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INVERSE SPECTRAL PROBLEMS FOR JACOBI MATRIX WITH
FINITE PERTURBED PARAMETERS

L. P. NIZHNIK

To 90-th birthday of my Teacher Yurii M. Berezansky

Abstract. For Jacobi matrices with finitely perturbed parameters, we get an ex-
plicit representation of the Weyl function, and solve inverse spectral problems, that
is, we recover Jacobi matrices from spectral data. For the spectral data, we take the
following: the spectral density of the absolutely continuous spectrum, with or without
all the eigenvalues; the numerical parameters of the representation of one component
of the vector-eigenfunction in terms of Chebyshev polynomials. We prove that these
inverse problems have a unique solution, or only a finite number of solutions.

1. Introduction

Presently, the spectral theory of Jacobi matrices is well developed and has various
applications both in mathematics (orthogonal polynomials, moment problem, etc. [1,
2, 20, 33]), and in modern mathematical physics [18, 19, 17, 34]. In the development
of a spectral theory for Jacobi matrices, an important contribution has been made by
Ukrainian mathematicians, — N. I. Ahiezer, Yu. M. Berezansky, M. G. Krein, their pupils
and followers [1, 2, 20, 21, 22]. In particular, Yu. M. Berezansky in the monograph
[2] has outlined a spectral theory of Jacobi matrices in terms of the general spectral
theory of self-adjoint operators, which he has greatly elaborated. He has also started
to investigate block Jacobi matrices [2, 8, 9], proposed and implemented the method
of inverse spectral problem of integration of various nonlinear evolutionary chains, such
as Toda chains [3, 4, 5, 6, 7, 10, 11, 12]. New and most unexpected applications of
methods and results of the spectral theory of Jacobi matrices are still being discovered.
For example, they have been widely used recently in the spectral theory of infinite graphs
[14, 23, 24, 26, 27, 31, 36].

Inverse problems play an important role in the spectral theory of Jacobi matrices.
An effective procedure of recovering a Jacobi matrix from its spectral measure is well-
known [1, 2]. However, as compared to the research on the inverse spectral problem and
the inverse scattering problem for the Schrödinger equation [25, 28, 29, 30, 32, 36], the
inverse problems that appear in various statements for Jacobi matrices, which make a
difference analog, are much less investigated and start recently to attract more interest.
For instance, a development of the soliton theory has inspired the research on the inverse
scattering problem for various difference equations [13, 15, 16, 18, 17, 34].

The purpose of this paper is to investigate inverse spectral problems for Jacobi matrices
with finitely perturbed parameters, that is, the Jacobi matrices which have only a finite
number of elements that differ from the corresponding elements of a canonical Jacobi
matrix J0 (it has a zero main diagonal and units on two secondary diagonals). It is well-
known [33] that the spectra of such Jacobi matrices consist of the absolutely continuous
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component, which coincides with the interval [−2, 2], and not more than a finite number
of real eigenvalues lying outside the interval [−2, 2]. All spectral characteristics of such
a Jacobi matrix can be explicitly represented in terms of parameters of this matrix. In
particular, below an explicit expression for the Weyl function (Stieltjes transform of the
spectral measure) is given. This allows to show that only a finite number of Jacobi
matrices from a considered class can have the same density f of the spectral measure
of the absolutely continuous spectrum and solve the inverse problem, given the spectral
density f and eigenvalues.

2. Spectral analysis of Jacobi matrix

Semi-infinite symmetric tridiagonal matrix of the form

(1) J =

⎛⎜⎜⎜⎝
b1 a1 0 0 0 . . .
a1 b2 a2 0 0 . . .
0 a2 b3 a3 0 . . .
...

...
...

...
...

. . .

⎞⎟⎟⎟⎠ ,

where ak > 0, bk are real numbers, is called a Jacobi matrix, and the numbers (ak, bk)∞k=1

are called its parameters.

Proposition 1. For every Jacobi matrix J of the form (1) there is a vector-valued func-
tion ϕ(z) = (ϕ1(z), . . . , ϕj(z), . . . ) such that all its components ϕj(z) are polynomials in z
of degree j−1 and it is an eigenfunction of J , that is, Jϕ(z) = zϕ(z). The eigenfunction
ϕ(z) is uniquely determined by the Jacobi matrix J and the number ϕ1. If two conse-
quent polynomials ϕs(z) and ϕs+1(z) are given, then all the parameters a1, a2, . . . , as;
b1, b2, . . . , bs are uniquely determined.

Spectral Theorem ([2]). Every Jacobi matrix J of the form (1) gives rise to a self-
adjoint operator J on the Hilbert space l2(N) (not necessarily unique) such that there
exists a measure dσ(λ) (which is the spectral measure of J) on its spectrum σ(J) with
respect to which the components {ϕj(λ)}∞j=1 of the vector-valued eigenfunction ϕ(z) make
a complete system of orthogonal polynomials in the space L2 = L2 (σ(J), dσ(λ)); they are
defined on σ(J) and are square integrable with respect to dσ(λ). In other words, the
set of vector-valued functions ϕ(λ), λ ∈ σ(J) forms a complete system of eigenfunctions
(regular and generalized) of the operator J. we also have the following representations
with respect to these eigen functions.

A direct Fourier transform F defined by

x̃(λ) = Fx =
∞∑

k=1

xkϕk(λ), λ ∈ σ(J), x = (x1, . . . , xk, . . . ) ∈ l2(N), x̃ ∈ L2,

is an isometric operator from the space l2 onto the space L2.
An inverse Fourier transform defined by

x = F−1x̃ =
∫

ϕ(λ)x̃(λ) dσ(λ),

is an isometric operator from the space L2 onto the space l2.
The Parseval identity holds true,

(x, y)l2 = (x̃, ỹ)L2 , x, y ∈ l2.

Remark 1. If the we take the vector-valued eigenfunction ϕ(z) of the Jacobi matrix J such
that ϕ1 = 1, then the spectral measure dσ(λ) is a probability measure (

∫
dσ(λ) = 1). The

Jacobi matrix J is uniquely determined by the measure dσ(λ) via an effective procedure
(see, for instance, [2, p. 525]).
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Remark 2. If the parameters (ak, bk) of the Jacobi matrix rapidly stabilize for k → ∞,
that is,

∑∞
k=1

(|ak − 1|+ |bk|2
)

< ∞, then the spectrum of the operator J consists of
absolutely continuous part, which is the interval [−2, 2], and multiplicity one eigenvalues
{λk} lying outside the interval [−2, 2] with the only possible limit points λ = ±2 (see [33,
Th. 1.10.1]).

Under the assumptions of Remark 2, the product
∏∞

k=1 ak exists, and the eigenfunction
ϕ(z) of the Jacobi matrix may be conveniently “normalized” with the condition ϕ1 =∏∞

k=1 ak. Then the coefficients of the highest degree λj−1 of the polynomials ϕj(z)
converge to 1 for j →∞. In this case, we will denote the spectral measure by dρ(λ) and
it may be represented in the following form:

(2) dρ(λ) = f(λ)χ(λ; [−2, 2]) dλ +

[∑
k

ρkδ(λ− λk)

]
dλ.

Here χ(λ; [−2, 2]) is the characteristic function of the interval [−2, 2], f(λ) is a spectral
density of the absolutely continuous spectrum, ρkδ(λ − λk) dλ is an atomic measure
with mass ρk at the point λk that is an eigenvalue of the matrix J , and δ is the Dirac
delta-function. Note that the spectral measure dσ(λ) with the normalization ϕ0 = 1 is
connected to dρ(λ) by the relation dρ(λ) = (

∏∞
k=1 ak)−2

dσ(λ).
The main subject of research in this paper are the Jacobi matrices with finitely per-

turbed parameters. Such matrices have trivial parameters (ak, bk) for k > r, that is,
ak = 1, bk = 0 for k > r. The least integer r satisfying this condition is called the rank
of the perturbation. The unperturbed Jacobi matrix is J0, which has ak = 1 and bk = 0
for all k.

It is well-known that all spectral properties of Jacobi matrices with finitely perturbed
parameters are explicitly expressed in terms of the parameters (ak, bk) of the Jacobi ma-
trix [33]. For instance, the spectrum of the canonical matrix J0 is absolutely continuous
and dσ(λ) = dρ(λ) = f0(λ) dλ = 1

2π

√
4− λ2χ(λ; [−2, 2]) dλ.

Components ϕj(z) of the vector-valued eigenfunction ϕ(z) of the matrix J0 have the
form ϕj(z) = Pj−1(z), where the polynomials Pj(z) have degree j and can be expressed
in terms of the second kind Chebyshev polynomials Uj(z) = sin((j+1) arccos z)

sin(arccos z) as Pj(z) =
Uj( z

2 ). The polynomials Pj(z) satisfy the recurrence relations

(3) Pj+1(z) = zPj(z)− Pj−1(z)

and the initial conditions P−1 = 0, P0 = 1, P1(z) = z.

Proposition 2. The components ϕj(z) of the vector-valued eigenfunction ϕ(λ) of a
Jacobi matrix J with finitely perturbed parameters of rank r can be represented, for j > 2r,
by

(4) ϕj(z) =
m∑

k=0

γkPj−1−k(z),

where Pj(z) are Chebyshev polynomials from relation (3), m ≤ 2r, and the real numbers
γ0 = 1, γ1, . . . , γm �= 0 are uniquely determined by the parameters (ak, bk) of J .

Proof. Since J is a Jacobi matrix with finitely perturbed parameters of rank r, for j > r
its parameters are trivial and therefore ϕj(z) satisfy the equation ϕj+1(z) = zϕj(z) −
aj−1ϕj−1(z).

Due to (3), a solution of this equation can be written as

(5) ϕj(z) = ϕr+1(z)Pj−1−r(z)− arϕr(z)Pj−2−r(z),

and, because multiplication of the polynomials Pn(z) by z is equivalent to a shift of
the index n, zPn(z) = Pn+1(z) + Pn−1(z), the representation (5) can be written in the
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form of (4). The parameters γk are uniquely determined by the polynomials ϕr(z) and
ϕr+1(z), which are uniquely determined by the parameters (ak, bk) of the Jacobi matrix
according to Proposition 1. �

Definition 1. The parameters γ0 = 1, γ1, . . . , γm �= 0 from Proposition 2 are called
spectral parameters of the Jacobi matrix J with finitely perturbed parameters of rank r.

Proposition 3. For the set of numbers γ0 = 1, γ1, . . . , γm �= 0 to be spectral parame-
ters of a Jacobi matrix J with finitely perturbed parameters (ak, bk), it is necessary and
sufficient that all zeros of the two polynomials ϕm(z), ϕm+1(z) constructed according to
formula (4), be real, simple, and alternating.

Proof. It is well-known that, in this case, ϕm(z) and ϕm+1(z) are components of an
eigenfunction of a certain Jacobi matrix. But according to Proposition 1, this matrix
can be uniquely restored from the pair of polynomials ϕm(z) and ϕm+1(z). �

Theorem 1. The spectral measure dρ(λ) of the form (2) for a Jacobi matrix with finitely
perturbed parameters of rank r has the density

(6) f(λ) =
1
2π

√
4− λ2

P (λ)
,

where the polynomial P (z) has degree no more than 2r and is expressed in terms of the
components ϕj(z) of the eigenfunction of the Jacobi matrix as

(7)
P (z) = det

∣∣∣∣ ϕj(z) ϕj+1(z)
ϕj−1(z) ϕj(z)

∣∣∣∣ = ϕ2
j(z)− ϕj−1(z)ϕj+1(z)

= ϕ2
j(z) + ϕ2

j−1(z)− zϕj−1(z)ϕj(z)

for j > r + 1. The eigenvalues λk = μk + μ−1
k are zeros of the polynomial P (z) if the

absolute values of the numbers

(8) μk =
ϕj(λk)

ϕj−1(λk)

are less than 1. The numbers ρk are determined by the derivative P ′(z) as

(9) ρk =

∣∣∣√λ2
k − 4

∣∣∣
|P ′(λk)| .

Proof. Since, for j > r + 1, the components ϕj(z) satisfy the difference equation

(10) ϕj−1(z)− zϕj(z) + ϕj+1(z) = 0,

and P (λ) = ϕ2
j (z) − ϕj−1(z)ϕj+1(z) is a Wronskian of solutions of this equation, the

polynomial P (z) does not depend on j > r+1. If λk is an eigenvalue, then ϕ(λk) ∈ l2(N).
This is possible only if |λk| > 2 and components of the vector ϕ(λk), for j > r, have
the form ϕj(λk) = cμj

k, where μk + μ−1
k = λk. Therefore, ϕj(λk)

ϕj−1(λk) = ϕj+1(λk)
ϕj(λk) = μk,

which is equivalent to λk being a zero of the polynomial P (z). In addition, the condition
ϕ(λk) ∈ l2 is equivalent to the condition |μk| < 1.

Suppose we have a vector x = (x1, . . . , xj , . . . ) ∈ l2(N). Then its Fourier transform is
x̃(λ) ∈ L2(dρ(λ)). Because the system of Chebyshev polynomials {Pj(λ)}∞j=0 is ortho-
normal in the space L2 ([−2, 2], f0(λ)dλ), and due to the representation (4) for ϕj(λ), we
have, for j ≥ 2r, that

(11)
∫ 2

−2

x̃(λ)Pj(λ)f0(λ) dλ =
m∑

ν=0

γνxj+1+ν .
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If the vector x is orthogonal to all eigenvectors of the Jacobi matrix J , then the inverse
Fourier transform has the form

(12) xk =
∫ ∞

−∞
x̃(λ)ϕk(λ)f(λ) dλ.

If we substitute (12) into (11) we have, due to (4) and (14), that

(13)
∫ 2

−2

x̃(λ)Pj(λ)f0(λ) dλ =
∫ 2

−2

x̃(λ)Pj(λ)P (λ)f(λ) dλ,

where P (λ) is the spectral polynomial. From (13), considering that x̃(λ) runs over
the space L2 ([−2, 2], f(λ) dλ) and j ≥ 2m is an arbitrary number, and since f0(λ) =
1
2π

√
4− λ2, we conclude that (6) holds. Property (9) will be proved below in the proof

of Theorem 3. �

Remark 3. The condition |μk| < 1, where μk = ϕj(λk)
ϕj−1(λk) , which singles out an eigenvalue

λk = μk + μ−1
k from all real zeros of the spectral polynomial P (z), can be replaced by

the condition

sign
[
1
2
z − ϕj(λk)

ϕj−1(λk)

]∣∣∣∣
z=λk

= signλk.

Definition 2. A polynomial Q(z) of degree less than the degree of the spectral poly-
nomial P (z) is called an eigenvalue indicator of the Jacobi matrix J , if on all real zeros
λ̃k = μ̃k + μ̃−1

k , |λ̃k| > 2 of the spectral polynomial the equality |Q(λ̃k)| = 1
2 |μ̃k − μ̃−1

k |
holds, and λ̃k is an eigenvalue of J if and only if signQ(λ̃k) = sign λ̃k.

The existence of indicator polynomials will be proved in Theorem 3.

Definition 3. The polynomial P (z) in Theorem 1 is called a spectral polynomial of the
Jacobi matrix J with finitely perturbed parameters of rank r. It defines the spectral
density of the absolutely continuous spectrum of the matrix J , and all eigenvalues {λk}
of J are zeros of P (z). The spectral measure dρ(λ) is defined by the formulas (2), (6),
(9).

We establish the following important connection between the spectral polynomial P (z)
and the spectral parameters.

Theorem 2. Let P (z) be a spectral polynomial, and let γ0 = 1, γ1, . . . , γm �= 0, be the
spectral parameters of a Jacobi matrix with finitely perturbed parameters. Then for every
complex number z,

(14) P (z + z−1) = γ(z)γ(z−1),

where γ(z) =
∑m

k=0 γkzk.

Proof. Due to formulas (5), we have for j > r that

(15) ϕj(z) = ϕr+1(z)Pj−1−r(z)− arϕr(z)Pj−2−r(z).

Let us consider a linear operator S on the Chebyshev polynomials Pj(z), which acts by
the rule SPj(z) = Pj+1(z). Then S−1Pj(z) = Pj−1(z), and zPj(z) = (S + S−1)Pj(z).

Equality (15) can be written in the form

(16) ϕj(z) =
[
ϕr+1(S + S−1)− ϕr(S + S−1)S−1

]
S−1−rPj(z).

Comparing (16) and (4) we obtain that

(17) γ(S−1) =
[
ϕr+1(S + S−1)− ϕr(S + S−1)S−1

]
S−1−r.

Then γ(S−1)γ(S) = P (S + S−1) due to (7). �
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Example 1. Consider all spectral characteristics of a Jacobi matrix Ja
b with finitely per-

turbed parameters (a, b) of rank 1. Then
a) the vector-eigenfunction ϕ(z) of the matrix Ja

b is

ϕ(z) = (a, λ− b, P2(λ)− bP1(λ) − (a2 − 1)P0(λ), . . . );

b) the spectral parameters are

γ0 = 1, γ1 = −b, γ2 = 1− a2;

c) the spectral polynomial is given by

P (z) = a4 + b2 + b(a2 − 2)z − (a2 − 1)z2;

d) the eigenvalue indicator is

Q(z) =
1
2
z +

b− z

a2
.

The eigenfunctions ϕ(λ) can be considered as a solution of the scattering problem for
the semi-infinite chain given by the difference equation Jϕ(λ) = λϕ(λ) with the boundary
condition ϕ0(λ) = 0. Here for k →∞ taking λ = 2 cos θ we have

(18) ϕk(λ) = eikθA− e−ikθB,

where A is the amplitude of the incident wave and B is the amplitude of the scattered
wave. The ratio of these amplitudes defines the scattering operator S(λ): B = SA. The
explicit representation (4) of the eigenfunctions ϕ(λ) yields

(*) S =
γ(eiθ)
γ(e−iθ)

,

where the polynomial γ(z) =
∑m

k=0 γkzk is explicitly expressed in terms of the spectral
parameters γ1, . . . , γm of the matrix J .

Note that, for difference equations on the axis, there are several papers on direct
and inverse scattering problem, which are applying the method of the inverse scattering
problem of integration of the nonlinear evolution Toda chains (see [13, 15, 16, 17] and
references therein). Here the factorization properties of the scattering matrix play an
important role in an effective solution of the inverse problem.

3. Weyl function

Suppose dσ(λ) is a spectral measure of a Jacobi matrix J , then its Stieltjes transform,

(19) m(z) =
∫ +∞

−∞

dσ(λ)
λ − z

,

is called the Weyl function of the Jacobi matrix J . There is a well-known Stieltjes
inversion formula for the recovery of the measure dσ(λ) from the function m(z).

In the case of the canonical Jacobi matrix J0, the spectral measure has the form
dσ(λ) = dρ(λ) = 1

2π

√
λ2 − 4χ(λ; [−2, 2]) dλ, and the Weyl function m0(z) can be written

as

(20) m0(z) =
1
2

(√
z2 − 4− z

)
,

where for the square root branch of the analytic function is selected in such a way that
m0(z)→ 0 for |z| → ∞. For instance, if z is real, |z| > 2, then sign

√
z2 − 4 = sign z, and

for z → ∞ we have
√

z2 − 4 = z + O( 1
|z|). In what follows, the branch of the function√

z2 − 4 is always chosen in this way. Therefore,

(21) Im
(√

z2 − 4
∣∣∣
z=λ+i0

−
√

z2 − 4
∣∣∣
z=λ−i0

)
=

{
2|√4− λ2|, |λ| < 2,

0, |λ| ≥ 0.
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Further on we assume that the measure dσ(λ) in (19) has the form (2). In this case,
{λk} are poles of the function m(z), and the numbers ρk are determined as residues of
m(z) in the points λk,

(22) ρk = lim
z→λk

[m(z)(λk − z)] .

The density ρ(λ) on interval (−2, 2) is determined by the jump of Imm(z) as z crosses
the value of λ ∈ (−2, 2),

(23) ρ(λ) =
1
2π

Im [m(λ + i0)−m(λ− i0)] .

Theorem 3. Let J be a Jacobi matrix with finitely perturbed parameters. Then its Weyl
function can be represented as

(24) m(z) =
Q(z) + 1

2

√
z2 − 4

P (z)
=

(
∏∞

k=1 ak)−4
P̂ (z)

Q(z)− 1
2

√
z2 − 4

,

where P (z) is a spectral polynomial of the matrix J , P̂ (z) is a spectral polynomial of once-
stripped matrix J , that is, the Jacobi matrix Ĵ which is obtained from J if one removes
the first row and the first column, the polynomial Q(z) is an indicator of the eigenvalues
λk of the matrix J , which means that the real zero λ̂ of the spectral polynomial P (z) is
an eigenvalue if and only if signQ(λ̂) = sign λ̂.

Before we prove Theorem 3, let us consider the following important corollaries of this
Theorem.

Corollary 1. Relations (21), (23), (24) imply that the spectral density satisfies (6).

Corollary 2. If λ = μ + μ−1 > 2 is a zero of the spectral polynomial P (λ), then

(25) |Q(λ)| = 1
2
|
√

λ2 − 4| = 1
2
|μ− μ−1|.

Corollary 3. Due to (22), (25) we have (9) for ρk from (2),

(26) ρk =
signλk|

√
λ2

k − 4|
−P ′(λk)

.

Therefore the spectral density (2) is uniquely determined by the spectral polynomial
P (z) and the set of all eigenvalues.

Corollary 4. Since all ρk > 0, (26) implies that two consecutive zeros of the spectral
polynomial can be eigenvalues if and only if they have opposite signs. Therefore, we
conclude that there are no more than r + 1 eigenvalues, where r is the finite perturbation
rank of the parameters of the Jacobi matrix.

Proof of Theorem 3. A Jacobi matrix with finitely perturbed parameters can be obtained
from the canonical Jacobi matrix J0 by consecutively, step by step, adding the parameters
(ak, bk), starting with (ar, br), then (ar−1, br−1), and so on ending with (a1, b1). If one
adds (a, b) to the parameters of the Jacobi matrix Ĵ from the beginning, then its Weyl
function m̂(z) is connected with the Weyl function m(z) of the resulting matrix J by the
following fractional linear transformation (see [33, Th. 3.2.4]):

(27) m(z) =
[
(b − z)A−2 − m̂(z)

]−1
A−4,

where A =
∏

ak is the product of all the parameters ak of the matrix J . Note that
in (19) we use the normalization ϕ1 =

∏
ak for the Jacobi matrices we consider, that

is, we choose dρ(λ) of the form (2) as a spectral measure. Since for the matrix J0 the
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Weyl function m0(z) = − 1
2z + 1

2

√
z2 − 4 is well-known, by induction one can show that

equality (24) holds for certain polynomials Q, P , P̂ satisfying the equalities

Q(z) = −Q̂(z) + (b− z)A−2P̂ (z),

P (z) = (b− z)2P̂ (z)− 2(b− z)A2Q̂(z) + a4 ̂̂P (z),

Q2(z) + 1− 1
4
z2 = A−4P (z)P̂ (z),

(28)

Note that P (z) is a spectral polynomial of J due to Theorem 1 and Corollary 1. In

(28) P̂ and ̂̂
P are spectral polynomials for the one–stripped and two–stripped matrix J .

Representation (24) implies that for real zeros λ of the polynomial P (z) the equality
|Q(z)| = 1

2 |
√

λ2 − 4| holds, and that λ is an eigenvalue of the Jacobi matrix J if and only
if signQ(λ) = signλ. Thus, the polynomial Q(z) is an eigenvalue indicator according to
Definition 2 and the representations (26) and (9) hold. �
Problem. Find conditions for the Jacobi matrix J from Remark 2 such that its Weyl
function satisfies the equality (24), where P (z), P̂ (z), Q(z) are analytic entire functions.

4. Inverse spectral problems

Inverse Spectral Problem 1. Recover a Jacobi matrix with finitely perturbed para-
meters from its spectral parameters γ0 = 1, γ1, . . . , γm �= 0.

Proposition 4. Proposition 1 and formula (4) imply that Inverse Spectral Problem 1
has a unique solution and also provide an algorithm of solving this problem.

Inverse Spectral Problem 2. Recover a Jacobi matrix J with finitely perturbed para-
meters from a given polynomial a(z) if it is a component of the eigenfunction ϕ(z).

Proposition 5. Inverse Spectral Problem 2 has a unique solution if the degree n of the
given polynomial a(z) is more that twice the rank r of the finite perturbation.

Proof. If we write the polynomial a(z) as
∑m

k=0 γkPn−k(z), we obtain the spectral pa-
rameters {γk}m

k=0. Therefore Inverse Spectral Problem 2 is reduced to Inverse Spectral
Problem 1. �
Inverse Spectral Problem 3. Recover a Jacobi matrix J with finitely perturbed para-
meters from its spectral polynomial P (z).

Theorem 4. Inverse Spectral Problem 3 can have only a finite number of solutions.

Proof. The factorization (14) of a given polynomial P (z) can have only a finite number
of polynomial solutions γ(z). This can be easily shown by expanding P (z) and γ(z) into
factors which are linear with respect to z. Then every left-hand factor which is linear
with respect to z+z−1 coincides with a certain right-hand factor of (14) that is also linear
with respect to z + z−1. However, there can only be a finite number of such matches.
Now the assertion of the theorem follows from Proposition 4. �
Inverse Spectral Problem 4. Recover a Jacobi matrix J with finitely perturbed pa-
rameters by the density f(λ) of its absolutely continuous spectrum and the set of all
eigenvalues {λk}.
Theorem 5. The Inverse Spectral Problem 4 has a unique solution.

Proof. Due to (6), f(λ) uniquely determines the spectral polynomial P (λ). The spectral
measure dρ(λ) of the form (2) is uniquely defined by f(λ), the set of all eigenvalues {λk},
and the set {ρk} of densities of atomic measures from (26). The probability spectral
measure dσ(λ) = A2dρ(λ) is uniquely defined by dρ(λ). But due to Remark 1, the
measure dσ(λ) uniquely defines the Jacobi matrix J . �
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Remark 4. Theorem 5 implies Theorem 4 because the spectral polynomial P (λ) has a
finite number of zeros and, therefore, there is a finite number of different sets of these
zeros that can be eigenvalues of J .

Remark 5. In Example 1 we give the spectral characteristics of the Jacobi matrix Ja
b

with finitely perturbed parameters (a, b) of rank 1. From the explicit form of the spectral
polynomial P (λ) we conclude that, if a �= √

2, then the parameters a and b are uniquely
determined by P (λ) and, therefore, by the density f(λ) of the absolutely continuous
spectrum. If a =

√
2, then P (λ) = 1 + b2 − λ2 and there are only two Jacobi matrices

J
√

2
b and J

√
2

−b with the same density of the absolutely continuous spectrum.

Hypothesis. The general Jacobi matrix J with finitely perturbed parameters is uniquely
determined by the density of its absolutely continuous spectrum. In other words, for a
matrix J with parameters (ak, bk)r

k=1 for every ε > 0 there is a Jacobi matrix J(ε) with
finitely perturbed parameters (aε

k, bε
k)r

k=1 such that
∑r

k=1 (|ak − aε
k|+ |bk − bε

k|) < ε and
J(ε) is uniquely determined by the density of its absolutely continuous spectrum.
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