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ON A CLASS OF GENERALIZED STIELTJES CONTINUED
FRACTIONS

VLADIMIR DERKACH AND IVAN KOVALYOV

To Yu. M. Berezanskii with great respect and admiration

Abstract. With each sequence of real numbers s = {sj}∞j=0 two kinds of continued

fractions are associated, — the so-called P -fraction and a generalized Stieltjes fraction
that, in the case when s = {sj}∞j=0 is a sequence of moments of a probability measure

on �+, coincide with the J-fraction and the Stieltjes fraction, respectively. A subclass
Hreg of regular sequences is specified for which explicit formulas connecting these
two continued fractions are found. For s ∈ Hreg the Darboux transformation of
the corresponding generalized Jacobi matrix is calculated in terms of the generalized
Stieltjes fraction.

1. Introduction

Let H0 be the class of sequences s = {sj}∞j=0 of real numbers sj = sj , such that the
Hankel matrices Sn = (si+j)n−1

i,j=0 are nonnegative for all n ∈ N. Denote

(1.1) Dn = det Sn (n ∈ N).

As is known [1], for every sequence s = {sj}∞j=0 ∈ H0 there exists a nonnegative
measure dσ on R, such that

(1.2)
∫

R

tjdσ(t) = sj , j ∈ Z+ := N ∪ {0}.
By Hamburger-Nevanlinna theorem the Stieltjes transformation f of the measure dσ
admits the asymptotic expansion

(1.3) (f(z) :=)
∫

R

dσ(t)
t− z

= −s0

z
− s1

z2
− s2

z3
− · · · (z→̂∞),

where z→̂∞ means that z tends to ∞ nontangentially, that is inside the sector ε <
arg z < π − ε for some ε > 0.

Assume that supp σ is contained in a finite interval I and the moment problem (1.2)
is nondegenerate, i.e.,

(1.4) Dn > 0 for all n ∈ N.

Then the function f(z) can be expanded into an infinite J-fraction,

(1.5) f(z) =
∞
K
0

( −bj

z − cj

)
:= − b0

z − c0 − b1

z − c1 − b2

z − c2 − . . .
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with cj = cj , bj > 0 for all j ∈ Z+, b0 = 1 and by Markov theorem [2] the convergents
fn(z) of this J-fraction converge to f(z) locally uniformly in C \ I.

If, in addition, supp σ is contained in the positive half-line R+, then

(1.6) D(1)
n := det(si+j+1)n−1

i,j=0 > 0 for all n ∈ Z+

and the function f(z) can be also expanded into a Stieltjes fraction (S-fraction)

(1.7) f(z) = − 1

zm1 − 1

l1 − 1
zm2 − . . .

with mj > 0, lj > 0 for all j ∈ N. The fraction (1.7) is connected with a system of
two difference equations of the first order which describe oscillations of a Stieltjes string
with masses mj concentrated on a massless thread with distances lj between masses
mj and mj+1 (j ∈ N), see [24] or [1, Appendix]. As is known, cf. [25, Section 28],
the 2n-th convergent of the S-fraction (1.7) coincides with the n-th convergent of the
J-fraction (1.7) and can be represented as a ratio

(1.8) fn(z) = −Qn(z)
Pn(z)

(n ∈ N)

of two polynomials Qn(z) and Pn(z) of degrees n−1 and n, respectively. The polynomials
Pn(z) and Qn(z) are called polynomials of the first kind and the second kind, respectively,
and can be found as solutions of the three-term difference equation

(1.9) bnyn−1(z) + (cn − z)yn(z) + yn+1(z) = 0 (n ∈ Z+),

subject to the initial conditions

(1.10) P−1(z) ≡ 0, P0(z) ≡ 1 and Q−1(z) ≡ − 1
b0

, Q0(z) ≡ 0.

Let J be a monic Jacobi matrix associated with the three-term recurrence relation (1.9)
and let J[m,n] (m, n ∈ N, m ≤ n) be a shortened monic Jacobi matrix

(1.11) J =

⎛
⎜⎜⎜⎜⎝

c0 1
b1 c1 1

b2 c2
. . .

. . . . . .

⎞
⎟⎟⎟⎟⎠ , J[m,n] =

⎛
⎜⎜⎜⎝

cm 1
bm+1 cm+1 1

. . .
. . . 1
bn cn

⎞
⎟⎟⎟⎠ .

Then the polynomials Pn(z) and Qn(z) can be calculated by (see [3, Section 7.1.2])

(1.12) Pn(z) = det (zIn − J[0,n−1]), Qn(z) = det (zIn−1 − J[1,n−1]), n ∈ N.

Another formula for Pn(z) can be written in terms of the sequence s

(1.13) Pn(z) =
1

Dn

∣∣∣∣∣∣∣∣∣

s0 . . . sn−1 sn

...
. . .

...
sn−1 . . . s2n−2 s2n−1

1 . . . zn−1 zn

∣∣∣∣∣∣∣∣∣
, n ∈ N.

It follows from (1.13) that the condition (1.6) can be rewritten as

(1.14) (−1)nPn(0) =
D

(1)
n

Dn
> 0 for all n ∈ Z+.

In the present paper we consider the general class H of real sequences s = {sj}∞j=0,
i.e., sequences s with real sj . Denote by Hκ (κ ∈ Z+) a subclass of sequences s ∈ H,
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such that the number ν−(Sn) of negative eigenvalues of Sn counting multiplicities does
not exceed κ and coincides with κ for n large enough.

Clearly, the determinants Dn = detSn (n ∈ N) may vanish. An index n ∈ N is called
a normal index of the sequence s = {sj}∞j=0, if Dn �= 0. The set of all normal indices of
s = {sj}∞j=0 is denoted by N (s). Let (0 <)n1 < n2 < · · · be the set of all normal indices
of the moment sequence s, i.e.,

(1.15) Dnj �= 0 (j = 1, 2, . . .) and Di = 0 for all i �= nj .

With each sequence s ∈ H we associate the so-called P -fraction

(1.16)
∞
K
0

( −bj

aj(z)

)
:= − b0

a0(z)− b1

a1(z)− b2

a2(z)− . . .

,

where bj �= 0 are real numbers and aj are monic polynomials of degree kj = nj+1 − nj

(j ∈ Z+, n0 = 0), see Theorem 2.1. Fractions of the form (1.16) were introduced by A.
Magnus in [21] and are called P-fractions, see also [22]. In the case when s ∈ Hκ for
some κ ∈ N such construction was presented in [8].

The j-th convergent fj(z) of the P -fraction (1.16) is a rational function of degree nj ,
which can be represented as

(1.17) fj(z) = −Qnj(z)
Pnj (z)

(j ∈ N),

where Pnj (z) is a monic polynomial of degree nj . The polynomials Pnj (z) and Qnj (z)
are solutions of the three-term recurrence relation

(1.18) uj+1(z)− aj(z)uj(z) + bjuj−1(z) = 0, j ∈ Z+

subject to the initial conditions

(1.19) u−1(z) ≡ 0, u0(z) ≡ 1 and u−1(z) ≡ −1, u0(z) ≡ 0 respectively.

As was shown in [8] the polynomials Pnj (z) and Qnj (z) can be found by formulas analo-
gous to (1.12), where J is a generalized Jacobi matrix, associated with the sequences bj ,
aj (j ∈ Z+) via (2.20)–(2.22).

With each sequence s ∈ H we associate also a generalized S-fraction

(1.20) − 1

zm1(z)− 1

l1(z)− 1
zm2(z)− . . .

,

where mj(z) and lj(z) are real polynomials (j ∈ N), see Theorem 3.1. In the case when
s = {sj}∞j=0 ∈ Hκ and {sj+1}∞j=0 ∈ H0 for some κ ∈ N such a continuous fraction with
constant polynomials lj(z) ≡ lj was constructed in [19] and the case when s ∈ Hκ and
{sj+1}∞j=0 ∈ Hk for some k, κ ∈ N was considered in [10].

The objective of the present paper is to find a connection between the P -fraction (1.16)
and the generalized S-fraction (1.20). This connection is established in Theorem 4.1 for
a subclass Hreg of regular sequences s ∈ Hreg. Let us say that a sequence s ∈ H belongs
to the class Hreg, if

(1.21) Pnj (0) �= 0 for all nj ∈ N (s).

We show that these assumptions are equivalent to the fact that all the polynomials lj(z)
are of degree 0. In the case when s ∈ Hreg an explicit formulas connecting polynomials
aj from (1.16) and polynomials mj from (1.20) are found. Moreover, it is shown that as
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well as in the classical case the 2j-th convergent of the S-fraction (1.20) coincides with
the j-th convergent of the P -fraction (1.16).

The assumption (1.21) naturally appears in the factorization problem for generalized
Jacobi matrices studied in [16]. Using the connections between the polynomials aj and
the polynomials mj we find explicit formulas for calculation of a generalized Jacobi
matrix J and its Darboux transformation J in terms of the parameters lj and mj (j ∈ N)
of the corresponding generalized Stieltjes fraction (1.20), see Proposition 5.2.

In the present paper we study algebraic aspects of the theory of generalized Stielt-
jes fractions. The analytical theory of generalized Stieltjes fractions will be published
elsewhere.

2. Class H and P -fractions

Now we extend the above considerations from the classical case (s ∈ H0) to the case
of arbitrary real sequence s = {sj}∞j=0 ∈ H. Consider a formal asymptotic series

(2.1) −s0

z
− s1

z2
− · · · − sn

zn+1
− · · ·

corresponding to the sequence s = {sj}∞j=0 ∈ H. In the following theorem a continued
fraction is constructed such that its asymptotic expansion at ∞ coincides in some sense
with the asymptotic series (2.1).

Theorem 2.1. Let s ∈ H and let n1 < n2 < · · · be the set of all normal indices of the
moment sequence s, i.e.,

(2.2) Dnj �= 0 (j = 1, 2, . . .) and Di = 0 for all i �= nj .

Then there exists a unique continued fraction
∞
K
0

( −bj

aj(z)

)
(see (1.16)), such that

(1) aj(λ) are monic polynomials of degree nj+1 − nj (n0 = 0);
(2) bj are real numbers bj �= 0 for all j ∈ Z+;
(3) the convergents fk of the continued fraction (1.16) have the following asymptotic

expansion:

(2.3) fk(z) ∼ −s0

z
− s1

z2
− · · · − s2nk−1

z2nk
+ O

(
1

z2nk+1

)
(z→̂∞).

The proof of Theorem 2.1 is based on the Schur algorithm developed in [5]. In [8]
this algorithm was applied to sequences from Hκ. For arbitrary s ∈ H the P-fraction
in (1.16) was introduced by A. Magnus in [21]. For the convenience of the reader we will
briefly describe the construction of the P-fraction in (1.16).

Proof. Let n1 be the first normal index of s ∈ H . Then

(2.4) s0 = s1 = . . . = sn1−2 = 0 and b0 := sn1−1 �= 0.

Let us choose k ∈ N and let us consider the rational function

(2.5) g0(z) = −s0

z
− s1

z2
− · · · − s2nk−1

z2nk
.

Then the function − b0
g0(z) can be represented as a sum

(2.6) − b0

g0(z)
= a0(z) + g1(z)

of a real monic polynomial a0(z) of degree n1 and a real rational function g1(z) such that

(2.7) g1(z) = O

(
1
z

)
as z→̂∞.
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Moreover, the function g1(z) admits the following asymptotic expansion:

(2.8) g1(z) = −s
(1)
0

z
− s

(1)
1

z2
− · · · −

s
(1)
2(nk−n1)−1

z2(nk−n1)
+ O

(
1

z2(nk−n1)+1

)
,

where s
(1)
j are real numbers, such that the first k − 1 normal indices of the sequence

s(1) =
{

s
(1)
j

}2(nk−n1)−1

j=0
coincide with

(2.9) n
(1)
j = nj+1 − n1 (j = 1, 2, . . . , k − 1).

Explicit formulas for s
(1)
j are given in [5]. In particular, n

(1)
1 = n2 − n1 and

(2.10) s
(1)
0 = s

(1)
1 = . . . = s

(1)

n
(1)
1 −2

= 0 and b1 := s
(1)

n
(1)
1 −1

�= 0.

By (2.6)

(2.11) g0(z) = − b0

a0(z) + g1(z)
.

Applying subsequently this algorithm one obtains on the second step

(2.12) − b1

g1(z)
= a1(z) + g2(z),

where a1(z) is the monic polynomial of degree n2 − n1. Hence,

(2.13) g1(z) = − b1

a1(z) + g2(z)
.

The k-th step yields

(2.14) − bk−1

gk−1(z)
= ak−1(z) + gk(z),

where bk−1 �= 0, ak−1(z) is a real monic polynomial of degree nk − nk−1 and gk(z) is a
rational function, such that

(2.15) gk(z) = O

(
1
z

)
as z→̂∞.

Hence,

(2.16) gk−1(z) = − bk−1

ak−1(z) + gk(z)
.

Combining (2.11)–(2.16), one obtains

(2.17) g0(z) = − b0

a0(z)− b1

a1(z)− · · · − bk−1

ak−1(z) + gk(z)

.

Setting gk(z) ≡ 0 in (2.17) one obtains the k−th convergent fk(z) of g0(z) which
admits the asymptotic expansion (2.3).

The uniqueness of the expansion (1.16) is implied by [13, Theorem 1.20].
The k−th convergent fk(z) is a rational function of degree nk. Denote its denominator

and numerator by Pnk
and Qnk

, respectively, so that fk takes the form

(2.18) fk(z) = −Qnk
(z)

Pnk
(z)

(k ∈ N).
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The polynomials Pnk
(z) and Qnk

(z) of the convergent fk(z) of the P-fraction (3.12)
are solutions of the three-term recurrence relation (1.18) subject to the initial condi-
tions (1.19) (see [25, Section 1]).

The asymptotic expansion (2.3) for the function fk(z) in (2.18) was proved in [8,
Proposition 6.1]. �

Let J be the monic generalized Jacobi matrix associated with the three-term recur-
rence relation (1.18) (see [8]), defined by the equalities

(2.19) J =

⎛
⎜⎜⎜⎜⎝

Ca0 D0

B1 Ca1 D1

B2 Ca2

. . .
. . . . . .

⎞
⎟⎟⎟⎟⎠ ,

where Caj is the companion matrix for the polynomial aj(z) = zkj +a
(j)
kj−1z

kj−1+· · ·+a
(j)
0

(2.20) Caj =

⎛
⎜⎜⎜⎝

0 1
...

. . . . . .
0 . . . 0 1
−a

(j)
0 −a

(j)
1 · · · −a

(j)
kj−1

⎞
⎟⎟⎟⎠ (j ∈ Z+)

(see [12]) and Bj , Dj−1 are kj × kj−1 and kj × kj+1 matrices, respectively, given by

(2.21) Bj =

⎛
⎜⎜⎜⎝

0 0 · · · 0
...

... · · · ...
0 0 · · · 0
bj 0 · · · 0

⎞
⎟⎟⎟⎠ , Dj−1 =

⎛
⎜⎜⎜⎝

0 0 · · · 0
...

... · · · ...
0 0 · · · 0
1 0 · · · 0

⎞
⎟⎟⎟⎠ (j ∈ N).

Let J[0,j−1] be the shortened monic generalized Jacobi matrix, defined by

(2.22) J[0,j−1] =

⎛
⎜⎜⎜⎜⎝

Ca0 D0

B1 Ca1

. . .
. . . . . . Dj−2

Bj−1 Caj−1

⎞
⎟⎟⎟⎟⎠ (j ∈ N),

As was shown in [8, Proposition 2.3]

(2.23) Pnj (z) = det (zInj − J[0,j−1]) and Qnj(z) = det (zInj−n1 − J[1,j−1]).

Polynomials Pnj (z) can be calculated also in terms of the coefficients si (0 ≤ i ≤ 2nj−1)
by the formula

(2.24) Pnj (z) =
1

Dnj

∣∣∣∣∣∣∣∣∣

s0 . . . snj−1 snj

...
. . .

...
snj−1 . . . s2nj−2 s2nj−1

1 . . . znj−1 znj

∣∣∣∣∣∣∣∣∣
, j ∈ N.

3. Generalized S-fractions

3.1. Unwrapping transformation. Let a function f(z) be meromorphic on C \ R−.
Then the function

(3.1) f̃(z) := zf(z2)

is called the unwrapping transformation of a function f(z). Alongside with this notion
we will use the following notion in the class H of sequences.
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Definition 3.1. Let s ∈ H. Then the new sequence

(3.2) s̃ = {s̃j}∞j=0 , with s̃2j = sj and s̃2j+1 = 0, j ∈ Z+

is called the unwrapping transformation of s.

The unwrapping transformation establishes a one-to-one correspondence between the
class H and the class

(3.3) Hsym := {s̃ ∈ H : s̃2j+1 = 0 for all j ∈ Z+} .

The following two examples justify the above Definition 3.1.

Example 3.1. Recall (see [14]), that a function f ∈ R is said to belong to the class S+, if

(3.4) zf(z) ∈ R.

If a function f(z) belongs to the class S+, then by M.G. Krĕın theorem it admits a holo-
morphic continuation to C\R− and its unwrapping transformation is also an R−function
(see [20]). Assume that f ∈ S+ admits the following asymptotic expansion

(3.5) f(z) ∼ −s0

z
− s1

z2
− · · · (z→̂∞)

with sj ∈ R for all j ∈ Z+. Then the unwrapping transformation f̃(z) of f(z) has the
following asymptotic expansion:

(3.6) f̃(z) ∼ −s0

z
− s1

z3
− s2

z5
− · · · (z→̂∞),

so that the coefficients in (3.6) coincide with the coefficients s̃j defined by (3.2). Hence

(3.7) f̃(z) ∼ − s̃0

z
− s̃1

z2
− s̃2

z3
− · · · (z→̂∞)

and the sequence s̃ belongs to the class

(3.8) Hsym
0 := {s̃ ∈ H0 : s̃2j+1 = 0 for all j ∈ Z+} .

Example 3.2. Recall (see [18]) that a function f meromorphic on C+ = {z : Im z > 0} is
said to belong to the class Nκ (κ ∈ Z+), if the kernel

(3.9) Nω(λ) =
f(z)− f(ω)

z − ω

has κ negative squares on C+. A function f ∈ Nκ is said to belong to the class Nk
κ, if

(3.10) zf(z) ∈ Nk,

(see [10]). In particular, the class N := N0 coincides with the class R, and the class N0
0

coincides with the class S+. The classes N0
κ and Nk

0 were introduced in [17] and [11],
respectively.

As was shown in [15] the unwrapping transformation f̃ of f ∈ Nk
κ, defined by (3.1),

belongs to the class Nsym
κ+k. Conversely, if f̃ ∈ Nsym

�κ , then there are κ, k ∈ Z+ and a
function f ∈ Nk

κ such that (3.1) holds and κ̃ = κ + k.
If f ∈ Nk

κ and, in addition, f admits the asymptotic expansion (3.5) in an angle

ε < arg z < 2π − ε (0 < ε < π),

then s ∈ Hκ′ , where κ′ ≤ κ. The unwrapping transformation f̃ of f has the asymptotic
expansion (3.7) in the angle ε/2 < arg z < π − ε/2 where the sequence s̃ = {s̃j}∞j=0 is
the unwrapping transformation of s = {sj}∞j=0.
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Since f̃ ∈ Nsym
κ+k then by [18] the sequence s̃ of the coefficients s̃j in (3.7) belongs to

the class

(3.11) Hsym
κ′′ := {s̃ ∈ Hκ′′ : s̃2j+1 = 0 for all j ∈ Z+}

with κ′′ ≤ κ + k.

Proposition 3.1. Let s̃ ∈ Hsym and let N (s̃) = {ñj}∞j=1 be the sequence of normal
indices of s̃. Then the corresponding continued fraction (2.11)

(3.12) − b̃0

ã0(z)− b̃1

ã1(z)− b̃2

ã2(z)− . . .

has the following properties:
(1) the polynomials ãj(z) are odd for all j ∈ Z+;
(2) the indices ñ2j are even and the indices ñ2j+1 are odd for all j ∈ Z+.

Proof. Let a natural k be fixed. Since s̃ ∈ Hsym, then the function g0(z) determined
by (2.17) is odd. Therefore, all the polynomials ã0(z), . . . , ãk−1(z) defined by (2.6),
(2.12), (2.14) by the Schur algorithm are also odd.

Since deg ãj = ñj+1 − ñj, then the numbers

ñ1 = deg ã0, . . . , ñ2j+1 =
2j∑

i=0

deg ãi

are odd and the numbers

ñ2 = deg ã0 + deg ã1, . . . , ñ2j =
2j−1∑
i=0

deg ãi

are even. This completes the proof. �

3.2. Construction of a generalized S-fraction. The continued fraction (3.12) can
be rewritten as

(3.13) − 1

a0(z)− 1

a1(z)− 1

a2(z)− . . .

,

where a0(z) = ã0(z)/b̃0 and

(3.14) a2i−1(z) =
b̃0 . . . b̃2i−2

b̃1 . . . b̃2i−1

ã2i−1(z), a2i(z) =
b̃1 . . . b̃2i−1

b̃0 . . . b̃2i

ã2i(z) (i ∈ N).

Let us set

(3.15) D(±m)
n = det(si+j±m)n−1

i,j=0 (s−1 = · · · = s−m = 0, m ∈ N).

Theorem 3.1. Let s ∈ H, let s̃ be the unwrapping transformation of s, let N (s̃) =
{ñj}∞j=1 be the set of normal indices of s̃ and let νj and μj be defined by the equalities

(3.16) ñ2j−1 = 2νj − 1 and ñ2j = 2μj , j ∈ N.

Then
(1) Dνj �= 0 and D

(1)
νj−1 �= 0 for all j ∈ N;

(2) Dμj �= 0 and D
(1)
μj �= 0 for all j ∈ N;
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(3) N (s) is a union of two sets {νj}∞j=1 and {μj}∞j=1 and

(3.17) 0 < ν1 ≤ μ1 < ν2 ≤ μ2 < · · · ;

(4) If the functions mj(z) and lj(z) are defined by

(3.18) za2(j−1)(z) = z2mj(z2) and
a2j−1(z)

z
= lj(z2), j ∈ N,

then mj(z) and lj(z) are polynomials of degree

(3.19) deg mj = νj − μj−1 − 1, deg lj = μj − νj , j ∈ N,

and the P-fraction (3.13) can be rewritten as

(3.20) − 1

zm1(z)− 1

l1(z)− 1

zm2(z)− . . .

;

(5) The convergents ϕ2j (j ∈ N) of the continued fraction (3.12) have the following
asymptotic expansions:

(3.21) ϕ2j(z) ∼ −s0

z
− s1

z2
− · · · − s2μj−1

z2μj
+ O

(
1

z2μj+1

)
, (z→̂∞).

Proof. (1) & (2). Let us set

(3.22) D̃n = det (s̃i+j)n−1
i,j=0.

As was shown in [13, Lemma 1.33]

(3.23) D̃2νj−1 = Dνj D
(1)
νj−1, D̃2μj = Dμj D

(1)
μj

.

This proves the statements (1) and (2).
(3) Clearly, νj , μj ∈ N (s) for all j ∈ N. Conversely, if n is a normal index of s, then at

least one of the determinants D
(1)
n or D

(1)
n−1 is not vanishing. Indeed, if D

(1)
n = D

(1)
n−1 = 0

then it follows from the Sylvester identity

(3.24) D2
n = D(1)

n D(−1)
n −D

(−1)
n+1 D

(1)
n−1

that Dn should be equal to 0, what contradicts to the fact that n is a normal index of
s. Therefore, either D

(1)
n−1 �= 0 or D

(1)
n �= 0, and hence either D2n−1 �= 0 or D2n �= 0,

respectively. In the former case n = νj for some j ∈ N, and in the latter case n = μj for
some j ∈ N. This proves the first part of statement (3).

Let n be the minimal normal index of s. If n = 1, then s0 �= 0 and hence both D1 = s0

and D
(1)
0 = 1 do not equal to 0. Therefore n coincides with ν1 = 1. If n > 1, then

s0 = · · · = sn−2 = 0, sn−1 �= 0.

This implies that D
(1)
n−1 �= 0 and hence n coincides with ν1 by statement (1).

Now it follows from the inequality

ñ2j−1 < ñ2j

and the equality (3.16) that νj < μj + 1/2 and hence νj ≤ μj for all j ∈ N.
Similarly, the inequality

ñ2j < ñ2j+1

and the equalities (3.16) imply that μj < νj+1 − 1/2 and hence μj < νj+1 for all j ∈ N.
This completes the proof of (3).
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(4) Since the polynomials a2(j−1)(z) and a2j−1(z) are odd then the polynomials
za2(j−1)(z) and a2j−1(z)

z are even and admit the representations (3.18). The formula (3.20)
is immediate from (3.1), (3.13) and (3.18).

Next since deg aj = ñj+1 − ñj , then it follows from (3.18)

deg mj =
1
2

(deg a2j−2 − 1) =
1
2

(ñ2j−1 − ñ2j−2 − 1)

=
1
2

(2νj − 1− 2μj−1 − 1) = νj − μj−1 − 1,

and

deg lj =
1
2

(deg a2j−1 − 1) =
1
2

(ñ2j − ñ2j−1 − 1)

=
1
2

(2μj − 2νj−1) = μj − νj .

(5) By Theorem 2.1 the 2j-th convergent f̃2j(z) of the P -fraction (2.11) has the fol-
lowing asymptotic expansion:

(3.25) f̃2j(z) ∼ − s̃0

z
− s̃1

z2
− · · · − s̃2�n2j−1

z2�n2j
+ O

(
1

z2�n2j+1

)
(z→̂∞).

Since ñ2i = 2μi, s̃0 = s0, s̃1 = 0, s̃2 = s1, . . . , s̃2�n2j−2 = s2μj−1 and s̃2�n2j−1 = 0, then
the asymptotic expansion (3.25) takes the form

(3.26) f̃2j(z) ∼ −s0

z
− s1

z3
− · · · − s2μj−1

z4μj−1
+ O

(
1

z4μj+1

)
(z→̂∞).

The 2j-th convergent ϕ2j(z) of the S-fraction (3.20) is connected with the 2j-th conver-
gent f̃2j(z) of the P -fraction (2.11) by the formula

f̃2j(z) = zϕ2j(z2).

Hence, in view of (3.2) the expansion (3.26) can be rewritten in the form

(3.27) ϕ2j(z2) ∼ − s0

z2
− s1

z4
− · · · − s2μj−1

z4μj
+ O

(
1

z4μj+2

)
(z→̂∞),

which is equivalent to (3.21). �

Remark 3.1. The statement (3) of Theorem 3.1 was proved in [10, Section 5.2] by using
the following observation from [10, Lemma 5.1].

If Dn �= 0, Dn+1 = · · · = Dm−1 = 0, Dm �= 0 then the following alternative holds:

(1) either D
(1)
n = 0 and hence D

(1)
n−1 �= 0, D

(1)
n = D

(1)
n+1 · · · = D

(1)
m−1 = 0, D

(1)
m �= 0;

(2) or D
(1)
n �= 0 and hence D

(1)
n �= 0, D

(1)
n+1 = · · · = D

(1)
m−2 = 0, D

(1)
m−1 �= 0.

The present proof is based on the identities (3.23) which makes it essentially simpler.

3.3. The class Hreg.

Lemma 3.1. Let s = {sj}∞j=0 ∈ H, let {nj}∞j=1 be the set of normal indices of s and
let

{
Pnj

}∞
j=1

be polynomials of the first kind associated with the sequence s. Then the
following statements are equivalent:

(1) Pnj (0) �= 0 for every j ∈ N;
(2) D

(1)
nj−1 �= 0 for every j ∈ N;

(3) D
(1)
nj �= 0 for every j ∈ N;

(4) nj is a normal index of the sequence {sj+1}∞j=0 for every j ∈ N;
(5) nj − 1 is a normal index of the sequence {sj+1}∞j=0 for every j ∈ N;



GENERALIZED STIELTJES CONTINUED FRACTIONS 325

(6) the set of normal indices of the sequence {sj+1}∞j=0 coincides with

(3.28)
∞⋃

j=1

{nj − 1, nj}.

Proof. (1)⇔ (2). The equivalence (1)⇔ (2) follows from (2.24)

(3.29) Pnj (0) = (−1)nj+1 D
(1)
nj

Dnj

=
(−1)nj+1

Dnj

∣∣∣∣∣∣
s1 · · · snj

· · · · · · · · ·
snj · · · s2nj−1

∣∣∣∣∣∣ (j = 1, 2, . . . ).

(2)⇔ (3). If the condition (2) holds, then all normal indices nj of s coincide with the
indices μj defined by (3.16), (j = 1, 2, . . . ). Thus, the indices νj defined by (3.16) satisfy
the following

(3.30) νj = μj = nj (j = 1, 2, . . . ).

Therefore,

(3.31) D(1)
nj
�= 0 (j = 1, 2, . . . ).

Conversely, if the condition (3) hold, then {nj}∞j=0 = {νj}∞j=0, hence μj = νj = nj

(j = 1, 2, . . . ). This leads to the condition (2).
The equivalences (3)⇔ (4), (2)⇔ (5) follow from the definition of normal indices.
The implications (6)⇒ (4) is obvious. Let us prove the implications (4)⇒ (6). If the

condition (4) hold, then

(3.32) Dnj−1 �= 0, Dnj−1+1 = 0, . . . , Dnj−1 = 0, Dnj �= 0 (j = 2, 1, . . . ).

Due to (2), (3) D
(1)
nj−1 �= 0, D

(1)
nj−1 �= 0 and by Remark 3.1 we obtain

(3.33) D(1)
nj−1

�= 0, D
(1)
nj−1+1 = 0, . . . , D

(1)
nj−2 = 0, D

(1)
nj−1 �= 0, D(1)

nj
�= 0.

Thus, there are only two normal indices nj − 1 and nj in the interval (nj−1, nj ], i.e.,
N (s̃) =

⋃∞
j=1{nj − 1, nj}. �

Definition 3.2. Let us say s ∈ Hreg, if s ∈ H and one of the equivalent conditions of
Lemma 3.1 holds.

Proposition 3.2. Let s ∈ Hreg and let the polynomials mj, lj be determined by the
S-fraction (3.20). Then m1 = n1 − 1 and

(3.34) deg mj = nj − nj−1 − 1, deg lj = 0 (j ∈ N).

4. Class Hreg. Relations between generalized S-fractions and P -fractions

To any sequence s ∈ H correspond two continued fractions: the P-fraction (3.12)
constructed in Theorem 2.1 and the generalized S-fraction (3.20) constructed in Theo-
rem 3.1. In the case when s ∈ Hreg we will present explicit formulas which connect these
two types of continued fractions.

Let s ∈ H. One can rewrite the continued fraction (3.20) as follows

(4.1)
1

−zm1(z) +
1

l1(z) +
1

−zm2(z) + . . .

.

If the j–th convergent of this continued fraction is denoted by uj

vj
, then uj, vj can be

found as solutions of the system (see [25, Section 1])

(4.2)
{

y2j − y2j−2 = lj(z)y2j−1,
y2j+1 − y2j−1 = −zmj+1(z)y2j
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subject to the following initial conditions:

(4.3) u−1 ≡ 1, u0 ≡ 0; v−1 ≡ 0, u0 ≡ 1.

The first two convergents of the continued fraction (4.1) take the form

u1

v1
=

1
−zm1(z)

,
u2

v2
=

l1(z)
−zl1(z)m1(z) + 1

.(4.4)

Let tj be a linear fractional transformation defined by

(4.5) t2j−1(w) =
1

−zmj(z) + w
, t2j =

1
lj(z) + w

(j ∈ N).

Then the 2j−th convergent of the S-fraction (4.1) can be represented in the form

(4.6)
u2j

v2j
= t1 ◦ t2 ◦ · · · ◦ t2j(0).

The following theorem establishes a connection between the continued fractions (4.1)
and (3.12) in the case when s ∈ Hreg.

Theorem 4.1. Let s ∈ Hreg. Then the 2j-th convergent u2j

v2j
of the generalized S-fraction

(4.1) coincides with the j-th convergent of the P -fraction (3.12)

(4.7)
u2j

v2j
= − b0

a0(z)− b1

a1(z)− · · · − bj−1

aj−1(z)

,

corresponding to the sequence s. The parameters lj and mj(z) (j ∈ Z+) of the generalized
S-fraction (4.1) are connected with the parameters bj and aj(z) (j ∈ N) of the P -fraction
(3.12) by the equalities

(4.8) b0 =
1
d1

, a0(z) =
1
d1

(
zm1(z)− 1

l1

)
,

(4.9) bj−1 =
1

l2j−1dj−1dj
, aj−1 =

1
dj

(
zmj(z)−

(
1

lj−1
+

1
lj

))
(j = 2, 3, . . . ),

where dj is the leading coefficient of mj(z) (j ∈ N).

Proof. Let us set

(4.10) s1(w) = t1(w), s2(w) = t2 ◦ t3(w), . . . , sj(w) = t2j−2 ◦ t2j−1(w).

Let us set m̃i(z) := 1
di

mi(z). Then by (4.6) and (4.10)

si(w) =
1

li−1 +
1

−zmi(z) + w

=
1

li−1
− 1

li−1(1− zli−1mi(z) + li−1w)

=
1

li−1
−

1
l2i−1di

−zm̃i(z) +
1

li−1di
+

1
di

w

=
1

li−1
+

1
l2i−1di

1
di

(
zm̃i(z)− 1

li−1
− w

) .

(4.11)
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It follows from (4.5), (4.6) and (4.10) that

(4.12)
u2j

v2j
= s1 ◦ s2 ◦ · · · ◦ sj

(
1
lj

)
.

In particular,

(4.13)
u2

v2
= s1

(
1
l1

)
=

−1/d1

zm̃1(z)− 1
l1d1

,

(4.14)
u4

v4
= s1 ◦ s2

(
1
lj

)
=

−1/d1

zm̃1(z)− 1
l1d1

−
1

l21d1d2

zm̃2(z)− 1
d2

(
1
l1

+ 1
l2

)
.

Substituting (4.11) into (4.12) one obtains

(4.15)
u2j

v2j
= − β0

α0(z)− β1

α1(z)− · · · − βj−1

αj−1(z)

,

where

(4.16) β0 =
1
d1

, α0(z) =
1
d1

(
zm1(z)− 1

l1

)
,

(4.17) βj−1 =
1

l2j−1dj−1dj
, αj−1(z) =

1
dj

(
zmj(z)−

(
1

lj−1
+

1
lj

))
(j = 2, 3, . . . ).

Let fj(z) be the j-th convergent of the P -fraction (2.11) and let ϕ2j(z) be the 2j-th

convergent of the S-fraction (3.20). The functions fj(z) = −Qnj
(z)

Pnj
(z) and ϕ2j(z) = u2j

v2j
are

rational functions of degree nj which have the asymptotic expansions (2.3) and (3.21),
respectively.

Since by Lemma 3.1 nj = μj , then these asymptotic expansions coincide and thus the
functions fj(z) and ϕ2j(z) coincide, since they are uniquely determined by the expan-
sions (2.3) and (3.21). Since the expansion into the P -fraction is unique, then

bj = βj and aj(z) = αj(z) (j ∈ Z+).

This proves (4.7). �

Corollary 4.1. Let the assumptions of Theorem 4.1 hold. Then the polynomials mj(z)
can be expressed in terms of aj−1(z) by the formulas

(4.18)
mj(z)

dj
=

aj−1(z)− aj−1(0)
z

(j ∈ N).

and

(4.19)
j∏

i=1

(lidi)−1 = (−1)jPnj (0) (j ∈ N),

(4.20) lj =
(−1)j

Pnj−1 (0)Pnj (0)

j−1∏
i=0

bi, dj = (Pnj−1 (0))2
j−1∏
i=0

b−1
i (j ∈ N).
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Proof. The formula (4.18) is immediate from (4.9).
It follows from the three-term recurrence relation (1.18), (4.8) and (4.9) that

Pn1(0) = a0(0) = − 1
l1d1

.

Next since a1(0) = − 1
d2

(
1
l1

+
1
l2

)
and b1 =

1
l21d1d2

then

Pn2(0) = − 1
d2

(
1
l1

+
1
l2

) (
− 1

l1d1

)
− 1

l21d1d2
=

1
l1d1

1
l2d2

.

The equality (4.19) is obtained by induction.
Now the equalities in (4.20) are implied by (4.19) and (4.9). �

Corollary 4.2. Let the assumptions of Theorem 4.1 hold. Then
(1) the solution {uj}∞j=0 and {vj}∞j=0 of the system (4.2), (4.3) takes the form

(4.21) u2j = −Qnj (z)
Pnj (0)

u2j−1 = −γj

∣∣∣∣Qnj (z) Qnj−1(z)
Pnj (0) Pnj−1 (0)

∣∣∣∣ (j ∈ N),

(4.22) v2j =
Pnj (z)
Pnj (0)

v2j−1 = γj

∣∣∣∣Pnj (z) Pnj−1(z)
Pnj (0) Pnj−1 (0)

∣∣∣∣ (j ∈ N),

where γj = (−1)nj+nj−1
Dnj−1

Dnj

(j ∈ N).

Proof. The j-th convergent of the P -fraction (3.12) is equal to −Qnj
(z)

Pnj
(z) (by Theorem 2.1)

and is equal to u2j

v2j
(by Theorem 4.1). Since

deg v2j(z) = deg Pnj (z) = nj ,

then v2j(z) is proportional to Pnj (z) and u2j(z) is proportional to −Qnj(z). The first
formulas in (4.21) and (4.22) are implied now by the normalization condition v2j(0) = 1
(j ∈ N). The second formula in (4.22) follows from the first equality in (4.2), which takes
the form

Pnj (z)
Pnj (0)

− Pnj−1 (z)
Pnj−1 (0)

= ljv2j−1(z) (j ∈ N).

Hence

v2j−1(z) =
1

ljPnj (0)Pnj−1 (0)

∣∣∣∣Pnj (z) Pnj−1 (z)
Pnj (0) Pnj−1 (0)

∣∣∣∣ (j ∈ N).

Now the second formula in (4.22) is implied by (3.29) and (4.24) (see Remark 4.1 below).
Similarly, one proves the second formula in (4.21). �
Remark 4.1. Explicit formulas for calculation of coefficients of the polynomials lj(z) and
mj(z) in (4.2) (j ∈ N) in terms of the sequence s = (si)∞i=0 are given in [10]. Let us
write the formulas for lj and dj (j ∈ N) in the case when s = (si)∞i=0 ∈ Hreg, and hence
νj = μj = nj (j ∈ N). Then d1 = 1/sn1−1 and

(4.23) lj =
D

(−1)
nj

D
(1)
nj−1

− D
(−1)
nj+1

D
(1)
nj

, dj+1 =
D

(kj+1)
nj

D
(kj−1)
nj+1

− D
(kj+1)
nj−1

D
(kj−1)
nj

(j ∈ N),

where kj = deg mj+1 − 1 = μj+1 − μj (j ∈ N) and D
(±1)
n are defined by (3.15). By

Sylvester identity (3.24) the above formulas take the form

(4.24) lj =
D2

nj

D
(1)
nj D

(1)
nj−1

, dj+1 =

(
D

(kj)
nj

)2

D
(kj−1)
nj D

(kj−1)
nj+1

(j ∈ N).
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In the classical case s = (si)∞i=0 ∈ H0
0 ⊂ Hreg one has

νj = μj = nj, kj = 1 (j ∈ N)

and the formulas (4.24) coincide with known formulas for lengths lj and masses mj of a
Stieltjes string, see [18, (3.15)]

(4.25) lj =
D2

j

D
(1)
j D

(1)
j−1

, dj = mj =

(
D

(1)
j−1

)2

Dj−1Dj
(j ∈ N).

In the case when kj = 2 the latter formula in (4.24) coincides with the formula for dj

from [19, Section 5.3]

(4.26) dj+1 =

(
D

(2)
nj

)2

D
(1)
nj D

(1)
nj+1

= −D
(1)
nj D

(1)
nj+1

DnjDnj+2
(j ∈ N).

Let us summarize these results in the case when s ∈ Hreg and kj = 2 for all j ∈ N,
i.e., the corresponding Stieltjes string consists of dipoles only (see [19, Section 5.4]).

Proposition 4.1. If s = (si)∞i=0 ∈ Hreg and kj = 2 for all j ∈ N then

(1) the normal indices of s are νj = μj = nj = 2j and the polynomials mj(z) are of
degree 1 and

(4.27) mj(z) = djz + mj for some dj , mj ∈ R (j ∈ N);

(2) the corresponding generalized Stieltjes fraction takes the form

(4.28) − 1

d1z
2 + m1z − 1

l1 − 1

d2z
2 + m2z − 1

l2 . . .

,

where the coefficients dj , mj, and lj can be found by d1 = 1/s1 and

(4.29) dj =

(
D

(2)
2j−2

)2

D
(1)
2j−2D

(1)
2j−1

, mj =
D

(2)
2j−1

D2j
− D

(2)
2j−3

D2j−2
, lj =

D2
2j

D
(1)
2j D

(1)
2j−1

(j ∈ N).

Proof. Since s ∈ Hreg then νj = μj = nj . The equality nj = 2j is implied by the formula
kj = nj − nj−1 and the assumption kj = 2.

This assumption implies also that deg mj+1 = kj − 1 = 1 for all j ∈ N. Substitut-
ing (4.27) into (4.1) one obtains (4.28).

Formulas (4.29) are implied by (4.24) and [10, (5.19)]. �

5. Darboux transformation

In this section the Darboux transformation of monic generalized Jacobi matrices asso-
ciated with P -fractions is calculated explicitly in terms of the corresponding generalized
S-fractions.

In the classical case the Darboux transformation of a monic Jacobi matrix was intro-
duced in [4] (see also [9], [7]). A monic Jacobi matrix of the form (1.11) is said to admit
an LU– factorization J = LU , if it can be represented as a product of a lower-triangular
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two-diagonal matrix L and an upper-triangular two-diagonal matrix U

(5.1) J = LU =

⎛
⎜⎜⎜⎝

1
l1 1

l2 1
. . .

. . .

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

u0 1
u1 1

u2
. . .
. . .

⎞
⎟⎟⎟⎟⎠ ,

where all the non-specified elements are equal 0. As was shown in [4], a monic Jacobi
matrix J admits an LU−factorization if and only if

(5.2) Pn(0) �= 0 for all n ∈ N.

In this case lj+1 and uj (j ∈ Z+) can be found uniquely by

(5.3) uj = −Pnj+1 (0)
Pnj (0)

, lj+1 =
bj+1

uj
for all j ∈ Z+ .

The monic Jacobi matrix J := UL is called the Darboux transformation of J.
Let us list some formulas connected with the Darboux transformation of the monic

Jacobi matrix J in the classical case which are implied by (4.25) and [16].

Proposition 5.1. Let s = {sj}∞j=0 ∈ Hreg
0 , let J be the associated monic Jacobi matrix

(1.11) and let lj and mj be determined by the S-fraction (1.7). Then

(1) The monic Jacobi matrix J admits the LU−factorization (5.1) with the entries

(5.4) uj−1 =
1

ljdj
, lj =

1
ljdj+1

(j ∈ N),

(5.5) c0 =
1

d1l1
, cj−1 =

1
dj

(
1
lj

+
1

lj−1

)
, bj =

1
l2jdjdj+1

(j ∈ N);

(2) Darboux transformation of J is the monic Jacobi matrix

(5.6) J = UL =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
l1

(
1
d1

+
1
d2

)
1

1
l1l2d2

2

1
l2

(
1
d2

+
1
d3

)
1

1
l2l3d2

3

1
l3

(
1
d3

+
1
d4

)
. . .

. . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

(3) The parameters bi and ci of the J-fraction
∞
K
0

(
−bi

ci

)
, corresponding to the Dar-

boux transformation J of J take the form

(5.7) b0 = b0, bi =
1

lili+1d2
i+1

ci =
1
li

(
1
di

+
1

di+1

)
(i ∈ N);

(4) The monic Jacobi matrix J corresponds to the sequence s = {sj+1}∞j=0;
(5) The k-th convergents of this J-fraction take the form

(5.8) fk(z) = −z (Qk(z)Pk−1(0)− Pk(0)Qk−1(z))
Pk(z)Pk−1(0)− Pk(0)Pk−1(z)

, k ∈ N.
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Consider now a monic generalized Jacobi matrix J associated with a sequence s =
{sj}∞j=0 ∈ Hreg via the equalities (see [8])

(5.9) J =

⎛
⎜⎜⎜⎜⎝

Ca0 D0

B1 Ca1 D1

B2 Ca2

. . .
. . . . . .

⎞
⎟⎟⎟⎟⎠ ,

where Caj is the companion matrix for the polynomial aj(z) = zkj +a
(j)
kj−1z

kj−1+· · ·+a
(j)
0

(5.10) Caj =

⎛
⎜⎜⎜⎝

0 1
...

. . . . . .
0 . . . 0 1
−a

(j)
0 −a

(j)
1 · · · −a

(j)
kj−1

⎞
⎟⎟⎟⎠ ,

and Bj , Dj−1 are kj × kj−1 and kj × kj+1 matrices, respectively, given by

(5.11) Bj =

⎛
⎜⎜⎜⎝

0 0 · · · 0
...

... · · · ...
0 0 · · · 0
bj 0 · · · 0

⎞
⎟⎟⎟⎠ , Dj−1 =

⎛
⎜⎜⎜⎝

0 0 · · · 0
...

... · · · ...
0 0 · · · 0
1 0 · · · 0

⎞
⎟⎟⎟⎠ .

The following factorization result for generalized Jacobi matrices which meet the assump-
tion (1.21) was proved in [16].

Theorem 5.1. Let s = {sj}∞j=0 ∈ Hreq and let J be a generalized Jacobi matrix associ-
ated with the moment sequence s = {sj}∞j=0. Then J admits the following LU−factori-
zation

(5.12) J = LU,

where where L and U are lower and upper two-diagonal block matrices, respectively

(5.13) L =

⎛
⎜⎝

A0

L1 A1

. . . . . .

⎞
⎟⎠ and U =

⎛
⎜⎜⎝

U0 D0

U1
. . .
. . .

⎞
⎟⎟⎠ ,

the blocks Aj and Uj are kj × kj matrices

(5.14) Aj =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0

0 1 0 · · · ...
...

. . . . . . . . .
...

0 · · · 0 1 0
−a

(j)
1 −a

(j)
2 · · · −a

(j)
kj−1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

and Uj =

⎛
⎜⎜⎜⎝

0 1
...

. . . . . .
0 · · · 0 1
uj 0 · · · 0

⎞
⎟⎟⎟⎠ ,

Dj are kj × kj+1 matrices defined by (2.20), Lj+1 are kj+1 × kj–matrices

(5.15) Lj+1 =

⎛
⎜⎜⎜⎝

0 · · · 0 0
...

. . .
...

...
0 · · · 0 0
0 · · · 0 lj+1

⎞
⎟⎟⎟⎠ (j = 0, 1, . . . ),

and uj lj can be found from the system of equations

(5.16) u0 = a0(0), uj + lj = −aj(0), lj+1 =
bj+1

uj
for all j ∈ Z+.



332 VLADIMIR DERKACH AND IVAN KOVALYOV

The transformation

(5.17) J = LU → J := UL

is called the Darboux transformation of the monic generalized Jacobi matrix J . As
was shown in [16, Theorem 3.10] J is also a monic generalized Jacobi matrix. In the
following theorem we will reformulate the statement of [16, Theorem 3.10] in terms of
the generalized S-fraction in a special case.

Proposition 5.2. ([16]). Let s = {sj}∞j=0 ∈ Hreg, such that kj = nj+1−nj ≥ 2 (j ∈ Z+,
n0 = 0), let J be a monic generalized Jacobi matrix associated with the sequence s and
let lj, dj and mj(z) be determined by the generalized S-fraction (4.1). Then

(a) The monic generalized Jacobi matrix J admits the LU−factorization (5.1) with
the entries uj−1 and lj defined by (5.4).

(b) The Darboux transformation of J takes the form

(5.18) J = UL =

⎛
⎜⎜⎜⎜⎜⎜⎝

C
�m1 D0

B1 0 D1

B2 C
�m2 D2

B3 0
. . .

. . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where C
�mi

are companion matrices for polynomials

m̃i(z) =
1
di

mi(z), i = 1, 2, . . . .

The blocks B2i−1, B2i are 1× (ki−1 − 1) and (ki − 1)× 1, respectively,

(5.19) B2i−1 =
(

1
dili

0 . . . 0
)

, B2i =

⎛
⎜⎜⎜⎜⎜⎝

0
...
0
1

di+1li

⎞
⎟⎟⎟⎟⎟⎠ (i = 1, 2, . . . ),

D2j and D2j+1 are (kj − 1)× 1 and 1× (kj+1 − 1)-matrices, respectively, of the
form (5.11).

(c) The matrix J is associated with the following P -fraction

(5.20)
∞
K
0

( −bj

aj(z)

)
= − b0

a0(z)− b1

a1(z)− . . .

,

where

(5.21) b0 = b0, b2j−1 =
1

ljdj
, b2j =

1
ljdj+1

(j ∈ N).

(5.22) a2j(z) = m̃j+1(z), a2j+1(z) = z (j ∈ Z+).

(d) The monic Jacobi matrix J corresponds to the sequence s = {sj+1}∞j=0.
(e) The k–th convergent of the P -fraction (5.20) is equal to

(5.23) fk(z) =

⎧⎪⎨
⎪⎩
−z

(
Qni(z)Pni−1(0)− Pni(0)Qni−1(z)

)
Pni(z)Pni−1(0)− Pni(0)Pni−1(z) , k = 2i− 1, i ∈ N,

−zQni(z)
Pni(z) , k = 2i, i ∈ N.
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Proof. (a) It follows from (5.4) and Corollary 4.1 that

uj−1 = − Pnj (0)
Pnj−1 (0)

=
∏j−1

i=1 lidi∏j
i=1 lidi

=
1

dj lj
(j ∈ N).

Hence by (5.16) and the second equality in (5.4)

lj =
bj

uj−1
=

1
ljdj+1

(j ∈ N).

This proves (5.4).
(b) It remains only to prove the statement for the entries bj of the subdiagonal blocks

Bj in (5.18). The rest is implied by Theorem 5.1. Indeed, it follows from the equality
J = UL that

(5.24) b2j−1 = uj−1 =
1

ljdj
, b2j = lj =

1
ljdj+1

(j ∈ N).

(c) The proof of (c) follows from (5.24) and the formula (5.18) for J.
(d) The statement is contained in [16, Theorem 3.13].
(e) Let Pnk

(z) and Qnk
(z) be polynomials of the first and the second kind associated

with the Jacobi matrix J. The k–th convergent of the P -fraction (5.20) is

(5.25) fk(z) = −Qnk
(z)

Pnk
(z)

,

where {nk}∞k=1 is the sequence of normal indices of the sequence {sj+1}∞j=0. Using the re-
lations between Pni(z), Qni(z) and Pni(z), Qni(z) (see [16], Theorem 3.19 and Theorem
3.22), we get (5.23). This completes the proof. �

Corollary 5.1. Let s = {sj}∞j=0 ∈ Hreg, such that kj = 2 for all j = 0, 1, 2 . . ., let J
be a monic generalized Jacobi matrix associated with the sequence s and let lj, dj and
mj(z) be determined by (4.26). Then

(a) The monic generalized Jacobi matrix J admits the LU−factorization (5.13)

J = LU =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
−m1

d1
1

0 0 1 0
0 l1 −m2

d2
1

0 0 1

0 l2 −m2
d2

. . .
. . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
u0 0 1

0 1
u1 0 1

0 1

u2 0
. . .

. . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with the entries uj−1 and lj defined by (5.4).
(b) The Darboux transformation of J is the monic Jacobi matrix

(5.26) J = UL =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−m1

d1
1

1
l1d1

0 1
1

l1d2
−m2

d2
1

1
l2d2

0
. . .

. . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Remark 5.1. Let a function f ∈ S has an asymptotic behavior

(5.27) f(z) ∼ −s0

z
− s1

z2
− s2

z3
− · · · (z→̂∞)

with some real sj (j ∈ Z+). Then the function f(z2) has the asymptotic expansion

(5.28) f(z2) ∼ − s0

z2
− s1

z4
− s2

z6
− · · · (z→̂∞).

Let J be a monic generalized Jacobi matrix corresponding to the sequence {s̃j}∞j=0 with
s̃2j = sj , s̃2j+1 = 0 (j ∈ Z+). In [9, 6] J is also called a monic generalized Jacobi matrix
corresponding to the function f(z2). In this partial case the Darboux transformation of
the matrix J is a monic Jacobi matrix corresponding to the function zf(z2) which belongs
to the class R. Such interpretation of the unwrapping transformation f �→ zf(z2) was
presented in [6].
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20. M. G. Krĕın and A. A. Nudelman, The Markov Moment Problem and Extremal Problems,
Transl. Math. Monographs, vol. 50, Amer. Math. Soc., Providence, RI, 1977.

21. A. Magnus, Expansion of power series into P-fractions, Math. Z. 80 (1962), 209–216.



GENERALIZED STIELTJES CONTINUED FRACTIONS 335

22. F. Peherstorfer, Finite perturbations of orthogonal polynomials, J. Comput. Appl. Math. 44
(1992), 275–302.

23. B. Simon, The classical moment problem as a self-adjoint finite difference operator, Advances
in Mathematics 137 (1998), 82–203.

24. T. J. Stieltjes, Recherches sur les fractions continues, Ann. Fac. Sci. Univ. Toulouse 8 (1894),
1–122.

25. H. S. Wall, Analytic Theory of Continued Fractions, Chelsea, New-York, 1967.

Department of Mathematics, Vasyl Stefanyk Precarpathian National University, 57 Shev-
chenka, Ivano-Frankivsk, 76018, Ukraine

E-mail address: derkach.v@gmail.com

Department of Mathematics, Dragomanov National Pedagogical University, 9 Pirogova,
Kyiv, 01601, Ukraine

E-mail address: i.m.kovalyov@gmail.com

Received 02/02/2015; Revised 05/03/2015


