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SPECTRAL AND PSEUDOSPECTRAL FUNCTIONS OF
HAMILTONIAN SYSTEMS: DEVELOPMENT OF THE RESULTS BY
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Dedicated with respect to Yuri M. Berezansky on the occasion of his anniversary

Abstract. The main object of the paper is a Hamiltonian system Jy′ − B(t)y =
λΔ(t)y defined on an interval [a, b) with the regular endpoint a. We define a pseudo-
spectral function of a singular system as a matrix-valued distribution function such
that the generalized Fourier transform is a partial isometry with the minimally pos-
sible kernel. Moreover, we parameterize all spectral and pseudospectral functions of
a given system by means of a Nevanlinna boundary parameter. The obtained results
develop the results by Arov-Dym and Sakhnovich in this direction.

1. Introduction

Let H be a finite dimensional Hilbert space and let [H ] be the set of linear operators
in H . We study the Hamiltonian differential system [3, 16]

(1.1) Jy′ − B(t)y = λΔ(t)y, t ∈ I, λ ∈ C,

where B(t) = B∗(t) and Δ(t) ≥ 0 are [H ⊕ H ]-valued functions defined on an interval
I = [a, b), b ≤ ∞, and integrable on each compact subinterval Iβ = [a, β] ⊂ I and

(1.2) J =
(
0 −IH
IH 0

)
: H ⊕H → H ⊕H.

System (1.1) is called canonical if B(t) = 0, t ∈ I.
As is known a spectral function is a basic concept in the theory of eigenfunction

expansions of differential operators (see e.g. [5] and references therein). In the case of
a Hamiltonian system definition of a spectral function requires a certain modification.
Namely, let H = L2Δ(I) be the Hilbert space of functions f : I → H ⊕H satisfying∫

I
(Δ(t)f(t), f(t)) dt <∞

and let ϕ(·, λ) be the [H,H ⊕H ]-valued solution of the system (1.1) such that ϕ(0, λ) =
(0, IH)�. Assume that system is regular, i.e., b <∞ and the functions B(·) and Δ(·) are
integrable on I. Then the generalized Fourier transform of a function f ∈ H is

(1.3) f̂(s) =
∫
I
ϕ∗(t, s)Δ(t)f(t) dt, s ∈ R

and according to [2, 32, 33] an [H ]-valued distribution function σ(·) is a pseudospectral
function of the system (1.1) if the equality V f = f̂ , f ∈ H, defines a partial isometry
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V ∈ [H, L2(σ;H)] with kerV = L0, where

(1.4) L0 = {f ∈ H : f̂(s) = 0, s ∈ R}.
Moreover, σ(·) is a spectral function if V is an isometry.
The following assertion concerning the subspace L0 is obvious.

Assertion 1.1. If σ(·) is an [H ]-valued distribution function such that the generalized
Fourier transform V is a partial isometry from H to L2(σ;H), then L0 ⊂ kerV . Hence
σ(·) is a pseudospectral function, if V is a partial isometry with the minimally possible
kernel kerV = L0.

Moreover, in view of [33, Lemma A.18] the following assertion holds.

Assertion 1.2. The subspace L0 is the set of all functions f ∈ H such that the solution
y of the inhomogeneous system

(1.5) Jy′ −B(t)y = Δ(t)f(t), t ∈ I,
with y(b) = 0 satisfies Δ(t)y(t) = 0 (a.e. on I) and (IH , 0)y(a) = 0.

Let Y (·, λ) be the [H ⊕ H ]-valued solution of (1.1) with Y (a, λ) = J , let W (λ) :=
Y (b, λ) be the monodromy matrix and let

(1.6) W (λ) =
(
w1(λ) w2(λ)
w3(λ) w4(λ)

)
: H ⊕H → H ⊕H, λ ∈ C

be the block-matrix representation of W (λ). A description of all pseudospectral func-
tions of the regular system is given by the following theorem obtained by D. Arov and
H. Dym [2] and A. Sakhnovich [32, 33].

Theorem 1.3. Let system (1.1) be regular and canonical and let
⋂

λ∈C
kerw1(λ) = {0}.

Then the equalities

mτ (λ) = (C0(λ)w1(λ) + C1(λ)w3(λ))−1(C0(λ)w2(λ) + C1(λ)w4(λ)), λ ∈ C \ R,(1.7)

στ (s) = lim
δ→+0

lim
ε→+0

1
π

∫ s−δ

−δ

Immτ (u+ iε) du(1.8)

establish a bijective correspondence between all Nevanlinna pairs τ = {C0(λ), C1(λ)},
Cj(λ) ∈ [H ], j ∈ {0, 1}, (see Definition 2.9) satisfying a certain admissibility condition
(see [33, (A.134)]) and all pseudospectral functions σ(·) = στ (·). Moreover, in the case
L0 = {0} (and only in this case) the set of spectral functions is not empty and the above
statement holds for spectral functions.

It was also shown in [2] that under certain additional conditions on W (λ) statements
of Theorem 1.3 hold with arbitrary (not necessarily admissible) Nevanlinna pairs τ .
Note that mτ (·) in (1.7) is an [H ]-valued Nevanlinna function and (1.8) is the Perron-

Stieltjes formula for mτ (·). Observe also that the condition
⋂

λ∈C
kerw1(λ) = {0} in

Theorem 1.3 is equivalent to kerw1(λ) = {0} for some λ ∈ C \ R (see Proposition 6.21).
Assume now that system (1.1) is singular. Let Hb be the set of all functions f ∈ H that

vanish in a neighborhood of b. Then the Fourier transform (1.3) is defined for f ∈ Hb

and an [H ]-valued distribution function σ(·) is called a spectral function of the system if
the operator V f = f̂ , f ∈ Hb, extends to an isometry V ∈ [H, L2(σ;H)] or, equivalently,
if σ(·) is a spectral function for restriction of the system onto each subinterval Iβ ⊂ I.
Moreover, a pseudospectral function is defined in [2] by analogy with a spectral one.
Namely, according to [2] a distribution function σ0(·) is a pseudospectral function of
the singular system (1.1) if σ0(·) is a pseudospectral function of its restriction onto each
compact subinterval Iβ ⊂ I. Observe also that certain sufficient conditions for existence
of a function σ0(·) are given in [2].
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In the present paper we offer another definition of a pseudospectral function for a
singular system. Namely let D be the lineal of absolutely continuous functions y ∈ H
satisfying (1.5) with some f ∈ H. Moreover, let L0 be the set of all functions f ∈ H such
that there exists y ∈ D satisfying (1.5) and the equalities

Δ(t)y(t) = 0 (a.e. on I), (IH , 0)y(a) = 0, lim
t↑b
(Jy(t), z(t)) = 0, z ∈ D.(1.9)

Note that in the case of a regular system the last condition in (1.9) is equivalent to
y(b) = 0 and by Assertion 1.2 L0 admits the representation (1.4).
We prove the following statements: (1) L0 is a closed subspace in H; (2) if σ(·) is an [H ]-

valued distribution function such that the generalized Fourier transform V f = f̂ , f ∈ Hb,
extends to a partial isometry V ∈ [H, L2(σ;H)], then L0 ⊂ kerV . These facts together
with Assertions 1.1 and 1.2 make natural the following definition.

Definition 1.4. An [H ]-valued distribution function σ(·) is a pseudospectral function
of the system (1.1) if the generalized Fourier transform extends to a partial isometry
V ∈ [H, L2(σ;H)] with the minimally possible kernel kerV = L0.

It is easily seen that a rather restrictive necessary (but not sufficient) condition for
existence of a pseudospectral function σ0(·) in the sense of [2] is
(1.10) Hβ1 = (H0,β2 ∩ Hβ1)⊕ (L0,β2 ∩ Hβ1), β1 < β2,

where Hβ = L2Δ(Iβ), L0,β ⊂ Hβ is the subspace (1.4) for the restriction of the system
onto Iβ and H0,β = Hβ 
 L0,β , β ∈ I. If (1.10) does not hold, then a pseudospectral
function σ0(·) does not exist even for a regular system. At the same time a pseudospectral
function σ(·) in the sense of Definition 1.4 exists for any system (1.1). Moreover, in the
case of a regular system Definition 1.4 turns into the definition of a pseudospectral
function in [2, 33]. Observe also that each pseudospectral function σ0(·) in the sense of
[2] is a pseudospectral function σ(·) in the sense of Definition 1.4 (see Proposition 6.9).
Therefore a pseudospectral function σ(·) seems to be more general and convenient object
than σ0(·).
Denote by Nλ the linear space of solutions of the system (1.1) belonging to H and let

N± = dimNλ, λ ∈ C±, be the formal deficiency indices of the system (1.1) [22]. The
main result of the paper is a parametrization of all pseudospectral and spectral functions
of a (regular or singular) Hamiltonian system, which is given by the following theorem.

Theorem 1.5. Let N+ = N− and assume that there exists only the trivial solution y = 0
of the system (1.1) satisfying (IH , 0)y(a) = 0 and Δ(t)y(t) = 0 (a.e. on I). Then
(1) There exist an auxiliary finite-dimensional Hilbert space Hb and a Nevanlinna

operator function

(1.11) M(λ) =
(
m0(λ) M2(λ)
M3(λ) M4(λ)

)
: H ⊕Hb → H ⊕Hb, λ ∈ C \ R

such that the equality

(1.12) mτ (λ) = m0(λ) +M2(λ)(C0(λ)− C1(λ)M4(λ))−1C1(λ)M3(λ), λ ∈ C \ R

together with (1.8) establishes a bijective correspondence between all Nevanlinna pairs
τ = {C0(λ), C1(λ)}, Cj(λ) ∈ [Hb], j ∈ {0, 1}, satisfying the admissibility conditions

lim
y→∞

1
iy (C0(iy)− C1(iy)M4(iy))−1C1(iy) = 0,(1.13)

lim
y→∞

1
iyM4(iy)(C0(iy)− C1(iy)M4(iy))−1C0(iy) = 0,(1.14)

and all pseudospectral functions σ(·) = στ (·) of the system. Moreover, the above state-
ment holds for arbitrary (not necessarily admissible) Nevanlinna pairs τ if and only if

(1.15) lim
y→∞

1
iyM4(iy) = 0 and lim

y→∞ y · Im(M4(iy)h, h) = +∞, h ∈ Hb, h �= 0.
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(2) In the case L0 = {0} (and only in this case) the set of spectral functions is not
empty and statement (1) holds for spectral functions.

Recall that system (1.1) is called quasi-regular, if N+ = N− = 2dimH . It turns out
that for a quasi-regular (in particular regular) system there exists the operator function
W (λ) of the form (1.6) such that the equality (1.12) admits the representation (1.7);
moreover, the admissibility conditions (1.13), (1.14) and the criterion (1.15) can be re-
formulated in terms of W (λ) as well. These results cover Theorem 1.3 and some other
results obtained for regular canonical systems in [2, 32, 33] (for more details see Theorems
6.16, 6.17 and Remark 6.24 below).
It is worth noting that matricesM(λ) andW (λ) are defined in terms of the boundary

values of respective operator solutions of (1.1) at the endpoints a and b (for more details
see Proposition 4.9, equality (6.9) and Remark 4.2).
The above results are obtained in the framework of the extension theory of symmetric

linear relations. To this end one associates with system (1.1) the minimal (symmetric)
linear relation Tmin and the maximal relation Tmax(= T ∗min) in H [31, 19, 25, 27]. Then
L0 = mulT , where mulT is the multivalued part of a certain symmetric extension T
of Tmin, and pseudospectral functions are characterized in terms of orthogonal spectral
functions of self-adjoint extensions T̃ of T satisfying mul T̃ = mulT . With application of
this method pseudospectral and spectral functions of Hamiltonian systems were studied
in [13, 14, 19, 23, 24]. Our approach is based on concepts of a boundary triplet (boundary
pair) and the corresponding Weyl function (see [17, 10, 26, 7, 9] and references therein).
In the framework of this approach the matrix M(λ) in (1.11) is the Weyl function of
an appropriate boundary pair for Tmax and the conditions (1.13), (1.14) are implied by
results on Π-admissibility from [7]. Observe also that general (not necessarily Hamil-
tonian) symmetric systems were studied by means of boundary triplets in recent papers
[1, 28, 29, 30].

2. Preliminaries

2.1. Notations. The following notations will be used throughout the paper: H, H de-
note Hilbert spaces; [H1,H2] is the set of all bounded linear operators defined on the
Hilbert space H1 with values in the Hilbert space H2; [H] := [H,H]; PL is the ortho-
projection in H onto the subspace L ⊂ H; C+ (C−) is the upper (lower) half-plane of the
complex plane.
Recall that a linear relation T : H0 → H1 from a Hilbert space H0 to a Hilbert space

H1 is a linear manifold in the Hilbert H0 ⊕H1. If H0 = H1 =: H one speaks of a linear
relation T in H. The set of all closed linear relations from H0 to H1 (in H) will be
denoted by C̃(H0,H1) (C̃(H)). A closed linear operator T from H0 to H1 is identified
with its graph grT ∈ C̃(H0,H1).
For a linear relation T ∈ C̃(H0,H1) we denote by domT, ranT, kerT and mulT the

domain, range, kernel and the multivalued part of T respectively. Recall that mulT is a
subspace in H1 defined by

mulT := {h1 ∈ H1 : {0, h1} ∈ T }.(2.1)

Clearly, T ∈ C̃(H0,H1) is an operator if and only if mulT = {0}.
For T ∈ C̃(H0,H1) we will denote by T−1(∈ C̃(H1,H0)) and T ∗(∈ C̃(H1,H0)) the

inverse and adjoint linear relations of T respectively. Moreover, for a linear relation
T ∈ C̃(H) we denote by ρ(T ) the resolvent set of T , i.e., the set of all λ ∈ C such that
(T − λ)−1 ∈ [H].
Recall that an operator function Φ(·) : C \ R → [H] is called a Nevanlinna function

if it is holomorphic and satisfies Imλ · ImΦ(λ) ≥ 0 and Φ∗(λ) = Φ(λ), λ ∈ C \ R. A
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Nevanlinna function Φ(·) is called uniformly strict if 0 ∈ ρ(ImΦ(λ)). We denote by R[H ]
and Ru[H ] the set of [H]-valued Nevanlinna and uniformly strict Nevanlinna functions
respectively.

2.2. Symmetric relations and generalized resolvents. As is known a linear relation
A ∈ C̃(H) is called symmetric (self-adjoint) if A ⊂ A∗ (resp. A = A∗). For each symmetric
relation A ∈ C̃(H) the following decompositions hold:

H = H0 ⊕mulA, A = grA0 ⊕ m̂ulA,

where m̂ulA = {0}⊕mulA and A0 is a closed symmetric not necessarily densely defined
operator in H0 (the operator part of A). Moreover, A = A∗ if and only if A0 = A∗0.
Let A = A∗ ∈ C̃(H), let B be the Borel σ-algebra of R and let E0(·) : B → [H0] be the

orthogonal spectral measure of A0. Then the spectral measure EA(·) : B → [H] of A is
defined as EA(B) = E0(B)PH0 , B ∈ B.

Definition 2.1. Let Ã = Ã∗ ∈ C̃(H̃) and let H be a subspace in H̃. The relation Ã is
called H-minimal if there is no a nontrivial subspace H′ ⊂ H̃
H such that E

�A(δ)H
′ ⊂ H′

for each bounded interval δ = [α, β) ⊂ R.

Definition 2.2. The relations Tj ∈ C̃(Hj), j ∈ {1, 2}, are said to be unitarily equivalent
(by means of a unitary operator U ∈ [H1,H2]) if T2 = ŨT1 with Ũ = U ⊕ U ∈ [H2

1,H
2
2].

Let A ∈ C̃(H) be a symmetric relation. Recall the following definitions and results.

Definition 2.3. A relation Ã = Ã∗ in a Hilbert space H̃ ⊃ H satisfying A ⊂ Ã is called
an exit space self-adjoint extension of A. Moreover, such an extension Ã is called minimal
if it is H-minimal.

In what follows we denote by S̃elf(A) the set of all minimal exit space self-adjoint
extensions of A. Moreover, we denote by Self(A) the set of all extensions Ã = Ã∗ ∈ C̃(H)
of A (such an extension is called canonical). As is known, for each A one has S̃elf(A) �=
∅. Moreover, Self(A) �= ∅ if and only if A has equal deficiency indices, in which case
Self(A) ⊂ S̃elf(A).

Definition 2.4. Exit space extensions Ãj = Ã∗j ∈ C̃(H̃j), j ∈ {1, 2}, of A are called
equivalent (with respect to H) if there exists a unitary operator V ∈ [H̃1 
 H, H̃2 
 H]
such that Ã1 and Ã2 are unitarily equivalent by means of U = IH ⊕ V .
Definition 2.5. The operator functions R(·) : C\R→ [H] and F (·) : R → [H] are called
a generalized resolvent and a spectral function of A respectively if there exists an exit
space self-adjoint extension Ã of A (in a certain Hilbert space H̃ ⊃ H) such that

R(λ) = PH(Ã− λ)−1 � H, λ ∈ C \ R,(2.2)

F (t) = PHE((−∞, t)) � H, t ∈ R.(2.3)

Here PH is the orthoprojection in H̃ onto H and E(·) is the spectral measure of Ã.

In the case Ã ∈ Self(A) the equality (2.2) defines a canonical resolvent
R(λ) = (Ã− λ)−1

of A.

Proposition 2.6. Each generalized resolvent R(λ) of A is generated by some (minimal)
extension Ã ∈ S̃elf(A). Moreover, the extensions Ã1, Ã2 ∈ S̃elf(A) inducing the same
generalized resolvent R(·) are equivalent.
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In the sequel we suppose that a generalized resolvent R(·) and a spectral function F (·)
are generated by an extension Ã ∈ S̃elf(A). Moreover, we identify equivalent extensions.
Then by Proposition 2.6 the equality (2.2) gives a bijective correspondence between gene-
ralized resolvents R(λ) and extensions Ã ∈ S̃elf(A), so that each Ã ∈ S̃elf(A) is uniquely
defined by the corresponding generalized resolvent (2.2) (spectral function (2.3)).
It follows from (2.2) and (2.3) that the generalized resolvent R(·) and the spectral

function F (·) generated by an extension Ã ∈ S̃elf(A) are related by the equality

(2.4) ((F (β) − F (α))f, f) = lim
δ→+0

lim
ε→+0

1
π

∫ β−δ

α−δ

Im(R(u+ iε)f, f) du, f ∈ H,

which holds for any finite interval [α, β) ⊂ R. Moreover, setting H̃0 = H̃ 
 mul Ã one
gets from (2.3) that

(2.5) F (∞)(:= s− lim
t→+∞F (t)) = PHP�H0

� H.

2.3. The spaces L2(σ;H) and L2(σ;H). Let H be a finite dimensional Hilbert space.
A non-decreasing operator function σ(·) : R → [H] is called a distribution function if it
is left continuous and satisfies σ(0) = 0.

Theorem 2.7. ( [15, ch. 3.15], [18]). Let σ(·) : R → [H] be a distribution function.
Then

(1) There exist a scalar measure ν on Borel sets of R and a function Ψ : R → [H]
(uniquely defined by ν up to ν-a.e.) such that Ψ(s) ≥ 0 ν-a.e. on R, ν([α, β)) <
∞ and σ(β)− σ(α) =

∫
[α,β)Ψ(s) dν(s) for any finite interval [α, β) ⊂ R.

(2) The set L2(σ;H) of all Borel-measurable functions f(·) : R → H satisfying

||f ||2L2(σ;H) =
∫

R

(dσ(s)f(s), f(s)) :=
∫

R

(Ψ(s)f(s), f(s))H dν(s) <∞

is a semi-Hilbert space with the semi-scalar product

(f, g)L2(σ;H) =
∫

R

(dσ(s)f(s), g(s)) :=
∫

R

(Ψ(s)f(s), g(s))H dν(s), f, g ∈ L2(σ;H).

Moreover, different measures ν from statement (1) give rise to the same space
L2(σ;H).

Definition 2.8. ([15, 18]). The Hilbert space L2(σ;H) is a Hilbert space of all equiva-
lence classes in L2(σ;H) with respect to the seminorm || · ||L2(σ;H).

In the following we denote by πσ the quotient map from L2(σ;H) onto L2(σ;H).
With a distribution function σ(·) one associates the multiplication operator Λ = Λσ

in L2(σ;H) defined by
domΛσ = {f̃ ∈ L2(σ;H) : sf(s) ∈ L2(σ;H) for some (and hence for all) f(·) ∈ f̃}

Λσf̃ = πσ(sf(s)), f̃ ∈ domΛσ, f(·) ∈ f̃ .(2.6)

As is known, Λ∗σ = Λσ and the spectral measure Eσ of Λσ is given by

(2.7) Eσ(B)f̃ = πσ(χB(·)f(·)), B ∈ B, f̃ ∈ L2(σ;H), f(·) ∈ f̃ ,
where χB(·) is the indicator of the Borel set B.
Let K, K′ and H be finite dimensional Hilbert spaces and let σ(s)(∈ [H]) be a distri-

bution function. For Borel measurable functions Y (s)(∈ [H,K]) and g(s)(∈ H), s ∈ R,
we let ∫

R

Y (s) dσ(s)g(s) :=
∫

R

Y (s)Ψ(s)g(s) dν(s) (∈ K),(2.8)

where ν and Ψ(·) are defined in Theorem 2.7, (1).
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2.4. The class R̃(H). Recall the following definition.

Definition 2.9. A pair (C0(λ), C1(λ)) of holomorphic operator functions Cj(·) : C\R→
[H], j ∈ {0, 1}, is said to be a Nevanlinna pair if Imλ · Im(C1(λ)C∗0 (λ) ≥ 0, C1(λ)C∗0 (λ)−
C0(λ)C∗1 (λ) = 0 and 0 ∈ ρ(C0(λ) − λC1(λ)), λ ∈ C \ R (in the case dimH <∞ the last
condition can be replaced with ran (C0(λ), C1(λ)) = H).

Two Nevanlinna pairs (C(j)
0 (·), C(j)

1 (·)), j ∈ {1, 2}, are called equivalent if there exists
a holomorphic operator function ϕ(·) : C \R → [H] such that 0 ∈ ρ(ϕ(λ)) and C(2)

j (λ) =

ϕ(λ)C(1)
j (λ), λ ∈ C \ R, j ∈ {1, 2}. Clearly, the set of all Nevanlinna pairs splits into

disjoint equivalence classes; moreover, the equality

(2.9) τ(λ) = {(C0(λ), C1(λ))} := {{h, h′} ∈ H⊕H : C0(λ)h+C1(λ)h′ = 0}, λ ∈ C\R

allows us to identify such a class with the holomorphic function τ(·) : C \ R → C̃(H)
satisfying

(2.10) τ∗(λ) = τ(λ), 0 ∈ ρ(τ(λ)+λ), 1
Imλ ·Im(h

′, h) ≥ 0, {h, h′} ∈ τ(λ), λ ∈ C\R

(see [7]). In the following we denote by R̃(H) the set of all equivalence classes of
Nevanlinna pairs (C0(·), C1(·)) (or equivalently the set of all holomorphic functions
τ(·) : C \ R → C̃(H) satisfying (2.10)). Moreover, we denote by R̃0(H) the set of all
τ ∈ R̃(H) admitting the constant-valued representation

(2.11) τ(λ) ≡ {(C0, C1)} = θ, λ ∈ C \ R,

with some θ = θ∗ ∈ C̃(H).
The following assertion is well known.

Assertion 2.10. If τ(λ) = {(C0(λ), C1(λ))} ∈ R̃(H) and Φ(·) ∈ Ru[H], then 0 ∈
ρ(τ(λ) + Φ(λ)), 0 ∈ ρ(C0(λ) − C1(λ)Φ(λ)) and

(2.12) −(τ(λ) + Φ(λ))−1 = (C0(λ)− C1(λ)Φ(λ))−1C1(λ), λ ∈ C \ R.

2.5. Boundary triplets and Weyl functions. Here we recall some facts about bo-
undary triplets and corresponding Weyl functions of symmetric relations following [17,
10, 26].
Let A be a closed symmetric linear relation in the Hilbert space H, let Nλ(A) =

ker (A∗ − λ) (λ ∈ C) be a defect subspace of A, let N̂λ(A) = {{f, λf} : f ∈ Nλ(A)} and
let n±(A) := dimNλ(A) ≤ ∞, λ ∈ C±, be deficiency indices of A.

Definition 2.11. A collection Π = {H,Γ0,Γ1}, where H is a Hilbert space and Γj :
A∗ → H, j ∈ {0, 1}, are linear mappings, is called a boundary triplet for A∗, if the
mapping Γ : f̂ → {Γ0f̂ ,Γ1f̂}, f̂ ∈ A∗, from A∗ into H⊕H is surjective and the following
Green’s identity holds:

(f ′, g)− (f, g′) = (Γ1f̂ ,Γ0ĝ)− (Γ0f̂ ,Γ1ĝ), f̂ = {f, f ′}, ĝ = {g, g′} ∈ A∗.

Proposition 2.12. Let Π = {H,Γ0,Γ1} be a boundary triplet for A∗. Then the equality

Γ1 � N̂λ(A) =M(λ)Γ0 � N̂λ(A), λ ∈ C \ R(2.13)

correctly defines the operator function M(·) ∈ Ru[H] (the Weyl function of the triplet Π).

A connection between the Weyl functionM(λ) and classical Weyl functions for various
differential and difference boundary problems is discussed e.g. in [11, 26].
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Theorem 2.13. ([6, 10, 26]). Let A be a closed symmetric linear relation in H and let
Π = {H,Γ0,Γ1} be a boundary triplet for A∗. If τ = {(C0(·), C1(·))} ∈ R̃(H) (see (2.9)),
then for every g ∈ H and λ ∈ C \ R the abstract boundary value problem

{f, λf + g} ∈ A∗,(2.14)

C0(λ)Γ0{f, λf + g} − C1(λ)Γ1{f, λf + g} = 0, λ ∈ C \ R(2.15)

has a unique solution f = f(g, λ) and the equality R(λ)g := f(g, λ) defines a generalized
resolvent R(λ) = Rτ (λ) of A. Conversely, for each generalized resolvent R(λ) of A there
exists a unique τ ∈ R̃(H) such that R(λ) = Rτ (λ). Moreover, Rτ (λ) is a canonical
resolvent if and only if τ ∈ R̃0(H).
2.6. Boundary pairs and their Weyl functions. Let H and H be Hilbert spaces and
let Γ be a linear relation from H2 into H2. Then an element ϕ̂ ∈ Γ is a pair ϕ̂ = {f̂ , ĥ},
where f̂ = {f, f ′} ∈ H2 (f, f ′ ∈ H) and ĥ = {h, h′} ∈ H2 (h, h′ ∈ H). It is convenient to
write

ϕ̂ = {f̂ , ĥ} =
{
f̂ ,

(
h

h′

)}
=

{(
f
f ′

)
,

(
h
h′

)}
.

Definition 2.14. ([8]). Let A be a closed symmetric linear relation in H. A pair {H,Γ}
with a Hilbert space H and a linear relation Γ : H2 → H2 is called a boundary pair for
A∗ if
(1) domΓ is dense in A∗ and the abstract Green’s identity

(2.16) (f ′, g)H − (f, g′)H = (h′, x)H − (h, x′)H

holds for every {
(

f
f ′
)
,
(

h
h′
)
}, {

(
g
g′
)
,
(

x
x′
)
} ∈ Γ.

(2) if ϕ̂ = {
(

g
g′
)
,
(

x
x′
)
} ∈ H2⊕H2 satisfies (2.16) for every {

(
f
f ′
)
,
(

h
h′
)
} ∈ Γ, then ϕ̂ ∈ Γ.

Proposition 2.15. Let {H,Γ} be a boundary pair for A∗ with dimH < ∞. Then
n+(A) = n−(A) and Γ is a closed relation with domΓ = A∗ and ker Γ = A.

Proposition 2.16. Let {H,Γ} be a boundary pair for A∗ with dimH < ∞. Moreover,
let Γj : A∗ → H, j ∈ {0, 1}, be the linear relations, given by Γ0 = PH⊕{0}Γ � A∗ and
Γ1 = P{0}⊕HΓ � A∗ and let KΓ be the linear manifold in H defined by

KΓ = mul (mul Γ) =
{
h′ ∈ H :

{
0,

(
0
h′

)}
∈ Γ

}
.(2.17)

If KΓ = {0},then ker Γ0 � N̂λ(A) = {0}, ranΓ0 � N̂λ(A) = H and the equality

(2.18) grM(λ)=
{
{h, h′}∈H2 :

{(
f

λf

)
,

(
h

h′

)}
∈ Γ for some f ∈Nλ(A)

}
, λ ∈ C\R

define the operator function M(·) ∈ R[H] (the Weyl function of the pair {H,Γ}). More-
over, if the relations Γ0 and Γ1 are operators, then Π = {H,Γ0,Γ1} is a boundary triplet
for A∗ and M(·) is the Weyl function of Π (in the sense of Definition 2.11 and Propo-
sition 2.12).

Propositions 2.15 and 2.16 are immediate from [27, Section 3]. Moreover, the following
proposition is implied by [27] and [9, Proposition 4.1].

Proposition 2.17. Let {H,Γ} be a boundary pair for A∗ with dimH <∞, let KΓ = {0}
and let M(·) be the Weyl function of {H,Γ}. Moreover, let H be decomposed as H =
Ĥ ⊕ Ḣ. Then
(1) The equalities

Ã =
{
f̂ ∈ A∗ :

{
f̂ ,

(
0
h′

)}
∈ Γ, h′ ∈ Ĥ

}
, Ã∗ =

{
f̂ ∈ A∗ :

{
f̂ ,

(
h

h′

)}
∈ Γ, h ∈ Ḣ

}
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define a symmetric extension Ã of A and its adjoint Ã∗.
(2) A pair {Ḣ, Γ̇} with a linear relation Γ̇ : H2 → Ḣ2 of the form

Γ̇ =
{{

f̂ ,

(
h

PḢh′

)}
: h ∈ Ḣ,

{
f̂ ,

(
h

h′

)}
∈ Γ

}
is a boundary pair for Ã∗. Moreover, for this pair KΓ̇ = {0} and the corresponding Weyl
function is Ṁ(λ) = PḢM(λ) � Ḣ, λ ∈ C \ R.

3. Pseudospectral and spectral functions of Hamiltonian systems

3.1. Notations. Let I = [a, b〉 (−∞ < a < b ≤ ∞) be an interval of the real line
(the symbol 〉 means that the endpoint b < ∞ might be either included to I or not).
For a given finite-dimensional Hilbert space H denote by AC(I;H) the set of functions
f(·) : I → H which are absolutely continuous on each segment [a, β] ⊂ I.
Next assume that Δ(·) is an [H ]-valued Borel measurable function on I integrable

on each compact interval [a, β] ⊂ I and such that Δ(t) ≥ 0. Denote by L2Δ(I) the
semi-Hilbert space of Borel measurable functions f(·) : I → H satisfying ||f ||2Δ :=∫
I(Δ(t)f(t), f(t))H dt <∞ (see e.g. [15, Chapter 13.5]). The semi-definite inner product
(·, ·)Δ in L2Δ(I) is defined by (f, g)Δ =

∫
I(Δ(t)f(t), g(t))H dt, f, g ∈ L2Δ(I). Moreover,

let L2Δ(I) be the Hilbert space of the equivalence classes in L2Δ(I) with respect to the
semi-norm || · ||Δ. Denote also by πΔ the quotient map from L2Δ(I) onto L2Δ(I) and let
π̃Δ = πΔ ⊕ πΔ : (L2Δ(I))2 → (L2Δ(I))2, so that π̃Δ{f, g} = {πΔf, πΔg}, f, g ∈ L2Δ(I).
For a given finite-dimensional Hilbert space K we denote by L2Δ[K, H ] the set of all

Borel measurable operator-functions F (·) : I → [K, H ] such that F (t)h ∈ L2Δ(I), h ∈ K.

3.2. Hamiltonian systems. Let as above I = [a, b〉 (−∞ < a < b ≤ ∞) be an interval
in R. Moreover, let H be a finite-dimensional Hilbert space. In the sequel we put
p = dimH and m = dim(H ⊕H) = 2p.
Next assume that B(·) and Δ(·) are [H ⊕H ]-valued Borel measurable functions on I

integrable on each compact interval [a, β] ⊂ I and satisfying B(t) = B∗(t) and Δ(t) ≥ 0
a.e. on I and let J ∈ [H ⊕H ] be operator (1.2).
A Hamiltonian system on an interval I (with the regular endpoint a) is a system of

differential equations of the form

(3.1) Jy′ −B(t)y = λΔ(t)y +Δ(t)f(t), t ∈ I, λ ∈ C,

where f(·) ∈ L2Δ(I). Together with (3.1) we consider also the homogeneous system
(3.2) Jy′ − B(t)y = λΔ(t)y, t ∈ I, λ ∈ C,

and the system

(3.3) Jy′ −B(t)y = Δ(t)f(t), t ∈ I.
A function y ∈ AC(I;H⊕H) is a solution of (3.1) if it satisfies (3.1) a.e. on I. A function
Y (·, λ) : I → [K, H ⊕ H ] is an operator solution of equation (3.2) if y(t) = Y (t, λ)h is
a (vector) solution of this equation for every h ∈ K (here K is a Hilbert space with
dimK <∞). In the sequel we denote by Nλ, λ ∈ C, the linear space of solutions of the
homogeneous system (3.2) belonging to L2Δ(I). It is clear that dimNλ ≤ m.
The following obvious lemma will be useful in the sequel.

Lemma 3.1. If Y (·, λ) ∈ L2Δ[K, H⊕H ] is an operator solution of (3.2), then the relation

(3.4) K � h→ (Y (λ)h)(t) = Y (t, λ)h ∈ Nλ

defines the linear mapping Y (λ) : K → Nλ and, conversely, for each such a mapping
Y (λ) there exists a unique operator solution Y (·, λ) ∈ L2Δ[K, H ⊕H ] of (3.2) such that
(3.4) holds.
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It is easily seen that the set of all solutions y of (3.2) such that Δ(t)y(t) = 0 (a.e. on
I) does depend on λ. This enables one to introduce the following definition.
Definition 3.2. The null manifold N of the system (3.1) is the subspace of Nλ given
by

N = {y ∈ AC(I;H ⊕H) : Jy′(t)−B(t)y(t) = λΔ(t)y(t) and Δ(t)y(t) = 0 a.e. on I}.
As it is known [31, 19, 25] system (3.1) gives rise to the maximal linear relations Tmax

and Tmax in L2Δ(I) and L2Δ(I) respectively. They are given by
Tmax = {{y, f} ∈ (L2Δ(I))2 : y ∈ AC(I;H ⊕H) and Jy′(t)−B(t)y(t) =Δ(t)f(t)

a.e. on I}
and Tmax = π̃ΔTmax = {{πΔy, πΔf} : {y, f} ∈ Tmax}. Moreover the Lagrange’s identity
(3.5) (f, z)Δ − (y, g)Δ = [y, z]b − (Jy(a), z(a)), {y, f}, {z, g} ∈ Tmax
holds with

(3.6) [y, z]b := lim
t↑b
(Jy(t), z(t)), y, z ∈ dom Tmax.

Next, define the linear relation Ta in L2Δ(I) and the minimal linear relation Tmin in
L2Δ(I) by setting

Ta = {{y, f} ∈ Tmax : y(a) = 0 and [y, z]b = 0 for every z ∈ dom Tmax}
and Tmin = π̃ΔTa = {{πΔy, πΔf} : {y, f} ∈ Tmin}. Then Tmin is a closed symmetric
linear relation in L2Δ(I) and T ∗min = Tmax [31, 19, 25, 27]. Moreover, by [27, (4.47)]

ker (π̃Δ � Tmax) = {{y, f} ∈ (L2Δ(I))2 : y ∈ N and Δ(t)f(t) = 0 a.e. on I}.(3.7)

Definition 3.3. ([22]). The numbers N+ = dimNi and N− = dimN−i are called the
formal deficiency indices of the system (3.1).

Proposition 3.4. ([22, 25]). Given a Hamiltonian system (3.1). Then N± = dimNλ,
λ ∈ C± (i.e., dimNλ does not depend on λ in either C+ or C−) and

p ≤ N± ≤ m.(3.8)

Moreover, the deficiency indices of Tmin are n±(Tmin) = N± − dimN .

Next assume that

(3.9) U = (u1, u2) : H ⊕H → H

is an operator satisfying the relations

u1u
∗
2 − u2u∗1 = 0 and ranU = H(3.10)

(this means that (u1, u2) is a self-adjoint operator pair). As is known such an operator
U admits an extension to an operator

(3.11) Ũ =
(
u3 u4
u1 u2

)
: H ⊕H → H ⊕H,

satisfying Ũ∗JŨ = J (this means that Ũ is a J-unitary operator).
Clearly, each function y ∈ AC(I;H ⊕H) admits the representation

(3.12) y(t) = {y0(t), y1(t)}(∈ H ⊕H), t ∈ I.
Using (3.11) and the representation (3.12) of y we introduce the linear mappings Γja :
AC(I;H ⊕H)→ H, j ∈ {0, 1}, by setting

Γ0ay = u3y0(a) + u4y1(a),(3.13)

Γ1ay = u1y0(a) + u2y1(a), y ∈ AC(I;H ⊕H).(3.14)
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Clearly, the mapping Γ1a is determined by the operator U , while Γ0a is determined by
the extension Ũ . Moreover, the equality Γay = Ũy(a), y ∈ AC(I;H ⊕H), defines the
surjective linear mapping Γa : AC(I;H ⊕H)→ H ⊕H with the block representation

(3.15) Γa =
(
Γ0a
Γ1a

)
: AC(I;H ⊕H)→ H ⊕H.

Since Ũ is J-unitary, it follows that

(3.16) (Jy(a), z(a)) = (JΓay,Γaz) = (Γ0ay,Γ1az)− (Γ1ay,Γ0az), y, z ∈ domTmax.
In the following we associate with each operator U (see (3.9)) the operator solution

ϕU (·, λ)(∈ [H,H ⊕H ]), λ ∈ C, of (3.2) satisfying the initial condition

(3.17) ϕU (a, λ) =
(
u∗2
−u∗1

)
: H → H ⊕H.

One can easily verify that for each J-unitary extension Ũ of U one has

(3.18) ŨϕU (a, λ) =
(
IH
0

)
: H → H ⊕H.

3.3. q-pseudospectral and spectral functions. In this subsection we assume that U
is the operator (3.9) and that Γ1a is the linear mapping (3.14).
In what follows we put H := L2Δ(I) and denote by Hb the set of all f̃ ∈ H with the

following property: there exists β
�f ∈ I such that for some (and hence for all) function

f ∈ f̃ the equality Δ(t)f(t) = 0 holds a.e. on (β
�f , b).

With each f̃ ∈ Hb we associate the function f̂(·) : R → H given by

(3.19) f̂(s) =
∫
I
ϕ∗U (t, s)Δ(t)f(t) dt, f(·) ∈ f̃ .

One can easily prove that f̂(·) is a continuous (and even holomorphic) function on R.
Recall that an operator V ∈ [H1,H2] is called a partial isometry if ||V f || = ||f || for

all f ∈ H1 
 kerV .

Definition 3.5. A distribution function σ(·) : R → [H ] will be called a q-pseudospectral
function of the system (3.1) (corresponding to the operator U) if f̂ ∈ L2(σ;H) for all
f̃ ∈ Hb and the operator V f̃ := πσ f̂ , f̃ ∈ Hb, admits a continuation to a partial isometry
V = Vσ ∈ [H, L2(σ;H)].
The operator V = Vσ will be called the (generalized) Fourier transform corresponding

to σ(·).

Clearly, if σ(·) is a q-pseudospectral function, then for each f(·) ∈ L2Δ(I) the integral
in (3.19) converges in the norm of L2(σ;H). This means that there exists a unique
g̃(= VσπΔf) ∈ L2(σ;H) such that for any function g(·) ∈ g̃ one has

lim
β↑b

∣∣∣∣∣∣g(·)− ∫
[a,β)

ϕ∗U (t, ·)Δ(t)f(t) dt
∣∣∣∣∣∣
L2(σ;H)

= 0.

Moreover, similarly to [15, 34](see also [29, Proposition 4.2]) one proves that for each
q-pseudospectral function σ(·)

(3.20) V ∗σ g̃ = πΔ

(∫
R

ϕU (·, s) dσ(s)g(s)
)
, g̃ ∈ L2(σ;H), g(·) ∈ g̃,

where the integral converges in the seminorm of L2Δ(I).
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Assertion 3.6. Let T and T∗ be linear relations in H given by

T = {{πΔy, πΔf} : {y, f} ∈ Tmax, Γ1ay = 0 and [y, z]b = 0, z ∈ domTmax},(3.21)

T∗ = {{πΔy, πΔf} : {y, f} ∈ Tmax and Γ1ay = 0}.(3.22)

Then
(1) T is a (closed) symmetric extension of Tmin and T∗ ⊂ T ∗.
(2)The multivalued part mulT of T is the set of all f̃ ∈ H such that for some (and

hence for all) f ∈ f̃ there exists a solution y of the system (3.3) satisfying

Δ(t)y(t) = 0 (a.e. on I), Γ1ay = 0 and [y, z]b = 0, z ∈ dom Tmax.(3.23)

Proof. Statement (1) is immediate from the Lagrange’s identity (3.5). Statement (2) is
implied by (3.21) and (2.1). �

Let σ(·) be a q-pseudospectral function, let Vσ be the corresponding Fourier transform
and let H′0 = H
 kerVσ, L0 = VσH(= VσH′0) and L⊥0 = L2(σ;H)
 L0. Then
(3.24) H = kerVσ ⊕ H′0, L2(σ;H) = L0 ⊕ L⊥0 .
Assume also that

(3.25) H̃′0 := H′0 ⊕ L⊥0 , H̃′ :=

H︷ ︸︸ ︷
kerVσ ⊕ H′0⊕L⊥0 = H⊕ L⊥0 = kerVσ ⊕ H̃′0

and let Ṽ ′ ∈ [H̃′0, L2(σ;H)] be a unitary operator of the form
(3.26) Ṽ ′ = (Vσ � H′0, IL⊥

0
) : H′0 ⊕ L⊥0 → L2(σ;H),

where IL⊥
0
is an embedding operator from L⊥0 to L2(σ;H). Since H ⊂ H̃′, one may

consider T as a linear relation in H̃′.

Lemma 3.7. Let σ(·) be a q-pseudospectral function of the system (3.1), let Ṽ ′ be unitary
operator (3.26) and let T be symmetric relation (3.21). Moreover, let T ∗

�H′ ∈ C̃(H̃′) be

the linear relation adjoint to T in H̃′ and let Λ = Λσ be the multiplication operator in
L2(σ;H). Then the equalities

(3.27) f̃ = (Ṽ ′)∗g̃, T̃0f̃ = (Ṽ ′)∗Λg̃, g̃ ∈ domΛ

define a self-adjoint operator T̃0 in H̃′0 such that T̃0 ⊂ T ∗
�H′.

Proof. Clearly, T ∗
�H′ = T ∗ ⊕ (L⊥0 )

2 and by (3.26) the equalities (3.27) can be written as

f̃ = V ∗σ g̃ + PL⊥
0
g̃, T̃0f̃ = V ∗σ Λg̃ + PL⊥

0
Λg̃, g̃ ∈ domΛ.

Hence to prove the inclusion T̃0 ⊂ T ∗
�H′ it is sufficient to show that {V ∗σ g̃, V ∗σ Λg̃} ∈ T ∗ for

all g̃ ∈ domΛ.
Let g̃ ∈ domΛ, g(·) ∈ g̃ and let E(·) = Eσ(·) be the spectral measure of Λ. Then

by (2.6) and (2.7) for each compact interval δ ⊂ R one has E(δ)g̃ = πσ(χδ(·)g(·))
and ΛE(δ)g̃ = πσ(sχδ(s)g(s)). Therefore in view of (3.20) V ∗σ E(δ)g̃ = πΔy(·) and
V ∗σ ΛE(δ)g̃ = πΔf(·), where

(3.28) y(t) =
∫

R

ϕU (t, s) dσ(s)χδ(s)g(s), f(t) =
∫

R

sϕU (t, s) dσ(s)χδ(s)g(s).

It was shown in the proof of [29, Lemma 4.4] that {y, f} ∈ Tmax. Moreover, by the first
equality in (3.28) and (3.17)

y(a) =
(
u∗2
−u∗1

)∫
R

dσ(s)χδ(s)g(s),
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which in view of (3.14) and (3.10) yields Γ1ay = 0. Therefore by (3.22)

{V ∗σ E(δ)g̃, V ∗σ ΛE(δ)g̃}(= {πΔy(·), πΔf(·)}) ∈ T∗ ⊂ T ∗

and passage to the limit when δ → R yields the required inclusion {V ∗σ g̃, V ∗σ Λg̃} ∈ T ∗. �

Proposition 3.8. For each q-pseudospectral function σ(·) of the system (3.1) the corres-
ponding Fourier transform Vσ satisfies

(3.29) mulT ⊂ kerVσ

(for mulT see Assertion 3.6, (2)).

Proof. Let T̃0 = T̃ ∗0 be the operator in H̃′0 defined in Lemma 3.7 and let (T̃0)∗
�H′ be the

linear relation adjoint to T̃0 in H̃′ . Then (T̃0)∗
�H′ = T̃0 ⊕ (kerVσ)2 and the inclusion

T̃0 ⊂ T ∗
�H′ yields

(3.30) T ⊂ T̃0 ⊕ (kerVσ)2.

Let ñ ∈ mulT . Then {0, ñ} ∈ T and by (3.30) {0, ñ} ∈ T̃0 ⊕ (kerVσ)2. Therefore there
exist f̃ ∈ dom T̃0 and g̃, g̃′ ∈ kerVσ such that

f̃ + g̃ = 0, T̃0f̃ + g̃′ = ñ.

Since f̃ ∈ H̃′0, g̃ ∈ kerVσ and H̃′0 ⊥ kerVσ (see (3.25)), it follows that f̃ = g̃ = 0.
Therefore T̃0f̃ = 0 and hence ñ = g̃′ ∈ kerVσ. This yields the inclusion (3.29). �

Definition 3.9. A q-pseudospectral function σ(·) of the system (3.1) with kerVσ = mulT
will be called a pseudospectral function (corresponding to the operator U).

Definition 3.10. A distribution function σ(·) : R → [H ] is called a spectral function
of the system (3.1) (corresponding to the operator U) if for every f̃ ∈ Hb the inclusion
f̂ ∈ L2(σ;H) holds and the Parseval equality ||f̂ ||L2(σ;H) = ||f̃ ||H is valid (for f̂ see
(3.19)).

It follows from Proposition 3.8 that a pseudospectral function is a q-pseudospectral
function σ(·) with the minimally possible kerVσ. Moreover, the same proposition yields
the following assertion.

Assertion 3.11. A distribution function σ(·) : R → [H ] is a spectral function of the
system (3.1) if and only if it is a pseudospectral function with kerVσ(= mulT ) = {0}.
In the following we put H0 := H
mulT , so that

(3.31) H = mulT ⊕ H0.

Moreover, for a pseudospectral function σ(·) we denote by V0 = V0,σ the isometry from
H0 to L2(σ;H) given by

(3.32) V0,σ := Vσ � H0.

4. m-functions and generalized resolvents of Hamiltonian systems

4.1. Boundary pairs for Hamiltonian systems. The following lemma is immediate
from [27, Lemma 5.1 and Proposition 5.5].

Lemma 4.1. If system (3.1) satisfies N+ = N− =: d, then there exist a finite dimen-
sional Hilbert space Hb and a surjective linear mapping

Γb =
(
Γ0b
Γ1b

)
: domTmax → Hb ⊕Hb(4.1)
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such that for all y, z ∈ dom Tmax the following identity is valid:

[y, z]b = (Γ0by,Γ1bz)− (Γ1by,Γ0bz).(4.2)

Moreover, dimHb = d− p.
Remark 4.2. If Γb is the mapping (4.1), then Γby is a singular boundary value of a
function y ∈ dom Tmax at the endpoint b in the sense of [15, Chapter 13.2] (for more
details see Remark 3.5 in [1]).

Below within this section we suppose the following assumptions:
(A1) System (3.1) has equal formal deficiency indices N+ = N− =: d.
(A2) U is the operator (3.9) satisfying (3.10) and Γ1a is the linear mappings (3.14).
(A3) Hb is a finite dimensional Hilbert space and Γb is a surjective linear mapping

(4.1) satisfying (4.2).
(A4) For each y ∈ N the equality Γ1ay = 0 yields y = 0.

Proposition 4.3. Let Ũ be a J-unitary extension (3.11) of U and let Γ0a be linear
mapping (3.13). Then a pair {H ⊕ Hb,Γ} with a linear relation Γ : H2 → (H ⊕ Hb)2

defined by

Γ =
{{(

πΔy

πΔf

)
,

(
(−Γ1ay)⊕ Γ0by
Γ0ay ⊕ (−Γ1by)

)}
: {y, f} ∈ Tmax

}
(4.3)

is a boundary pair for Tmax such that KΓ = {0}(for KΓ see (2.17)).

Proof. The fact that {H ⊕Hb,Γ} is a boundary pair for Tmax directly follows from [27,
Corollary 5.6]. Next, by (4.3) and (3.7) one has

(4.4) KΓ = {Γ0ay ⊕ (−Γ1by) : y ∈ N and Γ1ay = 0, Γ0by = 0}.
This and the assumption (A4) yields KΓ = {0}. �

Definition 4.4. The boundary pair {H ⊕Hb,Γ} constructed in Proposition 4.3 will be
called a decomposing boundary pair for Tmax.

Proposition 4.5. Let T be a symmetric extension (3.21) of Tmin. Then
(1) The adjoint T ∗ of T coincides with T∗(see (3.22)), that is

T ∗ = {{πΔy, πΔf} : {y, f} ∈ Tmax and Γ1ay = 0}.(4.5)

(2) For every {ỹ, f̃} ∈ T ∗ there exists a unique y ∈ domTmax such that Γ1ay =
0, πΔy = ỹ and {y, f} ∈ Tmax for any f ∈ f̃ .
(3) The collection Π̇ = {Hb, Γ̇0, Γ̇1} with operators Γ̇j : T ∗ → Hb of the form

(4.6) Γ̇0{ỹ, f̃} = Γ0by, Γ̇1{ỹ, f̃} = −Γ1by, {ỹ, f̃} ∈ T ∗

is a boundary triplet for T ∗. In (4.6) y ∈ dom Tmax is uniquely defined by {ỹ, f̃} in
accordance with statement (2).

Proof. (1) Let Ũ be J-unitary extension (3.11) of U , let Γ0a be operator (3.13) and let
{H ⊕ Hb,Γ} be the decomposing boundary pair (4.3) for Tmax. Applying to this pair
Proposition 2.17, (1) (with Ḣ = Hb) one obtains statement (1).
(2) If {ỹ, f̃} ∈ T ∗, then there exists {y, f} ∈ Tmax such that πΔy = ỹ, πΔf = f̃ and

Γ1ay = 0. Hence y has the required properties. To prove uniqueness of such y assume
that y1 ∈ dom Tmax, Γ1ay1 = 0, πΔy1 = ỹ and {y1, f1} ∈ Tmax with some f1 ∈ f̃ .
Then π̃Δ{y1, f1} = {ỹ, f̃} and, consequently, π̃Δ{y1 − y, f1 − f} = 0. Therefore by (3.7)
y1− y ∈ N . Moreover, Γ1a(y− y1) = 0, which in view of the assumption (A4) yields the
equality y1 = y.
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(3) Application of Proposition 2.17,(2) to the decomposing boundary pair {H⊕Hb,Γ}
gives a boundary pair {Hb, Γ̇} for T ∗ with the linear relation Γ̇ : H2 → (Hb)2 of the form

(4.7) Γ̇ =
{{(

πΔy

πΔf

)
,

(
Γ0by
−Γ1by

)}
: {y, f} ∈ Tmax and Γ1ay = 0

}
.

Therefore by statement (2) linear relations Γ̇0 = PHb⊕{0}Γ̇ � T ∗ and Γ̇1 = P{0}⊕Hb
Γ̇ � T ∗

are the operators (4.6), which in view of Proposition 2.16 yields statement (3). �

4.2. L2Δ-solutions of boundary problems.

Definition 4.6. A boundary parameter τ (at the endpoint b) is an equivalent class of
operator pairs τ(λ) ∈ R̃(Hb). According to Sect. 2.4 such a pair is of the form

(4.8) τ = τ(λ) = {(C0(λ), C1(λ))}, λ ∈ C \ R,

where Cj(·) : C \ R → [Hb], j ∈ {0, 1}, are holomorphic operator functions satisfying
Imλ · Im(C1(λ)C∗0 (λ) ≥ 0, C1(λ)C∗0 (λ)− C0(λ)C∗1 (λ) = 0, ran (C0(λ), C1(λ)) = Hb.

In the case τ ∈ R̃0(Hb) a boundary parameter τ will be called self-adjoint. According
to (2.11) such a boundary parameter admits the representation in the form of a self-
adjoint operator pair

(4.9) τ(λ) ≡ {(C0, C1)}, λ ∈ C \ R,

with operators Cj ∈ [Hb], j ∈ {0, 1}, satisfying Im(C1C∗0 ) = 0 and ran (C0, C1) = Hb.
Let τ be a boundary parameter (4.8). For a given function f ∈ L2Δ(I) consider the

following boundary value problem:

Jy′ −B(t)y = λΔ(t)y +Δ(t)f(t), t ∈ I,(4.10)

Γ1ay = 0, C0(λ)Γ0by + C1(λ)Γ1by = 0, λ ∈ C \ R.(4.11)

If τ is a self-adjoint boundary parameter (4.9), then (4.11) becomes self-adjoint separated
boundary conditions

(4.12) Γ1ay = 0, C0Γ0by + C1Γ1by = 0.

A function y(·, ·) : I × (C \R)→ H ⊕H is called a solution of the problem (4.10), (4.11)
if for each λ ∈ C \R the function y(·, λ) belongs to AC(I;H ⊕H) ∩L2Δ(I) and satisfies
the equation (4.10) a.e. on I (so that y ∈ dom Tmax) and the boundary conditions (4.11).

Theorem 4.7. Let T be a symmetric relation (3.21). If τ is a boundary parameter (4.8),
then for every f ∈ L2Δ(I) the boundary problem (4.10), (4.11) has a unique solution
y(t, λ) = yf (t, λ) and the equality

(4.13) R(λ)f̃ = πΔ(yf (·, λ)), f̃ ∈ H, f ∈ f̃ , λ ∈ C \ R

defines a generalized resolvent R(λ) =: Rτ (λ) of T . Conversely, for each generalized
resolvent R(λ) of T there exists a unique boundary parameter τ such that R(λ) = Rτ (λ).
Moreover, Rτ (λ) is a canonical resolvent if and only if τ is a self-adjoint boundary
parameter (4.9). In this case Rτ (λ) = (T̃ τ − λ)−1 with

(4.14) T̃ τ = {{ỹ, f̃} ∈ Tmax : Γ1ay = 0, C0Γ0by + C1Γ1by = 0}.

Proof. Let Π̇ = {Hb, Γ̇0, Γ̇1} be the boundary triplet (4.6) for T ∗. Then for each boundary
parameter τ the problem (4.10), (4.11) is equivalent to an abstract problem (2.14), (2.15)
written in terms of the triplet Π̇. Applying now Theorem 2.13, we arrive at the required
statements. �
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Proposition 4.8. For any λ ∈ C \ R there exists a unique operator solution v0(·, λ) ∈
L2Δ[H,H ⊕H ] of the homogeneous system (3.2) satisfying

Γ1av0(λ) = −IH , Γ0bv0(λ) = 0, λ ∈ C \ R.(4.15)

Moreover, for any λ ∈ C\R there exists a unique operator solution u(·, λ) ∈ L2Δ[Hb, H⊕
H ] of (3.2) satisfying

Γ1au(λ) = 0, Γ0bu(λ) = IHb
, λ ∈ C \ R.(4.16)

In formulas (4.15) and (4.16) v0(λ) and u(λ) denote linear mappings from Lemma 3.1
corresponding to the solutions v0(·, λ) and u(·, λ), respectively.

Proof. Assume that Ũ is a J-unitary extension (3.11) of U , Γ0a is the operator (3.13),
{H ⊕Hb,Γ} is the decomposing boundary pair (4.3) for Tmax and Γ0 : H2 → H ⊕Hb is
the linear relation corresponding to Γ (see Proposition 2.16). Moreover, let

(4.17) Γ′0 =
(
−Γ1a
Γ0b

)
: domTmax → H ⊕Hb, Γ′1 =

(
Γ0a
−Γ1b

)
: dom Tmax → H ⊕Hb,

so that the relation Γ0 admits the representation

(4.18) Γ0 = {{π̃Δ{y, f},Γ′0y} : {y, f} ∈ Tmax}.
First we show that

(4.19) Γ0 � N̂λ(Tmin) = {{π̃Δ{y, λy},Γ′0y} : y ∈ Nλ}, λ ∈ C \R.

Since obviously πNλ = Nλ(Tmin), it follows from (4.18) that {π̃Δ{y, λy},Γ′0y} ∈ Γ0 �
N̂λ(Tmin) for each y ∈ Nλ. Conversely, let {{ỹ, λỹ}, h̃} ∈ Γ0 � N̂λ(Tmin) with some
ỹ ∈ Nλ(Tmin) and h̃ ∈ H ⊕ Hb. Then according to (4.18) there exists {y, f} ∈ Tmax
such that πΔy = ỹ, πΔf = λỹ and Γ′0y = h̃. Hence πΔ(f − λy) = 0 and consequently
Δ(t)f(t) = Δ(t)(λy(t)) a.e.on I. Thus Jy′(t) − B(t)y(t) = Δ(t)f(t) = λΔ(t)y(t) (a.e.
on I), so that y ∈ Nλ. Therefore {{ỹ, λỹ}, h̃} = {π̃Δ{y, λy},Γ′0y} with some y ∈ Nλ,
which yields (4.19).
It follows from Proposition 2.16 that

(4.20) ker Γ0 � N̂λ(Tmin) = {0}, ranΓ0 � N̂λ(Tmin) = H ⊕Hb.

If y ∈ Nλ and Γ′0y = 0, then by (4.19) and the first equality in (4.20) one has πΔy = 0.
Hence y ∈ N and by (4.17) Γ1ay = 0, which in view of the assumption (A4) yields
y = 0. Therefore ker Γ′0 � Nλ = {0}. Moreover, in view of (4.19) and the second equality
in (4.20) Γ′0 � Nλ = H ⊕ Hb. Thus the operator Γ′0 � Nλ isomorphically maps Nλ

onto H ⊕ Hb and, consequently, the equality Z(λ) = (Γ′0 � Nλ)−1 correctly defines the
isomorphism Z(λ) from H ⊕Hb onto Nλ. Let

Z(λ) = (v0(λ), u(λ)) : H ⊕Hb → Nλ, λ ∈ C \ R(4.21)

be the block representations of Z(λ). Since Γ′0Z(λ) = IH⊕Hb
, it follows from (4.17) that

(4.22)
(
−Γ1a
Γ0b

)
(v0(λ), u(λ)) =

(
IH 0
0 IHb

)
.

Let v0(·, λ) ∈ L2Δ[H,H ⊕H ] and u(·, λ) ∈ L2Δ[Hb, H ⊕H ] be operator solutions of (3.2)
corresponding to v0(λ) and u(λ) respectively (see Lemma 3.1). Then (4.22) yields (4.15)
and (4.16) for v0(·, λ) and u(·, λ). Finally, uniqueness of v0(·, λ) and u(·, λ) is implied by
uniqueness of the solution of the boundary problem (4.10), (4.11). �

Proposition 4.9. Let Ũ be a J-unitary extension (3.11) of U and let Γ0a be the mapping
(3.13). Moreover, let {H ⊕Hb,Γ} be the decomposing boundary pair (4.3) and let

(4.23) M(λ) =
(
m0(λ) M2(λ)
M3(λ) M4(λ)

)
: H ⊕Hb → H ⊕Hb, λ ∈ C \ R
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be the block matrix representation of the corresponding Weyl function M(·) (see (2.18)).
Then the entries of the matrix (4.23) are connected with solutions v0(·, λ) and u(·, λ) via

m0(λ) = Γ0av0(λ), M2(λ) = Γ0au(λ)(4.24)

M3(λ) = −Γ1bv0(λ), M4(λ) = −Γ1bu(λ), λ ∈ C \ R.(4.25)

Proof. Let Γ′0 and Γ′1 be given by (4.17) and let Z(λ) be the same as in the proof of
Proposition 4.8. Then by (4.3)

(4.26)

{(
πΔZ(λ)h̃
λπΔZ(λ)h̃

)
,

(
Γ′0Z(λ)h̃
Γ′1Z(λ)h̃

)}
∈ Γ, h̃ ∈ H ⊕Hb, λ ∈ C \ R

Since Γ′0Z(λ)h̃ = h̃, it follows from (4.26) and (2.18) that Γ′1Z(λ) =M(λ), which in view
of (4.21) and (4.23) can be written as(

Γ0a
−Γ1b

)
(v0(λ), u(λ)) =

(
m0(λ) M2(λ)
M3(λ) M4(λ)

)
.

This implies (4.24) and (4.25). �

Corollary 4.10. Let Π̇ = {Hb, Γ̇0, Γ̇1} be the boundary triplet (4.6) for T ∗ and let M4(λ)
be given by (4.25). Then
(1)M4(·) is the Weyl function of Π̇ and hence M4(·) ∈ Ru[Hb];
(2) for each boundary parameter τ of the form (4.8) 0 ∈ ρ(τ(λ) +M4(λ)) and 0 ∈

ρ(C0(λ)− C1(λ)M4(λ)), λ ∈ C \ R.

Proof. Let Ũ be a J-unitary extension (3.11) of U and let Γ0a be the mapping (3.13).
Moreover, let {H⊕Hb,Γ} be the decomposing boundary pair (4.3) for Tmax and letM(·)
be the Weyl function of this pair. Applying Proposition 2.17 to the pair {H ⊕ Hb,Γ}
one obtains, that the Weyl function Ṁ(λ) of Π̇ is Ṁ(λ) = PHb

M(λ) � Hb. This and
Proposition 4.9 yield statement (1). Statement (2) is implied by Assertion 2.10. �

Theorem 4.11. Let τ = τ(λ) be a boundary parameter (4.8). Then for each λ ∈ C \ R

there exists a unique operator solution vτ (·, λ) ∈ L2Δ[H,H ⊕ H ] of the homogeneous
system (3.2) satisfying the boundary conditions

Γ1avτ (λ) = −IH , C0(λ)Γ0bvτ (λ) + C1(λ)Γ1bvτ (λ) = 0, λ ∈ C \ R.(4.27)

Moreover, vτ (·, λ) is connected with the solutions v0(·, λ) and u(·, λ) by

vτ (t, λ) = v0(t, λ) − u(t, λ)(τ(λ) +M4(λ))−1M3(λ), λ ∈ C \ R,(4.28)

where M3(λ) and M4(λ) are given by (4.25).

Proof. It follows from Corollary 4.10, (2) that the equality (4.28) correctly defines the
solution vτ (·, λ) ∈ L2Δ[H,H⊕H ] of (3.2) and to prove the theorem it is sufficient to show
that such vτ (·, λ) is a unique solution of (3.2) belonging to L2Δ[H,H ⊕H ] and satisfying
(4.27).
Combining (4.28) with (4.15), (4.16) and (4.25) one gets the first equality in (4.27)

and the equalities

Γ0bvτ (λ) = −(τ(λ) +M4(λ))−1M3(λ),

Γ1bvτ (λ) = −(I −M4(λ)(τ(λ) +M4(λ))−1)M3(λ), λ ∈ C \ R.

The last two equalities give {Γ0bvτ (λ)h,Γ1bvτ (λ)h} ∈ τ(λ), h ∈ H, which implies the
second condition in (4.27). Finally, uniqueness of vτ (·, λ) is implied by uniqueness of the
solution of the boundary problem (4.10), (4.11) (see Theorem 4.7). �
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4.3. m-functions. In this subsection we suppose that the hypotheses (A1)–(A4) are
satisfied, that Ũ is a J-unitary extension (3.11) of U and that Γ0a is the mapping (3.13).
Let τ be a boundary parameter (4.8) and let vτ (·, λ) ∈ L2Δ[H,H ⊕H ] be the corres-

ponding operator solution of (3.2) defined in Theorem 4.11.

Definition 4.12. The operator function mτ (·) : C \ R → [H ] defined by

(4.29) mτ (λ) = Γ0avτ (λ), λ ∈ C \ R

is called the m-function (Titchmarsh-Weyl function) corresponding to the boundary pa-
rameter τ or, equivalently, to the boundary problem (4.10), (4.11).

From the first equality in (4.27) it follows that

(4.30) Ũvτ (a, λ)
(
=

(
Γ0a
Γ1a

)
vτ (λ)

)
=

(
mτ (λ)
−IH

)
: H → H ⊕H, λ ∈ C \ R.

Similarly to the case of definite system (3.1) one can easily show that, for given U and τ ,
them-functionmτ (·) is defined uniquely up to an additive self-adjoint constant depending
on Ũ (cf. [1, Proposition 5.2]).
A definition of the m-function mτ in somewhat other terms is given in the following

proposition, which directly follows from (4.30) and Theorem 4.11.

Proposition 4.13. Let τ be a boundary parameter, let ϕU (·, λ)(∈ [H,H ⊕H ]), λ ∈ C,
be the operator solution of (3.2) defined by (3.17) and let ψ(·, λ)(∈ [H,H ⊕H ]) be the
operator solution of (3.2) with

(4.31) Ũψ(a, λ) =
(
0
IH

)
: H → H ⊕H, λ ∈ C.

Then there exists a unique operator function m(·) = mτ (·) : C \ R → [H ] such that for
any λ ∈ C \ R the operator solution v(·, λ) = vτ (·, λ) of (3.2) given by

(4.32) v(t, λ) := ϕU (t, λ)m(λ) − ψ(t, λ)
belongs to L2Δ[H,H ⊕H ] and satisfies the second equality in (4.27).

In the following theorem we provide a description of all m-functions immediately in
terms of the boundary parameter τ .

Theorem 4.14. Let M(·) be the operator function given by (4.23)–(4.25) (that is M(·) is
the Weyl function of the decomposing boundary pair {H⊕Hb,Γ} for Tmax). Moreover, let
τ0 be a self-adjoint boundary parameter given by τ0 = {(IHb

, 0)}. Then m0(λ) = mτ0(λ)
and for every boundary parameter τ of the form (4.8) the m-function mτ (·) is

(4.33) mτ (λ) = m0(λ) +M2(λ)(C0(λ) − C1(λ)M4(λ))−1C1(λ)M3(λ), λ ∈ C \ R.

Proof. One can easily verify that v0(t, λ) = vτ0(t, λ), so that by (4.24) m0(λ) = mτ0(λ).
Next, application of the operator Γ0a to the equality (4.28) with taking (4.24) and (4.29)
into account yields

mτ (λ) = m0(λ) −M2(λ)(τ(λ) +M4(λ))−1M3(λ), λ ∈ C \ R.(4.34)

This and (2.12) imply (4.33). �

Proposition 4.15. The m-function mτ (·) belongs to the class R[H ] and satisfies

(4.35) (Imλ)−1 · Immτ (λ) ≥
∫
I
v∗τ (t, λ)Δ(t)vτ (t, λ) dt, λ ∈ C \ R.

Moreover, in the case of a self-adjoint boundary parameter τ the inequality (4.35) turns
into the equality.
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Proof. It follows from (4.33) that mτ (·) is holomorphic in C \ R. Moreover, since the
Weyl function (4.23) satisfies M∗(λ) = M(λ), it follows that m∗0(λ) = m0(λ), M∗

2 (λ) =
M3(λ), M∗

4 (λ) = M4(λ) and (4.34) yields m∗τ (λ) = mτ (λ), λ ∈ C \ R. Now it remains
to show that mτ (·) satisfies (4.35).
Let λ ∈ C \ R, h ∈ H and let y = y(t) = vτ (t, λ)h. Then by (3.16) (Jy(a), y(a)) =

−2i Im(Γ1ay,Γ0ay) and in view of (4.2) one has [y, y]b = −2i Im(Γ1by,Γ0by). Applying
now the Lagrange’s identity (3.5) to {y, λy} ∈ Tmax one gets

(Imλ)−1 · Im(Γ1ay,Γ0ay) = (y, y)Δ + (Imλ)−1 · Im(Γ1by,Γ0by).(4.36)

It follows from (4.30) that Γ0ay = mτ (λ)h, Γ1ay = −h and hence Im(Γ1ay,Γ0ay) =
Im(mτ (λ)h, h). Moreover, by the second equality in (4.27) one has {Γ0by,Γ1by} ∈ τ(λ)
and (2.10) yields (Imλ)−1 · Im(Γ1by,Γ0by) ≥ 0. Observe also that

(y, y)Δ =
((∫

I
v∗τ (t, λ)Δ(t)vτ (t, λ) dt

)
h, h

)
.

Therefore by (4.36) the inequality (4.35) holds. If in addition τ ∈ R̃0(Hb), then in (4.36)
Im(Γ1by,Γ0by) = 0 and therefore the inequality (4.35) turns into the equality. �

Since by Proposition 4.15 mτ (·) ∈ R[H], the Stieltjes inversion formula (1.8) defines
the [H ]-valued distribution function στ (·) such that

(4.37)
∫

R

d(στ (s)h, h)
1 + s2

<∞, h ∈ H.

4.4. Green’s function and generalized resolvents.

Proposition 4.16. Let τ be a boundary parameter and let Rτ (·) be the corresponding
generalized resolvent of the relation T (see Theorem 4.7). Moreover, let Gτ (·, ·, λ) :
I × I → [H ⊕H ] be the operator-function given by

(4.38) Gτ (x, t, λ) =

{
vτ (x, λ)ϕ∗U (t, λ), x > t

ϕU (x, λ) v∗τ (t, λ), x < t
, λ ∈ C \ R

(the Green’s function). Then

(4.39) Rτ (λ)f̃ = πΔ

(∫
I
Gτ (·, t, λ)Δ(t)f(t) dt

)
, f̃ ∈ H, f ∈ f̃ .

Proof. As in [1, Theorem 6.2] one proves that
∫
I ||Gτ (x, t, λ)Δ(t)f(t)|| dt < ∞ for each

f ∈ L2Δ(I) and x ∈ I. This implies that formula

(4.40) yf = yf (x, λ) :=
∫
I
Gτ (x, t, λ)Δ(t)f(t) dt, λ ∈ C \ R

correctly defines the function yf (·, ·) : I × C \ R → H ⊕ H and, therefore, (4.39) is
equivalent to the following statement: for each f̃ ∈ H

(4.41) yf(·, λ) ∈ L2Δ(I) and Rτ (λ)f̃ = πΔ(yf (·, λ)), f ∈ f̃ , λ ∈ C \ R.

To prove this statement we first prove the equality

(4.42) ϕU (x, λ)v∗τ (x, λ)− vτ (x, λ)ϕ∗U (x, λ) = J, x ∈ I, λ ∈ C \ R.

Let Y (x, λ) = (ϕU (x, λ), vτ (x, λ)) : H ⊕H → H ⊕H and let Ũ be a J-unitary extension
(3.11) of U . Then by (3.18) and (4.30)

ŨY (a, λ) =
(
IH mτ (λ)
0 −IH

)
: H ⊕H → H ⊕H
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and the immediate calculations with taking the equalitym∗τ (λ) = mτ (λ) into account give
(ŨY (a, λ))∗J(ŨY (a, λ)) = −J . Therefore Y ∗(a, λ)JY (a, λ) = −J and by the Lagrange’s
identity (3.5) one has

Y ∗(x, λ)JY (x, λ) = Y ∗(a, λ)JY (a, λ) = −J.
Hence Y (x, λ)JY ∗(x, λ) = −J, x ∈ I, λ ∈ C \ R, which is equivalent to (4.42).
Next assume that f̃ ∈ Hb. We show that in this case the function yf (·, λ) given by

(4.40) is a solution of the boundary problem (4.10), (4.11). Using (4.42) one proves as
in [1, Theorem 6.2] that yf(·, λ) satisfies (4.10) a.e. on I. Moreover, by (4.38)
(4.43) yf(a, λ) = ϕU (a, λ)h1, yf(x, λ) = vτ (x, λ)h2, x ∈ (β

�f , b)

with some h1, h2 ∈ H . Combining the first equality in (4.43) with (3.18) one gets
Γ1ayf = 0. Moreover, the second equality in (4.43) shows that yf (·, λ) ∈ L2Δ(I) and
Γjbyf = Γjbvτ (λ)h2, j ∈ {0, 1},. Therefore by the second equality in (4.27) yf satisfies
the second boundary condition in (4.11). Thus yf (·, λ) is a solution of the boundary
problem (4.10), (4.11) and by Theorem 4.7 relations (4.41) hold (for f̃ ∈ Hb). Finally,
one proves (4.41) for arbitrary f̃ ∈ H in the same way as in [1, Theorem 6.2]. �

5. Parametrization of pseudospectral and spectral functions

As before we suppose in this section the assumptions (A1)–(A4) specified just after
Remark 4.2 (unless otherwise stated).
Let T be a symmetric relation (3.21). Then according to Theorem 4.7 the boundary

problem (4.10), (4.11) induces a bijective correspondence R(λ) = Rτ (λ) between all
boundary parameters τ and all generalized resolvents R(λ) of T . In the following we
denote by T̃ τ(∈ S̃elf(T )) the extension of T generating Rτ (λ) and by Fτ (·) the spectral
function of T generated by T̃ τ (see Definition 2.5). Clearly, the equalities T̃ = T̃ τ

and F (·) = Fτ (·) give a parametrization of all extensions T̃ ∈ S̃elf(T ) and all spectral
functions F (·) of T respectively by means of the boundary parameter τ .
In what follows we assume that a certain J-unitary extension Ũ ⊃ U of the form

(3.11) is fixed and hence the m-function mτ (·) is defined by (4.29). Note that in view of
the remark just after (4.30) a choice of Ũ does not matter in our further considerations.

Definition 5.1. An extension T̃ ∈ S̃elf(T ) (T̃ ∈ Self(T )) is referred to the class S̃elf0(T )
(resp. Self0(T )) if mul T̃ = mulT .

Note that Self0(T ) �= ∅. Moreover, if mulT = {0}, then S̃elf0(T ) (Self0(T )) is the set
of all extensions T̃ ∈ S̃elf(T ) (resp. T̃ ∈ Self(T )) which are operators.

Definition 5.2. Let M4(λ) be given by the second equality in (4.25). A boundary
parameter τ of the form (4.8) is called admissible if the equalities (1.13) and (1.14) hold.

Proposition 5.3. (1) An extension T̃ τ belongs to S̃elf0(T ) if and only if the boundary
parameter τ is admissible.
(2) If limy→∞ 1

iyM4(iy) = 0, then a boundary parameter τ is admissible if and only if
(1.13) is satisfied.

Proof. Let Π̇ = {Hb, Γ̇0, Γ̇1} be the boundary triplet (4.6) for T ∗. Then by Corollary 4.10
the Weyl function of Π̇ coincides with M4(λ). Moreover, it was mentioned in the proof
of Theorem 4.7 that the problem (4.10), (4.11) is equivalent to the abstract problem
(2.14), (2.15) for the triplet Π̇. Now the required statements are implied by the results
of [7]. �
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Theorem 5.4. Let τ be an admissible boundary parameter and let Fτ (·) be the corres-
ponding spectral function of T . Then there exists a unique pseudospectral function στ (·)
of the system (3.1) satisfying

(5.1) ((Fτ (β) − Fτ (α))f̃ , f̃) =
∫
[α,β)

(dστ (s)f̂(s), f̂(s)), f̃ ∈ Hb, −∞ < α < β <∞.

This pseudospectral function is defined by the Stieltjes inversion formula (1.8).

Proof. (1) Let us show that (1.8) defines a pseudospectral function στ (·). To this end
we first prove that στ (·) satisfies (5.1) (we give only the sketch of the proof, because it
is similar to that of alike results in [14, 34]). It follows from Proposition 4.13 that the
Green’s function (4.38) admits the representation

Gτ (x, t, λ) = ϕU (x, λ)mτ (λ)ϕ∗U (t, λ) +G0(x, t, λ),(5.2)

where G0(x, t, λ) is an entire function of λ such that G∗0(x, t, λ) = G0(t, x, λ). Let f̂(·)
be an entire function given by f̂(λ) =

∫
I ϕ

∗
U (t, λ)Δ(t)f(t) dt. Then by (4.39) and (5.2)

the generalized resolvent Rτ (·) satisfies
(Rτ (λ)f̃ , f̃) = (mτ (λ)f̂ (λ), f̂(λ)) + S(λ), f̃ ∈ Hb, λ ∈ C \ R,

where S(·) is a certain continuous function on C with real values on R. Therefore in view
of (2.4) for each finite interval [α, β) one has

((Fτ (β)− Fτ (α))f̃ , f̃) = lim
δ→+0

lim
ε→+0

1
π

∫ β−δ

α−δ

Im(mτ (u+ iε)f̂(u + iε), f̂(u− iε)) du.

Now by using the Stieltjes-Livs̆ic inversion formula [20, 34] one derives (5.1).
Next assume that T̃ τ is a (self-adjoint) relation in a certain Gilbert space H̃ and let

H̃0 = H̃
mulT , so that

(5.3) H̃ = mulT ⊕ H̃0.

Since by Proposition 5.3 mul T̃ τ = mulT , it follows from (5.1) and (2.5) that f̂ ∈
L2(στ ;H) and ||f̂ ||L2(στ ;H) = ||P

�H0
f̃ ||

�H ≤ ||f̃ ||H, f̃ ∈ Hb. Hence the operator Vbf̃ :=

πστ f̂ , f̃ ∈ Hb, admits a continuation to an operator V ∈ [H, L2(στ ;H)] satisfying

(5.4) ||V f̃ ||L2(στ ;H) = ||P�H0
f̃ ||

�H, f̃ ∈ H.

Let H be decomposed as in (3.31). Then in view of (5.4), (5.3) and the inclusion H0 ⊂ H̃0

one has V f̃ = 0, f̃ ∈ mulT, and ||V f̃ ||L2(σ;H) = ||f̃ ||
�H = ||f̃ ||H, f̃ ∈ H0. Thus V is a

partial isometry with kerV = mulT and, consequently, στ is a pseudospectral function
of the system (3.1) such that (5.1) holds.
(2) Let us prove that στ (·) is a unique pseudospectral function satisfying (5.1). Assume

that Vστ is the Fourier transform corresponding to στ and let Eστ be the spectral measure
(2.7). Then by (5.1) for each finite interval δ = [α, β) one has

(5.5) Fτ (β)− Fτ (α) = V ∗στ
Eστ (δ)Vστ

and (3.20) yields

(5.6) (Fτ (β)− Fτ (α))f̃ = πΔ

(∫
δ

ϕU (·, s) dστ (s)f̂(s)
)
, δ = [α, β) ⊂ R, f̃ ∈ Hb.

Let σ(·) be a pseudospectral function such that (5.1) holds with σ(·) instead of στ (·).
Then (5.6) also holds with σ(·) in place of στ (·) and, consequently,

(5.7) πΔ

(∫
δ

ϕU (·, s) dστ (s)f̂(s)
)
=πΔ

(∫
δ

ϕU (·, s) dσ(s)f̂ (s)
)
, δ = [α, β), f̃ ∈ Hb.
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It follows from Theorem 2.7 that there exist a scalar measure ν on Borel sets of R and
functions Ψj· : R → [H ], j ∈ {1, 2}, such that

(5.8) στ (β)−στ (α) =
∫

δ

Ψ1(s) dν(s) and σ(β)−σ(α) =
∫

δ

Ψ2(s) dν(s), δ = [α, β).

Let Ψ(s) := Ψ1(s)−Ψ2(s) and let μ be the Lebesgue measure on Borel sets of I. Denote
also by G the set of all functions f̂(·) : R → H admitting the representation (3.19) with
some f̃ ∈ Hb. Then in view of (5.7), (2.8) and (5.8) one has

(5.9) Δ(t)
∫

δ

ϕU (t, s)Ψ(s)f̂(s) dν(s) = 0 (μ-a.e. on I), f̂ ∈ G, δ = [α, β).

Denote by F the (countable) set of all finite intervals δ = [α, β) with rational endpoints.
It follows from (5.9) that for each δ ∈ F and for each f̂ ∈ G there exists a Borel set
Bδ,�f ⊂ I such that μ(I \ Bδ,�f) = 0 and

∫
δ Δ(t)ϕU (t, s)Ψ(s)f̂(s)dν(s) = 0, t ∈ Bδ,�f .

Hence B
�f :=

⋂
δ∈F

Bδ,�f is the Borel set in I such that

(5.10) μ(I \B
�f ) = 0 and ν({s ∈ R : Δ(t)ϕU (t, s)Ψ(s)f̂(s) �= 0}) = 0, t ∈ B

�f .

For each f̂ ∈ G we put

B̃
�f = {(t, s) ∈ I × R : Δ(t)ϕU (t, s)Ψ(s)f̂(s) �= 0}.

Then by (5.10) (μ× ν)(B̃
�f ) = 0 and, consequently, there is a Borel set C

�f ⊂ R such that

(5.11) ν(R \ C
�f ) = 0 and μ({t ∈ I : Δ(t)ϕU (t, s)Ψ(s)f̂(s) �= 0}) = 0, s ∈ C

�f .

Let s ∈ C
�f and let y = y(t) = ϕU (t, s)Ψ(s)f̂(s). Then by (3.17) y(a) =

(
u∗2
−u∗1

)
Ψ(s)f̂(s)

and (3.10) yields Γ1ay = 0. Moreover, by (5.11) Δ(t)y(t) = 0 (μ a.e. on I) and hence
y ∈ N . Therefore by the assumption (A4) y = 0 and, consequently, Ψ(s)f̂(s) = 0. Thus
for any f̂ ∈ G there exists a Borel set C

�f ⊂ R such that

(5.12) ν(R \ C
�f ) = 0 and Ψ(s)f̂(s) = 0, s ∈ C

�f .

Next we prove the following statement:
(S) for any s ∈ R and h ∈ H there is f̂(·) ∈ G such that f̂(s) = h.

Indeed, let s ∈ R, h′ ∈ H and (f̂(s), h′) = 0 for any f̂(·) ∈ G. Put y = y(t) = ϕU (t, s)h′.
Then for any β ∈ I one has f̂β(·) :=

∫
[a,β] ϕ

∗
U (t, ·)Δ(t)y(t) dt ∈ G and,consequently,

0 = (f̂β(s), h′) =
∫
[a,β]

(ϕ∗U (t, s)Δ(t)y(t), h
′) dt =

∫
[a,β]

(Δ(t)y(t), y(t)) dt, β ∈ I.

Hence Δ(t)y(t) = 0 (μ - a.e. on I) and, therefore, y ∈ N . Moreover, by (3.17) Γ1ay = 0
and the assumption (A4) yields y = 0. Hence h′ = 0, which proves statement (S).
Let {ej}p

1 be an orthonormal basis in H . Then in view of statement (S) there exists
a system {f̂j}p

1 of functions f̂j ∈ G such that f̂j(0) = ej . Let us put

D1 = {s ∈ R : d(s) �= 0}, D2 =
p⋂

j=1

C
�fj
, D3 = {s ∈ R : ν({s}) > 0},

D = (D1 ∩D2) ∪D3,

where d(s) = det(f̂j(s), ek). If s ∈ D1 ∩ D2, then d(s) �= 0 (so that {f̂j(s)}p
1 is a basis

in H) and Ψ(s)f̂j(s) = 0, j = 1, p. Hence Ψ(s) = 0, s ∈ D1 ∩ D2. Next, D3 is an
(at most countable) Borel set and D3 ⊂ C

�f for any f̂ ∈ G. Therefore by statement (S)
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Ψ(s) = 0, s ∈ D3. This implies that Ψ(s) = 0, s ∈ D. Moreover, R \ D = D′ ∪ D′′,
where

D′ = (R \D1) ∩ (R \D3), D′′ = (R \D2) ∩ (R \D3).

Since f̂j(·) is an entire function, so is the function d(·). Moreover, d(0) = 1 and hence
the set R \D1 is at most countable. Therefore D′ is at most countable set and ν({s}) =
0, s ∈ D′, which yields the equality ν(D′) = 0. Moreover, ν(R \ D2) = 0 and hence
ν(D′′) = 0. This implies ν(R \D) = 0 and, consequently, Ψ(s) = 0 (ν-a.e. on R). Thus
Ψ1(s) = Ψ2(s) (ν-a.e. on R) and by (5.8) στ (s) = σ(s). �
Proposition 5.5. Let σ(·) be a q-pseudospectral function of the system (3.1) and let
L0 = VσH. Then the multiplication operator Λσ is L0-minimal (see Definition 2.1).

Proof. Let L⊥0 := kerV ∗σ (= L2(σ;H)
L0), let g̃ ∈ L⊥0 be an element such that Eσ(δ)g̃ ∈
L⊥0 for each bounded interval δ = [α, β) ⊂ R and let g(·) ∈ g̃. Then ΛσEσ(δ)g̃ ∈ L⊥0 and,
consequently, V ∗σ Eσ(δ)g̃ = 0 and V ∗σ ΛσEσ(δ)g̃ = 0. Combining of these equalities with
(2.6), (2.7) and (3.20) shows that the functions

(5.13) y(t) =
∫

δ

ϕU (t, s) dσ(s)g(s), f(t) =
∫

δ

sϕU (t, s) dσ(s)g(s)

satisfy the equalities Δ(t)y(t) = 0 and Δ(t)f(t) = 0 (a.e. on I). On the other hand,
according to [29, Lemma 3.1] y ∈ AC(I;H ⊕H) and

y′(t) = −J
∫

δ

(B(t) + sΔ(t))ϕU (t, s) dσ(s)g(s) (a.e. on I).

Therefore

Jy′(t)−B(t)y(t) = Δ(t)
∫

δ

sϕU (t, s)dσ(s)g(s) = Δ(t)f(t) = 0 (a.e. on I)

and consequently y ∈ N . Moreover, (3.17) and the first equality in (5.13) yields

(5.14) y(a) =
∫

δ

ϕU (a, s) dσ(s)g(s) =
(
u∗2
−u∗1

)∫
δ

dσ(s)g(s).

Therefore by (3.10) Γ1ay = 0 and in view of the assumption (A4) one has y = 0. Hence
by (5.14)

∫
δ dσ(s)g(s) = 0, which implies that g̃ = 0. Thus the subspace L0 satisfies the

condition of Definition 2.1. �
Let T̃ ∈ S̃elf0(T ) be a linear relation in a Hilbert space H̃ ⊃ H and let H̃ be decomposed

as in (5.3). In the sequel we denote by T̃0 the operator part of T̃ . Since mul T̃ = mulT ,
it follows that T̃0 is a self-adjoint operator in H̃0.

Proposition 5.6. For each pseudospectral function σ(·) of the system (3.1) there exists
an extension T̃ ∈ S̃elf0(T ) such that the relative spectral function F (·) of T satisfies

(5.15) ((F (β) − F (α))f̃ , f̃) =
∫
[α,β)

(dσ(s)f̂ (s), f̂(s)), f̃ ∈ Hb, −∞ < α < β <∞.

Moreover, there exists a unitary operator Ṽ ∈ [H̃0, L
2(σ;H)] such that Ṽ � H0 = V0,σ

and the operators T̃0 and Λσ are unitarily equivalent by means of Ṽ (for H0, H̃0 and V0,σ
see (3.31), (5.3) and (3.32) respectively).

Proof. For a given pseudospectral function σ(·) we put L0 = VσH and L⊥0 = L2(σ;H)

L0, so that L2(σ;H) = L0 ⊕ L⊥0 . Assume also that
(5.16) H̃0 := H0 ⊕ L⊥0 , H̃ := mulT ⊕ H0 ⊕ L⊥0 = mulT ⊕ H̃0

and let Ṽ ∈ [H̃0, L
2(σ;H)] be a unitary operator given by

(5.17) Ṽ = (V0,σ, IL⊥
0
) : H0 ⊕ L⊥0 → L2(σ;H).
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Since kerVσ = mulT , it follows that H′0 = H0, H̃′0 = H̃0 and Ṽ ′ = Ṽ (see (3.24), (3.25)
and (3.26)). Therefore by Lemma 3.7 the equalities (3.27) with Ṽ ′ = Ṽ define a self-
adjoint operator T̃0 in H̃0. Moreover, the operators T̃0 and Λσ are unitarily equivalent
by means of Ṽ and hence the spectral measure E0(·) of T̃0 satisfies
(5.18) E0([α, β)) = Ṽ ∗Eσ([α, β))Ṽ , −∞ < α < β <∞.
Observe also that Ṽ H0 = VσH = L0 and by Proposition 5.5 the operator Λσ is L0-
minimal. Therefore the operator T̃0 is H0-minimal.
It follows from the second equality in (5.16) that T̃ := ({0} ⊕ mulT ) ⊕ T̃0 is a self-

adjoint linear relation in H̃ with the operator part T̃0 and mul T̃ = mulT . Moreover,
{0} ⊕mulT ⊂ T ⊂ T ∗

�H
and by Lemma 3.7 T̃0 ⊂ T ∗

�H
. Hence T̃ ⊂ T ∗

�H
and, consequently,

T ⊂ T̃ . Observe also that the relation T̃ is H-minimal, since the operator T̃0 is H0-
minimal. Hence T̃ ∈ S̃elf0(T ). Finally by using (5.18) and (5.17) one can easily prove
the equality (5.15). �
In the following theorem we describe all pseudospectral functions of the system (3.1)

in terms of an admissible boundary parameter τ .

Theorem 5.7. Let the assumptions (A1)-(A4) from Sect. 4.1 be satisfied and let M(λ)
be given by (4.23)–(4.25). Then the equality

mτ (λ) = m0(λ) +M2(λ)(C0(λ) − C1(λ)M4(λ))−1C1(λ)M3(λ), λ ∈ C \ R.

together with formula (1.8) establishes a bijective correspondence between all admissible
boundary parameters τ of the form (4.8) and all pseudospectral functions σ(·) = στ (·) of
the system (3.1) (corresponding to the operator U).

Proof. Let τ be an admissible boundary parameter (4.8). Then by Theorem 5.4 for-
mula (1.8) defines a pseudospectral function σ(·) = στ (·). Conversely, let σ(·) be a
pseudospectral function of the system (3.1). Then by Propositions 5.6 and 5.3 there ex-
ists a unique admissible boundary parameter τ such that (5.15) holds with F (·) = Fτ (·).
Moreover, by Theorem 5.4 σ(·) = στ (·), where στ (·) is given by (1.8). Thus formula (1.8)
gives a bijective correspondence between all admissible boundary parameters τ and all
pseudospectral functions σ(·) = στ (·). Now the statement of the theorem is implied by
Theorem 4.14. �
Corollary 5.8. Let N+ = N− and let the assumption (A4) be fulfilled. Then each
pseudospectral function of the system (3.1) satisfies (4.37).

Theorem 5.9. There is a one to one correspondence between all extensions T̃ (= T̃ τ) ∈
S̃elf0(T ) and all pseudospectral functions σ(·)(= στ (·)) of the system (3.1). This corres-
pondence is given by the equality (5.15), where F (·)(= Fτ (·)) is a spectral function of T
generated by T̃ . Moreover, the operators T̃0 (the operator part of T̃ ) and Λσ are unitarily
equivalent and hence they have the same spectral properties. In particular this implies
that the spectral multiplicity of T̃0 does not exceed p.

Proof. Combining of Theorems 5.4, 5.5 and Proposition 5.6 gives the required statements.
�

The following corollary is immediate from Theorem 5.7 and Proposition 5.6.

Corollary 5.10. Let σ(·) = στ (·) be a pseudospectral function of the system (3.1) and
let V0,σ ∈ [H0, L

2(σ;H)] be the corresponding isometry (3.32). Then V0,σ is a unitary
operator if and only if τ is a self-adjoint (admissible) boundary parameter (4.9). If this
condition is satisfied, then the equality (4.14) defines an extension T̃ τ ∈ Self0(T ) and the
operators T̃ τ

0 (the operator part of T̃ τ ) and Λσ are unitarily equivalent by means of V0,σ.
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In the following theorem we give a criterion, that enables one to describe all pseudo-
spectral functions in terms of an arbitrary (not necessarily admissible) boundary para-
meter τ .

Theorem 5.11. Let the assumptions of Theorem 5.7 be satisfied and let T be the linear
relation (3.21). Then the following statements (1)–(5) are equivalent:
(1) each boundary parameter τ is admissible;
(2) limy→∞ 1

iyM4(iy) = 0 and limy→∞ y · Im(M4(iy)h, h) = +∞, h ∈ Hb, h �= 0;
(3) mulT = mulT ∗;
(4) S̃elf(T ) = S̃elf0(T );
(5) statement of Theorem 5.7 holds for arbitrary boundary parameters τ .

Proof. Proposition 5.3, (1) yields the equivalences (1)⇔ (4)⇔ (3). Since by Corollary
4.10 M4(·) is the Weyl function of the boundary triplet Π̇ for T ∗, the equivalence (2)⇔
(3) is implied by [12, Remark 5.1]. Moreover, the equivalence (1) ⇔(5) follows from
Theorem 5.7. �

Combining the results of this section with Assertion 3.11 we arrive at the following
theorem.

Theorem 5.12. The set of spectral functions of the system (3.1) is not empty if and
only if mulT = {0} (for mulT see Assertion 3.6, (2)). If this condition is satisfied, then
the sets of spectral and pseudospectral functions of the system (3.1) coincide and hence
Theorems 5.7, 5.9, 5.11 and Corollary 5.10 are valid for spectral functions (instead of
pseudospectral ones). Moreover, in this case equality (4.14) defines the operator T̃ τ and
statements of Theorem 5.9 and Corollary 5.10 hold with T̃ = T̃ τ and Vσ in place of
T̃0 = T̃ τ

0 and V0,σ respectively.

Corollary 5.13. Let the operator Δ(t) be invertible a.e. on I and let the assumptions
(A1)-(A3) from Sect. 4.1 be satisfied. Then the equality (4.33) together with formula
(1.8) establishes a bijective correspondence between all boundary parameters τ of the
form (4.8) and all spectral functions σ(·) = στ (·) of the system (3.1).

Proof. If Δ(t) is invertible a.e. on I, then the assumption (A4) is satisfied and mulT =
mulT ∗ = {0}. Therefore the required statement is implied by Theorems 5.11 and 5.8. �

6. Quasi-regular and regular systems

6.1. Quasi-regular systems and their pseudospectral functions. The following
proposition directly follows from [22, 25].

Proposition 6.1. For system (3.1) the following assertions are equivalent:

(1) System has maximal formal deficiency indices N+ = N− = m.
(2) For any λ ∈ C each solution y(·, λ) of the homogeneous system (3.2) belongs to

L2Δ(I) (that is dimNλ = m, λ ∈ C ).
(3) There exists λ0 ∈ C such that dimNλ0 = dimNλ0

= m.

Definition 6.2. Hamiltonian system (3.1) is said to be quasi-regular if at least one (and
hence all) of the conditions (1)–(3) are satisfied.

Definition 6.3. System (3.1) is called regular if the coefficients B(·) and Δ(·) are inte-
grable on I.

It follows from Definition 6.3 that system on a compact interval I = [a, b] is regular.
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Proposition 6.4. Assume that system (3.1) is regular. Then
(1) This system is quasi-regular and for any y ∈ dom Tmax there exists the limit

(6.1) y(b) := lim
t↑b

y(t).

Moreover, for any h̃ ∈ H ⊕H there exists y ∈ domTmax such that y(b) = h̃.
(2) Definition (3.21) of the linear relation T can be rewritten as

(6.2) T = {{πΔy, πΔf} : {y, f} ∈ Tmax, Γ1ay = 0, y(b) = 0}.
Proof. Statement (1) is immediate from [4, Proposition 2.6]. Statement (2) follows from
statement (1). �
Suppose that under the assumptions of Sect. 3.3 system (3.1) is quasi-regular. Then

the equality (3.19) defines a function f̂(·) : R → H for any f̃ ∈ H and hence Definitions
3.5, 3.9 and 3.10 can be reformulated as follows.

Definition 6.5. A distribution function σ(·) : R → [H ] is called a q-pseudospectral
function of the quasi-regular system (3.1) if f̂ ∈ L2(σ;H) for all f̃ ∈ H and the equ-
ality V f̃ := πσ f̂ , f̃ ∈ H, defines a partial isometry (the Fourier transform) V = Vσ ∈
[H, L2(σ;H)].

Definition 6.6. A q-pseudospectral function with kerVσ = mulT (kerVσ = {0}) is
called a pseudospectral (resp. spectral) function (for mulT see Assertion 3.6).

Proposition 6.7. Assume that system (3.1) is quasi-regular. Let T be a symmetric
relation (3.21) and let

L0 = {f̃ ∈ H : f̂(s) = 0, s ∈ R},
where f̂(·) is defined by (3.19). Then

(6.3) mulT = L0.

Proof. Let f̃ ∈ mulT and f(·) ∈ f̃ . Then according to Assertion 3.6, (2) there exists a
function y ∈ AC(I;H ⊕ H) such that {y, f} ∈ Tmax and (3.23) holds. Next, for fixed
s ∈ R and h ∈ H put z = z(t) = ϕU (t, s)h. Then {z, sz} ∈ Tmax and application of the
Lagrange’s identity (3.5) to {y, f} and {z, sz} gives
(6.4) (f, z)Δ − s(y, z)Δ = [y, z]b − (Jy(a), z(a)).

Here

(f, z)Δ =
∫
I
(Δ(t)f(t), ϕU (t, s)h) dt =

(∫
I
ϕ∗U (t, s)Δ(t)f(t) dt, h

)
= (f̂(s), h)

and in view of the first equality in (3.23) one has (y, z)Δ = 0. Moreover, by (3.23)
Γ1ay = 0 and by (3.18) Γ1az = 0, which in view of (3.16) yields (Jy(a), z(a)) = 0.
Observe also that according to (3.23) [y, z]b = 0. Therefore (6.4) yields (f̂(s), h) =
0, s ∈ R, h ∈ H, and, consequently, f̂(s) = 0, s ∈ R. Hence f̃ ∈ L0, which proves the
inclusion mulT ⊂ L0. On the other hand, for each pseudospectral function σ(·) one has
L0 ⊂ kerVσ = mulT . Therefore the equality (6.3) is valid. �
Remark 6.8. It follows from (6.3) that in Definition 6.6 of a pseudo-spectral function the
condition kerVσ = mulT can be replaced with kerVσ = L0.

The following proposition holds for arbitrary (not necessarily quasi-regular) Hamil-
tonian system (3.1).

Proposition 6.9. Let σ0(·) : R → [H ] be a distribution function such that for any
compact interval Iβ = [a, β] ⊂ I it is a pseudospectral function of the restriction of the
system (3.1) onto Iβ. Then σ0(·) is a pseudospectral function of the system (3.1) in the
sense of Definition 3.9.
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Proof. For a compact interval Iβ = [a, β] ⊂ I put Hβ := {f̃ ∈ H : Δ(t)f(t) =
0 a.e. on (β, b) for each f(·) ∈ f̃} (in the sequel we identify Hβ with L2Δ(Iβ)).
Since each f̃ ∈ Hb belongs to Hβ with some β ∈ I, the equality (3.19) with f̃ ∈ Hb

defines a function f̂(·) ∈ L2(σ0;H) such that ||f̂ || ≤ ||f̃ ||. Therefore the operator
V f̃ = πσ0 f̂(·), f̃ ∈ Hb, admits a continuation to a contraction V ∈ [H, L2(σ0;H)].
Let L0,β ⊂ Hβ be the subspace (1.4) for the restriction of the system onto Iβ , let
L0 =

⋃
β∈I

L0,β and let H0 = H 
 L0. Assume that f̃ ∈ H0, f(·) ∈ f̃ and let f̃β =

πΔ(f(·)χIβ
(·)), β ∈ I, where χIβ

(·) is the indicator of Iβ . Then f̃β ∈ Hβ 
 L0,β

and by Remark 6.8 ||V f̃β|| = ||f̃β ||. Now passage to the limit when β → b yields
||V f̃ || = ||f̃ ||. Moreover, for any β ∈ I and f̃ ∈ L0,β one has V f̃ = 0 and, therefore,
V f̃ = 0, f̃ ∈ L0. Hence V is a partial isometry with kerV = L0 and, consequently,
σ0(·) is a q-pseudospectral function of the system (3.1). Therefore by Proposition 3.8
mulT ⊂ L0. On the other hand, for each pseudospectral function σ(·) of the system
(3.1) and for any β ∈ I one has L0,β ⊂ kerVσ = mulT and hence L0 ⊂ mulT . Thus
kerV = L0 = mulT and, consequently, σ0(·) is a pseudospectral function. �
6.2. The matrix W (λ) and description of pseudo-spectral functions. If system
(3.1) is quasi regular, then in view of Lemma 4.1 there exists a surjective linear mapping

Γb =
(
Γ0b
Γ1b

)
: domTmax → H ⊕H(6.5)

satisfying

[y, z]b = (JΓby,Γbz) = (Γ0by,Γ1bz)− (Γ1by,Γ0bz), y, z ∈ dom Tmax.(6.6)

Suppose that system (3.1) is quasi-regular and the following assumptions are fulfilled:
(Q1) U is the operator (3.9) satisfying (3.10), Ũ is a J-unitary extension (3.11) of U

and Γja, j ∈ {0, 1}, are the linear mappings (3.13) and (3.14).
(Q2) Γb is a surjective linear mapping (6.5) such that (6.6) holds.
Let ϕU (·, λ) ∈ L2Δ[H,H ⊕ H ] and ψ(·, λ) ∈ L2Δ[H,H ⊕ H ], λ ∈ C, be solutions of

(3.2) satisfying (3.18) and (4.31) respectively and let Y (·, λ) ∈ L2Δ[H ⊕H ] be a solution
of (3.2) given by

Y (·, λ) = (ϕU (·, λ), ψ(·, λ)) : H ⊕H → H ⊕H.(6.7)

Moreover, let ϕU (λ) and ψ(λ) be linear mappings from Lemma 3.1 corresponding to
solutions ϕU (·, λ) and ψ(·, λ). Then

(6.8) ŨY (a, λ) =
(
Γ0aϕU (λ) Γ0aψ(λ)
Γ1aϕU (λ) Γ1aψ(λ)

)
=

(
IH 0
0 IH

)
and the equality

(6.9) W (λ) =
(
w1(λ) w2(λ)
w3(λ) w4(λ)

)
:=

(
Γ0bϕU (λ) Γ0bψ(λ)
Γ1bϕU (λ) Γ1bψ(λ)

)
: H ⊕H → H ⊕H, λ ∈ C

defines an entire [H ⊕H ]-valued function W (·). It is clear that
(6.10) W (λ) = ΓbY (λ), λ ∈ C.

Proposition 6.10. The operator function W (·) satisfies the identity

(6.11) W ∗(λ)JW (μ) − J = (μ− λ)
∫
I
Y ∗(t, λ)Δ(t)Y (t, μ) dt, λ, μ ∈ C,

with Y (·, λ) given by (6.7). Hence

iJ −W ∗(λ)(iJ)W (λ) ≥ 0, λ ∈ C+; W ∗(λ)(iJ)W (λ) = iJ, λ ∈ R,

that is the operator W (λ) is iJ-contractive for λ ∈ C+ and iJ-unitary for λ ∈ R.
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Proof. Let h̃ ∈ H ⊕H, λ, μ ∈ C and let y = Y (t, μ)h̃, z = Y (t, λ)h̃. Then by (6.8) one
has

(Jy(a), z(a)) = (JŨY (a, μ)h̃, ŨY (a, λ)h̃) = (Jh̃, h̃).
Moreover, combining of (6.6) with (6.10) yields

[y, z]b = (JΓbY (μ)h̃,ΓbY (λ)h̃) = (JW (μ)h̃,W (λ)h̃) = (W ∗(λ)JW (μ)h̃, h̃).

Applying now the Lagrange’s identity (3.5) to {y, μy} and {z, λz} one obtains
(6.12) (μ− λ)(y, z)Δ = (W ∗(λ)JW (μ)h̃, h̃)− (Jh̃, h̃).

Since

(y, z)Δ =
∫
I
(Δ(t)Y (t, μ)h̃, Y (t, λ)h̃) dt =

((∫
I
Y ∗(t, λ)Δ(t)Y (t, μ) dt

)
h̃, h̃

)
,

the equality (6.12) yields (6.11). �
In the following proposition we provide an explicit construction of the mapping Γb

and the corresponding operator function W (λ).

Proposition 6.11. Let system (3.1) be quasi-regular, let the assumption (Q1) be fulfilled
and let Y (·, λ) be given by (6.7). Then for each y ∈ dom Tmax there exists the limit

(6.13) Γby := lim
t↑b
(−JY ∗(t, 0)Jy(t)), y ∈ dom Tmax,

and the equality (6.13) defines a surjective linear mapping Γb : domTmax → H ⊕ H
satisfying (6.6). Moreover, the corresponding operator function W (·) is

(6.14) W (λ) = lim
t↑b
(−JY ∗(t, 0)JY (t, λ)), λ ∈ C

and the entries of the matrix (6.9) admit the representation

w1(λ) = I + λ

∫
I
ψ∗(t, 0)Δ(t)ϕ(t, λ) dt, w2(λ) = λ

∫
I
ψ∗(t, 0)Δ(t)ψ(t, λ) dt,(6.15)

w3(λ) = −λ
∫
I
ϕ∗(t, 0)Δ(t)ϕ(t, λ) dt, w4(λ) = I − λ

∫
I
ϕ∗(t, 0)Δ(t)ψ(t, λ) dt.(6.16)

Proof. The first statement and the equality (6.14) directly follow from [30, Proposi-
tion 4.8]. Next, in view of (6.14) W (0) = IH⊕H and (6.11) yields

W (λ) = I − λJ
∫
I
Y ∗(t, 0)Δ(t)Y (t, λ) dt.

Now the immediate calculations give (6.15) and (6.16). �
The following assertion directly follows from Proposition 6.4.

Assertion 6.12. Assume that in addition to the assumptions of Proposition 6.11 system
(3.1) is regular. Then the equality

(6.17) Γby := y(b)(= lim
t↑b

y(t)), y ∈ dom Tmax

defines a surjective linear mapping Γb : dom Tmax → H ⊕ H satisfying (6.6) and the
corresponding operator function W (·) is

(6.18) W (λ) = Y (b, λ) := lim
t↑b

Y (t, λ), λ ∈ C.

If ϕU (t, λ) =
(
ϕ0,U (t, λ)
ϕ1,U (t, λ)

)
(∈ [H,H ⊕H ]) and ψ(t, λ) =

(
ψ0(t, λ)
ψ1(t, λ)

)
(∈ [H,H ⊕H ]) are

the block-matrix representations of ϕU (·, λ) and ψ(·, λ), then
(6.19)

W (λ)=
(
w1(λ) w2(λ)
w3(λ) w4(λ)

)
=
(
ϕ0,U (b, λ) ψ0(b, λ)
ϕ1,U (b, λ) ψ1(b, λ)

)
:=lim

t↑b

(
ϕ0,U (t, λ) ψ0(t, λ)
ϕ1,U (t, λ) ψ1(t, λ)

)
.
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Remark 6.13. In the case of a compact interval I = [a, b] the function W (λ) = Y (b, λ)
in Assertion 6.12 is the monodromy matrix for the system (3.1) (see e.g. [2]).

Proposition 6.14. Assume that system (3.1) is quasi-regular and let the assumptions
(Q1) and (Q2) be fulfilled. Moreover, let the assumption (A4) from Sect. 4.1 be satisfied
and let M(·) be the operator function defined by (4.23)–(4.25). Then 0 ∈ ρ(M2(λ)), λ ∈
C \ R, and for each λ ∈ C \ R the operator function W (·) (see (6.9)) admits the repre-
sentation
(6.20)

W (λ) =
(
w1(λ) w2(λ)
w3(λ) w4(λ)

)
=

(
M−1
2 (λ) M−1

2 (λ)m0(λ)
−M4(λ)M−1

2 (λ) M3(λ)−M4(λ)M−1
2 (λ)m0(λ)

)
.

Proof. It follows from (4.24) and the first equalities in (4.15) and (4.16) that

(6.21) v0(t, λ) = ϕU (t, λ)m0(λ)− ψ(t, λ), u(t, λ) = ϕU (t, λ)M2(λ)

and application of operators Γ0b and Γ1b to equalities (6.21) with taking (4.15), (4.16)
and (4.25) into account gives

0 = w1(λ)m0(λ) − w2(λ), −M3(λ) = w3(λ)m0(λ) − w4(λ),(6.22)

I = w1(λ)M2(λ), −M4(λ) = w3(λ)M2(λ), λ ∈ C \ R.(6.23)

It follows from the first equality in (6.23) that 0 ∈ ρ(M2(λ)) and w1(λ) = M−1
2 (λ).

Moreover, the second equality in (6.23) yields w3(λ) = −M4(λ)M−1
2 (λ). Substituting

these values of w1(λ) and w3(λ) into (6.22) one gets the required equalities for w2(λ)
and w4(λ). �
Suppose that system (3.1) is quasi-regular, that the assumptions (Q1) and (Q2) are

satisfied and that for each y ∈ N the equality Γ1ay = 0 yields y = 0 (that is the
assumption (A4) from Sect. 4.1 is fulfilled).
Let W (·) be the operator function (6.9) and let τ be a boundary parameter (4.8).

Then by (6.20) M4(λ) = −w3(λ)w−11 (λ) and hence

C0(λ)− C1(λ)M4(λ) = (C0(λ)w1(λ) + C1(λ)w3(λ))w−11 (λ), λ ∈ C \ R.

Therefore by Corollary 4.10 the operator C0(λ)w1(λ) + C1(λ)w3(λ) is invertible and
Definition 5.2 can be reformulated as follows.

Definition 6.15. A boundary parameter τ of the form (4.8) is admissible if the following
two equalities hold:

lim
y→∞

1
iyw1(iy)(C0(iy)w1(iy) + C1(iy)w3(iy))−1C1(iy) = 0,(6.24)

lim
y→∞

1
iyw3(iy)(C0(iy)w1(iy) + C1(iy)w3(iy))−1C0(iy) = 0.(6.25)

Moreover, it follows from Proposition 5.3, (2) that in the case

lim
y→∞

1
iyw3(iy)w

−1
1 (iy)=0

a boundary parameter τ is admissible if and only if (6.24) is satisfied.
In the following theorem we show that in the case of a quasi-regular system the

parametrization of pseudospectral functions given in Theorem 5.7 can be represented in
a somewhat other form.

Theorem 6.16. Let the assumptions just after Proposition 6.14 be satisfied and let W (·)
be the operator function (6.9). Then the equality

(6.26) mτ (λ) = (C0(λ)w1(λ) +C1(λ)w3(λ))−1(C0(λ)w2(λ) +C1(λ)w4(λ)), λ ∈ C \R

together with the Stieltjes inversion formula (1.8) gives a bijective correspondence between
all admissible boundary parameters τ of the form (4.8) and all pseudospectral functions
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σ(·) = στ (·) of the system (3.1) (corresponding to the operator U). If in addition mulT =
{0}, then the above statement holds for spectral functions instead of pseudospectral ones.

Proof. It follows from (4.33) and (6.20) that

mτ (λ) = m0(λ) + (C0(λ)M−1
2 (λ) − C1(λ)M4(λ)M−1

2 (λ))−1C1(λ)M3(λ)

= (C0(λ)M−1
2 (λ)− C1(λ)M4(λ)M−1

2 (λ))−1

× [(C0(λ)M−1
2 (λ)− C1(λ)M4(λ)M−1

2 (λ))m0(λ) + C1(λ)M3(λ)]

= (C0(λ)M−1
2 (λ)− C1(λ)M4(λ)M−1

2 (λ))−1

× [C0(λ)M−1
2 (λ)m0(λ) + C1(λ)(M3(λ)−M4(λ)M−1

2 (λ)m0(λ))]

= (C0(λ)w1(λ) + C1(λ)w3(λ))−1(C0(λ)w2(λ) + C1(λ)w4(λ)), λ ∈ C \ R.

Now the required statements are implied by Theorems 5.7 and 5.12. �
In the following theorem we give a criterion that guaranties the validity of Theorem

6.16 for arbitrary (not necessarily admissible) boundary parameter τ .

Theorem 6.17. Let the assumptions of Theorem 6.16 be satisfied and let

(6.27) χ(λ) = (iw∗3(λ) + w∗1(λ))
−1(iw∗3(λ)− w∗1(λ)), λ ∈ C+.

Then the following statements are equivalent:
(1) each boundary parameter τ is admissible;
(2) limy→∞ 1

iyw3(iy)w
−1
1 (iy) = 0 and limy→∞ y · Im(w3(iy)w−11 (iy)h, h) = −∞ for

each
h ∈ H, h �= 0;

(3) limy→+∞ y(||h|| − ||χ(iy)h||) = +∞, h ∈ H, h �= 0;
(4) statements of Theorem 6.16 hold for arbitrary boundary parameters τ .

Proof. The equivalence (1)⇔(2) is a consequence of Theorem 5.11. The equivalence
(1)⇔(4) directly follows from Theorem 6.16. Next, in view of (6.20) w∗1(λ) =M−1∗

2 (λ),
w∗3(λ) = −M−1∗

2 (λ)M4(λ) and (6.27) admits the representation

(6.28) χ(λ) = (M4(λ) + iI)−1(M4(λ) − iI) = (M4(λ) − iI)(M4(λ) + iI)−1, λ ∈ C+.

Let as before T be symmetric relation (3.21). Since by Corollary 4.10M4(λ) is the Weyl
function of the boundary triplet Π̇ for T ∗, it follows from (6.28) and [26] that χ(λ) is a
characteristic function of T in the sense of [35]. Therefore according to [35, Theorem 3.3]
mulT = mulT ∗ if and only if the condition (3) is satisfied. This and Theorem 5.11 yield
the equivalence (1)⇔(3). �
Similarly to Corollary 5.13 one proves the following corollary.

Corollary 6.18. Let system (3.1) be quasi-regular, let the operator Δ(t) be invertible
a.e. on I, let the assumptions (Q1) and (Q2) be fulfilled and let W (λ) be given by (6.9).
Then the equalities (6.26) and (1.8) give a bijective correspondence between all boundary
parameters τ of the form (4.8) and all spectral functions σ(·) = στ (·) of the system (3.1).

Remark 6.19. Description of m-functions of quasi-regular differential operators with in-
vertible weight in the form close to (6.26) was obtained in [21].

6.3. The case of the canonical system. Recall that system (3.1) is called canonical
if B(t) = 0, i.e., if it is of the form

(6.29) Jy′ = λΔ(t)y +Δ(t)f(t), t ∈ I, λ ∈ C.

In this case the corresponding homogeneous system is

(6.30) Jy′ = λΔ(t)y, t ∈ I, λ ∈ C.
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Assertion 6.20. Each quasi-regular canonical system (6.29) is regular.

Proof. If system (6.29) is quasi-regular, then each solution y(t) ≡ h̃, h̃ ∈ H ⊕H, of the
equation Jy′ = 0 belongs to L2Δ(I). Therefore

∫
I(Δ(t)h̃, h̃) dt < ∞, h̃ ∈ H ⊕ H, and

hence Δ(·) is integrable on I. �
Proposition 6.21. Assume that canonical system (6.29) is regular. Moreover, let
ϕU (·, λ), ψ(·, λ)(∈ [H,H ⊕H ]) be the operator solutions of (6.30) with

(6.31) ϕU (a, λ) =
(

0
iIH

)
: H → H ⊕H, ψ(a, λ) =

(
−iIH
0

)
: H → H ⊕H

and let W (·) be the operator function (6.19). Then the following conditions are equivalent:
(1) If h ∈ H and Δ(t){0, h} = 0 a.e. on I, then h = 0.
(2) The equality kerw1(λ) = {0} holds for all λ ∈ C \ R.
(3) The equality kerw1(λ) = {0} holds for some λ ∈ C \ R.
(4)

⋂
λ∈C

kerw1(λ) = {0}.
Proof. Assume that

(6.32) U = (iIH , 0) : H ⊕H → H, Ũ =
(

0 −iIH
iIH 0

)
: H ⊕H → H ⊕H.

Then Ũ is a J-unitary extension (3.11) of U and the mappings (3.13) and (3.14) are
Γ0ay = −iy1(a), Γ1ay = iy0(a). Moreover, the corresponding solutions ϕU (·, λ) and
ψ(·, λ) of (6.30) satisfying (6.8) are defined by (6.31). If in addition Γb is the map-
ping (6.17), then the assumptions (Q1) and (Q2) are fulfilled and by Assertion 6.12 the
corresponding operator function W (·) is of the form (6.19).
Assume that condition (1) is satisfied. Let y ∈ N and let Γ1ay(= iy0(a)) = 0. Since

y is a solution of the equation Jy′ = 0, it follows that y(t) = {0, h}, t ∈ I, with some
h ∈ H . Moreover, Δ(t)y(t) = Δ(t){0, h} = 0 a.e. on I and hence h = 0. Therefore y = 0
and, consequently, assumption (A4) from Sect 4.1 is satisfied. Hence by Proposition
6.14 kerw1(λ) = 0, λ ∈ C \ R, which proves the implication (1)⇒(2). The implications
(2)⇒(3) and (3)⇒(4) are obvious.
Next assume that

⋂
λ∈C

kerw1(λ) = {0}. If h ∈ H and Δ(t){0, h} = 0 a.e. on I,
then for any λ ∈ C the function y = y(t) = {0, ih}, t ∈ I, satisfies (6.30) and hence
y = ϕU (t, λ)h, λ ∈ C. Therefore w1(λ)h = ϕ0,U (b, λ)h = y0(b) = 0, λ ∈ C, and
consequently h = 0. This proves the implication (4)⇒(1). �
Corollary 6.22. Let the assumptions be the same as in Proposition 6.21, let U be the
operator (6.32) and let at least one (and hence all) the conditions (1)–(4) from this
proposition be satisfied. Then statements of Theorem 6.16 are valid (with W (λ) of the
form (6.19)).

Proof. As was shown in the proof of Proposition 6.21 the condition (1) yields the as-
sumption (A4). Therefore statements of Theorem 6.16 are valid. �
Remark 6.23. Recall [4, 14, 25] that Hamiltonian system (3.1) is called definite ifN = {0}
(for N see Definition 3.2). According to [16, 22] canonical system (6.29) is definite if and
only if the function Δ(t) is of positive type, that is for some compact interval Iβ ⊂ I
the operator

∫
Iβ
Δ(t) dt is invertible. Clearly, for definite systems the assumption (A4)

is satisfied and hence Theorems 5.7 and 6.16 are valid.

Remark 6.24. (1) Let the assumptions of Proposition 6.21 be satisfied. For any f̃ ∈ H put
y
�f (x) = J

∫
[x,b)

Δ(t)f(t) dt, f(·) ∈ f̃ . Then in view of (6.2) one may represent statement
(2) of Assertion 3.6 in the form of the equality

(6.33) mulT = {f̃ ∈ H : y0,�f (a) = 0 and Δ(x)y
�f (x) = 0 a.e. on I}.
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In this connection note that for a canonical system on a compact interval I = [a, b] the
equality (6.3) with mulT of the form (6.33) is proved in [33, Lemma A.18].
(2) For canonical systems (6.29) on a compact interval I = [a, b] Corollary 6.22 follows

from [33, Theorem A.13] and [2, Theorem 7.28]. Observe also that in [33] the admissibility
condition for the parameter τ = {C0(λ), C1(λ)} is more complicated than our relations
(6.24) and (6.25) (cf. formula (A.134) in [33]).
(3) Let W (λ) be the monodromy matrix (6.19) for canonical system on a compact

interval I = [a, b] and let χ(λ) be given by (6.27). If

(6.34) ||χ(iy)|| ≤ γ < 1, y > 0,

then according to [2, Theorem 7.30] the assumption (A4) from Sect. 4.1 is satisfied
and statement of Theorem 6.16 holds for arbitrary (not necessarily admissible) boundary
parameter τ . Note that condition (3) in Theorem 6.17 provides a necessary and sufficient
condition for validity of Theorem 6.16 with arbitrary boundary parameter τ and this
condition is weaker than (6.34). Hence our Theorem 6.17 is a stronger result than
Theorem 7.30 in [2].
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