(1, 1, 1)− q(1, 1,−1) = 2(A + B + C + D + E + F ) = 0,

so that A + B + C = 0,
∂q

∂x0
(1, 1, 1)− ∂q

∂x0
(1, 1,−1) = 2D + 2E + 6B + 6C + 10A = 0,

so that A = 0 and B = −C, and
∂q

∂x1
(1, 1, 1)− ∂q

∂x1
(1, 1,−1) = 4B + 4D + 8E = 0.

Since D + E = 0, we get B = −E. The preceding results imply that

x0x2q1 = −Bx0x2(x2
1 − x2

2)(x
2
1 − x2

0).(18)

Further, we have

(19)
q(1, 1, 1) + q(1, 1,−1) = 2(a + b + c + d + e + f + g + h + k + l) = 0,

q(1, 1, 0) = a + b + d + f = 0.

Since c = 0, this yields e + g + h + k + l = 0. Combined with
∂q

∂x2
(1, 1, 1) +

∂q

∂x2
(1, 1,−1)) = 12c + 8h + 8k + 4e + 4g + 4l = 0
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and c = 0, the latter equality gives h = −k and e + g + l = 0. From the equations

(20)

∂q

∂x1
(1, 1, 0) = 6b + 2d + 4f = 0,

∂q

∂x1
(1, 1, 1) +

∂q

∂x1
(1, 1,−1)) = 12b + 8f + 8g + 4d + 4k + 4l = 0

it follows that 2g + k + l = 0. Therefore, l = 3k, since g = −2k as shown above. Hence
e + g + l = 0 leads to e = −k. Since c = A = F = 0 as noted above, we obtain

∂q

∂x0
(1, 0,−1)− 3q(1, 0,−1) = 3a + e− h = 0.

Since e = −k = h, a = 0. Combining (19) and (20) by using that a = 0 we obtain
2b + f = 0, so that f = −2b = −2k. Therefore, by (19), d = −a− b− f = k. Thus

(21)
ax6

0 + dx4
0x

2
1 + ex4

0x
2
2 + fx4

1x
2
0 + hx4

2x
2
0 + lx2

0x
2
1x

2
2

= −k[x2
0x

2
1(−x2

0 + 2x2
1 − x2

2) + x2
0x

2
2(x

2
0 − 2x2

1 + x2
2)].

Moreover, the equality

0 = q(1, 0,−1) = a + c + e + h− C − F = −2k − C

yields C = −2k, so that B = 2k. Therefore it follows from (17), (18), and (21) that
q = −kq̃. Since q̃(1, 0, 1) = 4 by (16) and q(1, 0, 1) = 4m5 by assumption, we get
k = −m5, that is, q = m5q̃.

By (16) we have q(0, x1, 0) = m5q̃(0, x1, 0) = −m5x
6
1. Since q ≥ 0 on R

3 by as-
sumption, this is the desired contraction. This completes the proof of the fact that
ρL(t5) > m5. Hence the representing measure μ =

∑10
j=0 mjδtj of the functional L is

not maximal mass.
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