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SPECTRAL AND PSEUDOSPECTRAL FUNCTIONS OF
HAMILTONIAN SYSTEMS: DEVELOPMENT OF THE RESULTS BY
AROV-DYM AND SAKHNOVICH
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Dedicated with respect to Yuri M. Berezansky on the occasion of his anniversary

ABSTRACT. The main object of the paper is a Hamiltonian system Jy' — B(t)y =
AA(t)y defined on an interval [a,b) with the regular endpoint a. We define a pseudo-
spectral function of a singular system as a matrix-valued distribution function such
that the generalized Fourier transform is a partial isometry with the minimally pos-
sible kernel. Moreover, we parameterize all spectral and pseudospectral functions of
a given system by means of a Nevanlinna boundary parameter. The obtained results
develop the results by Arov-Dym and Sakhnovich in this direction.

1. INTRODUCTION

Let H be a finite dimensional Hilbert space and let [H] be the set of linear operators
in H. We study the Hamiltonian differential system [3, 16]

(1.1) Jy — B(t)y=MA(t)y, te€Z, IeC,

where B(t) = B*(t) and A(t) > 0 are [H © H]-valued functions defined on an interval
Z = [a,b), b < oo, and integrable on each compact subinterval Zg = [a, 5] C Z and

(1.2) J:(IO _£H>:H€BH—>H@H.
H

System (1.1) is called canonical if B(t) =0, t € 7.

As is known a spectral function is a basic concept in the theory of eigenfunction
expansions of differential operators (see e.g. [5] and references therein). In the case of
a Hamiltonian system definition of a spectral function requires a certain modification.
Namely, let = L3 (Z) be the Hilbert space of functions f : Z — H @ H satisfying

/I (A F(0), F() di < oo

and let (-, A) be the [H, H ® H]-valued solution of the system (1.1) such that ¢(0, A
(0,If)". Assume that system is regular, i.e., b < oo and the functions B(-) and A()
integrable on Z. Then the generalized Fourier transform of a function f € § is

(1.3) 7(s) :/Iw*(t,s)A(t)f(t) dt, seR

and according to [2, 32, 33] an [H]-valued distribution function o(-) is a pseudospectral
function of the system (1.1) if the equality Vf = f, f € 9, defines a partial isometry

)
are

2010 Mathematics Subject Classification. 34B08, 34B20, 34B40, 34110, 47A06, 47B25.
Key words and phrases. Hamiltonian system, spectral function, pseudospectral function, Fourier
transform, m-function.

370



PSEUDOSPECTRAL FUNCTIONS 371

V € [9, L*(o; H)] with ker V = Lg, where
(1.4) Loz{fe.?):f(s)zo,seR}.
Moreover, o(-) is a spectral function if V' is an isometry.

The following assertion concerning the subspace Lg is obvious.

Assertion 1.1. If o(-) is an [H|-valued distribution function such that the generalized
Fourier transform V is a partial isometry from $) to L?*(o; H), then Lo C ker V. Hence
o(+) is a pseudospectral function, if V is a partial isometry with the minimally possible
kernel ker V = L.

Moreover, in view of [33, Lemma A.18] the following assertion holds.

Assertion 1.2. The subspace Ly is the set of all functions f € $ such that the solution
y of the inhomogeneous system

(15) Jy - Bty = AWF(D), teT,
with y(b) = 0 satisfies A(t)y(t) =0 (a.e. onZ) and (Ig,0)y(a) = 0.

Let Y (-, A) be the [H @ H]-valued solution of (1.1) with Y(a,\) = J, let W(}\) :=
Y (b, A) be the monodromy matrix and let

wi(A)  wz(A)
1.6 WA = cHeoH—-H®H, MNeC
(1.6 W= () ) wen—ne
be the block-matrix representation of W(A). A description of all pseudospectral func-
tions of the regular system is given by the following theorem obtained by D. Arov and
H. Dym [2] and A. Sakhnovich [32, 33].

Theorem 1.3. Let system (1.1) be regular and canonical and let (), o kerwy(\) = {0}.
Then the equalities

(1.7) m-(A) = (Co(Nwi(A) + C1(Nws (X)) (Co(Nw2(A) + Cr(Nwa(N)), A€ C\R,

s—0
(1.8) or(s) = lim lim l/ Imm,(u + ie) du
d—4+0e—+0 77 "y

establish a bijective correspondence between all Nevanlinna pairs 7 = {Co(A),C1(N)},
C;(N) € [H], j € {0,1}, (see Definition 2.9) satisfying a certain admissibility condition
(see (33, (A.134)]) and all pseudospectral functions o(-) = o,(-). Moreover, in the case
Lo = {0} (and only in this case) the set of spectral functions is not empty and the above
statement holds for spectral functions.

It was also shown in [2] that under certain additional conditions on W(\) statements
of Theorem 1.3 hold with arbitrary (not necessarily admissible) Nevanlinna pairs 7.

Note that m,(-) in (1.7) is an [H]-valued Nevanlinna function and (1.8) is the Perron-
Stieltjes formula for m,(-). Observe also that the condition [, ¢ kerw;(\) = {0} in
Theorem 1.3 is equivalent to kerw;(A) = {0} for some A € C\ R (see Proposition 6.21).

Assume now that system (1.1) is singular. Let §); be the set of all functions f € § that
vanish in a neighborhood of b. Then the Fourier transform (1.3) is defined for f € 9,
and an [H]-valued distribution function o(-) is called a spectral function of the system if
the operator Vf = f, I € 9, extends to an isometry V € [§), L?(o; H)| or, equivalently,
if o(-) is a spectral function for restriction of the system onto each subinterval Zg C Z.
Moreover, a pseudospectral function is defined in [2] by analogy with a spectral one.
Namely, according to [2] a distribution function og(-) is a pseudospectral function of
the singular system (1.1) if oo(-) is a pseudospectral function of its restriction onto each
compact subinterval Zg C Z. Observe also that certain sufficient conditions for existence
of a function o¢(-) are given in [2].
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In the present paper we offer another definition of a pseudospectral function for a
singular system. Namely let D be the lineal of absolutely continuous functions y € $
satisfying (1.5) with some f € §. Moreover, let Ly be the set of all functions f € $) such
that there exists y € D satisfying (1.5) and the equalities

(L9)  AWy(t) =0 (ae.on I), (Ln,0)y(@) =0, m(Jy(t).2()) =0, =eD.

Note that in the case of a regular system the last condition in (1.9) is equivalent to
y(b) = 0 and by Assertion 1.2 Ly admits the representation (1.4).

We prove the following statements: (1) Ly is a closed subspace in 9; (2) if o(+) is an [H]-
valued distribution function such that the generalized Fourier transform V f = f, f € 5y,
extends to a partial isometry V € [$), L?(o; H)], then Lo C ker V. These facts together

with Assertions 1.1 and 1.2 make natural the following definition.

Definition 1.4. An [H]-valued distribution function o(-) is a pseudospectral function
of the system (1.1) if the generalized Fourier transform extends to a partial isometry
V € [9, L?(0o; H)] with the minimally possible kernel ker V = L.

It is easily seen that a rather restrictive necessary (but not sufficient) condition for
existence of a pseudospectral function og(-) in the sense of [2] is

(110) Hp, = ('60,,32 N 57),31) D (L0ﬂ2 N 57),31)7 B < B,

where 95 = LA (Z3), Log C 9 is the subspace (1.4) for the restriction of the system
onto Zg and 9o = H3 0 Lo, B € Z. If (1.10) does not hold, then a pseudospectral
function o (-) does not exist even for a regular system. At the same time a pseudospectral
function o(+) in the sense of Definition 1.4 exists for any system (1.1). Moreover, in the
case of a regular system Definition 1.4 turns into the definition of a pseudospectral
function in [2, 33]. Observe also that each pseudospectral function og(-) in the sense of
[2] is a pseudospectral function o(+) in the sense of Definition 1.4 (see Proposition 6.9).
Therefore a pseudospectral function o(-) seems to be more general and convenient object
than 0'0(').

Denote by N, the linear space of solutions of the system (1.1) belonging to $ and let
Ny = dimN,, X € Cg, be the formal deficiency indices of the system (1.1) [22]. The
main result of the paper is a parametrization of all pseudospectral and spectral functions
of a (regular or singular) Hamiltonian system, which is given by the following theorem.

Theorem 1.5. Let Ny = N_ and assume that there exists only the trivial solution y = 0
of the system (1.1) satisfying (Ir,0)y(a) =0 and A(t)y(t) =0 (a.e. onZ). Then

(1) There exist an auziliary finite-dimensional Hilbert space Hpy and a Nevanlinna
operator function

(1.11) M) = (g}z%i; %ﬁi;) CH®oH, —» HOHy, AeC\R

such that the equality
(1.12)  me(N) = mo(N) + M2(N)(Co(N) = CL(A)Ma(N))T'CL(A)Ms(A), A€ C\R

together with (1.8) establishes a bijective correspondence between all Nevanlinna pairs
T={Co(N),C1i(N)}, C;(N) € [Hp], j € {0,1}, satisfying the admissibility conditions

(1.13) Jim_ 55 (Coliy) — Caliy) Ma(iy) ™" Ca(iy) = 0,
(1.14) Jm 2 Ma(iy)(Coliy) — C1(iy)Ma(iy)) ™" Co(iy) = 0,

and all pseudospectral functions o(-) = o,(-) of the system. Moreover, the above state-
ment holds for arbitrary (not necessarily admissible) Nevanlinna pairs T if and only if

(1.15)  lim 2 My(iy) =0 and  lim y-Im(Ma(iy)h,h) = +oo, heHy, h#0.
Yy—00 Yy—00
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(2) In the case Lo = {0} (and only in this case) the set of spectral functions is not
empty and statement (1) holds for spectral functions.

Recall that system (1.1) is called quasi-regular, if Ny = N_ = 2dim H. It turns out
that for a quasi-regular (in particular regular) system there exists the operator function
W () of the form (1.6) such that the equality (1.12) admits the representation (1.7);
moreover, the admissibility conditions (1.13), (1.14) and the criterion (1.15) can be re-
formulated in terms of W(\) as well. These results cover Theorem 1.3 and some other
results obtained for regular canonical systems in [2, 32, 33] (for more details see Theorems
6.16, 6.17 and Remark 6.24 below).

Tt is worth noting that matrices M (\) and W () are defined in terms of the boundary
values of respective operator solutions of (1.1) at the endpoints a and b (for more details
see Proposition 4.9, equality (6.9) and Remark 4.2).

The above results are obtained in the framework of the extension theory of symmetric
linear relations. To this end one associates with system (1.1) the minimal (symmetric)
linear relation Tiyin and the maximal relation Tiax(= To;,) in $ [31, 19, 25, 27]. Then
Lo = mulT, where mulT is the multivalued part of a certain symmetric extension 7T’
of Tiin, and pseudospectral functions are characterized in terms of orthogonal spectral
functions of self-adjoint extensions T" of T satisfying mulT = mul 7. With application of
this method pseudospectral and spectral functions of Hamiltonian systems were studied
in [13, 14, 19, 23, 24]. Our approach is based on concepts of a boundary triplet (boundary
pair) and the corresponding Weyl function (see [17, 10, 26, 7, 9] and references therein).
In the framework of this approach the matrix M()\) in (1.11) is the Weyl function of
an appropriate boundary pair for Tj,.x and the conditions (1.13), (1.14) are implied by
results on Il-admissibility from [7]. Observe also that general (not necessarily Hamil-
tonian) symmetric systems were studied by means of boundary triplets in recent papers
[1, 28, 29, 30].

2. PRELIMINARIES

2.1. Notations. The following notations will be used throughout the paper: §, H de-
note Hilbert spaces; [H1, Ho] is the set of all bounded linear operators defined on the
Hilbert space H; with values in the Hilbert space Hz; [H] := [H,H]; P is the ortho-
projection in $) onto the subspace £ C $); C4 (C_) is the upper (lower) half-plane of the
complex plane.

Recall that a linear relation T : Hy — H; from a Hilbert space Hy to a Hilbert space
‘H1 is a linear manifold in the Hilbert Hy & H;. If Ho = H; =: H one speaks of a linear
relation T in H. The set of all closed linear relations from Hy to H; (in H) will be

denoted by C(Ho,H1) (C(H)). A closed linear operator T' from Hy to H; is identified

with its graph gr T € C(Ho, H1)-

For a linear relation T' € C(Ho, H1) we denote by dom T, ranT, ker T' and mulT the
domain, range, kernel and the multivalued part of T" respectively. Recall that mulT is a
subspace in H; defined by

(21) mulT := {]’Ll € Hy: {O,hl} S T}

Clearly, T € C(Ho, H1) is an operator if and only if mulT = {0}.

For T € C(Ho,H1) we will denote by T—1(€ C(H1,Ho)) and T*(€ C(H1,Ho)) the
inverse and adjoint linear relations of T' respectively. Moreover, for a linear relation

T € C(H) we denote by p(T') the resolvent set of T, i.e., the set of all A € C such that
(T — N~ e[H].
Recall that an operator function ®(-) : C\ R — [H] is called a Nevanlinna function

if it is holomorphic and satisfies Im A - Im®(A) > 0 and ®*(\) = &(A\), A e C\R. A
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Nevanlinna function ®(-) is called uniformly strict if 0 € p(Im®()\)). We denote by R[H]
and R,[H] the set of [H]-valued Nevanlinna and uniformly strict Nevanlinna functions
respectively.

2.2. Symmetric relations and generalized resolvents. As is known a linear relation
A € C(9) is called symmetric (self-adjoint) if A C A* (resp. A = A*). For each symmetric
relation A € C($) the following decompositions hold:

H =5 emuld, A=gri;®mulA,

where mul A = {0} ®mul A and A is a closed symmetric not necessarily densely defined
operator in £y (the operator part of A). Moreover, A = A* if and only if 4y = Aj.

Let A= A* € C(), let B be the Borel o-algebra of R and let Eq(-) : B — [§0] be the
orthogonal spectral measure of Ag. Then the spectral measure F4(-) : B — [9] of A is
defined as F4(B) = Ey(B)Pg,, B € B.

Definition 2.1. Let A = A* € 5(5) and let $) be a subspace in 5 The relation A is
called $-minimal if there is no a nontrivial subspace $’ C $© $ such that E;(6)9' C £’
for each bounded interval § = [a, 3) C R.

Definition 2.2. The relations T € C();), j € {1,2}, are said to be unitarily equivalent
(by means of a unitary operator U € [§1, §]) if T = UT} with U = U & U € [$2, H2).

Let A € C($) be a symmetric relation. Recall the following definitions and results.

Definition 2.3. A relation A = A* in a Hilbert space 5 09N satisfyirig A C Ais called
an exit space self-adjoint extension of A. Moreover, such an extension A is called minimal
if it is $H-minimal.

In what follows we denote by Sg/lf(A) the set of all minimal exit space self-adjoint
extensions of A. Moreover, we denote by Self(A) the set of all extensions A = A* € C(9)

of A (such an extension is called canonical). As is known, for each A one has Self(A) #
(. Moreover, Self(A) # () if and only if A has equal deficiency indices, in which case

Self(A) C Self(A).

Definition 2.4. Exit space extensions ,Z = /T* € CN(%J) Jj € {1,2}, of A are called
equivalent (Wlth respect to $) if there exists a unitary operator V € [561 e 9, 562 o 9|
such that A1 and A2 are unitarily equivalent by means of U = I ® V.

Definition 2.5. The operator functions R(-) : C\R — [9] and F(:) : R — [$)] are called
a generalized resolvent and a spectral function of A respectively if there exists an exit
space self-adjoint extension Aof A (in a certain Hilbert space $ D ) such that

(22) R(\) =Py(A=N)""1H, AeC\R,
(2.3) F(t) = PoE((—00,t)) [ 9, tER.
Here Ps is the orthoprojection in § onto $ and E(-) is the spectral measure of A.

In the case A € Self(A) the equality (2.2) defines a canonical resolvent
RO = (A )
of A.
Pr0p051t10n 2.6. Each generalized resolvent R(\) ofA is generated by some (minimal)

extension A € Self(A). Moreover, the extensions Ay, Ay € Self(A) inducing the same
generalized resolvent R(-) are equivalent.
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In the sequel we suppose that a generalized resolvent 1(-) and a spectral function F(-)

are generated by an extension A e Self (A). Moreover, we identify equivalent extensions.
Then by Proposition 2.6 the equality (2. 2) glves a bijective correspondence between gene-
ralized resolvents R()\) and extensions A € Self (A), so that each A € Self (A) is uniquely
defined by the corresponding generalized resolvent (2.2) (spectral function (2.3)).

It follows from (2.2) and (2.3) that the generalized resolvent R(-) and the spectral

function F'(-) generated by an extension A e Self (A) are related by the equality
S YL .
(24)  ((F(B) = F(a))f, f) = lim lim — / Im(R(u +ie)f, f)du, f€9H,

6—+0e—+0 T 5
which holds for any finite interval [, ) C R. Moreover, setting Ho = H o mul A one
gets from (2.3) that
(2.5) F(oo)(:=s— lim F(t)) = PyPg I9.

t——+oo

2.3. The spaces £?(0;H) and L?(o;H). Let H be a finite dimensional Hilbert space.
A non-decreasing operator function o(-) : R — [H] is called a distribution function if it
is left continuous and satisfies o(0) = 0.

Theorem 2.7. ([15, ch. 3.15], [18]). Let o(-) : R — [H] be a distribution function.
Then

(1) There exist a scalar measure v on Borel sets of R and a function ¥ : R — [H]
(uniquely defined by v up to v-a.e.) such that ¥(s) > 0 v-a.e. on R, v([a, B)) <
oo and o(8) —o(a) = f[a ) U(s)dv(s) for any finite interval [, 3) C R.
(2) The set L2(o;'H) of all Borel-measurable functions f(-) : R — H satisfying
10 = [ (@r(6)7(5). 1)) = [ (VE1(6) Fres) < o0
is a semi-Hilbert space with the semi-scalar product

(F.9) 2oir0) = / (do(5)f(5). g(s)) = / (W(s)f(5), () di(s),  fog € L2(0:H).

Moreover, different measures v from statement (1) give rise to the same space

L%(o;H).
Definition 2.8. ([15, 18]). The Hilbert space L?(o;H) is a Hilbert space of all equiva-
lence classes in £?(o; H) with respect to the seminorm || - || z2(5.3)-

In the following we denote by 7, the quotient map from £?(o;H) onto L?(o; H).
With a distribution function o(-) one associates the multiplication operator A = A,
in L%(o;H) defined by

dom A, = {f € L*(0; H) : sf(s) € L*(0; H) for some (and hence for all) f() € f}

(2.6) Aof =7o(sf(s)), fedomA,, [()€ .
As is known, A = A, and the spectral measure E, of A, is given by
(2.7) E,(B)f =7, (xp(-)f(-), BeB, [el’oiH), [()e],

where xp(+) is the indicator of the Borel set B.

Let K, K’ and H be finite dimensional Hilbert spaces and let o(s)(€ [H]) be a distri-
bution function. For Borel measurable functions Y (s)(€ [H,K]) and g(s)(€ H), s € R,
we let

(2.8) /Y )do(s /Y s)du(s) (€ K),
where v and ¥(-) are defined in Theorem 2.7, (1).
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4. The class R(H). Recall the following definition.

Definition 2.9. A pair (Cy(A), C1(A)) of holomorphic operator functions Cj(-) : C\R —
[H],7 € {0, 1}, is said to be a Nevanlinna pair if Im\-Tm(C1(A)Cg(\) >0, C1(A\)Cg(N) —
Co(AN)CF(N) =0 and 0 € p(Co(N) — AC1(N)), A € C\ R (in the case dim H < oo the last
condition can be replaced with ran (Cy(X), C1(N\)) = H).

Two Nevanlinna pairs (C(gj ) (), Cy ) (), 7 € {1,2}, are called equivalent if there exists
a holomorphic operator function ¢(-) : C\ R — [H] such that 0 € p(¢())) and C’j@)(/\) =
@(A)C](l)()\), A € C\R, je{1,2}. Clearly, the set of all Nevanlinna pairs splits into
disjoint equivalence classes; moreover, the equality

(2.9) 7(\) = {(Co(N), C1(\)} := {{h, h'} € HOH : Co(\h+C1 (MR =0}, XeC\R

allows us to identify such a class with the holomorphic function 7(-) : C\ R — C(H)
satisfying

(2.10) 7*(A) =7(X), 0€p(r(\)+A), 1ix-Im(h',h) >0, {h,h'}er(A), AeC\R

(see [7]). In the following we denote by R(H) the set of all equivalence classes of
Nevanlinna pairs (Co(+),C1(-)) (or equivalently the set of all holomorphic functions

() : C\R — C(H) satisfying (2.10)). Moreover, we denote by R°(H) the set of all
7 € R(H) admitting the constant-valued representation

(2.11) T(A) = {(Co,C1)} =0, A€ C\R,
with some 6 = 6* € C(H).

The following assertion is well known.

Assertion 2.10. If 7(A) = {(Co(N),C1(A\)} € R(H) and ®(-) € Ru[H], then 0 €
p(T(A) + @(A)), 0€ p(Co(A) = CrL(A)2(N)) and

(212)  —(r()+®(N) ! = (CoN) — CLVB(N) ' Ci(N), AeC\R.

2.5. Boundary triplets and Weyl functions. Here we recall some facts about bo-
undary triplets and corresponding Weyl functions of symmetric relations following [17,
10, 26].

Let A be a closed symmetric linear relation in the Hilbert space $), let 9\ (4) =
ker (A* — A) (XA € C) be a defect subspace of A, let My(A) = {{f, Af}: f € IN(A)} and
let ni(A) ;== dim My (A) < 0o, A € Cy, be deficiency indices of A.

Definition 2.11. A collection II = {H,T'o,T"1}, where H is a Hilbert space and I';
A — H, j € {0, 1} are linear mappings, is called a boundary triplet for A*, if the

mapping I : f — {Fof Flf} f € A*, from A* into H @ H is surjective and the following
Green’s identity holds:

(f,9) = (f.9) = ("1 f.Tog) — (Tof,T4d), F={ff} G={g.9}eA".
Proposition 2.12. Let IT = {H,To,T'1} be a boundary triplet for A*. Then the equality
(2.13) Ty [0 (A) = M\ [ Ma(4), AeC\R
correctly defines the operator function M(-) € R,[H] (the Weyl function of the triplet 1 ).

A connection between the Weyl function M (\) and classical Weyl functions for various
differential and difference boundary problems is discussed e.g. in [11, 26].
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Theorem 2.13. ([6, 10, 26]). Let A be a closed symmetric linear relation in $) and let
II = {H,To,T1} be a boundary triplet for A*. If T = {(Co(:),C1(-))} € R(H) (see (2.9)),
then for every g € $ and A € C\ R the abstract boundary value problem

(2.14) {f;Af+g}e A,

(2.15) CoMTolf,Af + 9} = CL(MT1{f,A\f +9} =0, AeC\R

has a unique solution f = f(g,\) and the equality R(\)g := f(g,\) defines a generalized
resolvent R(\) = R-(A\) of A. Conversely, for each generalized resolvent R(\) of A there

exists a unique T € R(H) such that R(A) = R-(X). Moreover, R.()\) is a canonical
resolvent if and only if T € RO(H).

2.6. Boundary pairs and their Weyl functions. Let $) and H be Hilbert spaces and
let T' be a linear relation from $? into H?. Then an element ¢ € I is a pair ¢ = {f, h},
where f = {f, f'} € 92 (f, f' € ) and h = {h,h'} € H? (h,h’ € H). It is convenient to

. e=tran={r ()} ={(7)- (i)}

Definition 2.14. ([8]). Let A be a closed symmetric linear relation in §). A pair {H,I'}
with a Hilbert space  and a linear relation I' : $§2 — H? is called a boundary pair for
A* if

(1) domT is dense in A* and the abstract Green’s identity
(2.16) (f'.9)s = (.95 = (W, 2)2 = (h,2')n

. h T

holds for every {(J{,), ()3 {(gg,), (Z)} eT.

2)if @ ={(%), ()} € H* ©H? satisfies (2.16) for every {(f,), (1)} €T, then ¢ €T

Proposition 2.15. Let {H,T'} be a boundary pair for A* with dimH < oco. Then
ny(A) =n_(A) and T is a closed relation with domT' = A* and kerT' = A.

Proposition 2.16. Let {H,T'} be a boundary pair for A* with dim H < oco. Moreover,
let T'; : A* — H, j € {0,1}, be the linear relations, given by I'o = Pygin I | A* and
[y = Poygr!' | A and let Kr be the linear manifold in H defined by

(2.17) Kr = mul (mulT") = {h' €EH: {0, (i?’)} € I‘} .
If Kr = {0}, then ker Ty | Mr(A) = {0}, ranT | Mx(A) = H and the equality

(2.18) ng()\):{{h,h’}eH2 : {(;}), (;L,)} €T for somefe‘ﬁ,\(A)}, A€eC\R

define the operator function M(-) € R[H] (the Weyl function of the pair {H,T'}). More-
over, if the relations Ty and T'y are operators, then I = {H,Ty,T'1} is a boundary triplet
for A* and M(-) is the Weyl function of I (in the sense of Definition 2.11 and Propo-
sition 2.12).

Propositions 2.15 and 2.16 are immediate from [27, Section 3]. Moreover, the following
proposition is implied by [27] and [9, Proposition 4.1].
Proposition 2.17. Let {H,T'} be a boundary pair for A* with dimH < oo, let Kr = {0}
and let M(-) be the Weyl function of {H,T'}. Moreover, let H be decomposed as H =

H @ H. Then
(1) The equalities

Z:{J?GA*i{J?,Q(L),)}EF, h’eﬁ}, ﬁ*:{feA":{f,(Z)}eF,heH}
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define a symmelric extension A of A and its adjoint Z*
(2) A pair {H,T'} with a linear relation T : 52 — H? of the form

() e ) )

18 a boundary pair for A Moreover, for this pair K = {0} and the corresponding Weyl
function is M(\) = Py M(A) | H, A€ C\R.

3. PSEUDOSPECTRAL AND SPECTRAL FUNCTIONS OF HAMILTONIAN SYSTEMS

3.1. Notations. Let Z = [a,b) (—00 < a < b < c0) be an interval of the real line
(the symbol ) means that the endpoint b < oo might be either included to Z or not).
For a given finite-dimensional Hilbert space H denote by AC(Z; H) the set of functions
f(-) : T — H which are absolutely continuous on each segment [a, 5] C Z.

Next assume that A(-) is an [H]-valued Borel measurable function on Z integrable
on each compact interval [a,3] C Z and such that A(t) > 0. Denote by £3(Z) the
semi-Hilbert space of Borel measurable functions f(-) : T — H satisfying ||f||X =
S (A@)f(t), f(t) g dt < oo (see e.g. [15, Chapter 13.5]). The semi-definite inner product
(-,-)a in LX(Z) is defined by (f,9)a = [(A@)f(t),9(t)m dt, f,g € LA(T). Moreover,
let LA (Z) be the Hilbert space of the equivalence classes in £3 (Z) with respect to the
semi-norm || - ||a. Denote also by ma the quotient map from £% (Z) onto L3 (Z) and let
Fa=ma®ma (LA(D)? — (LA(D)? so that 7alf.g} = {maf,magh, f.g€ LA(T).

For a given finite-dimensional Hilbert space K we denote by £3[K, H] the set of all
Borel measurable operator-functions F(-) : Z — [K, H] such that F(t)h € L4 (Z), h € K.

3.2. Hamiltonian systems. Let as above Z = [a,b) (—00 < a < b < 00) be an interval
in R. Moreover, let H be a finite-dimensional Hilbert space. In the sequel we put
p=dim H and m = dim(H @ H) = 2p.

Next assume that B(-) and A(:) are [H @& H]-valued Borel measurable functions on 7
integrable on each compact interval [a, 5] C Z and satisfying B(t) = B*(t) and A(t) > 0
a.e. on Z and let J € [H & H| be operator (1.2).

A Hamiltonian system on an interval Z (with the regular endpoint a) is a system of
differential equations of the form

(3.1) Jy — B(t)y= Aty + A@)f(t), teIZ, MNeC,

where f(-) € L% (Z). Together with (3.1) we consider also the homogeneous system
(3.2) Jy — B(t)y=AA(t)y, te€Z, MeC,

and the system

(3.3) Jy — B(t)y = A(t)f(t), tel.

A functiony € AC(Z; H® H) is a solution of (3.1) if it satisfies (3.1) a.e. onZ. A function
Y(-,A\) : T — [K,H @ H] is an operator solution of equation (3.2) if y(¢t) = Y (¢, \)h is
a (vector) solution of this equation for every h € K (here K is a Hilbert space with
dim K < 00). In the sequel we denote by Ny, A € C, the linear space of solutions of the
homogeneous system (3.2) belonging to £3 (Z). It is clear that dim Ny < m.

The following obvious lemma will be useful in the sequel.

Lemma 3.1. IfY(-,\) € LA[K, H® H] is an operator solution of (3.2), then the relation
(3.4) K3>h—= (YNh)(@) =Y, Nh e N,y

defines the linear mapping Y () : K — N and, conversely, for each such a mapping
Y (A) there exists a unique operator solution Y (-,\) € LA[K,H & H] of (3.2) such that
(3.4) holds.
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It is easily seen that the set of all solutions y of (3.2) such that A(t)y(t) = 0 (a.e. on
7) does depend on A. This enables one to introduce the following definition.

Definition 3.2. The null manifold N of the system (3.1) is the subspace of N given
by

N={ye AC(Z;H® H) : Jy'(t) — B(t)y(t) = AA(t)y(t) and A(t)y(t) =0 a.e. on Z}.

As it is known [31, 19, 25] system (3.1) gives rise to the mazimal linear relations Tmax
and Tyax in £ (Z) and LA (Z) respectively. They are given by

Toax = {{y, f} € (LA(2))* 1y € AC(T; H & H) and Jy/(t) — B(t)y(t) =A(1)f (1)
a.e. on Z}

and Tmax = TATmax = {{may, 7af} : {y, f} € Tmax}. Moreover the Lagrange’s identity

(35) (fu Z)A - (yvg)A = [y7 Z}b - (Jy(a’)7 Z(a))7 {yv f}7 {ng} € Tmax
holds with
(3.6) ly, z]p := ltiTril(Jy(t), z(t)), y,z € dom Tpax.

Next, define the linear relation 7, in [,2A(I) and the minimal linear relation Ti,, in
LA (Z) by setting

To = {{y, [} € Trnax : y(a) =0 and [y,z], =0 for every z € dom Tpax}
and Tmin = TaZe = {{may,7af} : {y, f} € Tmin}. Then T, is a closed symmetric
linear relation in L3 (Z) and T, = Tmax [31, 19, 25, 27]. Moreover, by [27, (4.47)]

(3.7)  ker (Fa | Tmax) = {{y, f} € (LCA(Z))?: y € N and A(t)f(t) =0 a.e. on Z}.

Definition 3.3. ([22]). The numbers N; = dimN; and N_ = dimN_; are called the
formal deficiency indices of the system (3.1).

Proposition 3.4. ([22, 25]). Given a Hamiltonian system (3.1). Then Ny = dim N},
A€ Cy (ie., dim N, does not depend on \ in either C4 or C_) and

(3'8) p < Ny <m.
Moreover, the deficiency indices of Tin are N+ (Tmin) = N+ — dim N.

Next assume that

(3.9) U= (u,u2): HOH —- H
is an operator satisfying the relations
(3.10) ujuy —ugu} =0 and ranU = H

(this means that (u1,uz) is a self-adjoint operator pair). As is known such an operator
U admits an extension to an operator

(3.11) 17=<“3 u4>:H@H—>H@H,
Uy U2

satisfying U*JU =J (this means that Uis a J-unitary operator).
Clearly, each function y € AC(Z; H ® H) admits the representation
(3.12) y(t) ={wo(®), m)}(e HB H), tel.
Using (3.11) and the representation (3.12) of y we introduce the linear mappings I'jq :
AC(Z;H® H) — H, j € {0,1}, by setting
(3.13) Toay = usyo(a) + ugyr(a),
(3.14) Iiay = wiyo(a) +uzyi(a), y € AC(Z;H @ H).



380 VADIM MOGILEVSKII

Clearly, the mapping I'1, is determined by the operator U, while I'g, is determined by
the extension U. Moreover, the equality ['yy = Uy( ), y € AC(Z; H © H), defines the
surjective linear mapping I', : AC(Z; H ® H) — H @© H with the block representation

(3.15) L, = <£0“> AC(L;H® H) - Ho H.
la
Since U is J-unitary, it follows that
(316) (‘]y(a)7 Z(Cl)) = (‘]Fayvraz) = (Foay’ Flaz) - (Flayvroaz)a Y,z € domeax~

In the following we associate with each operator U (see (3.9)) the operator solution
wu (-, A)(€ [H,H @ H]), A € C, of (3.2) satisfying the initial condition

(3.17) wula,\) = ( u2*> :H— H®H.
—uy
One can easily verify that for each J-unitary extension U of U one has
~ IH
(3.18) Upy(a, ) = 0 :H— HoH.

3.3. g-pseudospectral and spectral functions. In this subsection we assume that U
is the operator (3.9) and that 'y, is the linear mapping (3.14). N

In what follows we put $) := LE\(I) and denote by 9, the set of all f € § with the
following property: there exists ﬂf € 7 such that for some (and hence for all) function
fe fthe equality A(t)f(t) = 0 holds a.e. on (ﬁf, b).

With each fe 9y we associate the function f() :R — H given by

(3.19) fls) = / St AWMLt [() €T

One can easily prove that f() is a continuous (and even holomorphic) function on R.
Recall that an operator V' € [91, H2] is called a partial isometry if ||V f|| = ||f|| for
all feHn okerV.

Definition 3.5. A distribution function o(-) : R — [H] will be called a g-pseudospectral
function of the system (3.1) (correspondmg to the operator U) if fe L2(o; H) for all
f € 9, and the operator Vf = ng f € 9y, admits a continuation to a partial isometry
V =V, €[$, L%*o; H)].

The operator V' =V, will be called the (generalized) Fourier transform corresponding
to o ().

Clearly, if o(+) is a g-pseudospectral function, then for each f(-) € £3(Z) the integral
in (3.19) converges in the norm of £?(o; H). This means that there exists a unique
(= V,maf) € L?(0o; H) such that for any function g(-) € g one has

imllo0)~ [ evwamsaal

B1b

=0.
L2(o;H)

Moreover, similarly to [15, 34](see also [29, Proposition 4.2]) one proves that for each
g-pseudospectral function o(+)

(3200 Vig=ma (/ @Uc,s)da(s)g(s)), GeXo:H), g)eq.

where the integral converges in the seminorm of £3 (7).
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Assertion 3.6. Let T and T be linear relations in § given by
(3.21) T={{may,7af}:{y, [} € Tmax, T1ay =0 and [y, 2]y =0, z € domTpax},
(3.22) T = {{may,maf} : {y, f} € Tmax and T1,y = 0}.

Then

(1) T is a (closed) symmetric extension of Tyin and Ty C T*.

(2) The multivalued part mulT of T is the set of all f € § such that for some (and
hence for all) f € f there exists a solution y of the system (3.3) satisfying

(3.23)  A(t)y(t) =0 (a.e. on Z), Ti,y=0 and [y,2]p =0, 2z € domTpax.

Proof. Statement (1) is immediate from the Lagrange’s identity (3.5). Statement (2) is
implied by (3.21) and (2.1). O

Let o(+) be a ¢g-pseudospectral function, let V,, be the corresponding Fourier transform
and let ) = H O kerV,, Lo =V, 9(= V,9}) and Ly = L*(o; H) © Lo. Then
(3.24) 9 =kerV, @9, L*(o;H)=1Lo®Lg.

Assume also that
9

~ ~ ——N— ~
(3.25) 9y =9, DLy, 9 :=kerV,®H,PLy =HD Ly =kerV, ® H),
and let V' € [}, L2(o; H)] be a unitary operator of the form
(3.26) V' = (Vo | 90, Iy) : 9 © Ly — L*(o; H),
where ILS_ is an embedding operator from Lg to L?(c; H). Since § C 5’, one may
consider T as a linear relation in §’.

Lemma 3.7. Let o(-) be a q-pseudospectral function of the system (3.1), let V' be unitary

operator (3.26) and let T be symmetric relation (3.21). Moreover, let T%i/ € C(9') be

the linear relation adjoint to T in 9 and let A = Ao be the multiplication operator in
L?(o; H). Then the equalities

(3.27) F=Wyg Tof =(V')Ag. gedomA

define a self-adjoint operator To in 56 such that Ty C Tfo*"

Proof. Clearly, T;, =T © (Lg)? and by (3.26) the equalities (3.27) can be written as
F=V;§+P 3 Tof=V;AG+ P .Ag, §e€domA.

Hence to prove the inclusion T C Tg, itis sufficient to show that {V*g, VX*Ag} € T* for
all g € dom A.

Let g € domA, g(-) € g and let E(-) = E,(-) be the spectral measure of A. Then
by (2.6) and (2.7) for each compact interval § C R one has E(d)g = ms(xs(-)9(-))
and AE(8)g = ms(sxs(s)g(s)). Therefore in view of (3.20) VFE(d)g = may(-) and
VIAE(0)g = ma f(+), where

(3.28)  w(®) =/Rw(t,8) do(s)xs(s)g(s),  f(t) =/st(t,8) do(s)xs(s)g(s)-

It was shown in the proof of [29, Lemma 4.4] that {y, f} € Tmax. Moreover, by the first
equality in (3.28) and (3.17)
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which in view of (3.14) and (3.10) yields I'1,y = 0. Therefore by (3.22)

(VZE®)3, V;ABO)GH= {may() maf()}) € To C T
and passage to the limit when 6 — R yields the required inclusion {Vg, V*Ag} € T*. O
Proposition 3.8. For each q-pseudospectral function o(-) of the system (3.1) the corres-
ponding Fourier transform V, satisfies
(3.29) mul7" C ker V,
(for mulT see Assertion 3.6, (2)).

Proof. Let To = Tg be the operator in 56 defined in Lemma 3.7 and let (To)%/ be the
linear relation adjoint to 7p in ' . Then (To)%, = Ty @ (ker V,)? and the inclusion
Ty C T%, yields
(3.30) T C Ty ® (ker V,)2.
Let 7i € mul 7. Then {0,7} € T and by (3.30) {0,71} € Tp @ (ker V). Therefore there
exist f € domTy and g, ¢’ € ker V, such that

f+3=0, Tof+7 =n
Since f 65{2 g € kerV, and 56 1 kerV, (see (3.25)), it follows that f=g=o.
Therefore Tof = 0 and hence 17 = g’ € ker V,,. This yields the inclusion (3.29). O

Definition 3.9. A ¢-pseudospectral function o(-) of the system (3.1) with ker V, = mul T
will be called a pseudospectral function (corresponding to the operator U).

Definition 3.10. A distribution function o(-) : R — [H] is called a spectral function
of the system (3.1) (corresponding to the operator U) if for every f € )y the inclusion
[ € L£%(o; H) holds and the Parseval equality ||f||z2(0.m) = ||f|]s is valid (for f see
(3.19)).

It follows from Proposition 3.8 that a pseudospectral function is a g-pseudospectral
function o(-) with the minimally possible ker V,,. Moreover, the same proposition yields
the following assertion.

Assertion 3.11. A distribution function o(-) : R — [H] is a spectral function of the
system (3.1) if and only if it is a pseudospectral function with ker V,(= mulT) = {0}.

In the following we put $g := $H © mul T, so that
(3.31) H=mulT & $Ho.

Moreover, for a pseudospectral function o(-) we denote by Vy = Vj, the isometry from
o to L%(o; H) given by

(332) % o =Vs TYJO

)

4. m-FUNCTIONS AND GENERALIZED RESOLVENTS OF HAMILTONIAN SYSTEMS

4.1. Boundary pairs for Hamiltonian systems. The following lemma is immediate
from [27, Lemma 5.1 and Proposition 5.5].

Lemma 4.1. If system (3.1) satisfies Ny = N_ =: d, then there exist a finite dimen-

stonal Hilbert space Hy and a surjective linear mapping

(4.1) Iy, = G‘;Z) s dom Topax — Hy © H
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such that for all y, z € dom Ty ax the following identity is valid:
(4.2) [y, 2] = (Covy, T'162) — (T10y, Ton2).
Moreover, dimH, = d — p.

Remark 4.2. If Ty is the mapping (4.1), then I'yy is a singular boundary value of a
function y € dom Tpnax at the endpoint b in the sense of [15, Chapter 13.2] (for more
details see Remark 3.5 in [1]).

Below within this section we suppose the following assumptions:

(A1) System (3.1) has equal formal deficiency indices Ny = N_ =:d.

(A2) U is the operator (3.9) satisfying (3.10) and I'y, is the linear mappings (3.14).

(A3) Hp is a finite dimensional Hilbert space and T, is a surjective linear mapping
(4.1) satisfying (4.2).

(A4) For each y € N the equality T';,y = 0 yields y = 0.

Proposition 4.3. Let U be a J-unitary extension (3.11) of U and let Ty, be linear
mapping (3.13). Then a pair {H @ Hy, L'} with a linear relation T : % — (H @ Hy)?
defined by

_ may\ ((~T1ay) Fob?J)} , }
43) b= {{ <7TAf>7 (Fan ©(-Tuy)/ ) 1 £} € Tmax
is a boundary pair for Tymax such that Kr = {0} (for Kr see (2.17)).

Proof. The fact that {H & Hy, '} is a boundary pair for Tipay directly follows from [27,
Corollary 5.6]. Next, by (4.3) and (3.7) one has

(4.4) Kr = {Toay © (-T1py) : y € N and T1,y = 0, Topy = 0}.
This and the assumption (A4) yields Kr = {0}. O

Definition 4.4. The boundary pair {H & Hy, '} constructed in Proposition 4.3 will be
called a decomposing boundary pair for Tiax-

Proposition 4.5. Let T be a symmetric extension (3.21) of Twin. Then
(1) The adjoint T* of T coincides with Ty (see (3.22)), that is

(45) T = {{’”Ayv'/TAf} : {yv f} € Tmax and Flay = 0}

(2) For every {¥, f} € T* there exists a unique y € dom Tyax such that T,y =

0, Tay =y and {y, f} € Tmax for any f € f. .
3) The collection 11 = {Hy, g, T'1} with operators T'; : T* — Hyp of the form
J

(46) ]:—‘0{:177 .]7} = FObyv ]-L‘l{gja f} = _Flbyv {gv f} € T*

is a boundary triplet for T*. In (4.6) y € dom Tyax is uniquely defined by {y, f} in
accordance with statement (2).

Proof. (1) Let U be J-unitary extension (3.11) of U, let g be operator (3.13) and let
{H & H;,T'} be the decomposing boundary pair (4.3) for Ti,ax. Applying to this pair
Proposition 2.17, (1) (with H = ;) one obtains statement (1).

(2) It {y, f} € T*, then there exists {y, f} € Tmax such that Tay =¥, naf = f and
I'iqy = 0. Hence y has the required properties. To prove uniqueness of such y assume
that y1 € domZTmax, T'ey1 = 0, mays = ¥ and {y1, f1} € Tmax with some f; € f
Then 7a{y1, f1} = {7, f} and, consequently, Ta{y1 — vy, f1 — f} = 0. Therefore by (3.7)
y1 —y € N. Moreover, I'1,(y —y1) = 0, which in view of the assumption (A4) yields the
equality y; = y.
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(3) Application of Proposition 2.17,(2) to the decomposing boundary pair {H®Hy,T'}
gives a boundary pair {H;,I'} for T* with the linear relation I" : 92 — (Hp)? of the form

an e (PN ) Tt o).

Therefore by statement (2) linear relations Iy = PHb@{O}f‘ I T*and I'; = P{o}@Hbf [ T*
are the operators (4.6), which in view of Proposition 2.16 yields statement (3). O

4.2. L3 -solutions of boundary problems.

Definition 4.6. A boundary parameter 7 (at the endpoint b) is an equivalent class of
operator pairs 7(A\) € R(H;). According to Sect. 2.4 such a pair is of the form

(4.8) T=7(A) ={(Co(A),C1(N))}, A€ C\R,
where C;(-) : C\R — [H;], j € {0,1}, are holomorphic operator functions satisfying
ImA - Im(C1 (A\)CE(A) >0, C1(A)C5(A) — Co(N)CF(N) =0, ran(Co(N), C1(N) = Hy.

In the case 7 € RO (Hp) a boundary parameter 7 will be called self-adjoint. According
to (2.11) such a boundary parameter admits the representation in the form of a self-
adjoint operator pair

(4.9) () = {(Co,C1)}, AEC\R,

with operators C; € [Hy], j € {0,1}, satistying Im(C1C) = 0 and ran (Cp, C1) = Hy.
Let 7 be a boundary parameter (4.8). For a given function f € £3(Z) consider the
following boundary value problem:

(4.10) Ty - By = MMy + A1), teT,
(4.11) .y =0, Co(A)Foby + Cl()\)rwy =0, XeC \ R.

If 7 is a self-adjoint boundary parameter (4.9), then (4.11) becomes self-adjoint separated
boundary conditions

(4.12) Fay =0, Colopy +Cil'1py = 0.

A function y(-,-) : Z x (C\R) — H @ H is called a solution of the problem (4.10), (4.11)
if for each A € C\ R the function y(-, \) belongs to AC(Z; H ® H) N L% (Z) and satisfies
the equation (4.10) a.e. on Z (so that y € dom 7p,ax) and the boundary conditions (4.11).

Theorem 4.7. Let T be a symmetric relation (3.21). If 7 is a boundary parameter (4.8),
then for every f € LA(Z) the boundary problem (4.10), (4.11) has a unique solution
y(t, A) = yr(t, A) and the equality

(4.13) RONf=malys(~\), feh, fef, AeC\R

defines a generalized resolvent R(A) =: R;(\) of T. Conversely, for each generalized
resolvent R(\) of T there exists a unique boundary parameter T such that R(A) = R ().
Moreover, R.(\) is a canonical Tesolmint if and only if T is a self-adjoint boundary
parameter (4.9). In this case R (\) = (T™ — \)~! with

(4.14) T7 = {{§. f} € Tmax : T1ay = 0, CoTopy + C1T 1y = 0}.

Proof. Let IT = {H;,To,T'1} be the boundary triplet (4.6) for T*. Then for each boundary
parameter 7 the problem (4.10), (4.11) is equivalent to an abstract problem (2.14), (2.15)
written in terms of the triplet II. Applying now Theorem 2.13, we arrive at the required
statements. |
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Proposition 4.8. For any A € C\ R there exists a unique operator solution vo(-, A) €
LA[H, H ® H| of the homogeneous system (3.2) satisfying

(4.15) T1av0(A) = —Ir, Topue(A) =0, AeC\R.

Moreover, for any A\ € C\R there exists a unique operator solution u(-,\) € LA [Hp, H ®
H] of (3.2) satisfying

(4.16) Iau(\) =0, Tou(\) =Ip,, AeC\R.

In formulas (4.15) and (4.16) vo(A) and u(X) denote linear mappings from Lemma 3.1

corresponding to the solutions vo(-, A) and u(-,\), respectively.

Proof. Assume that U is a J-unitary extension (3.11) of U, T, is the operator (3.13),
{H @ Hy, T} is the decomposing boundary pair (4.3) for Tyyax and T : $% — H @ H,y, is
the linear relation corresponding to I' (see Proposition 2.16). Moreover, let

(4.17) T = (‘1}22“) cdom Tray — H®Hy, T = (—Fﬁjb) - dom Trnax — H @® Hy,

so that the relation I'g admits the representation

(4.18) Lo = {{7a{y, f}, Toy} - {y, f} € Tinax}
First we show that
(4.19) Lo | Ma(Tmin) = {{Faly. W}, Thy} : y € MA}, A€ C\R.

Since obviously TNy = My (Tiin), it follows from (4.18) that {ma{y, Ay}, Ty} € To |
My (Timin) for each y € Ny. Conversely, let {{7, A7}, h} € To | Ma(Timin) with some
¥ € N\(Tmin) and h € H®H,. Then according to (4.18) there exists {y, f} € Tmax
such that may = 7, maf = Ay and T'{y = h. Hence 7a(f — Ay) = 0 and consequently
A@)f(t) = A(t)(Ay(t)) a.econ Z. Thus Jy'(t) — B(t)y(t) = A@)f(t) = MA)y(t) (ae.
on T), so that y € Ny. Therefore {{,\j},h} = {Fa{y, \y},Thy} with some y € Ny,
which yields (4.19).

It follows from Proposition 2.16 that
(4.20) ker Co [ My (Tomin) = {0}, ranTo [ Ny (Tomin) = H & Hp.
If y € Ny and T'jy = 0, then by (4.19) and the first equality in (4.20) one has Tay = 0.
Hence y € N and by (4.17) T'1qy = 0, which in view of the assumption (A4) yields
y = 0. Therefore ker I'y | My = {0}. Moreover, in view of (4.19) and the second equality
in (4.20) Ty | Nx = H & Hp. Thus the operator T’y | N, isomorphically maps Ny
onto H @ H;, and, consequently, the equality Z(\) = (I'y | Na)~! correctly defines the
isomorphism Z(\) from H & H;, onto N). Let

(4.21) Z(A\) = (vo(A), u(N) : H®Hp — Ny, AeC\R

be the block representations of Z(\). Since I'(Z(\) = Iygn,, it follows from (4.17) that
—TI'iq _(Ig O

(122 (o) . won = (2.

Let vo(-,\) € LA[H, H ® H] and u(-, \) € LX[Hp, H & H] be operator solutions of (3.2)
corresponding to vo(A) and u(A) respectively (see Lemma 3.1). Then (4.22) yields (4.15)
and (4.16) for vo(-, A) and u(-, A). Finally, uniqueness of vg(-, A) and u(-, A) is implied by
uniqueness of the solution of the boundary problem (4.10), (4.11). O

Proposition 4.9. Let U bea J-unitary extension (3.11) of U and let To, be the mapping
(3.13). Moreover, let {H & Hp,T'} be the decomposing boundary pair (4.3) and let

_ [(mo(A)  Mz(N)

(4.23) M(A) = ( Ms(\)  My())

):H@HbHH@Hb, AeC\R
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be the block matriz representation of the corresponding Weyl function M (-) (see (2.18)).
Then the entries of the matriz (4.23) are connected with solutions vo(-, A) and u(-, \) via

(424) mo()\) = ].—‘Qa’l)o(A), MQ()\) = FOGU(A)
(425) Mg(/\) = _Flb'UO(/\), M4(/\) = —FH,U()\), AreC \ R.

Proof. Let Ty and I} be given by (4.17) and let Z(\) be the same as in the proof of
Proposition 4.8. Then by (4.3)

(4.26) {(;TAAZZ((AA)@ (Eiii;g)} el, he HOHy, AeC\R

Since T Z(A)h = h, it follows from (4.26) and (2.18) that I} Z(\) = M()), which in view
of (4.21) and (4.23) can be written as

Toq mo(A)  Ma(N)
(—lgu;) (W), uld) = (MZ(/\) M4(/\)> .
This implies (4.24) and (4.25). O

Corollary 4.10. Let IT = {H,,To,T1} be the boundary triplet (4.6) for T* and let My(\)
be given by (4.25). Then

(1)My(-) is the Weyl function of I1 and hence My(-) € Ry[Hp);

(2) for each boundary parameter T of the form (4.8) 0 € p(T(A\) + My(N)) and 0 €
p(Co(A) = C1(A)My(N)), A€ C\R.

Proof. Let U be a J-unitary extension (3.11) of U and let I'g, be the mapping (3.13).
Moreover, let { H @ Hy, I'} be the decomposing boundary pair (4.3) for Tiax and let M(+)
be the Weyl function of this pair. Applying Proposition 2.17 to the pair {H & H;,I'}
one obtains, that the Weyl function M () of II is M(X\) = Py, M(\) | ‘Hp. This and
Proposition 4.9 yield statement (1). Statement (2) is implied by Assertion 2.10. O

Theorem 4.11. Let 7 = 7(\) be a boundary parameter (4.8). Then for each A € C\ R
there exists a unique operator solution v,(-,\) € LX[H,H & H] of the homogeneous
system (3.2) satisfying the boundary conditions

(4.27) Fiogvr(A) = —Ig, Co(MNTopvr(A) + C1(AM)Tpv-(A) =0, AeC\R.
Moreover, v, (-, A) is connected with the solutions vo(-, ) and u(-, ) by
(4.28) vr(t,2) = vo(t, A) = u(t, ) (r(A) + My(N) 7' M3(A), A€ C\R,
where M3(A\) and My(\) are given by (4.25).
Proof. Tt follows from Corollary 4.10, (2) that the equality (4.28) correctly defines the
solution v, (-, \) € LA[H, H® H] of (3.2) and to prove the theorem it is sufficient to show
that such v, (-, ) is a unique solution of (3.2) belonging to £ [H, H @ H| and satisfying
(4.27).

Combining (4.28) with (4.15), (4.16) and (4.25) one gets the first equality in (4.27)
and the equalities

Popvr(A) = —(7(A) + Ma(X) ™" Ms(N),
Tivr () = —(1 — My\)(t(N) + My(V)"HM3z(\), A€ C\R.

The last two equalities give {Topv-(A)h, T'1pv- (AR} € 7(X), h € H, which implies the

second condition in (4.27). Finally, uniqueness of v, (-, A) is implied by uniqueness of the
solution of the boundary problem (4.10), (4.11) (see Theorem 4.7). O
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4.3. m-functions. In this subsection we suppose that the hypotheses (A1)-(A4) are
satisfied, that U is a J-unitary extension (3.11) of U and that T, is the mapping (3.13).

Let 7 be a boundary parameter (4.8) and let v, (-,\) € LA [H, H & H] be the corres-
ponding operator solution of (3.2) defined in Theorem 4.11.

Definition 4.12. The operator function m,(-) : C\ R — [H]| defined by
(4.29) mr(A) =Togv-(A), A€ C\R

is called the m-function (Titchmarsh-Weyl function) corresponding to the boundary pa-
rameter 7 or, equivalently, to the boundary problem (4.10), (4.11).

From the first equality in (4.27) it follows that
(4.30) Uv,(a,\) <= <£0a> vT()\)> = (mTI()\)> cH—-HeH, MeC\R
la —1iH

Similarly to the case of definite system (3.1) one can easily show that, for given U and 7,
the m-function m. (-) is defined uniquely up to an additive self-adjoint constant depending
on U (cf. [1, Proposition 5.2]).

A definition of the m-function m, in somewhat other terms is given in the following
proposition, which directly follows from (4.30) and Theorem 4.11.

Proposition 4.13. Let 7 be a boundary parameter, let oy (-, \)(€ [H,H ® H]), A € C,
be the operator solution of (3.2) defined by (3.17) and let ¥(-,\)(€ [H,H ® H]) be the
operator solution of (3.2) with

(4.31) ﬁw(a,A):<IO>:H—>HEBH, AeC.
H
Then there exists a unique operator function m(-) = m,(-) : C\ R — [H] such that for
any A € C\ R the operator solution v(-,\) = v-(-, ) of (3.2) given by
belongs to LA[H, H ® H| and satisfies the second equality in (4.27).

In the following theorem we provide a description of all m-functions immediately in
terms of the boundary parameter 7.

Theorem 4.14. Let M(-) be the operator function given by (4.23)—(4.25) (that is M(-) is
the Weyl function of the decomposing boundary pair { H ®Hp, L'} for Tax). Moreover, let
7o be a self-adjoint boundary parameter given by 7o = {(Ix,,0)}. Then mo(N) = mq (A)
and for every boundary parameter T of the form (4.8) the m-function m.(-) is

(4.33)  m-(A\) = mo(\) + Ma2(A\)(Co(N) — C1(A)Ms(N) " C1(A)M3(X), A€ C\R.
Proof. One can easily verify that vy (¢, A) = v, (¢, A), so that by (4.24) mo(A) = m, (V).

Next, application of the operator I'g, to the equality (4.28) with taking (4.24) and (4.29)
into account yields

(4.34) m-(\) = mo(\) — Ma(\)(T(\) + My(\)) "' Mz(\), A€ C\R.
This and (2.12) imply (4.33). O
Proposition 4.15. The m-function m.(-) belongs to the class R[H| and satisfies

(4.35) (ImA)~! - Imm,(\) > /vi(t, MNAv,(t,A)dt, Ae C\R.

T
Moreover, in the case of a self-adjoint boundary parameter T the inequality (4.35) turns
into the equality.
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Proof. Tt follows from (4.33) that m(-) is holomorphic in C \ R. Moreover, since the

Weyl function (4.23) satisfies M*(\) = M (}), it follows that mg(A) = mo(A), M3 (\) =

Ms(N), M;(N\) = My(X) and (4.34) yields m:(A) = m-(A), A € C\ R. Now it remains
to show that m,(-) satisfies (4.35).

Let A\ € C\R, h € H and let y = y(t) = v-(t,\)h. Then by (3.16) (Jy(a),y(a)) =
—2iIm(T1,y,Toay) and in view of (4.2) one has [y, y]s = —2i Im(T'1py, Topy). Applying
now the Lagrange’s identity (3.5) to {y, Ay} € Tmax One gets

(4.36) Im M)~ - Im(T10y, Toay) = (¥, ¥)a + ImA) " - Im(T1py, Dosy).

It follows from (4.30) that Toqy = m-(A)h, T,y = —h and hence Im(T'1,y, Toay) =
Im(m,(A)h, h). Moreover, by the second equality in (4.27) one has {Topy, T1py} € 7(A)
and (2.10) yields (Im A\)~! - Im(T'1y, Topy) > 0. Observe also that

(v, 9)a = (( /I v (t, N A(t) vy (£, N) dt) h,h) .

Therefore by (4.36) the inequality (4.35) holds. If in addition 7 € R°(H,), then in (4.36)
Im(T1py, Topy) = 0 and therefore the inequality (4.35) turns into the equality. |

Since by Proposition 4.15 m.(-) € R[H], the Stieltjes inversion formula (1.8) defines
the [H]-valued distribution function o, (-) such that

(4.37) /M)Z’h) < oo, heH.
R 1+S

4.4. Green’s function and generalized resolvents.

Proposition 4.16. Let 7 be a boundary parameter and let R,(-) be the corresponding
generalized resolvent of the relation T (see Theorem 4.7). Moreover, let G,(-,-,\) :
I x I — [H @ H] be the operator-function given by

B vT(x,)\)go*U(t,X), >t
(4.38) Gr(z,t,\) = {@U(x,)\)vji(t,)\), <t AeC\R
(the Green’s function). Then
(4.39) R\ f =ma (/I Gr(- 6, A1) f (1) dt) . fe®n, fef.

Proof. As in [1, Theorem 6.2] one proves that [ ||G-(x,t, \)A(t) f(t)|| dt < oo for each
f € LA(Z) and = € Z. This implies that formula

(4.40) ur =y, A) = /IGT(x,t, NA@GF(#)d, AeC\R

correctly defines the function ys(-,-) : Z x C\ R — H & H and, therefore, (4.39) is
equivalent to the following statement: for each f € 9

(441)  yp(,A) € LX) and R.(Nf =malys(N), fef, AeC\R.
To prove this statement we first prove the equality
(4.42) o (@, Vi (z,A) — v (2, iy (2, \) =J, z€Z, AeC\R.

Let Y (z,A) = (¢u(z,A), vr(z,A)) : H® H — H @ H and let U be a J-unitary extension
(3.11) of U. Then by (3.18) and (4.30)

UY (a,\) = (I(’)f m*”) " HeH—>HoH

Iy
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and the immediate calculations with taking the equality m7 (A) = m-(A) into account give
(UY (a,\)*J(UY (a, \)) = —J. Therefore Y*(a, \)JY (a, \) = —J and by the Lagrange’s
identity (3.5) one has

Y*(z, \)JY (2,\) = Y*(a,\)JY (a,\) = —J.
Hence Y (z,\)JY*(2,\) = —J, x € T, A € C\ R, which is equivalent to (4.42).

Next assume that f € 9p. We show that in this case the function y¢(-, A) given by
(4.40) is a solution of the boundary problem (4.10), (4.11). Using (4.42) one proves as

in [1, Theorem 6.2] that ys(-, \) satisfies (4.10) a.e. on Z. Moreover, by (4.38)
(4.43) yr(@.X) = pu(a Nhi, yp@.)) = v (@ Vha, @ € (37,)

with some hy, he € H. Combining the first equality in (4.43) with (3.18) one gets
I'iays = 0. Moreover, the second equality in (4.43) shows that ys(-,\) € £LA(Z) and
Tipys = Tjpvr(A)he, j € {0,1},. Therefore by the second equality in (4.27) yy satisfies
the second boundary condition in (4.11). Thus ys(-,A) is a solution of the boundary
problem (4.10), (4.11) and by Theorem 4.7 relations (4.41) hold (for f € §;). Finally,
one proves (4.41) for arbitrary fe £ in the same way as in [1, Theorem 6.2]. (]

5. PARAMETRIZATION OF PSEUDOSPECTRAL AND SPECTRAL FUNCTIONS

As before we suppose in this section the assumptions (A1)—(A4) specified just after
Remark 4.2 (unless otherwise stated).

Let T' be a symmetric relation (3.21). Then according to Theorem 4.7 the boundary
problem (4.10), (4.11) induces a bijective correspondence R(A) = R:(\) between all
boundary parameters 7 and all generalized resolvents R(A) of T. In the following we
denote by T (€ Self(T)) the extension of T generating R, (\) and by F;(-) the spectral
function of T generated by T7 (see Definition 2.5). Clearly, the equalities T = T~
and F(-) = F,(-) give a parametrization of all extensions T € é?lf(T) and all spectral
functions F'(-) of T respectively by means of the boundary parameter 7.

In what follows we assume that a certain J-unitary extension U > U of the form
(3.11) is fixed and hence the m-function m.(+) is defined by (4.29). Note that in view of

the remark just after (4.30) a choice of U does not matter in our further considerations.

Definition 5.1. An extension T € ég/lf(T) (T € Self(T)) is referred to the class é?lfo(T)
(resp. Selfo(T")) if mulT = mulT.

Note that Selfo(T") # (). Moreover, if mulT = {0}, then Self, (T) (Selfo(T)) is the set
of all extensions T € Self(T") (resp. T' € Self(T")) which are operators.

Definition 5.2. Let M4(\) be given by the second equality in (4.25). A boundary
parameter 7 of the form (4.8) is called admissible if the equalities (1.13) and (1.14) hold.

Proposition 5.3. (1) An extension 1" belongs to g;lfo(T) if and only if the boundary
parameter T is admissible.

(2) If limy oo iMZl(iy) =0, then a boundary parameter T is admissible if and only if
(1.13) is satisfied.

Proof. Let IT = {Hy, 9,1} be the boundary triplet (4.6) for T*. Then by Corollary 4.10
the Weyl function of II coincides with My(\). Moreover, it was mentioned in the proof
of Theorem 4.7 that the problem (4.10), (4.11) is equivalent to the abstract problem
(2.14), (2.15) for the triplet IT. Now the required statements are implied by the results
of [7]. O
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Theorem 5.4. Let 7 be an admissible boundary parameter and let F(-) be the corres-
ponding spectral function of T. Then there exists a unique pseudospectral function o (-)
of the system (3.1) satisfying

~ ~

(5.1) ((Fr(8) = Fr ()], f) = /[ ﬁ)(dUT(S) (5),f(5)), fehy, —oo<a<pB<oo

This pseudospectral function is defined by the Stieltjes inversion formula (1.8).

Proof. (1) Let us show that (1.8) defines a pseudospectral function o-(-). To this end
we first prove that o,(-) satisfies (5.1) (we give only the sketch of the proof, because it
is similar to that of alike results in [14, 34]). It follows from Proposition 4.13 that the
Green’s function (4.38) admits the representation

(5:2) Gr(z,t, ) = pu(z, Nm-(Nep (t, A) + Go(,t, A),

where Go(z,t,\) is an entire function of A such that G§(x,t,\) = Go(t,z,)\). Let f()
be an entire function given by f = [; i (t, \)A(t)f(t) dt. Then by (4.39) and (5.2)
the generalized resolvent R.(-) satlsﬁes

(ReOF, ) = (me(NFO), FO)) + SO, fe, AeC\R,

where S(+) is a certain continuous function on C with real values on R. Therefore in view
of (2.4) for each finite interval [a, §) one has

1 B-s _ -
(P2 (0) = Fr(@)F.F) = Jim Jim [ DG+ )+ i2), Flu - i2)) d

—+0e—+0 77 -5
Now by using the Stieltjes-Livsic inversion formula [20, 34] one derives (5.1).
Next assume that 77 is a (self-adjoint) relation in a certain Gilbert space $) and let
Ho = H S mulT, so that

(5.3) 5 = mulT@%o.

Since by Proposition 5.3 mul7™ = mulT, it follows from (5.1) and (2.5) that f €
£2(o7: H) and ||f]| 20,51y = ||P5, fllz < |Iflls, f € 9. Hence the operator Vi f :=

7707]?, fe p, admits a Continuatlon to an operator V € [9, L?(o,; H)] satisfying

(5.4) WV 2 = 1Pg, fllg,  f e

Let § be decomposed as in (3.31). Then in view of (5.4), (5.3) and the inclusion £, C o
one has Vf =0, f € mulT, and |[Vf|[r2(0.m) = [Ifllg = |flls, [ € Ho. Thus V is a
partial isometry with ker V"= mulT" and, consequently, o, is a pseudospectral function
of the system (3.1) such that (5.1) holds.

(2) Let us prove that o, (-) is a unique pseudospectral function satisfying (5.1). Assume
that V,_ is the Fourier transform corresponding to o, and let E,_ be the spectral measure
(2.7). Then by (5.1) for each finite interval § = [a, §) one has
(55) F‘r(ﬂ) - F-,—(Oé) = V;.,-EO'-,— (6)‘/01—
and (3.20) yields

(5:6) (Fy(8) = Fo(@)f = ma ( / ¢U<~,s>daf<s>f<s>), 5=l f) CR, T

Let o(-) be a pseudospectral function such that (5.1) holds with o(-) instead of o-(-).
Then (5.6) also holds with o(+) in place of o, (-) and, consequently,

) ma ([evte)do 7)) =ma ([t do@Fe)). 5=lam. Teon.
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It follows from Theorem 2.7 that there exist a scalar measure v on Borel sets of R and
functions ¥;- : R — [H], j € {1, 2}, such that

(5.8) o (8)—0r(a) = /5\111(8) dv(s) and o(8)—o(a) :/6\112(5) dv(s), §6=la,p).

Let W(s) := Uy(s) — Ua(s) and let i be the Lebesgue measure on Borel sets of Z. Denote
also by G the set of all functions f(-) : R — H admitting the representation (3.19) with
some f € 9. Then in view of (5.7), (2.8) and (5.8) one has

(5.9) A(t)/éwy(t,s)\ll(s)f(s) dv(s) =0 (p-ae.on I), feG, 6=][xf).

Denote by F the (countable) set of all finite intervals ¢ = [«, 3) with rational endpoints.
It follows from (5.9) that for each 6 € F' and for each f € G there exists a Borel set
B 7 C T such that u(Z \ B;7) = 0 and Js A(t)pu (t,s)¥(s

)F(s)du(s) = 0, t € B, ;
Hence B = Bs ¢ Fis the Borel set in 7 such that
dEF

(5.10)  w(Z\Bp)=0 and v({s€R:A{)pu(t, s)¥(s)f Fs)#£0}) =0, te By.

For each fe G we put
By ={(t;s) €T x R: At)pu(t, s)¥(s)(s) # 0}
Then by (5.10) (p x I/)(B 7) = 0 and, consequently, there is a Borel set C'z C R such that

(5.11)  v(R\ Cf) =0 and u({teZ:A@)pu(t,s)¥(s)f (s) #0})=0, se€ Cs

Let s € Cyand let y = y(t) = ¢u(t, 8)\11(8)]?(8) Then by (3.17) y(a) = ( uj*> \I/(s)]?(s)
—Uy

and (3.10) yields I'1qy = 0. Moreover, by (5.11) A(t)y(t) = 0 (pu a.e. on Z) and hence

y € N. Therefore by the assumption (A4) y = 0 and, consequently, ¥(s)f(s) = 0. Thus

for any f € G there exists a Borel set Cf C R such that

o~

(5.12) v(R\C5) =0 and U(s)f(s)=0, se€C

Next we prove the following statement: R

(S) for any s € R and h € H there is f(-) € G such that f(s) =
Indeed, let s € R, b’ € H and (f(s),h') =0 for any f(-) € G. Put y = y(t) = pu(t, s)h'.
Then for any 8 € 7 one has fg(:) := f[a A o (t, )A(t)y(t) dt € G and,consequently,

0= (Fols), ') = /[ REACRINOVOEEE /[ BOWyO)# feT

Hence A(#)y(t) =0 (u - a.e. on Z) and, therefore, y € N'. Moreover, by (3.17) T'1,y = 0
and the assumption (A4) yields y = 0. Hence h' = 0, which proves statement (S).

Let {e;}] be an orthonormal basis in H. Then in view of statement (S) there exists
a system {]?J}f of functions fj € G such that fj(O) =e;. Let us put

Dy ={seR:d(s) # 0}, DFQC;, D3 ={s e R:v({s}) > 0},

D = (D1 N Ds) U Dy,

where d(s) = det(]?j(s),ek). If s € Dy N Dy, then d(s) # 0 (so that {f]( )} is a basis
in H) and ¥(s)f;(s) =0, j = 1,p. Hence ¥(s) =0, s € D; N Dy. Next, D3 is an
(at most countable) Borel set and Dy C C7 for any f € G. Therefore by statement (S)
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U(s) =0, s € Ds. This implies that ¥(s) = 0, s € D. Moreover, R\ D = D'"U D",
where
D/:(R\Dl)ﬂ(R\D{g), D//:(R\DQ)Q(R\DP,)

Since f]() is an entire function, so is the function d(-). Moreover, d(0) = 1 and hence
the set R\ Dj is at most countable. Therefore D’ is at most countable set and v({s}) =
0, s € D', which yields the equality v(D’) = 0. Moreover, (R '\ Ds) = 0 and hence

(D”) = 0. This implies ¥(R \ D) = 0 and, consequently, \I/( ) =0 (v-a.e. on R). Thus
Uy(s) = Uy(s) (v-a.e. on R) and by (5.8) o-(s) = o(s). O

Proposition 5.5. Let o(-) be a g-pseudospectral function of the system (3.1) and let
Lo =V,$. Then the multiplication operator A, is Lo-minimal (see Definition 2.1).

Proof. Let L :=ker V(= L?(0; H)© Ly), let § € Lg be an element such that F,(5)g €
L for each bounded interval § = [, 3) C R and let g(-) € §. Then A, E,(8)g € Lg and,
consequently, VXE,(6)g = 0 and VA,E,(6)g = 0. Combining of these equalities with
(2.6), (2.7) and (3.20) shows that the functions

613y = [eultdaslal). f0) = [ seult.s) dolals)
satisfy the equalities A(t)y(t) = 0 and A(¢)f(t) = 0 (a.e. on Z). On the other hand,
according to [29, Lemma 3.1] y € AC(Z; H ® H) and

= —J/ t) + sA(t))pu(t,s)do(s)g(s) (ae. on I).
Therefore
I/(0) = BOWO = A0 [ spv(t9)d(s)a(s) = AOFW) =0 (ae. on 7)

and consequently y € N. Moreover, (3.17) and the first equality in (5.13) yields

(5.14) v = [ vl dotelats) = (%) [ dotoats)

Therefore by (3.10) ',y = 0 and in view of the assumption (A4) one has y = 0. Hence
by (5.14) [;do(s)g(s) = 0, which implies that g = 0. Thus the subspace L satisfies the
condition of Definition 2.1. O

Let T € é?lfo(T) be a linear relation in a Hilbert space 5 D $ and let 5 be decomposed
as in (5.3). In the sequel we denote by T the operator part of T'. Since mulT = mul T,
it follows that T} is a self-adjoint operator in §g.

Proposition 5.6. For each pseudospectral function o(-) of the system (3.1) there exists
an extension T € Selfo(T') such that the relative spectral function F(-) of T satisfies

(5.15) ((F(8) = F(a)f. ) = /[ ﬂ)(dU(S)fA(S)yf(S)), femm, —oco<a<f<oo.
Moreover, there exists a unitary operator Ve [50, 2(o; H)] such that 1% [ Do =Voe

and the operators Ty and A, are unitarily equivalent by means ofV (for 9o, .‘?Jo and Vo o
see (3.31), (5.3) and (3.32) respectively).

Proof. For a given pseudospectral function o(-) we put Lo = V,$ and Lg = L?(0; H) ©
Lo, so that L?(o; H) = Lo ® L. Assume also that

(5.16) Ho=H0@® Ly, H:=mulTa&H & Li =mulT e Ho
and let V € [0, L%(0; H)] be a unitary operator given by
(5.17) V = (Voo Ip2): 90 ® Ly — L*(o; H).



PSEUDOSPECTRAL FUNCTIONS 393

Since ker V,, = mul T, it follows that ${, = $o, 56 = 50 and V/ =V (see (3.24), (3.25)
and (3.26)). Therefore by Lemma 3.7 the equalities (3.27) with V' = V define a self-
adjoint operator fo in 50. Moreover, the operators IN“O and A, are unitarily equivalent
by means of V and hence the spectral measure Eq(-) of Tp satisfies

(5.18) Eo([a, 8)) = V' E,([a, )V, —o0<a<f< 0.

Observe also that 1757)0 = V.9 = Lo and by Proposition 5.5 the operator A, is Lg-
minimal. Therefore the operator fo is $Hp-minimal.

It follows from the second equality in (5.16) that T := ({0} & mulT) & Ty is a self-
adjoint linear relation in § with the operator part Tp and mulT = mulT. Moreover,
{0} mulT C T C T* and by Lemma 3.7 Ty C T* Hence T C T~ and, consequently,

TcT. ObserveNalso /\that the relation 7T is 9- mlmmal, since the operator To is Ho-
minimal. Hence T € Selfo(7T'). Finally by using (5.18) and (5.17) one can easily prove
the equality (5.15). O

In the following theorem we describe all pseudospectral functions of the system (3.1)
in terms of an admissible boundary parameter 7.

Theorem 5.7. Let the assumptions (A1)-(A4) from Sect. 4.1 be satisfied and let M (\)
be given by (4.23)—(4.25). Then the equality

mr(A) = mo(A) + Ma(A)(Co(A) = CLA)Ma(N) ' CL(A)M3(A), A€ C\R.

together with formula (1.8) establishes a bijective correspondence between all admissible
boundary parameters T of the form (4.8) and all pseudospectral functions o(-) = o,(-) of
the system (3.1) (corresponding to the operator U ).

Proof. Let 7 be an admissible boundary parameter (4.8). Then by Theorem 5.4 for-
mula (1.8) defines a pseudospectral function o(-) = o,(-). Conversely, let o(-) be a
pseudospectral function of the system (3.1). Then by Propositions 5.6 and 5.3 there ex-
ists a unique admissible boundary parameter 7 such that (5.15) holds with F(-) = F.(-).
Moreover, by Theorem 5.4 o(-) = o-(-), where o.(-) is given by (1.8). Thus formula (1.8)
gives a bijective correspondence between all admissible boundary parameters 7 and all
pseudospectral functions o(-) = o,(-). Now the statement of the theorem is implied by
Theorem 4.14. O

Corollary 5.8. Let N = N_ and let the assumption (A4) be fulfilled. Then each
pseudospectral function of the system (3.1) satisfies (4.37).

Theorem 5.9. There is a one to one correspondence between all extensions IN“(: TT) €
ég/Ho(T) and all pseudospectral functions o(-)(= o,(-)) of the system (3.1). This corres-
pondence is given by the equality (5.15), where F'(-)(= F-(")) is a spectral function of T
generated by T. Moreover, the operators Ty (the operator part of T ) and A, are unitarily
equivalent and hence they have the same spectral properties. In particular this implies
that the spectral multiplicity of IN“O does not exceed p.

Proof. Combining of Theorems 5.4, 5.5 and Proposition 5.6 gives the required statements.
O

The following corollary is immediate from Theorem 5.7 and Proposition 5.6.

Corollary 5.10. Let o(-) = o-(-) be a pseudospectral function of the system (3.1) and
let Voo € [$90,L?*(0; H)] be the corresponding isometry (3.32). Then Vo, is a unitary
operator if and only if T is a self-adjoint (admissible) boundary parameter (4.9). If this
condition is satisfied, then the equality (4.14) defines an extension T™ € Selfo(T) and the
operators fOT (the operator part of T" ) and Ao are unitarily equivalent by means of Vo ..
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In the following theorem we give a criterion, that enables one to describe all pseudo-
spectral functions in terms of an arbitrary (not necessarily admissible) boundary para-
meter 7.

Theorem 5.11. Let the assumptions of Theorem 5.7 be satisfied and let T be the linear
relation (3.21). Then the following statements (1)—~(5) are equivalent:

(1) each boundary parameter T is admissible;

(2) limy— 00 iMZl(iy) =0 and limy_, o0 y - Im(My(iy)h, h) = +00, h € Hy, h #0;

(3) mulT = mul T%;

(4) Self(T) = Selfy(T);

(5) statement of Theorem 5.7 holds for arbitrary boundary parameters 7.

Proof. Proposition 5.3, (1) yields the equivalences (1)< (4)< (3). Since by Corollary
4.10 My(+) is the Weyl function of the boundary triplet IT for T*, the equivalence (2)&
(3) is implied by [12, Remark 5.1]. Moreover, the equivalence (1) <(5) follows from
Theorem 5.7. |

Combining the results of this section with Assertion 3.11 we arrive at the following
theorem.

Theorem 5.12. The set of spectral functions of the system (3.1) is not empty if and
only if mul T = {0} (for mulT see Assertion 3.6, (2)). If this condition is satisfied, then
the sets of spectral and pseudospectral functions of the system (3.1) coincide and hence
Theorems 5.7, 5.9, 5.11 and Corollary 5.10 are valid for spectral functions (instead of
pseudospectral ones). Moreover, in this case equality (4.14) defines the operator T and
statements of Theorem 5.9 and Corollary 5.10 hold with T =T and V, in place of
fo = TOT and Vo, respectively.

Corollary 5.13. Let the operator A(t) be invertible a.e. on I and let the assumptions
(A1)-(A3) from Sect. 4.1 be satisfied. Then the equality (4.33) together with formula
(1.8) establishes a bijective correspondence between all boundary parameters T of the
form (4.8) and all spectral functions o(-) = o,(-) of the system (3.1).

Proof. If A(t) is invertible a.e. on Z, then the assumption (A4) is satisfied and mulT =
mul T* = {0}. Therefore the required statement is implied by Theorems 5.11 and 5.8. O

6. QUASI-REGULAR AND REGULAR SYSTEMS

6.1. Quasi-regular systems and their pseudospectral functions. The following
proposition directly follows from [22, 25].

Proposition 6.1. For system (3.1) the following assertions are equivalent:

(1) System has maximal formal deficiency indices N = N_ = m.

(2) For any X € C each solution y(-,\) of the homogeneous system (3.2) belongs to
LA (Z) (that is dim Ny =m, A € C ).

(3) There exists Ao € C such that dim Ny, = dim N5 = m.

Definition 6.2. Hamiltonian system (3.1) is said to be quasi-regular if at least one (and
hence all) of the conditions (1)—(3) are satisfied.

Definition 6.3. System (3.1) is called regular if the coefficients B(-) and A(-) are inte-
grable on 7.

It follows from Definition 6.3 that system on a compact interval Z = [a, b] is regular.
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Proposition 6.4. Assume that system (3.1) is reqular. Then
(1) This system is quasi-regular and for any y € dom Tax there exists the limit

(6.1) y(b) = limy(t).

Moreover, for any h € H H there exists y € dom Tpnax such that y(b) = h.
(2) Definition (3.21) of the linear relation T can be rewritten as

(6.2) T ={{rmay,7af} : {y, [} € Tmax, T'1ay =0, y(b) = 0}.
Proof. Statement (1) is immediate from [4, Proposition 2.6]. Statement (2) follows from
statement (1). O

Suppose that under the assumptions of Sect. 3.3 system (3.1) is quasi-regular. Then

the equality (3.19) defines a function f(-) : R — H for any f € $ and hence Definitions
3.5, 3.9 and 3.10 can be reformulated as follows.

Definition 6.5. A distribution function o(-) : R — [H] is called a g-pseudospectral
function of the quasi-regular system (3.1) if f € £2(o; H) for all f € $ and the equ-
ality Vf = n,f, [ € 9, defines a partial isometry (the Fourier transform) V =V, €
[9, L2 (o H)].

Definition 6.6. A ¢-pseudospectral function with kerV, = mulT (kerV, = {0}) is
called a pseudospectral (resp. spectral) function (for mul T see Assertion 3.6).

Proposition 6.7. Assume that system (3.1) is quasi-regular. Let T be a symmetric
relation (3.21) and let

Lo={fe®:[f(s)=0,seR}
where f() is defined by (3.19). Then
(6.3) mulT = Lg.

Proof. Let f € mulT and f(-) € f. Then according to Assertion 3.6, (2) there exists a
function y € AC(Z; H @ H) such that {y, f} € Tnax and (3.23) holds. Next, for fixed
s€Rand h € H put z = 2(t) = ou(t,s)h. Then {z, sz} € Tyax and application of the
Lagrange’s identity (3.5) to {y, f} and {z, sz} gives

(6.4) (f,2)a = s(y,2)a = [y, 2o — (Jy(a), z(a)).
Here

(f.2)a = / (AR (1), ot 5)) dt = ( / ot )AL (1) dt,h) — (F(s).h)

and in view of the first equality in (3.23) one has (y,z)a = 0. Moreover, by (3.23)
I'iey = 0 and by (3.18) I'iyz = 0, which in view of (3.16) yields (Jy(a), z(a)) = 0.
Observe also that according to (3.23) [y, 2]y = 0. Therefore (6.4) yields (f(s),h) =
0, s € R, h € H, and, consequently, f(S) =0, s € R. Hence fe Ly, which proves the
inclusion mulT' C Lg. On the other hand, for each pseudospectral function o(-) one has
Lo C ker V, = mulT. Therefore the equality (6.3) is valid. O

Remark 6.8. Tt follows from (6.3) that in Definition 6.6 of a pseudo-spectral function the
condition ker V, = mulT can be replaced with ker V, = L.

The following proposition holds for arbitrary (not necessarily quasi-regular) Hamil-
tonian system (3.1).

Proposition 6.9. Let o¢(-) : R — [H]| be a distribution function such that for any
compact interval Ig = [a, 8] C T it is a pseudospectral function of the restriction of the
system (3.1) onto Zg. Then oo(:) is a pseudospectral function of the system (3.1) in the
sense of Definition 3.9.
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Proof. For a compact interval Zg = [a,5] C Z put Hp = {fe®: AW =
0 ae. on (B,b) foreach f(-) € f} (in the sequel we identify $5 with L3 (Zg)).
Since each f~ € 9 belongs to Hz with some 8 € Z, the equality (3.19) with f € H
defines a function f() € L%(0¢; H) such that HJ?H < HJ?H Therefore the operator

Vf = n5f(-), f € $, admits a continuation to a contraction V € [§), L%(co; H)].
Let Los C $3 be the subspace (1.4) for the restriction of the system onto Zg, let

Ly = U Log and let 5 = H & Lo. Assume that f € %0, f(-) € [ and let f@ =
BET

7a(f()xz;(-)), B € I, where xz,(-) is the indicator of Zz. Then fvg € 936 Log
and by Remark 6.8 ||V f3|| = ||fsl|. Now passage to the limit when 3 — b yields
IV Fll = ||f]]. Moreover, for any 3 € Z and f € Lo one has Vf = 0 and, therefore,
Vf =0, f e Ly Hence V is a partial isometry with kerV = Lo and, consequently,
oo(-) is a g-pseudospectral function of the system (3.1). Therefore by Proposition 3.8
mul7 C Ly. On the other hand, for each pseudospectral function o(-) of the system
(3.1) and for any 8 € Z one has Lo g C kerV, = mulT and hence Lo € mulT. Thus
ker V = Ly = mul T and, consequently, oo(-) is a pseudospectral function. |

6.2. The matrix W()) and description of pseudo-spectral functions. If system
(3.1) is quasi regular, then in view of Lemma 4.1 there exists a surjective linear mapping

(6.5) Iy = (F‘”’) : dom Trnax — H ® H
I

satisfying
(66) [y7 Z}b = (eryv sz) = (FObyv Flbz) - (FlbvaObz)v Y,z € dom Tmax~
Suppose that system (3.1) is quasi-regular and the following assumptions are fulfilled:
(Q1) U is the operator (3.9) satisfying (3.10), U is a J-unitary extension (3.11) of U
and T'jq, j € {0,1}, are the linear mappings (3.13) and (3.14).
(Q2) T’y is a surjective linear mapping (6.5) such that (6.6) holds.
Let pu(-,A) € LA[H,H & H] and ¢(-,\) € L4[H,H & H], A € C, be solutions of
(3.2) satisfying (3.18) and (4.31) respectively and let Y (-, \) € LA [H @ H| be a solution
of (3.2) given by

(6.7) YA = (u(N), o \)  He H — Heo H.

Moreover, let ¢ (A) and () be linear mappings from Lemma 3.1 corresponding to
solutions @y (-, A) and ¥(-,\). Then
~ Loapr (A)  Toath(A) Iy 0
6.8 UY (a, ) = _
(65) @n =iy rovn) = (5 o
and the equality

_ (o) w2 (N (Tovpo(A) Tov (V)
69 wo = (0 1) = (Fivs) Toy) He A= Ham aec

defines an entire [H & H]-valued function W(-). It is clear that
(6.10) W) =TyY(\), MeC.
Proposition 6.10. The operator function W (-) satisfies the identity
61D WNIWG) - = (= X) [V ENAOY (Lpdi AueC
I
with Y (-, \) given by (6.7). Hence
i =W*NEHW(A) >0, AeCy; WNEHW) =1id, AeER,
that is the operator W (X) is iJ-contractive for X € C1 and iJ-unitary for A € R.
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Proof. Let h € H® H, \,u € C and let y = Y (¢, u)h, z = Y (t,\)h. Then by (6.8) one
has
(Jy(a), 2(a)) = (JUY (a, )k, UY (a, M) = (Jh h).

(
Moreover, combining of (6.6) with (6.10) yields
[y, 2l = (JTY (), DY (V) = (I (), WONR) = (W (N)IW (), o).
Applying now the Lagrange’s identity (3.5) to {y, py} and {z, Az} one obtains

(6.12) (= Ny, 2)a = (W*(\)JW (u)h, h) = (Jh, ).
Since
w2)a = @y yania=(( [ veaoveoa)in).
the equality (6.12) yields (6.11). O

In the following proposition we provide an explicit construction of the mapping I'
and the corresponding operator function W(\).

Proposition 6.11. Let system (3.1) be quasi-regular, let the assumption (Q1) be fulfilled
and let Y (-, \) be given by (6.7). Then for each y € dom Tax there exists the limit

(6.13) Tpy = ltigl(—JY*(t,O)Jy(t)), y € dom Tax,

and the equality (6.13) defines a surjective linear mapping 'y : domTpax — H & H
satisfying (6.6). Moreover, the corresponding operator function W (-) is

(6.14) W) = bm(=JY" (£,0)JY (1)), AeC
and the entries of the matriz (6.9) admit the representation

(6.15)  wy(N) =I+A/Iz/)*(t,0)A(t)go(t, N dt, wa(N) :)\/Iw*(t,O)A(t)w(t, N) dt,

(6.16) ws(A\) = —A /I S (LOAB) (N dt,  wa(\) =T — A /I O (£, 0)A(£)Y(L, ) dt.

Proof. The first statement and the equality (6.14) directly follow from [30, Proposi-
tion 4.8]. Next, in view of (6.14) W(0) = Iygy and (6.11) yields

W) =1 — /\J/ Y*(1, 0)A0)Y (1, ) dt.
z
Now the immediate calculations give (6.15) and (6.16). d

The following assertion directly follows from Proposition 6.4.

Assertion 6.12. Assume that in addition to the assumptions of Proposition 6.11 system
(3.1) is regular. Then the equality

(6.17) Tyy = y(b)(= ltlgl y(t)), y € dom Thax

defines a surjective linear mapping 'y : dom Tax — H @ H satisfying (6.6) and the
corresponding operator function W (-) is

(6.18) W) =Y, A) = ltig}Y(t,/\), AeC.
_ (outA) _ (%ol N)
If u(t,\) = («p?,&t,A)) (€ [H,H @ H]) and 1(t,\) = (w?(t,k)) (€ [H,H ® H]) are
the block-matriz representations of oy (-, A) and (-, \), then
(6.19)

() w0\ _ (pos®: ) Yo N _ (w00t A) volt )
W= () ) = (oo welory) =t () i)
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Remark 6.13. In the case of a compact interval Z = [a, b] the function W () = Y (b, \)
in Assertion 6.12 is the monodromy matrix for the system (3.1) (see e.g. [2]).

Proposition 6.14. Assume that system (3.1) is quasi-reqular and let the assumptions
(Q1) and (Q2) be fulfilled. Moreover, let the assumption (A4) from Sect. 4.1 be satisfied
and let M(-) be the operator function defined by (4.23)~(4.25). Then 0 € p(Ma(X)), A €
C\ R, and for each A € C\ R the operator function W(-) (see (6.9)) admits the repre-
sentation

(6.20)

(o) ws)) [ MO My (Nmo(N)
W= (“’3(/\) “’4(>‘)> - <—M4(>2\)M2_1(>\) Ms(X) — 1\244(/\)M2_1()\)mo(/\)> '
Proof. Tt follows from (4.24) and the first equalities in (4.15) and (4.16) that
(621)  wolt,A) = pult Nmo(\) — (tN),  wlt, \) = pu(t \)Ma())

and application of operators I'gp and I'y, to equalities (6.21) with taking (4.15), (4.16)
and (4.25) into account gives

(622) 0= wl()\)mo(/\) — UJQ(/\), —Mg()\) = wg()\)mo(/\) - w4(/\),
(6.23) I =wi(AN)Ma(N), —Ms(N)=ws(A\)M2(A), AeC\R.
It follows from the first equality in (6.23) that 0 € p(Ma()\)) and wy(X) = My '(N).

Moreover, the second equality in (6.23) yields wz(\) = —My(A\)M; *()\). Substituting
these values of wy(\) and ws(A) into (6.22) one gets the required equalities for way(\)
and w4 (N). O

Suppose that system (3.1) is quasi-regular, that the assumptions (Q1) and (Q2) are
satisfied and that for each y € N the equality I'i,y = 0 yields y = 0 (that is the
assumption (A4) from Sect. 4.1 is fulfilled).

Let W (-) be the operator function (6.9) and let 7 be a boundary parameter (4.8).
Then by (6.20) M4(\) = —ws3(A)w; *(A\) and hence

Co(A) = CL(N)Ma(N) = (Co(Nwi(A) + Cr(Nws(\)wi ' (A), A€ C\R.

Therefore by Corollary 4.10 the operator Cy(A)wi(A) + C1(A)ws(A) is invertible and
Definition 5.2 can be reformulated as follows.

Definition 6.15. A boundary parameter 7 of the form (4.8) is admissible if the following
two equalities hold:

(6.24) ylLH;o w1 (iy) (Coliy)wi (iy) + C1 (iy)ws(iy)) ' Ci(iy) = 0,
(6.25) Jim s (i) (Coliy)wi (iy) + Cr(iy)ws(iy) ™" Coliy) = 0.

Moreover, it follows from Proposition 5.3, (2) that in the case
lim L ws (iy)wy * (iy) =0
Y—00

a boundary parameter 7 is admissible if and only if (6.24) is satisfied.

In the following theorem we show that in the case of a quasi-regular system the
parametrization of pseudospectral functions given in Theorem 5.7 can be represented in
a somewhat other form.

Theorem 6.16. Let the assumptions just after Proposition 6.14 be satisfied and let W (-)
be the operator function (6.9). Then the equality
(6.26) m-(\) = (Co(Nwi(N) + Cr(Nwz(N)"HCo(MNwa(A) + C1(MNwa(N), A€ C\R

together with the Stieltjes inversion formula (1.8) gives a bijective correspondence between
all admissible boundary parameters T of the form (4.8) and all pseudospectral functions
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o(:) = o,(-) of the system (3.1) (corresponding to the operator U ). If in addition mul T =
{0}, then the above statement holds for spectral functions instead of pseudospectral ones.
Proof. Tt follows from (4.33) and (6.20) that
mr(A) = mo(A) + (Co(N) My (N) = Cr(N)Ma(\) My (N) ™ CL(A) M3 (M)
= (CoN) My (A) = CL(A) Ma(\) My (V)
* [(Co(\)Mz 1 (A) = Cr(A) Ma(N\) M5 (X)mo(X) + C1(N) M3 (V)]
= (Co(A)Mil(A) — Ci()Ma (N Mz (V)
x [Co(N) Mz (N)mo(A) + Cr(A)(Ma(X) = My(A) My (N)ymo(N))]
= (CoNwi(A) + C1(Nwz(X) " (Co(Nw2(N) + Cr(Awa(N), A€ C\R.
Now the required statements are implied by Theorems 5.7 and 5.12. (]

In the following theorem we give a criterion that guaranties the validity of Theorem
6.16 for arbitrary (not necessarily admissible) boundary parameter 7.

Theorem 6.17. Let the assumptions of Theorem 6.16 be satisfied and let
(6.27) X(A) = (fwz (V) +wi (V)" @ws(A) —wi(N), A€ Cy.
Then the following statements are equivalent:

(1) each boundary parameter T is admissible;

(2) limy— 0o iwg(iy)wl_l(iy) =0 and limy_ ey - Im(ws(iy)w; *(iy)h, h) = —oo for
each

he H, h#0;
(8) Timy oo y(|[Al| — IXGW)RII) = +00, h € H, h+0;
(4) statements of Theorem 6.16 hold for arbitrary boundary parameters 7.

Proof. The equivalence (1)<(2) is a consequence of Theorem 5.11. The equivalence
(1)< (4) directly follows from Theorem 6.16. Next, in view of (6.20) wi(A) = My (N),
wi(\) = —My ™ (A)My(\) and (6.27) admits the representation

(6.28) x(N\) = (My(\) + i)"Y (My(N) —id) = (My(\) —iI)(My(\) +4I)71, A eCy.
Let as before T' be symmetric relation (3.21). Since by Corollary 4.10 M4()) is the Weyl
function of the boundary triplet II for 7%, it follows from (6.28) and [26] that x(}) is a
characteristic function of T in the sense of [35]. Therefore according to [35, Theorem 3.3]
mul 7T = mul 7" if and only if the condition (3) is satisfied. This and Theorem 5.11 yield
the equivalence (1)< (3). O

Similarly to Corollary 5.13 one proves the following corollary.

Corollary 6.18. Let system (3.1) be quasi-regular, let the operator A(t) be invertible
a.e. on I, let the assumptions (Q1) and (Q2) be fulfilled and let W (X) be given by (6.9).
Then the equalities (6.26) and (1.8) give a bijective correspondence between all boundary
parameters T of the form (4.8) and all spectral functions o(-) = o.(-) of the system (3.1).

Remark 6.19. Description of m-functions of quasi-regular differential operators with in-
vertible weight in the form close to (6.26) was obtained in [21].

6.3. The case of the canonical system. Recall that system (3.1) is called canonical
if B(t) =0, i.e., if it is of the form

(6.29) Jy = MA@y + A@)f(t), t€Z, MNeC.
In this case the corresponding homogeneous system is
(6.30) Jy' =MA(t)y, teZ, XeC.
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Assertion 6.20. Fach quasi-reqular canonical system (6.29) is reqular.

Proof. 1f system (6.29) is quasi-regular, then each solution y(t) = h, h € H& H, of the
equation Jy' = 0 belongs to L2 (Z). Therefore [(A(t)h,h)dt < co, h € H & H, and
hence A(-) is integrable on Z. O

Proposition 6.21. Assume that canonical system (6.29) is regular. Moreover, let
wu (-, A), ¥(,\)(€ [H,H @ H]) be the operator solutions of (6.30) with

631)  pula) = ( 0

iy
and let W (-) be the operator function (6.19). Then the following conditions are equivalent:
(1) If h € H and A(t){0,h} =0 a.e. onZ, then h = 0.
(2) The equality ker w1 (X) = {0} holds for all A € C\ R.
(3) The equality ker w1 (X) = {0} holds for some A € C\ R.
(4) NMiec kerwi(A) = {0}

Proof. Assume that

):H—>H€BH, Y(a,\) = (‘ZOIH> H—-H®H

0 —ilg

(6.32) U= (ilg,0): H® H — H, UZ(Z’IH 0

) H®oH— HOH.

Then U is a J-unitary extension (3.11) of U and the mappings (3.13) and (3.14) are
Tooy = —iyi(a), Tiay = iyo(a). Moreover, the corresponding solutions ¢y (-, A) and
¥(-,A\) of (6.30) satisfying (6.8) are defined by (6.31). If in addition T is the map-
ping (6.17), then the assumptions (Q1) and (Q2) are fulfilled and by Assertion 6.12 the
corresponding operator function W(-) is of the form (6.19).

Assume that condition (1) is satisfied. Let y € A and let I'1,y(= iyo(a)) = 0. Since
y is a solution of the equation Jy’' = 0, it follows that y(t) = {0,h}, ¢t € Z, with some
h € H. Moreover, A(t)y(t) = A(t){0,h} = 0 a.e. on Z and hence h = 0. Therefore y =0
and, consequently, assumption (A4) from Sect 4.1 is satisfied. Hence by Proposition
6.14 kerwq(A) =0, A € C\ R, which proves the implication (1)=(2). The implications
(2)=(3) and (3)=-(4) are obvious.

Next assume that (),cc kerwi(A) = {0}. If h € H and A(£){0,h} = 0 a.e. on Z,
then for any A € C the function y = y(t) = {0,ih}, ¢t € Z, satisfies (6.30) and hence
y = @u(t,\)h, A € C. Therefore wi(A\)h = wou(b,\)h = yo(b) = 0, A € C, and
consequently h = 0. This proves the implication (4)=-(1). O
Corollary 6.22. Let the assumptions be the same as in Proposition 6.21, let U be the
operator (6.32) and let at least one (and hence all) the conditions (1)-(4) from this

proposition be satisfied. Then statements of Theorem 6.16 are valid (with W(X) of the
form (6.19)).

Proof. As was shown in the proof of Proposition 6.21 the condition (1) yields the as-
sumption (A4). Therefore statements of Theorem 6.16 are valid. O

Remark 6.23. Recall [4, 14, 25] that Hamiltonian system (3.1) is called definite if N" = {0}
(for AV see Definition 3.2). According to [16, 22] canonical system (6.29) is definite if and
only if the function A(¢) is of positive type, that is for some compact interval Zg C 7
the operator fzﬁ A(t) dt is invertible. Clearly, for definite systems the assumption (A4)

is satisfied and hence Theorems 5.7 and 6.16 are valid.

Remark 6.24. (1) Let the assumptions of Proposition 6.21 be satisfied. For any f € 9 put
y}:(m) = Jf[x b A(t) f(t)dt, f(-) € f. Then in view of (6.2) one may represent statement
(2) of Assertion 3.6 in the form of the equality

(6.33) mulT = {f € H: Yo.7(a) =0 and A(z)ys(z) =0 ae. on I}
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In this connection note that for a canonical system on a compact interval Z = [a, b] the
equality (6.3) with mulT of the form (6.33) is proved in [33, Lemma A.18].

(2) For canonical systems (6.29) on a compact interval Z = [a, b] Corollary 6.22 follows
from [33, Theorem A.13] and [2, Theorem 7.28]. Observe also that in [33] the admissibility
condition for the parameter 7 = {Cy(\), C1(N\)} is more complicated than our relations
(6.24) and (6.25) (cf. formula (A.134) in [33]).

(3) Let W(A) be the monodromy matrix (6.19) for canonical system on a compact
interval Z = [a, b] and let x(A) be given by (6.27). If

(6.34) Ix(y)ll <v <1, y>0,

then according to [2, Theorem 7.30] the assumption (A4) from Sect. 4.1 is satisfied
and statement of Theorem 6.16 holds for arbitrary (not necessarily admissible) boundary
parameter 7. Note that condition (3) in Theorem 6.17 provides a necessary and sufficient
condition for validity of Theorem 6.16 with arbitrary boundary parameter 7 and this
condition is weaker than (6.34). Hence our Theorem 6.17 is a stronger result than
Theorem 7.30 in [2].
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