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ANALYSIS

N. A. KACHANOVSKY

The paper is dedicated to one of my dear mentors Professor Yu. M. Berezansky
on his ninetieth birthday

Abstract. The operators of stochastic differentiation, which are closely related with

the extended Skorohod stochastic integral and with the Hida stochastic derivative,
play an important role in the classical (Gaussian) white noise analysis. In particular,
these operators can be used in order to study properties of the extended stochastic
integral and of solutions of stochastic equations with Wick-type nonlinearities.

During recent years the operators of stochastic differentiation were introduced
and studied, in particular, in the framework of the Meixner white noise analysis, and
on spaces of regular test and generalized functions of the Lévy white noise analysis.
In this paper we make the next step: introduce and study operators of stochastic
differentiation on spaces of test functions that belong to the so-called nonregular
rigging of the space of square integrable with respect to the measure of a Lévy
white noise functions, using Lytvynov’s generalization of the chaotic representation
property. This can be considered as a contribution in a further development of the
Lévy white noise analysis.

Introduction

Let L = (Lt)t∈[0,+∞) be a Lévy process (i.e., a random process on [0,+∞) with
stationary independent increments and such that L0 = 0, see, e.g., [5, 28, 29] for details)
without Gaussian part and drift (it is comparatively simple to consider such processes
from technical point of view). In [23] the extended Skorohod stochastic integral with
respect to L and the corresponding Hida stochastic derivative on the space of square
integrable random variables (L2) were constructed in terms of Lytvynov’s generalization
of the chaotic representation property (CRP) (see [25] and Subsection 1.2), some pro-
perties of these operators were established; and it was shown that the above-mentioned
integral coincides with the well-known (constructed in terms of Itô’s generalization of the
CRP [14]) extended stochastic integral with respect to a Lévy process (e.g., [7, 6]). In
[21, 10] the stochastic integral and derivative were extended to spaces of test and gene-
ralized functions that belong to riggings of (L2), this gives a possibility to extend an area
of their possible applications (in particular, now it is possible to define the stochastic
integral and derivative as linear continuous operators). Together with the mentioned
operators, it is natural to introduce and to study so-called operators of stochastic dif-
ferentiation in the Lévy white noise analysis, by analogy with the Gaussian analysis
[35, 1], the Gamma-analysis [17, 18], and the Meixner analysis [19, 20]. These operators
are closely related with the extended Skorohod stochastic integral with respect to a Lévy
process and with the corresponding Hida stochastic derivative and, by analogy with the
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”classical case”, can be used, in particular, in order to study properties of the extended
stochastic integral and properties of solutions of normally ordered stochastic equations
(stochastic equations with Wick-type nonlinearities in another terminology). In [9, 8] the
operators of stochastic differentiation on spaces of a so-called regular parametrized rigging
of (L2) ([21]) were introduced and studied. But, in connection with some problems of the
stochastic analysis (in particular, of the theory of normally ordered stochastic equations),
sometimes it can be convenient to consider another, a so-called nonregular rigging of (L2)
(see [21] and Subsection 1.3) and operators (e.g., the extended stochastic integral, the
Hida stochastic derivative) on spaces that belong to this rigging. Therefore it is natural
to introduce and to study operators of stochastic differentiation on the above-mentioned
spaces.

In this paper we introduce and study the operators of stochastic differentiation on the
spaces of test functions that belong to the nonregular rigging of (L2). In a forthcoming
paper we’ll consider the operators of stochastic differentiation on the spaces of nonregular
generalized functions. Then we’ll consider elements of the so-called Wick calculus in
the Lévy white noise analysis, this will give us the possibility to continue the study of
properties and to consider some applications of the above mentioned operators.

The paper is organized in the following manner. In the first section we introduce a Lévy
process L and construct a convenient for our considerations probability triplet connected
with L; then, following [25, 23, 21], we describe in detail Lytvynov’s generalization of
the CRP, the nonregular rigging of (L2), and stochastic integrals and derivatives on the
spaces that belong to this rigging. In the second section we deal with the operators of
stochastic differentiation.

1. Preliminaries

In this paper we denote by ‖ · ‖H or | · |H the norm in a space H ; by (·, ·)H the scalar
product in a space H ; and by 〈·, ·〉H or 〈〈·, ·〉〉H the dual pairing generated by the scalar
product in a space H . Another notation for norms, scalar products and dual pairings
will be introduced when it will be necessary.

1.1. Lévy processes. Denote R+ := [0,+∞). In this paper we deal with a real-valued
locally square integrable Lévy process L = (Lt)t∈R+ (a random process on R+ with
stationary independent increments and such that L0 = 0) without Gaussian part and
drift. As is well known (e.g., [7]), the characteristic function of L is

(1.1) E[eiθLt ] = exp
[
t

∫
R

(eiθx − 1− iθx)ν(dx)
]
,

where ν is the Lévy measure of L, which is a measure on (R,B(R)), here and below B
denotes the Borel σ-algebra, E denotes the expectation. We assume that ν is a Radon
measure whose support contains an infinite number of points, ν({0}) = 0, there exists
ε > 0 such that ∫

R

x2eε|x|ν(dx) <∞
and

(1.2)
∫

R

x2ν(dx) = 1.

Let us define a measure of the white noise of L. Let D denote the set of all real-valued
infinite-differentiable functions on R+ with compact supports. As is well known, D can
be endowed by the projective limit topology generated by a family of Sobolev spaces
(e.g., [4]). Let D′ be the set of linear continuous functionals on D. For ω ∈ D′ and ϕ ∈ D
denote ω(ϕ) by 〈ω, ϕ〉; note that one can understand 〈·, ·〉 as the dual pairing generated
by the scalar product in the space L2(R+) of (classes of) square integrable with respect
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to the Lebesgue measure real-valued functions on R+, see Subsection 1.3 for details. The
notation 〈·, ·〉 will be preserved for dual pairings in tensor powers of spaces.

Definition. A probability measure μ on (D′, C(D′)), where C denotes the cylindrical
σ-algebra, with the Fourier transform

(1.3)
∫
D′
ei〈ω,ϕ〉μ(dω) = exp

[ ∫
R+×R

(eiϕ(u)x − 1− iϕ(u)x) duν(dx)
]
, ϕ ∈ D,

is called the measure of a Lévy white noise.

The existence of μ follows from the Bochner–Minlos theorem (e.g., [13]), see [25].
Below we assume that the σ-algebra C(D′) is complete with respect to μ, i.e., C(D′)
contains all subsets of all measurable sets O such that μ(O) = 0.

Denote (L2) := L2(D′, C(D′), μ) the space of (classes of) real-valued square integrable
with respect to μ functions on D′; let also H := L2(R+). Substituting in (1.3) ϕ = tψ,
t ∈ R, ψ ∈ D, and using the Taylor decomposition by t and (1.2), one can show that

(1.4)
∫
D′
〈ω, ψ〉2μ(dω) =

∫
R+

(
ψ(u)

)2
du

(this statement follows also from results of [25] and [7]). Let f ∈ H and D � ϕk → f in H
as k →∞. It follows from (1.4) that {〈◦, ϕk〉}k≥1 is a Cauchy sequence in (L2), therefore
one can define 〈◦, f〉 := (L2)−limk→∞〈◦, ϕk〉. It is easy to show (by the method of ”mixed
sequences”) that 〈◦, f〉 does not depend on the choice of an approximating sequence for
f and therefore is well defined in (L2).

Let us consider 〈◦, 1[0,t)〉 ∈ (L2), t ∈ R+ (here and below 1A denotes the indicator of a
set A). It follows from (1.1) and (1.3) that

(〈◦, 1[0,t)〉
)
t∈R+

can be identified with a Lévy
process on the probability space (D′, C(D′), μ), i.e., one can write Lt = 〈◦, 1[0,t)〉 ∈ (L2).

Remark. Note that one can understand the Lévy white noise as a generalized random
process (in the sense of [11]) with trajectories from D′: formally L′t(ω) = 〈ω, 1[0,t)〉′ =
〈ω, δt〉 = ω(t), where δt is the Dirac delta-function concentrated at t. Therefore μ is the
measure of L′ in the classical sense of this notion [12].

Remark. A Lévy process L without Gaussian part and drift is a Poisson process if its
Lévy measure ν(Δ) = δ1(Δ), i.e., if ν is a point mass at 1. This measure does not
satisfy the conditions accepted above (the support of δ1 does not contain an infinite
number of points); nevertheless, all results of the present paper have natural (and often
strong) analogs in the Poissonian analysis. The reader can find more information about
peculiarities of the Poissonian case in [23], Subsection 1.2.

1.2. Lytvynov’s generalization of the CRP. As is well known, some random pro-
cesses L have the so-called chaotic representation property (CRP) that consists in the
following: any square integrable random variable can be decomposed in a series of re-
peated stochastic integrals from nonrandom functions with respect to L (see, e.g., [26]
for a detailed presentation). The CRP plays a very important role in the stochastic
analysis (in particular, it can be used in order to construct extended stochastic integrals
[16, 32, 15], stochastic derivatives and operators of stochastic differentiation, e.g., [35, 1]),
but, unfortunately, the only Lévy processes that satisfy this property are Wiener and
Poisson processes (e.g., [34]).

There are different generalizations of the CRP for Lévy processes: Itô’s approach [14],
Nualart-Schoutens’ approach [27, 30], Lytvynov’s approach [25], Oksendal’s approach
[7, 6] etc. The interconnections between these generalizations of the CRP are described
in, e.g., [25, 2, 7, 33, 6, 23]. In the present paper we deal with Lytvynov’s generalization
of the CRP that will be described now in detail.
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Denote by ⊗̂ a symmetric tensor product and set Z+ := N ∪ {0}. Let P ≡ P(D′) be
the set of continuous polynomials on D′, i.e., P consists of zero and elements of the form

f(ω) =
Nf∑
n=0

〈ω⊗n, f (n)〉, ω ∈ D′, Nf ∈ Z+, f (n) ∈ D�⊗n, f (Nf ) 
= 0,

here Nf is called the power of a polynomial f ; 〈ω⊗0, f (0)〉 := f (0) ∈ D�⊗0 := R. Since
the measure μ of a Lévy white noise has a holomorphic at zero Laplace transform (this
follows from (1.3) and properties of the measure ν, see also [25]), P is a dense set in (L2)
[31]. Denote by Pn the set of continuous polynomials of power ≤ n, by Pn the closure
of Pn in (L2). Let for n ∈ N Pn := Pn � Pn−1 (the orthogonal difference in (L2)),
P0 := P0. It is clear now that

(L2) =
∞⊕

n=0
Pn.

Let f (n) ∈ D�⊗n, n ∈ Z+. Denote by :〈◦⊗n, f (n)〉 : the orthogonal projection in (L2) of
a monomial 〈◦⊗n, f (n)〉 onto Pn. Let us define scalar products (·, ·)ext on D�⊗n, n ∈ Z+,
by setting for f (n), g(n) ∈ D�⊗n

(f (n), g(n))ext :=
1
n!

∫
D′

:〈ω⊗n, f (n)〉 ::〈ω⊗n, g(n)〉 :μ(dω),

and let | · |ext be the corresponding norms, i.e., |f (n)|ext =
√

(f (n), f (n))ext. Denote by
H(n)

ext , n ∈ Z+, the completions of D�⊗n with respect to the norms | · |ext. For F (n) ∈ H(n)
ext

define a Wick monomial :〈◦⊗n, F (n)〉 : def= (L2) − limk→∞ :〈◦⊗n, f
(n)
k 〉 :, where D�⊗n �

f
(n)
k → F (n) as k → ∞ in H(n)

ext (well-posedness of this definition can be proved by
the method of ”mixed sequences”). Since, as is easy to see, for each n ∈ Z+ the set
{:〈◦⊗n, f (n)〉 :|f (n) ∈ D�⊗n} is a dense one in Pn, we have the next statement (which
describes Lytvynov’s generalization of the CRP).

Theorem. ([25]). A random variable F ∈ (L2) if and only if there exists a unique
sequence of kernels F (n) ∈ H(n)

ext, n ∈ Z+, such that

(1.5) F =
∞∑

n=0

:〈◦⊗n, F (n)〉 :

(the series converges in (L2)) and

(1.6) ‖F‖2(L2) =
∫
D′
|F (ω)|2μ(dω) = E|F |2 =

∞∑
n=0

n!|F (n)|2ext <∞.

So, for F,G ∈ (L2) the scalar product has the form

(F,G)(L2) =
∫
D′
F (ω)G(ω)μ(dω) = E[FG] =

∞∑
n=0

n!(F (n), G(n))ext,

where F (n), G(n) ∈ H(n)
ext are the kernels from decompositions (1.5) for F and G respec-

tively. In particular, for F (n) ∈ H(n)
ext and G(m) ∈ H(m)

ext , n,m ∈ Z+,(
:〈◦⊗n, F (n)〉 :, :〈◦⊗m, G(m)〉 :)

(L2)
=

∫
D′

:〈ω⊗n, F (n)〉 ::〈ω⊗m, G(m)〉 :μ(dω)

= E
[
:〈◦⊗n, F (n)〉 ::〈◦⊗m, G(m)〉 :] = δn,mn!(F (n), G(n))ext.

Note that in the space (L2) we have :〈◦⊗0, F (0)〉 : = 〈◦⊗0, F (0)〉 = F (0) and :〈◦, F (1)〉 : =
〈◦, F (1)〉 [25].



340 N. A. KACHANOVSKY

In order to work in the spaces H(n)
ext , we need to know the explicit formulas for the

scalar products (·, ·)ext. Let us write out these formulas. Denote by ‖ ·‖ν the norm in the
space L2(R, ν) of (classes of) square integrable with respect to ν real-valued functions
on R. Let

(1.7) pn(x) := xn + an,n−1x
n−1 + · · ·+ an,1x, an,j ∈ R, j ∈ {1, . . . , n− 1}, n ∈ N,

be orthogonal in L2(R, ν) polynomials, i.e., for natural numbers n,m such that n 
= m,∫
R
pn(x)pm(x)ν(dx) = 0. Then for F (n), G(n) ∈ H(n)

ext , n ∈ N, we have [25]
(1.8)

(F (n), G(n))ext =
∑

k,lj ,sj∈N: j=1,...,k, l1>l2>···>lk,

l1s1+···+lksk=n

n!
s1! · · · sk!

(‖pl1‖ν

l1!

)2s1 · · ·
(‖plk‖ν

lk!

)2sk

×
∫

R
s1+···+sk
+

F (n)(u1, . . . , u1︸ ︷︷ ︸
l1

, . . . , us1 , . . . , us1︸ ︷︷ ︸
l1

, . . . , us1+···+sk
, . . . , us1+···+sk︸ ︷︷ ︸

lk

)

×G(n)(u1, . . . , u1︸ ︷︷ ︸
l1

, . . . , us1 , . . . , us1︸ ︷︷ ︸
l1

, . . . , us1+···+sk
, . . . , us1+···+sk︸ ︷︷ ︸

lk

) du1 · · · dus1+···+sk
.

In particular, for n = 1 (F (1), G(1))ext = ‖p1‖2ν
∫

R+
F (1)(u)G(1)(u) du; if n = 2 then

(F (2), G(2))ext = ‖p1‖4ν
∫

R
2
+
F (2)(u, v)G(2)(u, v) dudv + ‖p2‖2ν

2

∫
R+
F (2)(u, u)G(2)(u, u) du,

etc.
It follows from (1.8) that H(1)

ext = H ≡ L2(R+): by (1.7) p1(x) = x and therefore
by (1.2) ‖p1‖ν = 1; and for n ∈ N\{1} one can identify H�⊗n with the proper subspace
of H(n)

ext that consists of ”vanishing on diagonals” elements (i.e., F (n)(u1, . . . , un) = 0 if
there exist k, j ∈ {1, . . . , n} such that k 
= j but uk = uj). In this sense the space H(n)

ext is
an extension of H�⊗n (this explains why we use the subscript ext in the notations H(n)

ext ,
(·, ·)ext and | · |ext).

1.3. A nonregular rigging of (L2). Denote by T the set of indexes τ = (τ1, τ2), where
τ1 ∈ N, τ2 is an infinite differentiable function on R+ such that for all u ∈ R+ τ2(u) ≥ 1.
Let Hτ be the Sobolev space on R+ of order τ1 weighted by the function τ2, i.e., Hτ is
a completion of the set C∞0 (R+) of infinite differentiable functions on R+ with compact
supports with respect to the norm generated by the scalar product

(ϕ, ψ)Hτ =
∫

R+

(
ϕ(u)ψ(u) +

τ1∑
k=1

ϕ[k](u)ψ[k](u)
)
τ2(u) du,

here ϕ[k] and ψ[k] are derivatives of order k of functions ϕ and ψ respectively. It is
well known (e.g., [4]) that D = pr limτ∈T Hτ (moreover, D�⊗n = pr limτ∈T H�⊗n

τ , see,
e.g., [3] for details) and for each τ ∈ T Hτ is densely and continuously embedded into
H ≡ L2(R+), therefore one can consider the chain

D′ ⊃ H−τ ⊃ H ⊃ Hτ ⊃ D,
where H−τ , τ ∈ T , are the spaces dual of Hτ with respect to H. Note that D′ =
ind limτ∈T H−τ (it is convenient for us to consider D′ as a topological space). By analogy
with [22] one can easily show that the measure μ of a Lévy white noise is concentrated
on H−�τ with some τ̃ ∈ T , i.e., μ(H−�τ ) = 1. Excepting from T the indexes τ such that
μ is not concentrated on H−τ , we will assume, in what follows, that for each τ ∈ T
μ(H−τ ) = 1.

Denote the norms in Hτ and its tensor powers by | · |τ , i.e., for f (n) ∈ H�⊗n
τ , n ∈ N,

|f (n)|τ =
√

(f (n), f (n))H �⊗n
τ

.
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Lemma. ([21]). There exists τ ′ ∈ T such that for each n ∈ N the space H�⊗n
τ ′ is densely

and continuously embedded into the space H(n)
ext. Moreover, for all f (n) ∈ H�⊗n

τ ′

|f (n)|2ext ≤ n!cn|f (n)|2τ ′ ,
where c > 0 is some constant.

Corollary. If for some τ ∈ T the space Hτ is continuously embedded into the space Hτ ′

then for each n ∈ N the space H�⊗n
τ is densely and continuously embedded into the space

H(n)
ext, and there exists c(τ) > 0 such that for all f (n) ∈ H�⊗n

τ

(1.9) |f (n)|2ext ≤ n!c(τ)n|f (n)|2τ .
In what follows, it will be convenient to assume that the indexes τ such that Hτ is

not continuously embedded into Hτ ′ , are removed from T .
Denote PW :=

{
f =

∑Nf

n=0 :〈◦⊗n, f (n)〉 :, f (n) ∈ D�⊗n, Nf ∈ Z+

} ⊂ (L2). Accept on
default q ∈ Z+, τ ∈ T ; set H�⊗0

τ := R; and define scalar products (·, ·)τ,q on PW by setting
for

f =
Nf∑
n=0

:〈◦⊗n, f (n)〉 :, g =
Ng∑
n=0

:〈◦⊗n, g(n)〉 : ∈ PW ,

(1.10) (f, g)τ,q :=
min(Nf ,Ng)∑

n=0

(n!)22qn(f (n), g(n))H �⊗n
τ
.

Let ‖ · ‖τ,q be the corresponding norms, i.e., ‖f‖τ,q =
√

(f, f)τ,q. In order to verify
the well-posedness of this definition, i.e., that formula (1.10) defines scalar, and not just
quasiscalar products, we note that if for f ∈ PW ‖f‖τ,q = 0 then by (1.10) for each
coefficient f (n) of f |f (n)|τ = 0 and therefore by (1.9) |f (n)|ext = 0. So, in this case f = 0
in (L2).

Definition. We define Kondratiev spaces of nonregular test functions (Hτ )q as com-
pletions of PW with respect to the norms ‖ · ‖τ,q and set (Hτ ) := pr limq∈Z+

(Hτ )q,
(D) := pr limq∈Z+,τ∈T (Hτ )q.

As is easy to see, f ∈ (Hτ )q if and only if f can be presented in the form

(1.11) f =
∞∑

n=0

:〈◦⊗n, f (n)〉 :, f (n) ∈ H�⊗n
τ

(the series converges in (Hτ )q), with

(1.12) ‖f‖2τ,q := ‖f‖2(Hτ)q
=

∞∑
n=0

(n!)22qn|f (n)|2τ <∞,

and for f, g ∈ (Hτ )q

(f, g)(Hτ )q
=

∞∑
n=0

(n!)22qn(f (n), g(n))H �⊗n
τ
,

where f (n), g(n) ∈ H�⊗n
τ are the kernels from decompositions (1.11) for f and g cor-

respondingly (since for each n ∈ Z+ H�⊗n
τ ⊆ H(n)

ext , for f (n) ∈ H�⊗n
τ :〈◦⊗n, f (n)〉 : is a

well-defined Wick monomial, see Subsection 1.2). Further, f ∈ (Hτ ) (f ∈ (D)) if and
only if f can be presented in form (1.11) and norm (1.12) is finite for each q ∈ Z+ (for
each q ∈ Z+ and each τ ∈ T ).
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Remark. One can give a more general definition of the Kondratiev spaces, writing in
(1.10) Kqn, K > 1, instead of 2qn. But such a generalization is not essential for our
considerations, so, for simplification of calculations we shall restrict ourselves, in this
paper, to the case K = 2.

Proposition. ([21]). For each τ ∈ T there exists q0 = q0(τ) ∈ Z+ such that for each q ∈
Nq0 := {q0, q0 + 1, · · · } the space (Hτ )q is densely and continuously embedded into (L2).

In view of this proposition for τ ∈ T and q ≥ q0(τ) one can consider a chain

(1.13) (D′) ⊃ (H−τ ) ⊃ (H−τ )−q ⊃ (L2) ⊃ (Hτ )q ⊃ (Hτ ) ⊃ (D),

where (H−τ )−q, (H−τ ) = ind limq→∞(H−τ )−q and (D′) = ind limq→∞,τ∈T (H−τ )−q are
the spaces dual of (Hτ )q, (Hτ ) and (D) with respect to (L2).

Definition. Chain (1.13) is called a nonregular rigging of the space (L2). The negative
spaces of this chain (H−τ )−q, (H−τ ), (D′) are called Kondratiev spaces of nonregular
generalized functions.

Remark. Let q ∈ Z+, τ ∈ T and β ∈ [0, 1]. By analogy with the classical Gaussian and
Poissonian analysis, one can introduce on PW scalar products (·, ·)τ,q,β by setting for
f, g ∈ PW

(f, g)τ,q,β :=
min(Nf ,Ng)∑

n=0

(n!)1+β2qn(f (n), g(n))H �⊗n
τ
,

and define ”parametrized Kondratiev spaces of nonregular test functions” (Hτ )β
q as com-

pletions of PW with respect to the norms generated by these scalar products. It is
possible to study properties of the spaces (Hτ )β

q and its projective limits, to introduce
and to study operators on them, in particular, stochastic derivatives, operators of sto-
chastic differentiation, etc.; such considerations are interesting by itself and can be useful
for applications. But (Hτ )β

q 
⊂ (L2) if β < 1, generally speaking, so, we can not consider
(Hτ )β

q with β < 1 as spaces of test functions in the framework of the Lévy white noise
analysis.

Finally, we describe natural orthogonal bases in the spaces (H−τ )−q. Let us consider
chains

(1.14) D′(m) ⊃ H(m)
−τ ⊃ H(m)

ext ⊃ H�⊗m
τ ⊃ D�⊗m,

m ∈ Z+ (for m = 0 D�⊗0 = H�⊗0
τ = H(0)

ext = H(0)
−τ = D′(0) = R), where H(m)

−τ and
D′(m) = ind limτ∈T H(m)

−τ are the spaces dual of H�⊗m
τ and D�⊗m with respect to H(m)

ext .
The next statement follows from the definition of the spaces (H−τ )−q and the general
duality theory (cf. [22]).

Proposition. ([21]). There exists a system of generalized functions{
:〈◦⊗m, F

(m)
ext 〉 : ∈ (H−τ )−q | F (m)

ext ∈ H(m)
−τ , m ∈ Z+

}
such that

1) for F (m)
ext ∈ H(m)

ext ⊂ H(m)
−τ :〈◦⊗m, F

(m)
ext 〉 : is a Wick monomial that was defined in

Subsection 1.2;
2) any generalized function F ∈ (H−τ )−q can be presented as a formal series

(1.15) F =
∞∑

m=0

:〈◦⊗m, F
(m)
ext 〉 :, F

(m)
ext ∈ H(m)

−τ ,
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that converges in (H−τ )−q, i.e.,

(1.16) ‖F‖2(H−τ)−q
=

∞∑
m=0

2−qm|F (m)
ext |2H(m)

−τ

<∞,

and, vice versa, any formal series (1.15) with finite norm (1.16) is a generalized function
from (H−τ )−q;

3) for F,G ∈ (H−τ )−q the scalar product has a form

(F,G)(H−τ )−q
=

∞∑
m=0

2−qm(F (m)
ext , G

(m)
ext )H(m)

−τ

,

where F (m)
ext , G

(m)
ext ∈ H(m)

−τ are the kernels from decompositions (1.15) for F and G re-
spectively;

4) the dual pairing between F ∈ (H−τ )−q and f ∈ (Hτ )q that is generated by the scalar
product in (L2), has the form

(1.17) 〈〈F, f〉〉(L2) =
∞∑

m=0

m!〈F (m)
ext , f

(m)〉ext,

where F
(m)
ext ∈ H(m)

−τ and f (m) ∈ H�⊗m
τ are the kernels from decompositions (1.15) and

(1.11) for F and f respectively, 〈·, ·〉ext denotes the dual pairings between elements of
negative and positive spaces from chains (1.14), these pairings are generated by the scalar
products in H(m)

ext .

Corollary. F ∈ (H−τ ) (F ∈ (D′)) if and only if F can be presented in the form (1.15)
and norm (1.16) is finite for some q ∈ Nq0(τ) (for some τ ∈ T and some q ∈ Nq0(τ)).

1.4. Stochastic integrals and derivatives. Decomposition (1.5) defines an isometric

isomorphism (a generalized Wiener-Itô-Sigal isomorphism) I : (L2) → ∞⊕
n=0

n!H(n)
ext , where

∞⊕
n=0

n!H(n)
ext is a weighted extended Fock space (cf. [24]): for F ∈ (L2) of form (1.5)

IF = (F (0), F (1), . . . , F (n), . . . ) ∈ ∞⊕
n=0

n!H(n)
ext . Let 1 : H → H be the identity operator.

Then the operator I ⊗ 1 : (L2) ⊗ H → ∞⊕
n=0

n!(H(n)
ext ⊗ H) is an isometric isomorphism

between the spaces (L2)⊗H and
∞⊕

n=0
n!(H(n)

ext ⊗H). It is clear that for arbitrary n ∈ Z+

and F (n)
· ∈ H(n)

ext ⊗H a vector (0, . . . , 0︸ ︷︷ ︸
n

, F
(n)
· , 0, . . . ) belongs to

∞⊕
n=0

n!(H(n)
ext ⊗H). Set

(1.18) :〈◦⊗n, F
(n)
· 〉 : def

= (I⊗ 1)−1(0, . . . , 0︸ ︷︷ ︸
n

, F
(n)
· , 0, . . . ) ∈ (L2)⊗H.

By the construction elements :〈◦⊗n, F
(n)
· 〉 :, n ∈ Z+, form an orthogonal basis in the

space (L2)⊗H: any F ∈ (L2)⊗H can be presented as

(1.19) F (·) =
∞∑

n=0

:〈◦⊗n, F
(n)
· 〉 :, F

(n)
· ∈ H(n)

ext ⊗H

(the series converges in (L2)⊗H), with ‖F‖2(L2)⊗H =
∑∞

n=0 n!|F (n)
· |2H(n)

ext⊗H
<∞.

In order to help the reader to gain a better insight of our constructions, we’ll describe
briefly the structure of an extended stochastic integral on (L2)⊗H that is based on this
decomposition, and of the corresponding Hida stochastic derivative on (L2) (the detailed
presentation is given in [23]).
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Let F (n)
· ∈ H(n)

ext ⊗H, n ∈ N. We select a representative (a function) ḟ (n)
· ∈ F (n)

· such
that

(1.20) ḟ (n)
u (u1, . . . , un) = 0 if for some k ∈ {1, . . . ,n} u = uk.

Let f̂ (n) be the symmetrization of ḟ (n)
· by n+ 1 variables. Define F̂ (n) ∈ H(n+1)

ext as the
equivalence class in H(n+1)

ext generated by f̂ (n) (i.e., f̂ (n) ∈ F̂ (n)).

Lemma. ([23]). For each F (n)
· ∈ H(n)

ext ⊗H, n ∈ N, the element F̂ (n) ∈ H(n+1)
ext is well-

defined (in particular, F̂ (n) does not depend on the choice of a representative ḟ (n)
· ∈ F (n)

·
satisfying (1.20)) and |F̂ (n)|ext ≤ |F (n)

· |H(n)
ext⊗H.

Definition. For F ∈ (L2) ⊗ H we define an extended stochastic integral
∫
F (u) d̂Lu ∈

(L2) by setting

(1.21)
∫
F (u) d̂Lu :=

∞∑
n=0

:〈◦⊗n+1, F̂ (n)〉 : ,

where F̂ (0) := F
(0)
· ∈ H = H(1)

ext, and F̂ (n) ∈ H(n+1)
ext , n ∈ N, are constructed by the

kernels F (n)
· ∈ H(n)

ext ⊗H from decomposition (1.19) for F , if the series in the right hand
side of (1.21) converges in (L2).

The domain of this integral, i.e., of the operator

(1.22)
∫
◦(u) d̂Lu : (L2)⊗H → (L2),

consists of F ∈ (L2)⊗H such that (see (1.6))∥∥∥∫
F (u) d̂Lu

∥∥∥2

(L2)
=

∞∑
n=0

(n+ 1)!|F̂ (n)|2ext <∞.

It is shown in [23] that extended stochastic integral (1.22) is a natural generalization
of the Itô stochastic integral.

Remark. Let Δ ⊆ R+ be a measurable set, i.e., Δ ∈ B(R+) (for example, Δ = [t1, t2),
t1, t2 ∈ [0,+∞], t1 < t2). One can define an extended stochastic integral on Δ∫

Δ

◦(u) d̂Lu : (L2)⊗H → (L2)

by the formula ∫
Δ

F (u) d̂Lu :=
∫
F (u)1Δ(u) d̂Lu

with the corresponding domain. Integrals
∫
Δ ◦(u) d̂Lu are useful for applications, but in

the framework of the present paper we do not need such a generalization. The reader
can find more information about such integrals in, e.g., [23, 21].

Describe now the structure of the Hida stochastic derivative on (L2). Let G(n) ∈ H(n)
ext ,

n ∈ N, ġ(n) ∈ G(n) be a representative of G(n). We consider ġ(n)(·), i.e., separate one
argument of ġ(n), and define G(n)(·) ∈ H(n−1)

ext ⊗H as the equivalence class in H(n−1)
ext ⊗H

generated by ġ(n)(·) (i.e., ġ(n)(·) ∈ G(n)(·)).
Lemma. ([23]). For each G(n) ∈ H(n)

ext, n ∈ N, the element G(n)(·) ∈ H(n−1)
ext ⊗ H

is well-defined (in particular, G(n)(·) does not depend on the choice of a representative
ġ(n) ∈ G(n)) and

(1.23) |G(n)(·)|H(n−1)
ext ⊗H ≤ |G(n)|ext.
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Note that, in spite of estimate (1.23), the space H(n)
ext , n ∈ N\{1}, is not a subspace of

H(n−1)
ext ⊗H because different elements of H(n)

ext can coincide as elements of H(n−1)
ext ⊗H.

Definition. For G ∈ (L2) we define a Hida stochastic derivative ∂·G ∈ (L2) ⊗ H by
setting

(1.24) ∂·G :=
∞∑

n=0

(n+ 1):〈◦⊗n, G(n+1)(·)〉 : ,

where G(n+1)(·) ∈ H(n)
ext ⊗H, n ∈ Z+, are constructed as described above by the kernels

G(n+1) ∈ H(n+1)
ext from decomposition (1.5) for G, if the series in the right hand side of

(1.24) converges in (L2)⊗H.

The domain of this derivative, i.e., of the operator

(1.25) ∂· : (L2)→ (L2)⊗H,
consists of G ∈ (L2) such that ‖∂·G‖2(L2)⊗H =

∑∞
n=0(n+1)!(n+1)|G(n+1)(·)|2H(n)

ext⊗H
<∞.

The interconnection between the extended stochastic integral and the Hida stochastic
derivative is given by the next statement.

Theorem. ([23]). Extended stochastic integral (1.22) and Hida stochastic derivative
(1.25) are mutually adjoint operators:

(1.26)
∫
◦(u) d̂Lu = (∂·)∗◦, ∂· =

( ∫
◦ d̂L

)∗
·
.

In particular, integral (1.22) and derivative (1.25) are closed operators.

Note that equalities (1.26) can be used as alternative definitions of the extended
stochastic integral and of the Hida stochastic derivative on the space of square integrable
random variables.

Let us consider the Hida stochastic derivative on the spaces of test functions. Since,
as is easily seen, the restriction of a generalized Wiener-Itô-Sigal isomorphism I to the
space (Hτ )q is an isometric isomorphism between (Hτ )q and a weighted Fock space
∞⊕

n=0
(n!)22qnH�⊗n

τ (cf. [24]), and, of course, the restriction of the identity operator on H
to the space Hτ is the identity operator on Hτ , for arbitrary n ∈ Z+ and f (n)

· ∈ H�⊗n
τ ⊗

Hτ ⊂ H(n)
ext ⊗H we have :〈◦⊗n, f

(n)
· 〉 : ∈ (Hτ )q ⊗ Hτ . Moreover, elements :〈◦⊗n, f

(n)
· 〉 :,

f
(n)
· ∈ H�⊗n

τ ⊗Hτ , n ∈ Z+, form an orthogonal basis in the spaces (Hτ )q ⊗Hτ .

Definition. For g ∈ (Hτ )q we define a Hida stochastic derivative ∂·g ∈ (Hτ )q ⊗Hτ by
the formula

(1.27) ∂·g :=
∞∑

n=0

(n+ 1):〈◦⊗n, g(n+1)(·)〉 :

(cf. (1.24)), where g(n+1) ∈ H�⊗n+1
τ , n ∈ Z+, are the kernels from decomposition (1.11)

for g considered as elements of H�⊗n
τ ⊗Hτ .

Since (see (1.12))

‖∂·g‖2(Hτ)q⊗Hτ
=

∞∑
n=0

((n+ 1)!)22qn|g(n+1)(·)|2H �⊗n
τ ⊗Hτ

= 2−q
∞∑

n=0

((n+ 1)!)22q(n+1)|g(n+1)|2τ ≤ 2−q‖g‖2τ,q,
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this definition is well posed and, moreover, the Hida stochastic derivative

(1.28) ∂· : (Hτ )q → (Hτ )q ⊗Hτ

is a linear continuous operator. Moreover, as it follows from construction of the kernels
G(n+1)(·) ∈ H(n)

ext⊗H from (1.24), this derivative is (generated by) the restriction of deri-
vative (1.25) to (Hτ )q. We note also that the restrictions of derivative (1.28) to (Hτ ) and
(D) generate linear continuous operators ∂· : (Hτ )→ (Hτ )⊗Hτ := pr limq∈Z+

(Hτ )q⊗Hτ

and ∂· : (D) → (D)⊗D := pr limq∈Z+,τ∈T (Hτ )q ⊗Hτ respectively.
Using the notion of the Hida stochastic derivative, one can easily widen the extended

stochastic integral to the spaces of nonregular generalized functions.

Definition. We define an extended stochastic integral

(1.29)
∫
◦(u) d̂Lu : (H−τ )−q ⊗H−τ → (H−τ )−q

as a linear continuous operator adjoint to Hida stochastic derivative (1.28), i.e., for
F ∈ (H−τ )−q ⊗H−τ

(1.30)
∫
F (u) d̂Lu := (∂·)∗F ∈ (H−τ )−q.

Since derivative (1.28) is the restriction of derivative (1.25), by (1.26) and (1.30)
integral (1.29) is an extension of integral (1.22).

By analogy one can define linear continuous operators
∫ ◦(u) d̂Lu : (H−τ ) ⊗ H−τ →

(H−τ ) and
∫ ◦(u) d̂Lu : (D′)⊗D′ → (D′), where (H−τ )⊗H−τ := ind limq→∞(H−τ )−q⊗

H−τ , (D′)⊗D′ := ind limq→∞,τ∈T (H−τ )−q ⊗H−τ .
In contrast to formula (1.21) for integral (1.22), formula (1.30) for integrals (1.29) is

inconvenient for calculations. Therefore let us obtain representations for these integrals
in terms of the orthogonal bases in the spaces (H−τ )−q.

First we note that, as in the case of the spaces (H−τ )−q, it follows from the general
duality theory that there exists a system of orthogonal in (H−τ )−q ⊗ H−τ generalized
functions

{
:〈◦⊗m, F

(m)
ext, ·〉 : ∈ (H−τ )−q ⊗H−τ | F (m)

ext, · ∈ H(m)
−τ ⊗H−τ , m ∈ Z+

}
such that

for F (m)
ext, · ∈ H(m)

ext ⊗H ⊂ H(m)
−τ ⊗H−τ :〈◦⊗m, F

(m)
ext, ·〉 : is given by (1.18); and any generalized

function F ∈ (H−τ )−q ⊗H−τ can be presented as a convergent in (H−τ )−q ⊗H−τ series

(1.31) F (·) =
∞∑

m=0

:〈◦⊗m, F
(m)
ext, ·〉 :, F

(m)
ext, · ∈ H(m)

−τ ⊗H−τ ,

now ‖F‖2(H−τ)−q⊗H−τ
=

∑∞
m=0 2−qm|F (m)

ext, ·|2H(m)
−τ ⊗H−τ

<∞.

Consider a family of chains

(1.32) D′�⊗m ⊃ H�⊗m
−τ ⊃ H�⊗m ⊃ H�⊗m

τ ⊃ D�⊗m, m ∈ Z+

(as is well known, H�⊗m
−τ and D′ �⊗m = ind limτ∈T H�⊗m

−τ are the spaces dual of H�⊗m
τ and

D�⊗m with respect to H�⊗m; in the case m = 0 all spaces from chain (1.32) are equal to
R). Since the spaces of test functions in chains (1.32) and (1.14) coincide, there exists a
family of natural isomorphisms

(1.33) Um : D′(m) → D′ �⊗m

such that for all F (m)
ext ∈ D′(m) and f (m) ∈ D�⊗m

(1.34) 〈F (m)
ext , f

(m)〉ext = 〈UmF
(m)
ext , f

(m)〉.
It is easy to see that the restrictions of Um to H(m)

−τ are isometric isomorphisms between
the spaces H(m)

−τ and H�⊗m
−τ .
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Remark. As we saw above, H(1)
ext = H, and therefore in the case m = 1 chains (1.32) and

(1.14) coincide. Thus U1 = 1 is the identity operator on D′(1) = D′. In the case m = 0
U0 is, obviously, the identity operator on R.

Proposition. Let F ∈ (H−τ )−q⊗H−τ . The extended stochastic integral can be presented
in the form

(1.35)
∫
F (u) d̂Lu =

∞∑
m=0

:〈◦⊗m+1, F̂
(m)
ext 〉 : ,

where

(1.36) F̂
(m)
ext := U−1

m+1{Pr[(Um ⊗ 1)F (m)
ext, ·]} ∈ H(m+1)

−τ ,

Pr is the symmetrization operator (more exactly, the orthoprojector acting for each m ∈
Z+ from H�⊗m

−τ ⊗H−τ to H�⊗m+1
−τ ), F (m)

ext, · ∈ H(m)
−τ ⊗H−τ , m ∈ Z+, are the kernels from

decomposition (1.31) for F .

Proof. By direct calculation one can easily show that the series in the right hand side of
(1.35) converges in (H−τ )−q. Further, using (1.11), (1.17), (1.36), (1.34), (1.27), (1.31),
(1.30) and the continuity of operators (1.28) and (1.29), for all F ∈ (H−τ )−q ⊗H−τ and
g ∈ (Hτ )q we obtain

〈〈
∞∑

m=0

:〈◦⊗m+1, F̂
(m)
ext 〉 :, g〉〉(L2) = 〈〈

∞∑
m=0

:〈◦⊗m+1, F̂
(m)
ext 〉 :,

∞∑
n=0

:〈◦⊗n, g(n)〉 :〉〉(L2)

=
∞∑

m=0

(m+ 1)!〈F̂ (m)
ext , g

(m+1)〉ext =
∞∑

m=0

(m+ 1)!〈(Um ⊗ 1)F (m)
ext, ·, g

(m+1)〉

=
∞∑

m=0

m!(m+ 1)〈F (m)
ext, ·, g

(m+1)(·)〉H(m)
ext ⊗H

= 〈〈
∞∑

m=0

:〈◦⊗m, F
(m)
ext, ·〉 :,

∞∑
n=0

(n+ 1):〈◦⊗n, g(n+1)(·)〉 :〉〉(L2)⊗H

= 〈〈F (·), ∂·g〉〉(L2)⊗H = 〈〈
∫
F (u) d̂Lu, g〉〉(L2).

The result of the proposition from this calculation follows. �
Remark. Sometimes it can be convenient to introduce the Hida stochastic derivative
and the extended stochastic integral as linear continuous operators acting from (Hτ )q to
(Hτ )q ⊗H and from (H−τ )−q ⊗H to (H−τ )−q correspondingly, this case is described in
detail in [21].

Unfortunately, in contrast to the Hida stochastic derivative, the extended stochastic
integral with respect to a Lévy process can not be naturally restricted to the spaces of
nonregular test functions, in general. More precisely, for f ∈ (Hτ )q ⊗ Hτ

∫
f(u) d̂Lu

not necessary a nonregular test function (one can show that for τ ∈ T and q ∈ Z+

such that q > log2 c(τ), where c(τ) > 0 from estimate (1.9), if f ∈ (Hτ )q ⊗ Hτ then∫
f(u) d̂Lu ∈ (L2); and for q sufficiently large this integral is a regular test function

[21]). Nevertheless, one can introduce on each space of nonregular test functions a linear
operator that has some important properties of the extended stochastic integral.

Let f ∈ (Hτ )q ⊗Hτ . Using the above described orthogonal basis in this space, we can
write

(1.37) f(·) =
∞∑

n=0

:〈◦⊗n, f
(n)
· 〉 :, f

(n)
· ∈ H�⊗n

τ ⊗Hτ
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(the series converges in (Hτ )q ⊗Hτ ), and also

(1.38) ‖f‖2(Hτ)q⊗Hτ
=

∞∑
n=0

(n!)22qn|f (n)
· |2H �⊗n

τ ⊗Hτ

<∞.

Definition. We define a linear continuous operator I : (Hτ )q+1⊗Hτ → (Hτ )q by setting
for f ∈ (Hτ )q+1 ⊗Hτ

(1.39) I(f) :=
∞∑

n=0

:〈◦⊗n+1, f̂ (n)〉 :

(cf. (1.21), (1.35)), where f̂ (n) := Prf (n)
· ∈ H�⊗n+1

τ are the orthoprojections onto H�⊗n+1
τ

(the symmetrizations by all variables) of the kernels f (n)
· ∈ H�⊗n

τ ⊗Hτ from decomposition
(1.37) for f .

Since (see (1.12), (1.39) and (1.38))

‖I(f)‖2τ,q =
∞∑

n=0

((n+ 1)!)22q(n+1)|f̂ (n)|2τ ≤ 2q
∞∑

n=0

(n!)22(q+1)n[(n+ 1)22−n]|f (n)
· |2H �⊗n

τ ⊗Hτ

≤ 9 · 2q−2‖f‖2(Hτ)q+1⊗Hτ
,

this definition is well posed. It is clear that the restriction of the operator I to the space
(Hτ )⊗Hτ (correspondingly to the space (D)⊗D) is a linear continuous operator acting
from (Hτ )⊗Hτ to (Hτ ) (correspondingly from (D)⊗D to (D)).

Sometimes it can be convenient to define I by formula (1.39) as a linear unbounded
operator acting from (Hτ )q ⊗Hτ to (Hτ )q with the domain

dom(I) :=
{
f ∈ (Hτ )q ⊗Hτ : ‖I(f)‖2τ,q =

∞∑
n=0

((n+ 1)!)22q(n+1)|f̂ (n)|2τ <∞
}
,

in this case I is a closed operator (this will be proved in a forthcoming paper).

Remark. If L is a Wiener or Poisson random process then the corresponding operator I

is the restriction to the corresponding space of nonregular test functions of the extended
stochastic integral. Respectively, the adjoint to this integral operator is an extension
of the Hida stochastic derivative to the corresponding space of nonregular generalized
functions. For processes L that we consider in the present paper, the Hida stochastic
derivative can not be naturally extended to the spaces of nonregular generalized functions,
but the adjoint to I operator plays the role of the mentioned derivative (the detailed
presentation will be given in a forthcoming paper). We note also that all atypical for a
classical analysis difficulties with determination of stochastic integrals and derivatives (in
particular, the necessity to introduce the spaces H(m)

ext , H(m)
−τ , D′(m), the isomorphisms

Um) are related to the fact that considered here Lévy processes have no the CRP.

2. Operators of stochastic differentiation

2.1. Stochastic differentiation on spaces of test functions. In order to define ope-
rators of stochastic differentiation on the spaces of nonregular test functions, we need
some preparation. Let F (n)

ext ∈ H(n)
−τ , G(m)

ext ∈ H(m)
−τ , n,m ∈ Z+. We define

(2.1) F
(n)
ext �G(m)

ext := U−1
n+m[(UnF

(n)
ext )⊗̂(UmG

(m)
ext )] ∈ H(n+m)

−τ ,

where Um : H(m)
−τ → H�⊗m

−τ , m ∈ Z+, are the restrictions to H(m)
−τ of operators (1.33).

It follows from the linearity of operators Um and from properties of a symmetric tensor
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product that a product � is commutative, associative and distributive. Further, by (2.1)

(2.2)
|F (n)

ext �G(m)
ext |H(n+m)

−τ

= |(UnF
(n)
ext )⊗̂(UmG

(m)
ext )|H �⊗n+m

−τ

≤ |UnF
(n)
ext |H �⊗n

−τ

|UmG
(m)
ext |H �⊗m

−τ

= |F (n)
ext |H(n)

−τ

|G(m)
ext |H(m)

−τ

.

Let F
(n)
ext ∈ H(n)

−τ , f (m) ∈ H�⊗m
τ , m > n. We define a generalized partial pairing

〈F (n)
ext , f

(m)〉ext ∈ H�⊗m−n
τ by setting for arbitrary G(m−n)

ext ∈ H(m−n)
−τ

(2.3) 〈G(m−n)
ext , 〈F (n)

ext , f
(m)〉ext〉ext = 〈F (n)

ext �G(m−n)
ext , f (m)〉ext.

By (2.2)
|〈F (n)

ext �G(m−n)
ext , f (m)〉ext| ≤ |F (n)

ext �G(m−n)
ext |H(m)

−τ

|f (m)|τ
≤ |F (n)

ext |H(n)
−τ

|G(m−n)
ext |H(m−n)

−τ

|f (m)|τ ,
which implies that this definition is well posed and

(2.4) |〈F (n)
ext , f

(m)〉ext|H �⊗m−n
τ

≡ |〈F (n)
ext , f

(m)〉ext|τ ≤ |F (n)
ext |H(n)

−τ

|f (m)|τ .

Definition. Let n ∈ N, F (n)
ext ∈ H(n)

−τ . We define a linear continuous operator

(2.5) (Dn◦)(F (n)
ext ) : (Hτ )q → (Hτ )q

by setting for f ∈ (Hτ )q

(2.6)

(Dnf)(F (n)
ext ) :=

∞∑
m=n

m!
(m− n)!

:〈◦⊗m−n, 〈F (n)
ext , f

(m)〉ext〉 :

≡
∞∑

m=0

(m+ n)!
m!

:〈◦⊗m, 〈F (n)
ext , f

(m+n)〉ext〉 : ,

where f (m) ∈ H�⊗m
τ are the kernels from decomposition (1.11) for f .

Since (see (1.12), (2.6) and (2.4))

‖(Dnf)(F (n)
ext )‖2τ,q =

∞∑
m=0

(m!)22qm ((m+ n)!)2

(m!)2
|〈F (n)

ext , f
(m+n)〉ext|2τ

≤ |F (n)
ext |2H(n)

−τ

2−qn
∞∑

m=0

((m+ n)!)22q(m+n)|f (m+n)|2τ ≤ |F (n)
ext |2H(n)

−τ

2−qn‖f‖2τ,q,

this definition is well posed. It is clear that the restriction of the operator (Dn◦)(F (n)
ext ) to

the space (Hτ ) or to the space (D) is a linear continuous operator on the corresponding
space.

Let us consider main properties of the operator Dn.

Theorem 2.1. 1) For k1, . . . , km ∈ N, F (kj)
j ∈ H(kj)

−τ , j ∈ {1, . . . ,m},
(Dkm(· · · (Dk2((Dk1◦)(F (k1)

1 )))(F (k2)
2 ) · · · ))(F (km)

m ) = (Dk1+···+km◦)(F (k1)
1 � · · · � F (km)

m ).

2) For each f ∈ (Hτ )q the kernels f (n) ∈ H�⊗n
τ , n ∈ N, from decomposition (1.11) can

be presented in the form

f (n) =
1
n!

E(Dnf),

i.e., for each F
(n)
ext ∈ H(n)

−τ 〈F (n)
ext , f

(n)〉ext = 1
n!E((Dnf)(F (n)

ext )), here E◦ := 〈〈1, ◦〉〉(L2) =∫
D′ ◦(ω)μ(dω) is an expectation.
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3) The adjoint to Dn operator has the form

(2.7) (DnG)(F (n)
ext )∗ =

∞∑
m=0

:〈◦m+n, G
(m)
ext � F (n)

ext 〉 : ∈ (H−τ )−q,

where F (n)
ext ∈ H(n)

−τ , G ∈ (H−τ )−q, and G(m)
ext ∈ H(m)

−τ are the kernels from decomposition
(1.15) for G.

Proof. 1) The proof consists in the application of the mathematical induction method.
2) Using (2.6) and (1.17) we obtain

E((Dnf)(F (n)
ext )) = 〈〈1, (Dnf)(F (n)

ext )〉〉(L2) = n!〈F (n)
ext , f

(n)〉ext.

3) Let f ∈ (Hτ )q, F
(n)
ext ∈ H(n)

−τ , G ∈ (H−τ )−q. By direct calculation one can easily
show that the series in the right hand side of (2.7) converges in (H−τ )−q. Further, using
(1.15), (2.6), (1.17), (2.3), (1.11) and the commutativity of the product �, we obtain

〈〈(DnG)(F (n)
ext )∗, f〉〉(L2) = 〈〈G, (Dnf)(F (n)

ext )〉〉(L2)

= 〈〈
∞∑

k=0

:〈◦⊗k, G
(k)
ext〉 :,

∞∑
m=0

(m+ n)!
m!

:〈◦⊗m, 〈F (n)
ext , f

(m+n)〉ext〉 :〉〉(L2)

=
∞∑

m=0

(m+ n)!〈G(m)
ext , 〈F (n)

ext , f
(m+n)〉ext〉ext

=
∞∑

m=0

(m+ n)!〈F (n)
ext �G(m)

ext , f
(m+n)〉ext

= 〈〈
∞∑

m=0

:〈◦⊗m+n, G
(m)
ext � F (n)

ext 〉 :,
∞∑

k=0

:〈◦⊗k, f (k)〉 :〉〉(L2)

= 〈〈
∞∑

m=0

:〈◦⊗m+n, G
(m)
ext � F (n)

ext 〉 :, f〉〉(L2),

whence the result follows. �

Now we consider in more detail the case n = 1. Denote D := D1.

Theorem 2.2. 1) For all G ∈ (H−τ )−q and F (1) ∈ H−τ

(2.8) (DG)(F (1))∗ =
∫

(G⊗ F (1))(u) d̂Lu ∈ (H−τ )−q.

2) For all f ∈ (Hτ )q and F (1) ∈ H−τ

(2.9) (Df)(F (1)) = 〈F (1)(·), ∂·f〉 ∈ (Hτ )q,

where 〈F (1)(·), ∂·f〉 is a partial pairing, i.e., the unique element of (Hτ )q such that for
arbitrary G ∈ (H−τ )−q 〈〈G, 〈F (1)(·), ∂·f〉〉〉(L2) = 〈〈G⊗ F (1), ∂·f〉〉(L2)⊗H.

Remark. Similarly to the proof of the fact that the generalized partial pairing 〈·, ·〉ext

is well posed and satisfies estimate (2.4), one can easily show that a partial pairing is
well posed and satisfies a generalized Cauchy-Bunyakovsky inequality (in our case this
inequality has the form |〈F (1)(·), ∂·f〉|τ,q ≤ |F (1)|H−τ |∂·f |(Hτ)q⊗Hτ

).

Proof. 1) The result follows from representation (2.7) with n = 1: it is necessary to
compare the construction of kernels of extended stochastic integral (1.29) (see (1.36))
with the construction of a product � (see (2.1)).
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2) Taking into account (2.8) and (1.30), for all G ∈ (H−τ )−q we obtain

〈〈G, (Df)(F (1))〉〉(L2) = 〈〈
∫

(G⊗ F (1))(u) d̂Lu, f〉〉(L2)

= 〈〈G ⊗ F (1), ∂·f〉〉(L2)⊗H = 〈〈G, 〈F (1)(·), ∂·f〉〉〉(L2),

whence the result follows. �

Remark. Substituting in (2.9) F (1) = δt ∈ H−τ (δt is the Dirac delta-function con-
centrated at t ∈ R+; the inclusion is proved in, e.g., [4]), we obtain for f ∈ (Hτ )q

(Df)(δt) = 〈δt(·), ∂·f〉 = ∂tf ∈ (Hτ )q. So, the Hida stochastic derivative can be pre-
sented in the form ∂·◦ = (D◦)(δ·).

In some applications of the Gaussian analysis (in particular, in the Malliavin calculus)
an important role belongs to the commutator between the extended stochastic integral
and the operator of stochastic differentiation (see, e.g., [1]). An analog of this commutator
is calculated in the Meixner analysis [19, 20] and on the spaces of regular test and
generalized functions of the Lévy analysis [9, 8]. Unfortunately, there is no natural
extension of this construction to the spaces of nonregular test functions of the Lévy
analysis: as we saw above, the extended stochastic integral can not be naturally restricted
to these spaces. Nevertheless, an analog of this integral on the mentioned spaces is the
operator I. So, it is natural to calculate the commutator between I and D. In order to
do this, let us introduce operators of stochastic differentiation on the spaces (Hτ )q ⊗Hτ

(this notion is intuitively clear and can be used without an additional explanation, but
we prefer to give an exact definition).

As above, we begin with a preparation. Let F (n)
ext ∈ H(n)

−τ , G(m)
ext, · ∈ H(m)

−τ ⊗ H−τ ,
n,m ∈ Z+. We define
(2.10)
F

(n)
ext ♦G(m)

ext, · := (U−1
n+m ⊗ 1){(Pr⊗ 1)[(UnF

(n)
ext )⊗ ((Um ⊗ 1)G(m)

ext, ·)]} ∈ H(n+m)
−τ ⊗H−τ ,

where, as above, Um, m ∈ Z+, are the restrictions to H(m)
−τ of operators (1.33), Pr ⊗ 1

is the operator of symmetrization ”by n + m variables, except the variable ·” or, more
exactly, the orthoprojector acting from H�⊗n

−τ ⊗H�⊗m
−τ ⊗H−τ to H�⊗n+m

−τ ⊗H−τ (of course,
this operator depends on n and m, but we simplify the notation). As is easy to see,

(2.11)
|F (n)

ext ♦G(m)
ext, ·|H(n+m)

−τ ⊗H−τ
= |(Pr⊗ 1)[(UnF

(n)
ext )⊗ ((Um ⊗ 1)G(m)

ext, ·)]|H �⊗n+m
−τ ⊗H−τ

≤ |UnF
(n)
ext |H �⊗n

−τ

|(Um ⊗ 1)G(m)
ext, ·|H �⊗m

−τ ⊗H−τ
= |F (n)

ext |H(n)
−τ

|G(m)
ext, ·|H(m)

−τ ⊗H−τ
.

Remark. Let G(m)
ext, · = G

(m)
ext ⊗ H

(1)
ext, G

(m)
ext ∈ H(m)

−τ , H(1)
ext ∈ H−τ ; and F

(n)
ext ∈ H(n)

−τ . By
(2.10) and (2.1)

(2.12) F
(n)
ext ♦(G(m)

ext ⊗H(1)
ext) = (F (n)

ext �G(m)
ext )⊗H(1)

ext.

Let F (n)
ext ∈ H(n)

−τ , f (m)
· ∈ H�⊗m

τ ⊗Hτ , m ≥ n. We define a generalized partial pairing
〈F (n)

ext , f
(m)
· 〉EXT ∈ H�⊗m−n

τ ⊗Hτ by setting for arbitrary G(m−n)
ext, · ∈ H(m−n)

−τ ⊗H−τ

(2.13) 〈G(m−n)
ext, · , 〈F (n)

ext , f
(m)
· 〉EXT〉H(m−n)

ext ⊗H = 〈F (n)
ext ♦G(m−n)

ext, · , f
(m)
· 〉H(m)

ext ⊗H.

By (2.11)

|〈F (n)
ext ♦G(m−n)

ext, · , f
(m)
· 〉H(m)

ext ⊗H| ≤ |F
(n)
ext ♦G(m−n)

ext, · |H(m)
−τ ⊗H−τ

|f (m)
· |H �⊗m

τ ⊗Hτ

≤ |F (n)
ext |H(n)

−τ

|G(m−n)
ext, · |H(m−n)

−τ ⊗H−τ
|f (m)
· |H �⊗m

τ ⊗Hτ
,
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which implies that this definition is well posed and

(2.14) |〈F (n)
ext , f

(m)
· 〉EXT|H �⊗m−n

τ ⊗Hτ
≤ |F (n)

ext |H(n)
−τ

|f (m)
· |H �⊗m

τ ⊗Hτ
.

Remark. Let f (m)
· = f (m) ⊗ h(1), f (m) ∈ H�⊗m

τ , h(1) ∈ Hτ ; and F
(n)
ext ∈ H(n)

−τ . For
G

(m−n)
ext ∈ H(m−n)

−τ and H(1)
ext ∈ H−τ by (2.13), (2.12) and (2.3) we obtain

〈G(m−n)
ext ⊗H(1)

ext, 〈F (n)
ext , f

(m) ⊗ h(1)〉EXT〉H(m−n)
ext ⊗H

= 〈F (n)
ext ♦(G(m−n)

ext ⊗H(1)
ext), f

(m) ⊗ h(1)〉H(m)
ext ⊗H

= 〈(F (n)
ext �G(m−n)

ext )⊗H(1)
ext, f

(m) ⊗ h(1)〉H(m)
ext ⊗H

= 〈F (n)
ext �G(m−n)

ext , f (m)〉ext〈H(1)
ext, h

(1)〉
= 〈G(m−n)

ext , 〈F (n)
ext , f

(m)〉ext〉ext〈H(1)
ext, h

(1)〉
= 〈G(m−n)

ext ⊗H(1)
ext, 〈F (n)

ext , f
(m)〉ext ⊗ h(1)〉H(m−n)

ext ⊗H.

The set {G(m−n)
ext ⊗H(1)

ext : G(m−n)
ext ∈ H(m−n)

−τ , H
(1)
ext ∈ H−τ} is total in the space H(m−n)

−τ ⊗
H−τ . Thus we can conclude that

〈F (n)
ext , f

(m) ⊗ h(1)〉EXT = 〈F (n)
ext , f

(m)〉ext ⊗ h(1)

in the space H�⊗m−n
τ ⊗ Hτ . As a corollary from this formula one can obtain the follow-

ing intuitively clear result. Let F (n)
ext ∈ H(n)

−τ , f (m)
· ∈ H�⊗m

τ ⊗ Hτ , m ≥ n, g(m−n)
· :=

〈F (n)
ext , f

(m)
· 〉EXT ∈ H�⊗m−n

τ ⊗ Hτ . Then for each u ∈ R+ f
(m)
u ∈ H�⊗m

τ and g
(m−n)
u =

〈F (n)
ext , f

(m)
u 〉ext ∈ H�⊗m−n

τ .

Definition. Let n ∈ N, F (n)
ext ∈ H(n)

−τ . We define a linear continuous operator

(Dn◦)(F (n)
ext ) : (Hτ )q ⊗Hτ → (Hτ )q ⊗Hτ

by setting for f ∈ (Hτ )q ⊗Hτ

(2.15)

(Dnf(·))(F (n)
ext ) :=

∞∑
m=n

m!
(m− n)!

:〈◦⊗m−n, 〈F (n)
ext , f

(m)
· 〉EXT〉 :

≡
∞∑

m=0

(m+ n)!
m!

:〈◦⊗m, 〈F (n)
ext , f

(m+n)
· 〉EXT〉 : ,

where f (m)
· ∈ H�⊗m

τ ⊗Hτ are the kernels from decomposition (1.37) for f .

Since (see (1.38), (2.15) and (2.14))

‖(Dnf(·))(F (n)
ext )‖2(Hτ )q⊗Hτ

=
∞∑

m=0

(m!)22qm ((m+ n)!)2

(m!)2
|〈F (n)

ext , f
(m+n)
· 〉EXT|2H �⊗m

τ ⊗Hτ

≤ |F (n)
ext |2H(n)

−τ

2−qn
∞∑

m=0

((m+ n)!)22q(m+n)|f (m+n)
· |2H �⊗m+n

τ ⊗Hτ

≤ |F (n)
ext |2H(n)

−τ

2−qn‖f‖2(Hτ)q⊗Hτ
,

this definition is well posed. It is clear that the restriction of the operator (Dn◦)(F (n)
ext )

to the space (Hτ ) ⊗ Hτ or to the space (D) ⊗ D is a linear continuous operator on the
corresponding space.
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Remark. Let n ∈ N, F (n)
ext ∈ H(n)

−τ , f ∈ (Hτ )q⊗Hτ , g(·) := (Dnf(·))(F (n)
ext ) ∈ (Hτ )q⊗Hτ ,

ḟ ∈ f be a representative (a function) from the equivalence class f . Then, as follows
from the previous remark, ġ(·) := (Dnḟ(·))(F (n)

ext ) is a representative of the equivalence
class g(·) such that for each u ∈ R+ ġ(u) = (Dnḟ(u))(F (n)

ext ) (i.e., considering f as a
function on R+ with values in (Hτ )q and substituting in (Dnf(·))(F (n)

ext ) a number u on
the place of ·, we obtain (Dnf(u))(F (n)

ext )).

Theorem 2.3. Denote D := D1. For all f ∈ (Hτ )q+1 ⊗Hτ and F (1) ∈ H−τ

(2.16) (D(I(f)))(F (1)) = I((D(f(·)))(F (1))) + 〈F (1)(·), f(·)〉 ∈ (Hτ )q,

where the last pairing is a partial one (see Theorem 2.2 for an explanation of this term).

Proof. Using (1.39) and (2.6) we obtain

(D(I(f)))(F (1)) =
∞∑

m=0

(m+ 1):〈◦⊗m, 〈F (1), f̂ (m)〉ext〉 : ∈ (Hτ )q,

where f̂ (m) ∈ H�⊗m+1
τ are the kernels from decomposition (1.39) (which is decomposition

(1.11) for I(f)), i.e., f̂ (m) = Prf (m)
· are orthoprojections onto H�⊗m+1

τ of the kernels
f

(m)
· ∈ H�⊗m

τ ⊗ Hτ from decomposition (1.37) for f . On the other hand, by (2.15)
and (1.39)

I((D(f(·)))(F (1))) =
∞∑

m=0

m:〈◦⊗m,Pr〈F (1), f
(m)
· 〉EXT〉 : ∈ (Hτ )q.

Let G =
∑∞

k=0 :〈◦⊗k, G
(k)
ext〉 : ∈ (H−τ )−q, G

(k)
ext ∈ H(k)

−τ . By (1.17) we have

〈〈G, (D(I(f)))(F (1))〉〉(L2) =
∞∑

m=0

m!(m+ 1)〈G(m)
ext , 〈F (1), f̂ (m)〉ext〉ext,

〈〈G, I((D(f(·)))(F (1)))〉〉(L2) =
∞∑

m=0

m!m〈G(m)
ext ,Pr〈F (1), f

(m)
· 〉EXT〉ext.

Further, since for eachm UmG
(m)
ext belongs to a symmetric tensor power ofH−τ , by (1.34),

(2.13) and (2.10)

m〈G(m)
ext ,Pr〈F (1), f

(m)
· 〉EXT〉ext = m〈UmG

(m)
ext , 〈F (1), f

(m)
· 〉EXT〉H⊗m

= m〈(UmG
(m)
ext )(·), 〈F (1), f

(m)
· 〉EXT〉H �⊗m−1⊗H

= m〈(U−1
m−1 ⊗ 1)(UmG

(m)
ext )(·), 〈F (1), f

(m)
· 〉EXT〉H(m−1)

ext ⊗H

= m〈F (1)♦(U−1
m−1 ⊗ 1)(UmG

(m)
ext )(·), f (m)

· 〉H(m)
ext ⊗H

= m〈(Pr⊗ 1)[F (1) ⊗ (UmG
(m)
ext )(·)], f (m)

· 〉H⊗m+1

= 〈F (1)(·1)⊗ (UmG
(m)
ext )(·2, . . . , ·m, ·) + F (1)(·2)⊗ (UmG

(m)
ext )(·3, . . . , ·m, ·1, ·)

+ · · ·+ F (1)(·m)⊗ (UmG
(m)
ext )(·1, . . . , ·m−1, ·), f (m)

· (·1, . . . , ·m)〉H⊗m+1 ,
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and by (2.3), (1.34), (2.1) and the last calculation

(m+ 1)〈G(m)
ext , 〈F (1), f̂ (m)〉ext〉ext = (m+ 1)〈F (1) �G(m)

ext ,Prf (m)
· 〉H(m+1)

ext

= (m+ 1)〈F (1)⊗̂(UmG
(m)
ext ), f (m)

· 〉H⊗m+1

= (m+ 1)〈[F (1)⊗̂(UmG
(m)
ext )](·), f (m)

· 〉H⊗m+1

= 〈F (1)(·)⊗ (UmG
(m)
ext )(·1, . . . , ·m) + F (1)(·1)⊗ (UmG

(m)
ext )(·2, . . . , ·m, ·)

+ F (1)(·2)⊗ (UmG
(m)
ext )(·3, . . . , ·m, ·1, ·)

+ · · ·+ F (1)(·m)⊗ (UmG
(m)
ext )(·1, . . . , ·m−1, ·), f (m)

· (·1, . . . , ·m)〉H⊗m+1

= 〈UmG
(m)
ext , 〈F (1)(·), f (m)

· 〉H〉H �⊗m +m〈G(m)
ext ,Pr〈F (1), f

(m)
· 〉EXT〉ext,

here 〈F (1)(·), f (m)
· 〉H ∈ H�⊗m

τ is a partial pairing.
Later, by (1.34) and (1.37)

(2.17)

∞∑
m=0

m!〈UmG
(m)
ext , 〈F (1)(·), f (m)

· 〉H〉H �⊗m

=
∞∑

m=0

m!〈G(m)
ext , 〈F (1)(·), f (m)

· 〉H〉H(m)
ext

=
∞∑

m=0

m!〈G(m)
ext ⊗ F (1)(·), f (m)

· 〉H(m)
ext ⊗H

= 〈〈G ⊗ F (1)(·),
∞∑

m=0

:〈◦⊗m, f
(m)
· 〉 :〉〉(L2)⊗H

= 〈〈G ⊗ F (1), f〉〉(L2)⊗H = 〈〈G, 〈F (1)(·), f(·)〉H〉〉(L2),

where 〈F (1)(·), f(·)〉H ≡ 〈F (1)(·), f(·)〉 ∈ (Hτ )q is a partial pairing.
So, for arbitrary G ∈ (H−τ )−q

〈〈G, (D(I(f)))(F (1))〉〉(L2) = 〈〈G, I((D(f(·)))(F (1)))〉〉(L2) + 〈〈G, 〈F (1)(·), f(·)〉〉〉(L2),

from where (2.16) follows. �

Remark. With the notation from the proof of Theorem 2.3, by (1.17)
∞∑

m=0

m!〈G(m)
ext , 〈F (1)(·), f (m)

· 〉H〉H(m)
ext

= 〈〈G,
∞∑

m=0

:〈◦⊗m, 〈F (1)(·), f (m)
· 〉H〉 :〉〉(L2),

therefore by (2.17) we obtain

〈F (1)(·), f(·)〉H ≡ 〈F (1)(·), f(·)〉 =
∞∑

m=0

:〈◦⊗m, 〈F (1)(·), f (m)
· 〉H〉 : .

Using this representation one can easily verify that actually for f ∈ (Hτ )q+1 ⊗ Hτ

〈F (1)(·), f(·)〉 ∈ (Hτ )q+1 (we recall that by a generalized Cauchy-Bunyakovsky inequality
|〈F (1)(·), f (m)

· 〉H|H �⊗m
τ
≤ |F (1)|H−τ |f (m)

· |H �⊗m
τ ⊗Hτ

).

As is easily seen, the results of Theorems 2.1, 2.2, 2.3 hold true (up to obvious modi-
fications) if we consider the operators of stochastic differentiation on the spaces (Hτ )
or (D).
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2.2. Interconnection between operators of stochastic differentiation on the
spaces (Hτ )q and (L2). In [9, 8] the operators of stochastic differentiation were in-
troduced and studied on the so-called spaces of regular test and generalized functions
and, in particular, on the space (L2). Since the spaces (Hτ )q are embedded into (L2),
it is natural to raise a question about interconnection between operators of stochastic
differentiation on (Hτ )q and on (L2). Actually, the answer is very simple: roughly speak-
ing, the operator of stochastic differentiation on (Hτ )q is the restriction to (Hτ )q of the
corresponding operator on (L2). In this subsection we’ll explain this fact in detail.

First, let us recall the definition of the operator of stochastic differentiation on (L2).
Let n,m ∈ Z+. Consider a function H : Rn+m

+ → R. Denote

H̃(u1, . . . , un;un+1, . . . , un+m)

:=

{
H(u1, . . . , un+m), if for all i ∈ {1, . . . , n}, j ∈ {n+ 1, . . . , n+m} ui 
= uj

0, in other cases
.

Let F (n) ∈ H(n)
ext , G(m) ∈ H(m)

ext . We select representatives (functions) ḟ (n) ∈ F (n),
ġ(m) ∈ G(m) from the equivalence classes F (n), G(m), and set H(u1, . . . , un+m) :=

ḟ (n)(u1, . . . , un) · ġ(m)(un+1, . . . , un+m). Denote ˜f (n)g(m) := H̃. Let ̂f (n)g(m) be the

symmetrization of ˜f (n)g(m) by all variables, F (n)�̂G(m) ∈ H(n+m)
ext be the equivalence

class in H(n+m)
ext that is generated by ̂f (n)g(m) (i.e., ̂f (n)g(m) ∈ F (n)�̂G(m)).

Lemma. ([8]). The element F (n)�̂G(m) ∈ H(n+m)
ext is well defined (in particular, this

element does not depend on the choice of representatives from F (n) and G(m)) and

(2.18) |F (n)�̂G(m)|ext ≤ |F (n)|ext|G(m)|ext.

Let F (n) ∈ H(n)
ext , f

(m) ∈ H(m)
ext , m > n. We define a ”product” (F (n), f (m))ext ∈

H(m−n)
ext by setting for each G(m−n) ∈ H(m−n)

ext

(2.19) (G(m−n), (F (n), f (m))ext)ext = (F (n)�̂G(m−n), f (m))ext.

Since by (2.18)

|(F (n)�̂G(m−n), f (m))ext| ≤ |F (n)�̂G(m−n)|ext|f (m)|ext ≤ |F (n)|ext|G(m−n)|ext|f (m)|ext,

this definition is well posed and |(F (n), f (m))ext|ext ≤ |F (n)|ext|f (m)|ext.

Definition. Let n ∈ N, F (n) ∈ H(n)
ext . We define a linear operator

(2.20) (D̂n◦)(F (n)) : (L2) → (L2)

by setting for F ∈ (L2)

(2.21)

(D̂nF )(F (n)) :=
∞∑

m=n

m!
(m− n)!

:〈◦⊗m−n, (F (n), f (m))ext〉 :

≡
∞∑

m=0

(m+ n)!
m!

:〈◦⊗m, (F (n), f (m+n))ext〉 : ,

where f (m) ∈ H(m)
ext are the kernels from decomposition (1.5) for F . The domain of this

operator is

dom((D̂n◦)(F (n)))

:=
{
F ∈ (L2) : ‖(D̂nF )(F (n))‖2(L2) =

∞∑
m=0

((m+ n)!)2

m!
|(F (n), f (m+n))ext|2ext <∞

}
.
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Comparing the constructions of operators (2.5) and (2.20), one can conclude that
for a study of the interconnection between these operators it is necessary to study the
interconnection between products � and �̂.

Proposition. Let n,m ∈ Z+. For F (n) ∈ H(n)
ext ⊂ H(n)

−τ and G(m) ∈ H(m)
ext ⊂ H(m)

−τ

(2.22) F (n) �G(m) = F (n)�̂G(m) ∈ H(n+m)
ext ⊂ H(n+m)

−τ

(more exactly, F (n)�G(m) = OF (n)�̂G(m), where O : H(n+m)
ext → H(n+m)

−τ is the embedding
operator).

Proof. For n = 0 or m = 0 (2.22) is, obviously, fulfilled, therefore we consider the case
n,m ∈ N. At first we establish that for each λ ∈ D

(2.23) 〈F (n) �G(m), λ⊗n+m〉ext = (F (n)�̂G(m), λ⊗n+m)ext.

It follows from the definition of F (n) �G(m) (see (2.1)) that

(2.24)

〈F (n) �G(m), λ⊗n+m〉ext = 〈Un+mU
−1
n+m[(UnF

(n))⊗̂(UmG
(m))], λ⊗n+m〉

= 〈(UnF
(n))⊗ (UmG

(m)), λ⊗n+m〉 = 〈UnF
(n), λ⊗n〉〈UmG

(m), λ⊗m〉
= 〈F (n), λ⊗n〉ext〈G(m), λ⊗m〉ext.

On the other hand, using the above accepted notation, by (1.8) we obtain

(2.25)

(F (n)�̂G(m), λ⊗n+m)ext = ( ̂f (n)g(m), λ⊗n+m)ext

=
∑

k,lj ,sj∈N: j=1,...,k, l1>l2>···>lk,

l1s1+···+lksk=n+m

(n+m)!
s1! · · · sk!

(‖pl1‖ν

l1!

)2s1 · · ·
(‖plk‖ν

lk!

)2sk

×
∫

R
s1+···+sk
+

̂f (n)g(m)(u1, . . . , u1︸ ︷︷ ︸
l1

, . . . , us1+···+sk
, . . . , us1+···+sk︸ ︷︷ ︸

lk

)

× λl1(u1) · · ·λlk(us1+···+sk
) du1 · · ·dus1+···+sk

.

Without loss of generality one can think that m ≥ n, and representatives ḟ (n) ∈ F (n),
ġ(m) ∈ G(m) are symmetric functions. Taking into consideration this symmetry we can
write (see [8] for a detailed explanation)
(2.26)

̂f (n)g(m)(u1, . . . , un+m) =
n!m!

(n+m)!

×
∑

1≤p1,...,pn≤n,n+1≤q1,...,qm≤n+m
0≤r≤n,p1<···<pr,pr+1<···<pn,q1<···<qn−r,qn−r+1<···<qm

˜f (n)g(m)(up1 , . . . , upr , uq1 , . . . , uqn−r ;

upr+1 , . . . , upn , uqn−r+1 , . . . , uqm)

(for r = n the argument in the right hand side of (2.26) is (u1, . . . , un;un+1, . . . , un+m);
for r = 0 this argument is (uq1 , . . . , uqn ;u1, . . . , un, uqn+1 , . . . , uqm)). To put it in another

way, the arguments of ˜f (n)g(m) in the right hand side of (2.26) are uj, j ∈ {1, . . . , n+m},
where the indexes of n first and m last arguments (before and after ’;’) are (indepen-
dently) ordered in ascending. (Note that we selected arrangement in ascending when we
used the symmetric property of ḟ (n) and ġ(m) because this is convenient for a consequent
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calculation.) Substituting (2.26) in (2.25), we obtain

(2.27)

(F (n)�̂G(m), λ⊗n+m)ext

=
∑

k,lj ,sj∈N: j=1,...,k, l1>l2>···>lk,

l1s1+···+lksk=n+m

n!m!
s1! · · · sk!

(‖pl1‖ν

l1!

)2s1 · · ·
(‖plk‖ν

lk!

)2sk

×
[ ∫

R
s1+···+sk
+

˜f (n)g(m)(u1, . . . , u1︸ ︷︷ ︸
l1

, . . . , us1+···+sk
, . . . , us1+···+sk︸ ︷︷ ︸

lk

)

× λl1(u1) · · ·λlk(us1+···+sk
) du1 · · · dus1+···+sk

+ · · ·
]
.

We say that a collection of equal to each other arguments (e.g., (u1, . . . , u1︸ ︷︷ ︸
l1

)) is called

a procession. It follows from the ordering in ascending of indexes in (2.26) and in the
statement for (·, ·)ext (see (1.8)) that in summands in interior sums [· · · ] from (2.27)
processions can ”tear” only so that different parts of a ”torn” procession will be for
different parties from ’;’; processions being for one side from ’;’ do not switch places;
and elements in processions do not switch places. Further, it follows from a construction

of ˜f (n)g(m) that summands in interior sums [· · · ] from (2.27), in which a procession
is divided by ’;’, are equal to zero. Another summands (if there exist for a collection
k, lj, sj) disintegrate on groups of equal to each other integrals. These groups arise by
means of mutual transpositions of processions with equal quantity of members, which
are placed before ’;’ and after ’;’. It is clear that if there are s′ processions of length l
before ’;’ and s′′ processions of length l after ’;’ then by means of mutual transpositions
of these processions one can obtain

(s′ + s′′)!
s′!s′′!

equal to each other summands.
So, nonzero summands in the right hand side of (2.27) are related to the expressions

(2.28) l1s1 + · · ·+ lksk = n+m

that can be presented in the form

(2.29)

l′1s
′
1 + · · ·+ l′k′s

′
k′ = n, l′′1s

′′
1 + · · ·+ l′′k′′s

′′
k′′ = m,

k′, k′′, l′1, . . . , l
′
k′ , s

′
1, . . . , s

′
k′ , l

′′
1 , . . . , l

′′
k′′ , s

′′
1 , . . . , s

′′
k′′ ∈ N,

l′1 > · · · > l′k′ , l′′1 > · · · > l′′k′′

(the first sum in (2.29) corresponds to first n arguments of ˜f (n)g(m), the second one
corresponds to last m arguments). Now for each sj from (2.28) either there exists s′i = sj

(l′i = lj) or there exists s′′i = sj (l′′i = lj) or there exist s′i and s′′w such that

s′i + s′′w = sj

(l′i = l′′w = lj). Inequalities for l′·, l′′· in (2.29) follow from inequalities l1 > · · · > lk and
ordering of indexes in (2.26) (more long processions have smaller indexes of arguments).

We will replace each group of equal to each other summands in the right hand side
of (2.27) by a representative multiplied by a quantity of summands in the group. Now,
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taking into account that ws′+s′′ = ws′ws′′ , one can rewrite (2.27) in the form

(F (n)�̂G(m), λ⊗n+m)ext

=
∑

k′,k′′,l′1,...,l′
k′ ,s

′
1,...,s′

k′ ,l
′′
1 ,...,l′′

k′′ ,s
′′
1 ,...,s′′

k′′ ∈N,

l′1>···>l′
k′ , l′′1 >···>l′′

k′′ ,
l′1s′1+···+l′

k′ s
′
k′=n, l′′1 s′′1 +···+l′′

k′′ s
′′
k′′=m

n!m!
s′1! . . . s

′
k′ !s

′′
1 ! . . . s′′k′′ !

×
(‖pl′1‖ν

l′1!

)2s′1
. . .

(‖pl′
k′
‖ν

l′k′ !

)2s′
k′ (‖pl′′1 ‖ν

l′′1 !

)2s′′1
. . .

(‖pl′′
k′′
‖ν

l′′k′′ !

)2s′′
k′′

×
∫

R
s′1+···+s′

k′
+

ḟ (n)(u1, . . . , u1︸ ︷︷ ︸
l′1

, . . . , us′1+···+s′
k′
, . . . , us′1+···+s′

k′︸ ︷︷ ︸
l′
k′

)

× λl′1(u1) · · ·λl′
k′ (us′1+···+s′

k′
) du1 · · · dus′1+···+s′

k′

×
∫

R
s′′1 +···+s′′

k′′
+

ġ(m)(un+1, . . . , un+1︸ ︷︷ ︸
l′′1

, . . . , un+s′′1 +···+s′′
k′′
, . . . , un+s′′1 +···+s′′

k′′︸ ︷︷ ︸
l′′
k′′

)

× λl′′1 (un+1) · · ·λl′′
k′′ (un+s′′1 +···+s′′

k′′
) dun+1 · · · dun+s′′1 +···+s′′

k′′

= (ḟ (n), λ⊗n)ext(ġ(m), λ⊗m)ext = (F (n), λ⊗n)ext(G(m), λ⊗m)ext

= 〈F (n), λ⊗n〉ext〈G(m), λ⊗m〉ext

(here we used a nonatomicity of the Lebesgue measure). Comparing this result with
(2.24), we obtain (2.23).

Further, F (n)�̂G(m) ∈ H(n+m)
ext ⊂ D′(n+m) generates a linear continuous functional on

D�⊗n+m by a formula l̂(·) := (F (n)�̂G(m), ·)ext. On the other hand, at the same time
F (n) �G(m) ∈ H(n+m)

−τ ⊂ D′(n+m) generates a linear continuous functional on D�⊗n+m by
a formula l(·) := 〈F (n) � G(m), ·〉ext. By (2.23) l̂ = l on a total in D�⊗n+m set {λ⊗n+m :
λ ∈ D}, therefore these linear continuous functionals coincide on D�⊗n+m, whence (2.22)
follows. �

As a corollary of this Proposition we obtain the next statement.

Theorem 2.4. For arbitrary n ∈ N and F (n) ∈ H(n)
ext ⊂ H(n)

−τ the restriction of the
operator (D̂n◦)(F (n)) to the space (Hτ )q coincides with the operator (Dn◦)(F (n)).

Proof. By (2.6) and (2.21) it is sufficient to show that for arbitrary m > n and f (m) ∈
H�⊗m

τ ⊂ H(m)
ext 〈F (n), f (m)〉ext = (F (n), f (m))ext in H(m−n)

ext . In fact, by (2.3), (2.22) and
(2.19) for arbitrary G(m−n) ∈ H(m−n)

ext ⊂ H(m−n)
−τ we obtain

(G(m−n), 〈F (n), f (m)〉ext)ext = 〈G(m−n), 〈F (n), f (m)〉ext〉ext = 〈F (n) �G(m−n), f (m)〉ext

= 〈F (n)�̂G(m−n), f (m)〉ext = (F (n)�̂G(m−n), f (m))ext = (G(m−n), (F (n), f (m))ext)ext,

whence the result follows. �
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no. 1, 55–72.

3. Yu. M. Berezansky, Yu. G. Kondratiev, Spectral Methods in Infinite-Dimensional Analysis,
Vols. 1, 2, Kluwer Academic Publishers, Dordrecht–Boston–London, 1995. (Russian edition:
Naukova Dumka, Kiev, 1988)

4. Yu. M. Berezansky, Z. G. Sheftel, G. F. Us, Functional Analysis, Vols. 1, 2, Birkhäuser Verlag,
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