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ON FOURIER ALGEBRA OF A LOCALLY COMPACT
HYPERGROUP

A. A. KALYUZHNYI, G. B. PODKOLZIN, AND YU. A. CHAPOVSKY

The paper is dedicated to the 90th birthday anniversary of Yu. M. Berezansky

Abstract. We give sufficient conditions for the Fourier and the Fourier-Stieltjes
spaces of a locally compact hypergroup to be Banach algebras.

1. Introduction

The Fourier and the Fourier-Stieltjes algebras for a general locally compact group have
been considered in [1]. Following a similar procedure for a locally compact hypergroup,
one can introduce Banach spaces that are not Banach algebras in general. This has been
done in [2], where the author has also considered the Fourier spaces of some commutative
hypergroups, proving that the Fourier spaces are Banach algebras with respect to a
certain norm. In [3], the author has introduced a special class of hypergroups, he calls
ultraspherical, that also possess the property of the Fourier space being a Banach algebra.

In this paper, we give a sufficient condition for the Fourier space to be a Banach algebra
in the case of a general locally compact hypergroup. The double coset hypergroup of a
locally compact group satisfies this condition.

2. Preliminary

2.1. Main notations and definitions. Let Q be a Hausdorff locally compact topolog-
ical space. The set of all compact subsets of Q is denoted by K.

The linear space of complex-valued continuous functions on Q is denoted by � (Q),
the subspace of � (Q) of bounded functions (resp., functions approaching zero at infinity)
is denoted by �b(Q) (resp., �0(Q)). The space �b(Q) is endowed with the norm ‖f‖∞ =
supt∈Q |f(t)|. By � (Q), we denote the linear subspace of �0(Q) of functions with
compact supports. By 1Q, we denote the constant function, 1Q(s) = 1 for all s ∈ Q.

A measure is understood as a complex Radon measure [4] on Q. The linear space of
complex Radon measures, over the field C of complex numbers, is denoted by � (Q).
For a measure μ, its norm is ‖μ‖1 = supf∈� (Q), ‖f‖∞≤1 |μ(f)|. The subspace of � (Q)
of bounded (resp., compactly supported) measures is denoted by�b(Q) (resp.,�c(Q)).
The subset of � (Q) of nonnegative (resp., probability) measures is denoted by �+(Q)
(resp., �p(Q)). For a measure μ ∈�+(Q), its support is denoted by S(μ). The set of
measures μ such that S(μ) is compact is denoted by �c(Q). If μ ∈ �+(Q) ∩�b(Q),
then ‖μ‖1 = μ(1Q). The Dirac measure at a point s ∈ Q is denoted by εs. The
integral of f ∈ � (F ) with respect to a measure μ ∈� is denoted by μ(f) = 〈 f, μ 〉 =∫

F 〈 f, εt 〉 dμ(t) =
∫

F f(t) dμ(t).

2000 Mathematics Subject Classification. Primary: 20N20; Secondary: 22D15, 22D35.
Key words and phrases. Fourier algebra, Fourier-Stieltjes algebra, DJS-hypergroup, locally compact

hypergroup, dual algebras, Pontryagin duality.

246



ON FOURIER ALGEBRA OF A LOCALLY COMPACT HYPERGROUP 247

A (locally compact) hypergroup is a locally compact Hausdorff topological space Q
such that�b(Q) is endowed with a multiplication, called composition and denoted by ∗,
satisfying the following conditions [5]:

(H1) (�b(Q), ∗) is an algebra over C.
(H2) For all s, t ∈ Q, εs ∗ εt ∈�p(Q) and S(εs ∗ εt) is compact.
(H3) The mapping (s, t) �→ εs ∗ εt of Q×Q into �p(Q) is continuous with respect to

the weak topology σ(�p(Q),�0(Q)) on �p(Q).
(H4) The mapping (s, t) �→ S(εs ∗ εt) of Q × Q into K is continuous with respect to

the Michael topology on K.
(H5) There exists a (necessarily unique) element e ∈ Q such that εe ∗ εs = εs ∗ εe = εs

for all s ∈ Q.
(H6) There exists a (necessarily unique) homeomorphism s �→ š of Q into Q such that

ˇ̌s = s and (εs ∗ εt)̌ = εť ∗ εš, where μ̌ denotes the image of the measure μ with
respect to homeomorphism s �→ š, i.e. 〈 f, μ̌ 〉 = 〈 f̌ , μ 〉, where f̌(s) = f(š).

(H7) For s, t ∈ Q, e ∈ S(εs ∗ εt) if and only if s = ť.
For a measure μ ∈ � (Q) and h ∈ � (Q), the measure hμ is defined by 〈 f, hμ 〉 =

〈 fh, μ 〉 for f ∈� ; it is clear that hμ ∈�c(Q) for h ∈� (Q).
Everywhere in the sequel, we assume that the hypergroup possesses a left invariant

measure, denoted by m, which means that

εs ∗m = m

for all s ∈ Q.
For μ ∈ �b(Q), denote by μ� the bounded measure defined by μ�(f) = μ̌(f̄) for

f ∈ � (Q). It follows from the axiom (H6) of a hypergroup that � is an involution on
the algebra (�b(Q), ∗). It is well known [5] that (�b(Q), ∗, �) is an involutive Banach
algebra.

For C∗-algebras A and B, the tensor product A⊗B is the completion of the algebraic
tensor product A�B with respect to the min-C∗-norm on A�B,

‖
n∑

i=1

ai ⊗ bi‖min = sup
πA∈ΣA,πB∈ΣB

∥∥∥
n∑

i=1

πA(ai)⊗ πB(bi)
∥∥∥,

where ΣA (resp., ΣB) is the set of all representations of A (resp., B) [6].
For a C∗-algebra A, the C∗-algebra of multipliers of A is denoted by M(A), see [7] for

details.

2.2. Fourier–Stieltjes and Fourier spaces.

Definition 1. Let Q be a locally compact hypergroup. Let� be a Hilbert space, B(� )
the C∗-algebra of all linear bounded operators on � , and π : �b(Q) → B(� ) a linear
map. Then the pair (� , π) is called a representation of �b(Q) if π is an involutive
homomorphism of the involutive Banach algebra (�b(Q), ∗, �) into B(� ).

A left invariant measure m on Q gives rise to an inner product
( · ∣∣ · ) and norms

‖ · ‖1 and ‖ · ‖2 on � (Q) as usual,
(
f

∣∣ g
)

=
∫

Q

f(t)g(t) dm(t),

‖f‖1 =
( |f | ∣∣ 1Q

)
, ‖f‖2 =

(
f

∣∣ f
)1/2

.

The completions of � (Q) with respect to the norms ‖ · ‖1 and ‖ · ‖2 are denoted by
L1(Q) and L2(Q), respectively.

We denote L1(m) = {fm : f ∈ L1(Q)}. It is well known that (L1(m), ∗, �) is a closed
two-sided ideal of (�b(Q), ∗, �).
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Identifying each f ∈ L1(Q) with the measure fm ∈ L1(m) yields an involutive Banach
algebra structure on L1(Q), denoted by (L1(Q), ∗, �), where

(f ∗ g)(s) =
∫

Q

f(t)〈 g, ε̌t ∗ εt 〉 dm(t),(1)

f�(s) = Δ−1(s)f(š),(2)

where Δ : Q → R is the modular function, m ∗ εs = Δ(s)m, see [5]. Also denote by

(3) f †(s) = f(š).

A function f ∈ �b is called positive definite if 〈 f, μ� ∗ μ 〉 ≥ 0 for all μ ∈�c(Q). It is
well known that the function f ∗ f †, f ∈� , is positive definite, see [5].

Each representation (� , π) of (�b(Q), ∗, �), being restricted to (L1(m), ∗, �), defines
a representation of the involutive Banach algebra (L1(Q), ∗, �), which we also denote by
(� , π).

A representation (� , π) of (�b(Q), ∗, �) is called a representation of Q if it gives rise
to a nondegenerate representation of (L1(m), ∗, �), hence of (L1(Q), ∗, �). The set of all
representation of Q will be denoted by Σ.

The left regular representation (L2(Q), λ) of (L1(Q), ∗, �) is defined by

λ(f). ξ = f ∗ ξ

for f ∈ L1(Q) and ξ ∈ L2(Q).
Each representation (� , π) of Q induces a seminorm ‖ · ‖π on (L1(Q), ∗, �), defined by

‖f‖π = ‖π(f)‖B(� ), f ∈ L1(Q), where ‖ · ‖B(� ) denotes the operator norm in B(� ).
For a subset Σ′ ⊂ Σ, we define a seminorm ‖ · ‖Σ′ on (L1(Q), ∗, �) by

‖f‖Σ′ = sup
π∈Σ′

‖f‖π, f ∈ L1(Q).

Definition 2. The enveloping C∗-algebra of (L1(Q), ∗, �) with respect to the norm ‖ · ‖Σ
(resp., ‖ · ‖λ) will be called the full (resp., the reduced) C∗-algebra of the hypergroup Q.
The full (resp., the reduced) C∗-algebra of Q will be denoted by C∗(Q) (resp., C∗r (Q)).

Definition 3. The Banach space dual to the full C∗-algebra C∗(Q) is called the Fourier-
Stieltjes space and will be denoted by �(Q).

The Banach space dual to the reduced C∗-algebra C∗r (Q) will be denoted by �λ(Q).

It is known, see [2], that for each α ∈ �(Q) (resp., α ∈ �λ(Q)) there is a representa-
tion (� , π) of Q (resp., weakly contained in (L2(Q), λ)) and two vectors ξ, η ∈� such
that the function a ∈ �b(Q) given by

(4) a(s) =
(
π(εs). ξ

∣∣ η
)
�

, s ∈ Q,

defines the functional α, namely,

(5) α(f) =
∫

Q

a(s)f(s) dm(s), f ∈ L1(Q),

and

(6) ‖α‖ = sup
f∈L1(Q), ‖f‖Σ′=1

∣∣∫
Q

a(s)f(s) dm(s)
∣∣ = ‖ξ‖� ‖η‖� ,

where Σ′ = Σ (resp., Σ′ = λ).
Henceforth, we identify �(Q) (resp., �λ(Q)) with a linear space of functions a ∈

�b(Q) given by (4), where (� , π) is a representation of Q (resp., a representation weakly
contained in (L2(Q), λ)), and endow this space with the norm

(7) ‖a‖◦ = sup
μ∈L1(m), ‖μ‖Σ′=1

|μ(a)|,
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where Σ′ = Σ (resp, Σ′ = λ).

Definition 4. The closure of the subspace spanned by the elements f ∗ f †, f ∈ � (Q),
is in �λ(Q) is called the Fourier space of Q and is denoted by � (Q).

3. Main results

Definition 5. For an involutive algebra (B, ∗, �) and a C∗-algebra (A, ·, ∗), a linear map
ϕ : B → A will be called positive, if ϕ(b� ∗ b) is a nonnegative element of the C∗-algebra
A for any b ∈ B, and is called completely positive, if the linear map id⊗ϕ : Mn(C)⊗B →
Mn(C) ⊗ A is positive for all n ∈ N, where Mn(C) denotes the C∗-algebra of complex
(n× n)-matrices.

It follows from [6] that a map ϕ : B → A is completely positive if and only if, for any
n ∈ N, bi ∈ B and ai ∈ A, i = 1, . . . , n, we have

(8)
n∑

i,j=1

a∗jϕ(b�
j ∗ bi)ai ≥ 0.

For a hypergroup Q, consider the product hypergroup Q×Q [5], and let δ : �b(Q)→
�b(Q×Q) denote a linear extension of the map defined by

(9) δ(εs) = εs ⊗ εs, s ∈ Q,

that is, for μ ∈�b(Q) and F ∈ � (Q×Q),

(10) 〈 δ(μ), F 〉 =
∫

Q

F (s, s) dμ(s).

Let (�i, πi), i = 1, 2, be representations of Q. For μ̃ ∈ �b(Q × Q), we define
(π1 ⊗ π2)(μ̃) ∈ B(�1 ⊗�2) by

(π1 ⊗ π2)(μ̃) =
∫

π1(εs)⊗ π2(εt) dμ̃(s, t).

Proposition 1. Let G be a locally compact group, H a compact subgroup of G, and
Q = H \G/H. Denote by λQ the left regular representation of L1(m) on L2(Q), and let
δ be defined by (9). Then the linear map

(λQ ⊗ λQ) ◦ δ : L1(m) → B(L2(Q)⊗ L2(Q))

is completely positive.

Proof. Let s ∈ Q = H \ G/H . Denote by mH the Haar measure on H . Then εs =
mH ∗ εg ∗mH for some g ∈ G. Thus

δ(εs) = εs ⊗ εs = (mH ∗ εg ∗mH)⊗ (mH ∗ εg ∗mH).

Denoting L2(G, mG) simply by L2(G), where mG is a left invariant measure on G, we
will identify L2(Q) with a closed subspace of L2(G),

L2(Q) = {f ∈ L2(G) : mH ∗ f = f ∗mH = f}.
With such an identification,(

f
∣∣ g

)
L2(Q)

=
(
f

∣∣ g
)
L2(G)

, f, g ∈ L2(Q).

For any μ ∈ L1(m), let μ̃ ∈ L1(mG) be such that μ = mH ∗ μ̃ ∗mH . Then we have

λQ(μ). f = λG(mH ∗ μ̃ ∗mH). f = λG(mH ∗ μ̃). f, f ∈ L2(Q),

where λG is the left regular representation of L1(mG) on L2(G).
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Thus, for any μ ∈ L1(m) and μ̃ ∈ L1(mG) such that μ = mH ∗ μ̃ ∗mH , we have

(λQ ⊗ λQ) ◦ δ(μ) =
∫

G

(λG ⊗ λG) ◦ δ(mH ∗ εg ∗mH) dμ̃(g)

=
∫

G

λG(mH ∗ εg ∗mH)⊗ λG(mH ∗ εg ∗mH) dμ̃(g)

=
∫

G

λG(mH ∗ εg)⊗ λG(mH ∗ εg) dμ̃(g).(11)

To prove the proposition, using (8), it is sufficient to show that
n∑

i,j=1

(
A∗j · (λQ ⊗ λQ) ◦ δ(μ�

j ∗ μi) ·Ai. F
∣∣ F

)
L2(Q)⊗L2(Q)

=
n∑

i,j=1

(
(λQ ⊗ λQ) ◦ δ(μ�

j ∗ μi) · Ai. F
∣∣ Aj . F

)
L2(Q)⊗L2(Q)

≥ 0(12)

for any Ai ∈ B(L2(Q)⊗ L2(Q)), μi ∈ L1(m), F ∈ L2(Q)⊗ L2(Q), i = 1, . . . , n.
Hence, letting AiF = Fi ∈ L2(Q) ⊗ L2(Q), and μ̃i ∈ L1(mG) such that μi = mH ∗

μ̃i ∗mH , and using (11), we have
n∑

i,j=1

(
(λQ ⊗ λQ) ◦ δ(μ�

j ∗ μi). Fi

∣∣ Fj

)
L2(Q)⊗L2(Q)

=
n∑

i,j=1

∫
G

(
(λG(mH ∗ εg)⊗ λG(mH ∗ εg)). Fi

∣∣ Fj

)
L2(G)⊗L2(G)

d(mH ∗ μ̃�
j ∗mH ∗mH ∗ μ̃i ∗mH)(g).

Let mH ∗ μ̃i ∗mH = fi mG, fi ∈ L1(G), i = 1, . . . , n. Then mh ∗ μ̃�
j ∗mH = f�

j mG

and
mH ∗ μ̃�

j ∗mH ∗mH ∗ μ̃i ∗mH = (f�
j ∗ fi)mG.

Using left invariance of mG and (2) we thus have
n∑

i,j=1

(
(λQ ⊗ λQ) ◦ δ(μ�

j ∗ μi). Fi

∣∣ Fj

)
L2(Q)⊗L2(Q)

=
n∑

i,j=1

∫
G

(
(λG(mH ∗ εg)⊗ λG(mH ∗ εg)). Fi

∣∣ Fj

)
L2(G)⊗L2(G)

· (f�
j ∗ fi)(g) dmG(g)

=
n∑

i,j=1

∫
G2

(
(λG(mH ∗ εg)⊗ λG(mH ∗ εg)). Fi

∣∣ Fj

)
L2(G)⊗L2(G)

· f∗j (p)fi(p−1g) dmG(p)dmG(g)

=
n∑

i,j=1

∫
G2

(
(λG(mH ∗ εpg)⊗ λG(mH ∗ εpg)). Fi

∣∣ Fj

)
L2(G)⊗L2(G)

· f∗j (p)fi(g) dmG(p)dmG(g)

=
n∑

i,j=1

∫
G2

(
(λG(εg)⊗ λG(εg)). Fi

∣∣ (λG(εp−1)⊗ λG(εp−1). Fj

)
L2(G)⊗L2(G)

· f∗j (p)fi(g) dmG(p)dmG(g)0
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=
n∑

i,j=1

∫
G2

(
(λG(εg)⊗ λG(εg)). Fi

∣∣ (λG(εp−1)⊗ λG(εp−1). Fj

)
L2(G)⊗L2(G)

· f j(p
−1)Δ−1

G (p)fi(g) dmG(p)dmG(g)

=
n∑

i,j=1

∫
G2

(
(λG(εg)⊗ λG(εg)). Fi

∣∣ (λG(εp)⊗ λG(εp). Fj

)
L2(G)⊗L2(G)

· f j(p)fi(g) dmG(p)dmG(g)

=
∥∥∥

n∑
i=1

∫
G

fi(g)(λG(εg)⊗ λG(g)) dmG(g). Fi

∥∥∥2

L2(G)⊗L2(G)
≥ 0. �

Theorem 1. Let the map δ defined by (9) be completely positive. Let (�i, πi), i = 1, 2,
be representations of Q. Then we have the following.

(i) There is a representation (� , π) of Q such that

(13)
∥∥(π1 ⊗ π2)(δ(μ))

∥∥
B(�1⊗�2)

≤ ∥∥π(μ)
∥∥

B(� )
, μ ∈�b(Q).

If π1 = π2 = λ and �1 =�2 = L2(Q), then

(14)
∥∥(λ⊗ λ)(δ(μ))

∥∥
B(L2(Q)⊗L2(Q))

≤ ∥∥λ(μ)
∥∥

B(L2(Q))
, μ ∈�b(Q).

(ii) Let ξi, ηi ∈�i be arbitrary vectors in the corresponding spaces, and

ai(s) =
(
πi(εs). ξi

∣∣ ηi

)
�i

, i = 1, 2.

Then there are vectors ξ, η ∈� such that

(15) a1(s)a2(s) =
(
π(εs). ξ

∣∣ η
)
�

.

Proof. The construction of the representation (� , π) uses the Stinespring construc-
tion [8].

Consider the linear space �0 =�b(Q)� (�1 ⊗�2), where � denotes the algebraic
tensor product, and for each μ ∈�b(Q), define a linear operator π0(μ) on�0 by setting

π0(μ). ν ⊗ ṽ = (μ ∗ ν)⊗ ṽ,

where ν ⊗ ṽ ∈�0, with ν ∈�b(Q) and ṽ ∈�1 ⊗�2.
Using δ, introduce a sesquilinear form

( · ∣∣ · )
�0

on �0 defined by

(16)
(
μ⊗ ũ

∣∣ ν ⊗ ṽ
)
�0

=
(
(π1 ⊗ π2)δ(ν� ∗ μ). ũ

∣∣ ṽ
)
�1⊗�2

for μ, ν ∈ �b(Q) and ũ, ṽ ∈ �1 ⊗ �2, and bilinearly extended to �0. Since δ is
completely positive, (

w
∣∣ w

)
�0
≥ 0, w ∈�0,

hence, this sesquilinear form gives rise to a seminorm ‖ · ‖�0 on �0.
If � = {w ∈ �0| ‖w‖�0 = 0}, then π0(μ).� ⊂ � for any μ ∈ �b(Q). If now

� is the completion of �0/� with respect to the norm defined by the sesquilinear
form (16) and π(μ) is the operator on � corresponding to the operator π0(μ), then it
follows from [8] that (� , π) is an involutive representation of�b(Q).

To prove (13), let ũ, ṽ ∈�1 ⊗�2 and μ ∈�b. Then∣∣( (π1 ⊗ π2)(δ(μ)). ũ
∣∣ ṽ

)
�1⊗�2

∣∣ =
∣∣(μ⊗ ũ

∣∣ εe ⊗ ṽ
)
�

∣∣
=

∣∣(π(μ). (εe ⊗ ũ)
∣∣ εe ⊗ ṽ

)
�

∣∣
≤ ∥∥π(μ)

∥∥
B(� )

∥∥εe ⊗ ũ
∥∥
�

∥∥εe ⊗ ṽ
∥∥
�

=
∥∥π(μ)

∥∥
B(� )

∥∥ũ
∥∥
�1⊗�2

∥∥ṽ
∥∥
�1⊗�2

,

which proves (13).
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To prove (14), we identify L2(Q)⊗L2(Q) with L2(Q×Q) with respect to the product
measure m ⊗m. To shorten the notations, we write F (μ1, μ2) instead of 〈F, μ1 ⊗ μ2 〉
for F ∈ L2(Q×Q) and μ1, μ2 ∈�b.

Let F, G ∈ L2(Q×Q), μ ∈�b. Using left invariance of m and the Cauchy inequality,
we have

∣∣∣( (λ ⊗ λ)δ(μ). F
∣∣ G

)
L2(Q×Q)

∣∣∣ =
∣∣∣(

∫
Q

(λ(εu)⊗ λ(εu)). F
∣∣ G

)
L2(Q×Q)

dμ(u)
∣∣∣

=
∣∣∣
∫

Q3
F (ε̌u ∗ εs, ε̌u ∗ εt)G(εs, εt) dm(s)dm(t)dμ(u)

∣∣∣
=

∣∣∣
∫

Q3
F (ε̌u ∗ εs, εt)G(εs, εu ∗ εt) dm(s)dm(t)dμ(u)

∣∣∣
≤

∫
Q2

∣∣∣
∫

Q

F (ε̌u ∗ εs, εt)G(εs, εu ∗ εt) dm(t)
∣∣∣dm(s)dμ(u)

≤
∫

Q2

(∫
Q

∣∣F (ε̌u ∗ εs, εt)
∣∣2 dm(t)

) 1
2

·
(∫

Q

∣∣G(εs, εu ∗ εt)
∣∣2 dm(t)

) 1
2

dm(s)dμ(u).

Denoting

f(s) =
(∫

Q

∣∣F (εs, εt)
∣∣2 dm(t)

) 1
2
,(17)

g(s) =
(∫

Q

∣∣G(εs, εu ∗ εt)
∣∣2 dm(t)

) 1
2

=
(∫

|G(εs, εt)|2 dm(t)
) 1

2
,(18)

where the last equality is due to left invariance of m, we get

(λ(εu). f)(s) =
(∫

Q

∣∣F (ε̌u ∗ εs, εt)
∣∣2 dm(t)

) 1
2
,

hence
∣∣∣( (λ⊗ λ)δ(μ). F

∣∣ G
)

L2(Q×Q)

∣∣∣ ≤
∫

Q2
(λ(εu). f)(s)g(s) dm(s)dμ(u)

=
(
λ(μ). f

∣∣ g
)
L2(Q)

,

where, as it follows from (17) and (18),

‖f‖L2(Q) = ‖F‖L2(Q×Q), ‖g‖L2(Q) = ‖G‖L2(Q×Q).

This finishes the proof of (14).

Let us now prove (ii).
Define ξ0, η0 ∈�0 by

ξ0 = εe ⊗ (ξ1 ⊗ ξ2), η0 = εe ⊗ η1 ⊗ η2.

Then
(
π0(εs). ξ0

∣∣ η0

)
�0

=
(
π0(εs). εe ⊗ (ξ1 ⊗ ξ2)

∣∣ εe ⊗ (η1 ⊗ η2)
)
�0

0
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=
(
εs ⊗ (ξ1 ⊗ ξ2)

∣∣ εe ⊗ (η1 ⊗ η2)
)
�0

=
(
(π1 ⊗ π2)δ(εs). (ξ1 ⊗ ξ2)

∣∣ η1 ⊗ η2

)
�1⊗�2

=
(
(π1(εs)⊗ π2(εs)). (ξ1 ⊗ ξ2)

∣∣ η1 ⊗ η2

)
�1⊗�2

=
(
π1(εs). ξ1

∣∣ η1

)
�1

(
π2(εs). ξ2

∣∣ η2

)
�2

= a1(s)a2(s). �

Proposition 2. Let μ ∈ L1(m), and (�i, πi), i = 1, 2, be representations of Q. Then
(π1 ⊗ π2)(δ(μ)) ∈ M

(
π1(L1(m))⊗ π2(L1(m))

)
.

Proof. Let f, g ∈ L1(Q). Using left invariance of m we have

(π1 ⊗ π2)(δ(fm) ∗ (gm⊗ εe))

= (π1 ⊗ π2)(δ(fm)) · (π1(gm)⊗ I)

=
∫

Q

(
π1(εs)⊗ π2(εs)

)
f(s) dm(s) ·

∫
Q

(π1(εu)⊗ I)g(u) dm(u)

=
∫

Q2

(
π1(εs ∗ εu)⊗ π2(εs)

)
f(s)g(u) dm(s)dm(u)

=
∫

Q2

(
π1(εt)⊗ π2(εs)

)
f(s)〈 g, ε̌s ∗ εt 〉 dm(t)dm(s).

Since the function H defined by H(t, s) = 〈 g, ε̌s ∗ εt 〉f(s) belongs to L1(Q×Q, m⊗m),
for any ε > 0 there is H0 ∈� �� ⊂ L1(Q)� L1(Q) such that ‖H −H0‖1 < ε. Then

∥∥∥
∫

Q2

(
π1(εt)⊗ π2(εs)

)
f(s)〈 g, ε̌s ∗ εt 〉 dm(t)dm(s)

−
∫

Q2

(
π1(εt)⊗ π2(εs)

)
H0(t, s) dm(t)dm(s)

∥∥∥
B(�1⊗�2)

=
∥∥∥
∫

Q2

(
π1(εt)⊗ π2(εs)

)(
H(t, s)−H0(t, s)

)
dm(t)dm(s)

∥∥∥
B(�1⊗�2)

≤ ‖H −H0‖L1(Q×Q) < ε.

Since (π1 ⊗ π2)(H0m⊗m) ∈ π1(L1(m))� π2(L1(m)), we see that

(π1 ⊗ π2)(δ(fm) ∗ (gm⊗ εe)) ∈ π1(L1(Q))⊗ π2(L2(Q)).

Substituting the functions f�, g� ∈ L1(Q) into the above inclusion and taking the invo-
lution, we also get

(π1 ⊗ π2)
(
(gm⊗ εe) ∗ δ(fm)

) ∈ π1(L1(Q))⊗ π2(L2(Q)). �

Corollary 1. Let δ defined by (9) be completely positive. Then the restriction δ �L1(m)

can be extended by continuity to the following maps, still denoted by δ:

δ : C∗(Q)→M(C∗(Q)⊗ C∗(Q)), δ : C∗r (Q) →M(C∗r (Q)⊗ C∗r (Q)).

Proof. The proof follows immediately from Proposition 2 and Theorem 1. �

Proposition 3. Let δ be completely positive, and a1, a2 ∈ �(Q). Then

(19) ‖a1a2‖◦ ≤ ‖a1‖◦‖a2‖◦.
Proof. We keep the notations introduced in the proof of Theorem 1. Let (�1, π1),
(�2, π2) be representations of Q, and ξi, ηi ∈�i, i = 1, 2, be such that

ai(s) =
(
πi(εs). ξi

∣∣ ηi

)
, i = 1, 2.
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Then

‖a1a2‖◦ = sup
μ∈L1(m), ‖μ‖Σ=1

|μ(a1a2)|

= sup
μ∈L1(m), ‖μ‖Σ=1

∣∣∫
Q

a1(s)a2(s) dμ(s)
∣∣

= sup
μ∈L1(m), ‖μ‖Σ=1

∣∣∫
Q

(
π1(εs). ξ1

∣∣ η1

)
�1

(
π2(εs). ξ2

∣∣ η2

)
�2

dμ(s)
∣∣

= sup
μ∈L1(m), ‖μ‖Σ=1

∣∣(μ⊗ ξ1 ⊗ ξ2

∣∣ εe ⊗ η1 ⊗ η2

)
�0

∣∣
= sup

μ∈L1(m), ‖μ‖Σ=1

∣∣(π0(μ). εe ⊗ ξ1 ⊗ ξ2

∣∣ εe ⊗ η1 ⊗ η2

)
�0

∣∣
≤ sup

μ∈L1(m), ‖μ‖Σ=1

‖π0(μ)‖ ‖εe ⊗ ξ1 ⊗ ξ2‖�0 ‖εe ⊗ η1 ⊗ η2‖�0

≤ ‖εe ⊗ ξ1 ⊗ ξ2‖�0 ‖εe ⊗ η1 ⊗ η2‖�0

= ‖ξ1‖�1 ‖ξ2‖�2 ‖η1‖�1 ‖η2‖�2

= ‖a1‖◦ ‖a2‖◦

by (6) and (7). �

Theorem 2. Let Q be a locally compact hypergroup such that δ : �b(Q)→�b(Q×Q)
defined by (10) is completely positive. Then the Fourier-Stieltjes space �(Q) is a Banach
algebra.

Proof. The proof follows directly from Theorem 1 and estimate (19). �

Theorem 3. Let Q be a locally compact hypergroup such that δ : �b(Q)→�b(Q×Q)
defined by (10) is completely positive. Then the Fourier space � (Q) is a Banach algebra.

Proof. Let fi ∈ � (Q), and ai = fi ∗ f †i , i = 1, 2. Then

ai(s) =
∫

Q

fi(t)f̌i(ε̌t ∗ εs) dm(t) =
∫

Q

fi(t)f i(ε̌s ∗ εt) dm(t)

=
(
λ(εs). fi

∣∣ fi

)
L2(Q)

, i = 1, 2,

and

a1(s)a2(s) =
(
λ(εs). f1

∣∣ f1

)
L2(Q)

(
λ(εs). f2

∣∣ f2

)
L2(Q)

=
(
π(εs). ξ

∣∣ ξ
)
�

,

where π and� are as in Theorem 1 and ξ ∈� is an equivalence class of εe⊗f1⊗f2 ∈�0.
This implies that a1a2 is positive definite. It is clear that a1a2 ∈ L2(Q). The same
reasoning as in [9, 13.8.6] applied to the case of a locally compact hypergroup shows that
there is g ∈ L2(Q) such that a1a2 = g ∗ g†. And, since

‖f ∗ g†‖◦ ≤ ‖f‖2 ‖g‖2, f, g ∈ L2(Q),

and � (Q) is dense in L2(Q), we see that a1a2 ∈ � (Q).
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It follows from (14) that

‖a1a2‖◦ = sup
μ∈L1(m),‖μ‖λ=1

|μ(a1a2)|

= sup
μ∈L1(m),‖μ‖λ=1

∣∣∣
∫

Q

(
λ(εs). f1

∣∣ f1

)
L2(Q)

(
λ(εs). f2

∣∣ f2

)
L2(Q)

dμ(s)
∣∣∣

= sup
μ∈L1(m),‖μ‖λ=1

∣∣( (λ⊗ λ)(δ(μ)). (f1 ⊗ f2)
∣∣ f1 ⊗ f2

)
L2(Q)⊗L2(Q)

∣∣
≤ sup

μ∈L1(m),‖μ‖λ=1

‖(λ⊗ λ)(δ(μ))‖B(L2(Q)⊗L2(Q))

(
f1 ⊗ f2

∣∣ f1 ⊗ f2

)
L2(Q)⊗L2(Q)

≤ sup
μ∈L1(m),‖μ‖λ=1

‖μ‖B(L2(Q)) ‖f1‖22 ‖f2‖22

= ‖f1‖22 ‖f2‖22 =

= ‖a1‖◦‖a2‖◦,
prooving that � (Q) is a Banach algebra. �
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