
Methods of Functional Analysis and Topology
Vol. 21 (2015), no. 4, pp. 302–314

WEAK DEPENDENCE FOR A CLASS OF LOCAL FUNCTIONALS
OF MARKOV CHAINS ON Z

d

C. BOLDRIGHINI, A. MARCHESIELLO, AND C. SAFFIRIO

Dedicated to the 90th anniversary of Academician Yu. M. Berezansky

Abstract. In many models of Mathematical Physics, based on the study of a
Markov chain �η = {ηt}∞t=0 on �d, one can prove by perturbative arguments a con-
traction property of the stochastic operator restricted to a subspace of local functions
HM endowed with a suitable norm. We show, on the example of a model of random
walk in random environment with mutual interaction, that the condition is enough
to prove a Central Limit Theorem for sequences {f(Sk

�η)}∞k=0, where S is the time
shift and f is strictly local in space and belongs to a class of functionals related to
the Hölder continuous functions on the torus T 1.

1. Introduction

Many problems in Physics and other sciences lead to consider Markov chains on the
d-dimensional lattice Z

d with local interaction (see [15]). The states of the chain are
random fields ηt = {ηt(x) : x ∈ Z

d}, t ∈ Z+ = {0, 1, . . .}, with ηt(x) ∈ S, where S is
usually a finite or countable set. In many models, notably in the work of R. A. Minlos
and collaborators (see, e.g. [1, 3, 4, 6, 13, 14, 15] and references therein) one can prove,
usually by perturbative arguments, the existence of an invariant measure Π on the state
space Ω = SZ

d

, and of a subspace of local functions HM ⊂ L2(Ω,Π), invariant with
respect to the stochastic operator T and such that for all F ∈ HM with zero average
〈F 〉Π = 0, we have, for some constant μ̄ ∈ (0, 1),
(1) |(T F )(ξ)| ≤ μ̄‖F‖M , ξ ∈ Ω.
Here ‖ · ‖M is a suitable norm on HM , which is as a rule identified with the help of an
expansion in a natural basis.
If one considers sums of functionals depending on the space-time field η̂ = {ηt}∞t=0 ∈

Ω̂ = SZ
d×Z+ , Z+ = {0, 1, 2, . . .}, of the type ∑T

t=0 f(S
tη̂), where S is the time shift,

Sη̂ = {ηt}∞t=1 and f is a functional which is local in space, one cannot in general obtain
a Central Limit Theorem (CLT) by relying on properties such as strong mixing and the
like [11], which need requirements that may not apply or may be difficult to prove [7].
The aim of the present paper is to establish properties which hold in the framework
described above and are sufficient for the CLT to hold.
The models to which our description above applies are of different nature, and the

space HM is based on explicit constructions, so that it is convenient to work on the
example of a particular model. The model that we consider here is a random walk in
dynamical random environment with mutual interaction introduced in the papers [2, 3]:
the Markov chain ηt, t ∈ Z+, describes the “environment from the point of view of the
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random walk”, an object which plays an important role in the analysis of random walks
in random environment [12].
Our results are inspired by a classical result on the CLT for functionals of independent

variables by Ibragimov and Linnik [11] (Th. 19.3.1).
In the next section we describe the model, which is a perturbation of an independent

model, and present the main features which are relevant to our analysis. In § 3 we prove
some preliminary results and in the final section § 4 we prove our main results.

2. Description of the model

We consider a version of the model studied in [2, 3], which describes a discrete-time
random walk Xt ∈ Z

d, d ≥ 1, t ∈ Z+, evolving in mutual interaction with a random
field ξt = {ξt(x) : x ∈ Z

d}, with ξt(x) ∈ S = {±1}. The state space is Ω = SZ
d

, and
the space of the “trajectories” (or “histories”) of the environment ξ̂ = {ξt : t ∈ Z+}
is Ω̂ = SZ

d×Z+ . Measurability is understood with respect to the σ-algebra generated by
the cylinder sets.
The pair (Xt, ξt), t ∈ Z+ is a conditionally independent Markov chain [15], i.e., if

A ⊂ Ω is a measurable set, we have

P (Xt+1 = x+ u, ξt+1 ∈ A | Xt = x, ξt = ξ̄)

= P (Xt+1 = x+ u | Xt = x, ξt = ξ̄) P (ξt+1 ∈ A | Xt = x, ξt = ξ̄) .
(2)

If ξ̂ ∈ Ω̂ is fixed, the first factor on the right of (2) defines the “quenched” random
walk, for which we assume the simple form

(3) P (Xt+1 = x+ u | Xt = x, ξt = ξ̄) = P0(u) + εc(u)ξ̄(x), u ∈ Z
d, ξ ∈ Ω.

Here ε > 0 is a small parameter, P0 is a probability distribution on Z
d and c is a real

function on Z
d, such that P0(u) ± εc(u) ∈ [0, 1), u ∈ Z

d. We also assume that P0 is
even and c odd in u, and that both are finite range. By homogeneity in space it is not
restrictive to assume X0 = 0.
For the random walk transition probability P0, with characteristic function p̃0(λ) =∑
u∈Zd P0(u)ei(λ,u) we assume that it is non-degenerate, i.e., |p̃0(λ)| = 1 if and only if

λ = 0, and, in order to meet a technical assumption in [3], we also need that the Fourier
coefficients of the function 1

p̃0(λ)
are absolutely summable.

The evolution of the environment is independent at each site, so that P (ξt+1 ∈
A | Xt = x, ξt = ξ̄) is a sum of products of the factors

(4) P (ξt+1(y) = s| Xt = x, ξt = ξ̄) = (1− δx,y)Q0(ξ̄(y), s) + δx,yQ1(ξ̄(y), s),

where s = ±1, Q0, Q1 are symmetric 2× 2 matrices, Q0 has eigenvalues 1, μ, |μ| ∈ (0, 1),
and Q1 is such that Q1−Q0 = O(ε). In words, at each site x ∈ Z

d the evolution is given
by the transition matrix Q0, except at the site where the random walk is located, where
the transition matrix is Q1.
A natural probability measure on the state space Ω is the product Π0 = πZ

d

0 , with
π0 = (1/2, 1/2). If Q0 = Q1 (no reaction on the environment) Π0 is invariant.
The model just described was first considered in [3] both for the annealed and quenched

case. If there is no reaction on environment (i.e., Q0 = Q1) the CLT for the annealed
and quenched asymptotics of the random walk was obtained in a general setting [8]. A
non-perturbative result was obtained in [9].
The field ηt(x) = ξt(Xt+x), t ∈ Z+ is the “environment from the point of view of the

particle”. {ηt : t ∈ Z+} is also a Markov chain with state space Ω, and it can be shown
[6, 9] that it is equivalent to the full process (Xt, ξt), i.e, for all T ∈ Z+, T ≥ 1, given
the sequence η0, . . . , ηT one can reconstruct (X0, ξ0), . . . , (XT , ξT ), almost-surely.
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The stochastic operator T on the Hilbert space H = L2(Ω;Π0), is defined as

(5) (T f)(η̄) = 〈f(ηt+1)|ηt = η̄〉, f ∈ H,
where the average 〈·〉 is w.r.t. the transition probability (3). By our assumptions T
preserves parity under the exchange η → −η.
In H we introduce a convenient basis. As Q0 is symmetric, its eigenvectors are

e0 = (1, 1) and e1 = (1,−1) with corresponding eigenvalues 1 and μ. We denote their
components as ej(s), so that e1(s) = s, e0(s) = 1, s = ±1, and set

(6) ΦΓ(η̄) =
∏
x∈Γ

e1(η̄(x)) =
∏
x∈Γ

η̄(x), Γ ∈ G,

where G is the collection of the finite subsets of Z
d, with Φ∅ = 1. {ΦΓ : Γ ∈ G} is a

discrete orthonormal complete basis in H, and for f ∈ H we write f(η) =
∑

Γ∈G fΓΦΓ.
For M > 1 the dense subspace HM ⊂ H is defined as

(7) HM = {f =
∑
Γ

fΓΦΓ : ‖f‖M =
∑
Γ

|fΓ|M |Γ| <∞}.

HM equipped with the norm ‖ · ‖M is a Banach space. As |ΦΓ(η)| = 1, we have

(8) ‖f‖H ≤ ‖f‖∞ ≤ ‖f‖M , f ∈ HM .

Moreover HM is closed under multiplication. In fact, as it is to see,

ΦΓΦΓ′ = ΦΓ�Γ′ , Γ�Γ′ = Γ \ Γ′ ∪ Γ′ \ Γ,
so that if f, g ∈ HM and f =

∑
Γ fΓΦΓ, g =

∑
Γ gΓΦΓ, we have

(9) ‖fg‖M =
∑
ΓΓ′
|fΓgΓ′ |M |Γ�Γ′| ≤ ‖f‖M‖g‖M .

In the paper [3] an analysis of the expression of the matrix elements of T and its
adjoint T ∗, relying on their spectral properties for ε = 0, leads to the following results.

Theorem 2.1. If ε and |μ| are small enough, the space HM is invariant under T ,
and there is an invariant probability measure Π for the chain {ηt} which is absolutely
continuous with respect to Π0 with uniformly bounded density v(η). Moreover HM can
be decomposed as

HM = H(0)
M + ĤM ,

where H(0)
M is the space of the constants, and on ĤM the restriction of T acts as a

contraction

(10) ‖T f‖M ≤ μ̄‖f‖M , f ∈ ĤM ,

μ̄ ∈ (0, 1), μ̄ = |μ|+O(ε). Furthermore if f = f0 + f̂ , f0 ∈ H(0)
M , f̂ ∈ ĤM , then

f0 =
∫
f(η) dΠ(η) =

∫
f(η)v(η) dΠ0(η).

3. Preliminary estimates

We denote by PΠ the probability measure on Ω̂ = {±1}Z
d×Z+ generated by the initial

distribution Π, and by Mt1
t0 , 0 ≤ t0 ≤ t1 the σ-algebra of subsets of Ω̂ generated by

{ηt}t1
t=t0 . As Π is invariant, PΠ is invariant under the time shift.

We consider functionals f which depend only on the values of the field at the origin,
i.e., on the sequence of random variables {ηt(0)}∞t=0. We set for brevity ζt = ηt(0) and
ζ̂ = {ζt : t ∈ Z+} ∈ Ω+ = {±1}Z+. Mt1

t0 , 0 ≤ t0 < t1 will denote the σ-algebra generated
by the variables {ηt(0)}t1

t=t0 , which is a subalgebra of Mt1
t0 .



WEAK DEPENDENCE FOR A CLASS OF LOCAL FUNCTIONALS OF MARKOV CHAINS . . . 305

By abuse of notation, f(ζ̂) may denote a function on Ω̂ or on Ω+, according to the
circumstances, and similarly for the σ-algebrasMt1

t0 , 0 ≤ t0 < t1. We also writeMt and
Mt forMt

t and Mt
t, respectively.

In what follows if f is a function on Ω̂ we introduce the notation 〈f(·)|M0〉(η) =
G(f)(η), η ∈ Ω. The following lemma is a simple consequence of Theorem 2.1.

Lemma 3.1. Let f(ζ̂) be a cylinder function on Ω+, depending only on the variables
ζ0, . . . , ζm−1, m ≥ 1. Then G(f)(η) ∈ HM and

(11)
∥∥∥G(f)

∥∥∥
M
≤ C max

γ∈{0,...,m−1}
|fγ |(1 + μ∗)m,

where μ∗ =M
√
μ̄(1 + 2μ̄) and C > 0 is a constant.

Proof. As f depends only on ζ0, . . . , ζm−1 it can be written in the form

(12) f(ζ̂) =
∑

γ⊂{0,...,m−1}
fγΨγ(ζ̂),

where the sum runs over the subsets of {0, . . . ,m− 1}, and the functions

(13) Ψγ(ζ̂) =
∏
t∈γ

ζt, γ = ∅, Ψ∅(ζ̂) = 1

are called “Walsh functions”. The first assertion follows from the fact that for any subset
γ = {t0, t1, . . . , tk} ⊂ Z+, t0 < t1 < · · · < tk, we have

(14) Gγ(η̄) := 〈Ψγ |Mt0〉 ∈ HM , η̄ ∈ Ω.
In fact, if rj = tk−1−j − tk−j , j = 1, . . . , k, Gγ can be written as

(15) Gγ(η̄) = Φ{0}(η̄)
[
T rkΦ{0} . . .T r1Φ{0}

]
(η̄), η̄ ∈ Ω,

i.e., Gγ is obtained by successive applications of T and of the multiplication operator by
Φ{0}. As both operations leave HM invariant, Gγ ∈ HM .
Moreover the following inequality is proved in the Appendix:

(16) ‖Gγ‖M ≤ M |γ| μ̄[
|γ|
2 ](1 + 2μ̄)[

|γ|−1
2 ] ≤ C μ

|γ|
∗ ,

where [·] denotes the integer part, and C > 0 is a constant which is easily worked out.
The proof of the lemma follows by observing that the inequality (16) implies

�(17) ‖〈f(·)|M0〉‖M ≤ C max
γ∈{0,...,m−1}

|fγ |
∑

γ⊂{0,...,m−1}
μ
|γ|
∗ .

We denote by ℘ the probability measure induced by PΠ on Ω+. ℘ is stationary with
respect to the time shift on Ω+: Sζ̂ = {ζ1, ζ2, . . .}.
The following assertion is a simple consequence of the previous lemma.

Lemma 3.2. Under the assumptions of the previous lemma, if μ̄ is so small that μ∗ < 1,
then the probability measure ℘ on Ω+ is continuous.

Proof. We need to prove that any point ζ̂(0) = {ζ̄k}∞k=0 ∈ Ω+ has zero ℘-measure.
Consider the cylinders Zn(ζ̂(0)) = {ζj = ζ̄j : j = 0, 1, . . . , n − 1}, which are decreasing
Zn+1(ζ̂(0)) ⊂ Zn(ζ̂(0)) and such that ∩nZn(ζ̂(0)) = {ζ̂(0)}. The probabilities

(18) ℘
(
Zn(ζ̂(0))

)
=

1
2n

〈
n−1∏
j=0

(
1 + ζ̄jζj

)〉
℘
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are computed by expanding the internal product in terms of the functions Ψγ

n−1∏
j=0

(
1 + ζ̄jζj

)
=

∑
γ⊂{0,...,n−1}

Ψγ(̂̄ζ)Ψγ(ζ̂), ̂̄ζ = {ζ̄j}n−1
j=0 .

Recalling that |Ψγ(ζ̂)| = 1, we have∣∣∣∣∣∣
〈 ∑

γ⊂{0,...,n−1}
Ψγ(̂̄ζ)Ψγ(ζ̂)

〉
℘

∣∣∣∣∣∣ ≤
∑

γ⊂{0,...,n−1}

∣∣∣∣〈Ψγ(ζ̂)
〉

℘

∣∣∣∣
=

∑
γ⊂{0,...,n−1}

∣∣〈〈Ψγ |M0〉 (·)〉Π
∣∣ = ∑

γ⊂{0,...,n−1}

∣∣〈Gγ(·)〉Π
∣∣ .

Therefore by the inequality (16) the right side is bounded by

C

2n

∑
γ⊂{0,...,n−1}

μ
|γ|
∗ = C

(
1 + μ∗
2

)n

.

Hence if μ∗ < 1, the right side tends to 0 as n→∞, which proves the lemma. �

From now on we assume that μ∗ < 1.
We pass to consider functions for which the expansion (12) is infinite, i.e., γ runs

over the collection g of the finite subsets Z+. The functions {Ψγ : γ ∈ g}, are an
orthonormal basis in L2(Ω+, ℘0), where ℘0 = πZ+ is the probability measure on Ω+
corresponding to the random variables {ζk}∞k=0 being i.i.d. with distribution π(±1) = 1

2 .
The corresponding series is called “Fourier-Walsh expansion” [10].
A map F : Ω+ → T 1, where T 1 = [0, 1) mod 1 is the one-dimensional torus, is

defined by associating to a point ζ̂ ∈ Ω+ the binary expansion x = 0, a0a1 . . . ∈ [0, 1],
with at = 1−ζt

2 , t ∈ Z+. F is not invertible because the dyadic points of T 1 have
two binary expansions, but it becomes invertible if we exclude the sequences such that
ζt = −1 for all t large enough. Such sequences are a countable set, which has zero
℘0-measure, and also, by Lemma 3.2, zero ℘-measure.
Under the map F the basis functions Ψγ go into the functions

ψγ(x) =
∏
t∈γ

φt(x), γ ∈ g,

where φt(x) is the image of ζt, t ∈ Z+, i.e.,

φ0(x) =
{

1, 0 ≤ x < 1
2 ,

−1, 1
2 ≤ x < 1

and for t ≥ 0, φt(x) = φ0(2tx), where 2tx is understood mod 1.
If f ∈ L2(Ω+, ℘0) then f̃(x) = f(F−1x) ∈ L2(T 1, dx) and can be expanded in the

orthonormal basis {ψγ : γ ∈ g}, with coefficients

(19) fγ =
∫
Ω+

f(ζ̂) d℘0(ζ̂) =
∫ 1

0

f̃(x)ψγ(x) dx.

A natural way of ordering the collection g of the finite subsets of Z+, which plays
an important role in the theory, is obtained by setting γ0 = ∅ and γn = {t1, t2, . . . , tr},
where r and 0 ≤ t1 < t2 < · · · < tr are uniquely defined by the relation n = 2t1+ · · ·+2tr .
We call Walsh series both the expansion

(20) f(ζ̂) =
∑
γ∈g

fγΨγ(ζ̂) =
∞∑

n=0

fγnΨγn(ζ̂)
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and the corresponding expansions of f̃(x). For the latter, an important role is played by
a particular set of partial sums

(21) Σ2k(f̃ ;x) =
∑

γ⊂{0,1,...,k−1}
fγψγ(x) =

2k−1∑
n=0

fγnψγn(x)

for which it can be seen [10] that

(22) Σ2k(f̃ ;x) = 2k

∫ βk

αk

f̃(y) dy, αk = m 2−k, βk = (m+ 1)2−k,

where the integer m is such that αk ≤ x < βk.
The following result is proved in [10]. We repeat it here, with a shorter proof based

on conditional probabilities.

Lemma 3.3. Let f̃(x) be a bounded function. Then its Walsh-Fourier coefficients fγ ,
given by (19), satisfy the following inequality:

(23) |fγ | ≤
ω(f̃ ; 2−n−1)

2n+2
, n = max{t : t ∈ γ},

where ω(f ; δ) is the modulus of continuity of f̃

(24) ω(f ; δ) = sup
x,x′∈T1

|x−x′|=δ

|f(x)− f(x′)|
δ

.

Proof. We have

fγ =

〈
f(ζ̂)

∏
t∈γ

ζt

〉
℘0

=

〈 ∏
t∈γ\{n}

ζt

〈
f(ζ̂)ζn|Mn−1

0

〉〉
℘0

.

Going back to T 1, and setting xn = a0
2 + · · ·+ an−1

2n , aj =
1−ζj

2 , we have

(25)

∣∣∣〈f(ζ̂)ζn|Mn
0

〉∣∣∣ = 2n

∫ xn+2
−n

xn

f̃(x) (1− 2φn(x)) dx

= 2n

∫ xn+2
−n−1

xn

[
f̃(x) − f̃(x+ 2−n−1)

]
dx,

from which, taking into account (24), the inequality (23) follows immediately. �

The results above allow us to prove the analogue of Lemma 3.1 for functions f such
that f̃(x) = f(F−1x) is Hölder continuous: f̃ ∈ Cα(T 1), α ∈ (0, 1). In what follows if
g ∈ Cα(T 1) we denote by ‖g‖Cα the norm and by ‖g‖α the semi–norm

‖g‖α = sup
x,y∈T 1

|g(x)− g(y)|
|x− y|α .

Lemma 3.4. Let f be a function on Ω+, such that f̃ ∈ Cα(T 1), α ∈ (0, 1). If μ̄ is so
small that κ := 2−α(1 + μ∗) < 1, then G(f) ∈ HM and the following inequality holds:

(26)
∥∥∥G(f)

∥∥∥
M
≤ Cα

1− κ‖f̃‖Cα ,

where Cα > 0 is a positive constant.
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Proof. If 2k ≤ n < 2k+1 the Fourier coefficient γn in the Walsh series (20) is such that
max{t ∈ γn} = k. Hence, as δ ω(f̃ ; δ) ≤ δα‖f̃‖α, the inequality (23) gives

(27) |fγn | ≤
‖f̃‖α

21+α
2−kα, 2k ≤ n < 2k+1.

Therefore we have∥∥∥∥∥∥
2k+1−1∑
n=2k

fγn 〈Ψγn |M0〉

∥∥∥∥∥∥
M

≤ ||f̃ ||α
21+α

2−kα
2k+1−1∑
n=2k

‖〈Ψγn |M0〉‖M .

Observe moreover that the number of elements of γn is rn = |γn| = un − 1 where un is
the number of “1” in the binary expansion of n. Hence, by the inequality (16) we find

2k+1−1∑
n=2k

‖〈Ψγn |M0〉‖M ≤ C

k−1∑
s=0

(
k − 1
s

)
μs
∗ = C(1 + μ∗)k−1,

which, as |f∅| ≤ ‖f‖∞, together with (27), implies (26). �

4. Weak dependence and the Central Limit Theorem

In the present paragraph we prove our main results for sums of sequences of the type
f(Stζ̂), t = 0, 1, . . . As PΠ and the measure ℘ induced by it on Ω+ are invariant under
time shift, the sequence is stationary in distribution.
In what follows 〈·〉 denotes an average with respect to ℘, PΠ or Π, according to

the context. Moreover we denote by ci, i = 1, 2, . . . , and sometimes by const, different
constants which depend on the parameters of the model. Let f be a bounded measurable
function on Ω+ with 〈f〉℘ = 0, and

(28) Sn(ζ̂|f) =
n−1∑
t=0

f(Stζ̂), n = 1, 2, . . .

If f admits a Walsh expansion (20) then
∑

γ∈g fγ〈Ψγ〉℘ = 〈f〉℘ = 0, so that

(29) f(ζ̂) =
∑

γ∈g, γ 	=∅
fγΨ̂γ(ζ̂), Ψ̂γ(ζ̂) = Ψγ(ζ̂)− 〈Ψγ(·)〉℘ .

In what follows we make repeated use of the fact that if f is a function on Ω̂ and
G(f) := 〈f(·)|M0〉 ∈ HM , then, by Theorem 2.1, 〈f(St+h·)|Mh〉 = T tG(f) ∈ HM .

Theorem 4.1. Let f be a function on Ω+, depending only on ζ0, . . . , ζm−1, m ≥ 1, and
such that 〈f〉℘ = 0. Then the dispersion of normalized sums Sn(�ζ|f)√

n
tends, as n → ∞,

to a finite non-negative limit

(30) σ2f =
〈
f2(·)

〉
℘
+ 2

∞∑
t=1

〈
f(·)f(St·)

〉
℘

and the series is absolutely convergent. Moreover, if σ2f > 0, the sequence Sn(�ζ|f)√
n

tends
weakly to the centered Gaussian distribution with dispersion σ2f .

Proof. The proof of the theorem is based on two basic inequalities.

(31)
∥∥〈f(·)f(St·)|M0

〉∥∥
M
≤ c1‖f‖2∞μ̄max{0,t−m+1}(1 + μ∗)2m,

(32)
∥∥∥G(Sn)

∥∥∥
M
≤ c2 ‖f‖∞ (1 + μ∗)m,

∥∥∥G(�S2
n)
∥∥∥

M
≤ c3 ‖f‖2∞ m(1 + μ∗)m,
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where Ŝ2n(ζ̂|f) = S2n(ζ̂|f) − 〈S2n(·|f)〉 and c1, c2, c3 are constants independent of m. For
the proof of (31), observe that if t ≤ m − 1, then f (2)t (ζ̂) := f(ζ̂)f(St(ζ̂)) is a cylinder
function Mt+m−1

0 - measurable and bounded by ‖f‖2∞. Hence, by Lemma 3.1 and (19),
‖f (2)t ‖M ≤ const‖f‖2∞(1 + μ∗)m+t, and (31) holds for t ≤ m− 1.
If t ≥ m taking the expectation with respect to Mm−1

0 we have〈
f(·)f(St·)|M0

〉
=
〈
f(ζ̂)[T t−m+1G(f)](ηm−1)|M0

〉
.

As G(f) ∈ ĤM , expanding f in Walsh series and using Proposition 5.1 in the Appendix
and Lemma 3.1 we see that Inequality (31) also holds for t ≥ m− 1.
The first inequality in (32) is a simple consequence of the inequality ‖〈f(St·)|M0‖M =

‖T tG(f)‖M ≤ μ̄t‖G(f)‖M , of Lemma 3.1 and of the inequality |fγ | ≤ ‖f‖∞ (see (19)).
Moreover, setting f̂2(ζ̂) = f2(ζ̂)− 〈f2(·)〉 and f̂ (2)t (ζ̂) = f

(2)
t (ζ̂)− 〈f (2)t (·)〉, we have

(33)
∥∥∥G(�S2

n)
∥∥∥

M
≤

n−1∑
j=0

∥∥∥T jG( �f2)
∥∥∥

M
+ 2

n−2∑
j=0

n−j−1∑
t=1

∥∥∥T jG( �f2
t )
∥∥∥

M
,

and the second inequality in (32) follows by observing that f̂2 is a cylinder function with
zero average and ‖f̂2‖∞ ≤ ‖f‖2∞, and using the estimate (31) for ‖G(�f2

t )‖M .
Passing to the assertions of the theorem, observe first that, by the property (8) of

HM , the absolute convergence of the series in (30) follows from Inequality (31).
Assuming that σ2f > 0, for the proof of the CLT we adopt a Bernstein scheme. Let

pn = [nβ], qn = [nδ], kn = [ n
p(n)+q(n) ], with 0 < δ < β < 1/4. The interval of integers

[0, n− 1] is divided into subintervals of length pn and qn

I	 = [(�− 1)(pn + qn), �pn + (�− 1)qn − 1], J	 = [�pn + (�− 1)qn, �(pn + qn)− 1],

� = 1, . . . , kn, and the rest J∗ = [0, n− 1] \ ∪kn

j=1[Ij ∪ Jj ].

The sum (28) is then written as Sn(ζ̂|f) = S
(M)
n (ζ̂|f) + S

(R)
n (ζ̂|f) where

(34) S(M)
n (ζ̂|f) =

kn∑
	=1

SI�
(ζ̂|f), S(R)n (ζ̂|f) =

kn∑
	=1

SJ�
(ζ̂|f) + SJ∗(ζ̂|f)

and SI�
, SJ�

, SJ∗ denote the sums over the corresponding subinterval.
We first prove that the L2-norm of S(R)n /

√
n vanishes as n→∞, i.e.,

(35)

〈(
kn∑
	=1

SJ�
(·|f)

)2〉
= kn

〈
S2J1

(·|f)
〉
+ 2

∑
1≤s<t≤kn

〈SJs(·|f)SJt(·|f)〉 = O(n1−β+δ).

For the proof, observe that Inequality (31) implies that 〈S2J1
(·|f)〉 = O(qn), so that

the first term on the right of (35) is of the order knqn ∼ n1−β+δ.
For the second term, observe that, by translation invariance, recalling that Sqn(ζ̂|f)

is Mqn+m−2
0 -measurable and taking the corresponding conditional probability,

(36) 〈SJs(·|f)SJt(·|f)|M0〉 =
〈
Sqn(·|f)

[
T (t−s)	n+pn−m+2 G(Sqn )

]
(ηqn−m+2)|M0

〉
,

where �n = pn + qn. Therefore, recalling the inequalities (8), we get the estimate

(37) |〈SJs(·|f)SJt(·|f)〉| ≤ const (1 + μ∗)m ‖f‖2∞ qnμ̄
(t−s)	n+pn−m.

As knqnμ̄
pn ≤ const μ̄

pn
2 , the double sum on the right of (35) is of the order O(μ̄ pn

2 ), so
that (35) is proved.
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As for SJ∗ , (31) implies 〈S2J∗(·|f)〉 ≤ 〈S2pn+qn
(·|f)〉 = O(n−1+β). This fact, together

with (35), proves that 〈(S(R)n (ζ̂|f))2〉/n = O(n−β+δ), and, as β > δ, S(R)n does not
contribute to the limiting distribution.
We now show that the random variables {SI�

}kn

	=1 are almost independent for large n,
i.e., for the characteristic functions φ(	)n (λ|ζ̂) = exp{i λ√

n
SI�

(ζ̂|f)} we have

(38)

〈
kn∏
	=1

φ(	)n (λ|ζ̂)
〉
−

kn∏
	=1

〈
φ(	)n (λ|ζ̂)

〉
→ 0, n→∞.

We proceed by iteration. As a first step we consider the difference

(39)

〈
kn∏
	=1

φ(	)n (λ|ζ̂)
〉
−
〈

kn−1∏
	=1

φ(	)n (λ|ζ̂)
〉〈

φ(kn)
n (λ|ζ̂)

〉
=

〈
kn−1∏
	=1

φ(	)n (λ|ζ̂) φ̂(kn)
n (λ|ζ̂)

〉
,

φ̂(	)n (λ|ζ̂) = φ(	)n (λ|ζ̂)−
〈
φ(	)n (λ|ζ̂)

〉
.

We expand φ̂(kn)
n (λ|ζ̂) in Taylor series at λ = 0, we have, for some λ∗, |λ∗| ≤ |λ|,

(40) φ̂(kn)
n (λ|ζ̂) = i

λ√
n
SIkn

(ζ̂|f)− λ2

2n

(
S2Ikn

(ζ̂|f)−
〈
(S2Ikn

(·|f)
〉)

+ i3
λ3

n
3
2 3!

Rn(λ∗, ζ̂),

(41) Rn(λ∗, ζ̂) = S3I�
(ζ̂|f) exp{i λ∗√

n
SI�

(ζ̂|f)} −
〈
S3I�

(ζ̂|f) exp{i λ∗√
n
SI�

(ζ̂|f)}
〉
.

Clearly |Rn(λ∗, ζ̂)| ≤ 2p3n|λ|3‖f‖3∞ = O(n3β), so that, as β < 1/4, we need only consider
the first two terms of the expansion (40).
The product of the first kn − 1 factors in the expectation in (39) is measurable with

respect to Mtn
0 , where tn = (kn − 1)pn + (kn − 2)qn +m− 2. Taking the corresponding

conditional expectation, by Inequality (32) we get for the first order term the estimate

(42)

∣∣∣∣∣
〈

kn−1∏
	=1

φ(	)n (λ|ζ̂)
[
T qn−m+2G(Spn )

]
(ηtn)

〉∣∣∣∣∣ ≤ c4 μ̄
qn−m (1 + μ∗)m‖f‖∞.

For the second order term, proceeding in the same way, and taking into account the
second inequality (33) we come to the estimate

(43)

∣∣∣∣∣
〈

kn−1∏
	=1

φ(	)n (λ|ζ̂)
[
T qn−m+2G(�S2

pn
)
]
(ηtn)

〉∣∣∣∣∣ ≤ c5 μ̄
qn−m m(1 + μ∗)m‖f‖2∞.

Iterating the procedure for the remaining product 〈∏kn−1
	=1 φ

(	)
n (λ|ζ̂)〉, we see that the

quantity on the left of (38) is of the order O(knn
−3( 1

2−β)) = O(n− 1
2+2β), so that , as

β < 1/4, it vanishes as n→∞.
We are left with a sum S̃

(M)
n of k(n) independent variables distributed as Spn(ζ̂|f).

The log of the characteristic function of the corresponding normalized sum is

(44) kn ψn(
λ√
n
|f), ψn(λ|f) = log

〈
eiλS(f)

qn
(·)
〉
.

Expanding ψn in Taylor series at λ = 0, we see, in analogy to the proof above, that the
third order remainder is of order O(n−3( 1

2−β)), so that it does not contribute to the limit.
The first order term vanishes, and we see that

lim
n→∞ knψn(

λ√
n
|f) = −λ

2

2
lim

n→∞
kn

n

⎡⎣pn

〈
f2(·)

〉
+ 2

pn−1∑
j=0

pn−j−1∑
k=1

〈
f(·)f(Sk)·

〉⎤⎦ .
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As knpn

n → 1, the expression on the right tends to −λ2

2 σ
2
f . The theorem is proved. �

Theorem 4.2. Let f be a function on Ω+, satisfying the assumptions of Lemma 3.4
with α > 1/2 and such that 〈f〉℘ = 0. Then, if μ̄ is small enough, the dispersion of the

normalized sums Sn(�ζ|f)√
n

tends, as n→∞, to a finite non-negative limit

(45) σ2f =
〈
f2(·)

〉
℘
+ 2

∞∑
t=1

〈
f(·)f(St·)

〉
℘
,

where the series on the right is absolutely convergent. Moreover, if σ2f > 0, the sequence

S
(f)
n (ζ̂) tends weakly to the centered Gaussian distribution with dispersion σ2f .

Proof. The proof repeats the pattern of the previous proof, to which we refer. Inequalities
(31) and (32) are replaced by

(46)
∥∥〈f(·)f(St·)|M0

〉∣∣
M
≤ c6‖f̃‖2Cακt,

(47)
∥∥∥G(Sn)

∥∥∥
M
≤ c7 ‖f̃‖Cα ,

∥∥∥G(�S2
n)
∥∥∥

M
≤ c8 ‖f̃‖2Cα

.

The proof of the estimate (46) is deferred to the Appendix. The first inequality (47)
is proved as in the previous theorem, recalling Lemma 3.4.
The second inequality (47) follows from Inequality (33), observing that f̂2(F−1·) ∈ Cα

and using Inequality (46).
For the estimate (35) observe that (46) again implies that 〈S2J1

(·|f)〉 = O(qn). For
the second term on the right of (35) we need, as in [11], that the functions are well
approximated by their conditional probabilities on finite σ-algebras. This property is
provided by the representation (22) for the partial sums, which gives

(48)
∣∣∣f(ζ̂)− Σ2n(f ; ζ̂)

∣∣∣ ≤ ‖f̃‖α2−αn.

Let mn = [ 4α log2 n], where [·] denotes the integer part. In the expression (36), in the
sum SJs(ζ̂|f), we replace the function f by its partial sum Σ2mn . The corresponding
sum is denoted S̃Js . By Inequality (48) we have

〈SJs(·|f)SJt(·|f)|M0〉 =
〈
S̃Js(·|f)SJt(·|f)|M0

〉
+O

(
q2n/n

4
)
.

S̃Js(·|f) can be treated as SJs(·|f) in the previous proof, so that the corresponding
conditional expectation is written, if n is so large that pn > mn, as

(49)
〈
S̃qn(·|f)

[
T (t−s)	n+pn−mn+2 G(S̃qn )

]
(ηqn−mn+2)|M0

〉
(the tilde in S̃qn again denotes that f is replaced by Σ2mn ). By the first inequality (47)∣∣∣〈S̃Js(·|f)SJt(·|f)|M0

〉∣∣∣ ≤ const ‖f̃‖2Cαμ̄(t−s)	n+pn−mn

and, as knqnμ̄
pn−mn ≤ const μ̄

pn
2 , we see that the same (35) holds in this case. The

estimate for SI∗ is obvious, so that the negligibility of S
(R)
n is proved.

Further, we pass to the variables S̃I�
, � = 1, . . . , kn, obtained, as before, by replacing

f with the partial sum Σ2mn . The correction is of order O(n−3), so that it can be
neglected. The rest of the proof repeats the previous steps, with the only changes that
m is replaced by mn and we use the estimates (47). We omit the obvious details. �
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5. Appendix

Proof of inequality (16). Observe that, by symmetry with respect to the change of
sign η̄(x) → −η̄(x), x ∈ Z

d, the density v(η̄) is even. Moreover any finite trajectory of
the Markov chain has the same probability of the trajectory obtained by sign exchange.
The functions ΦΓ defined by (6) are even (odd) for |Γ| even (odd). Therefore for |Γ|

odd we have 〈ΦΓ〉Π = 0, and also 〈T rΦΓ〉Π = 0, r > 0. The functions Ψγ are also even
(odd) for |γ| even (odd), and for |γ| odd 〈Ψγ〉℘ = 〈Gγ〉Π = 0.
For |γ| even we set

(50) Gγ = 〈Gγ〉Π + Ĝγ , Ĝγ ∈ ĤM .

If γ = {t0, . . . , tk}, k ≥ 1, we have, by (15), Gγ(η̄) = Φ{0}(η̄)[T rkGγ\{t0}](η̄). Therefore,
if |γ| ≥ 2 is even we have

(51) ‖Gγ‖M ≤Mμ̄rk‖Gγ\{t0}‖M

and if |γ| > 1 is odd

(52) ‖Gγ‖M ≤M
(
|〈Gγ\{t0}〉|+ μ̄rk‖Ĝγ\{t0}‖M

)
≤M(1 + 2μ̄rk)‖Gγ\{t0}‖M ,

where in the second inequality we take into account that |〈Gγ〉| ≤ ‖Gγ‖∞ ≤ ‖Gγ‖M .
For |γ| = 1, G{t0}(η̄) = Φ{0}(η̄) so that ‖G{t0}‖M = M , and for |γ| = 2 we have

‖Gγ‖M ≤M‖T r1Φ{0}‖M ≤M2μ̄r1 . Inequalities (51) and (52) imply that

(53) ‖Gγ‖M ≤M |γ| ∏
j odd

μ̄rj

∏
j even

(2μ̄rj + 1),

which implies (16). ��
The following proposition is a simple consequence of the previous proof.

Proposition 5.1. Under the assumptions of Lemma 3.1, if γ = {t0, . . . , tk}, G ∈ ĤM ,
and t ≥ tk, the following inequality holds, for some positive constant C∗:

(54) ‖〈Ψγ(ζ) G(ηt)|M0〉‖M ≤ C∗ ‖G‖M μ̄t−tk μ
|γ|
∗ .

Proof. Proceeding as in the previous proof, we see that if G is odd and |γ| > 1, we get,
in analogy with (53),

(55) ‖〈Ψγ(ζ) G(ηt)|M0〉‖M ≤M |γ|‖G‖M μ̄t−tk

∏
j even

μ̄rj

∏
j odd

(1 + 2μ̄rj ),

and if G is even, by an obvious modification of the proof,

(56) ‖〈Ψγ(ζ) G(ηt)|M0〉‖M ≤M |γ|‖G‖M μ̄t−tk

∏
j odd

μ̄rj

∏
j even

(1 + 2μ̄rj ).

Writing G(η) = G(+)(η) + G(−)(η), where G(±)(η) = G(η)±G(−η)
2 ∈ ĤM , and observing

that ‖G‖M = ‖G(+)‖M + ‖G(−)‖M , we get the result (54). �

Proof of Inequality 46. We denote by mγ ,Mγ the minimum and maximum of the set
γ ∈ g, γ = ∅, and if γ = {t0, . . . , tk}, then γ + t = {t0 + t, . . . , tk + t}, t ≥ −t0.
Using the Walsh expansion (29) we have f(Stζ̂) =

∑
γ fγΨ̂γ+t(ζ̂), and we write

(57)

f(ζ̂)f(Stζ̂) = f∅f(Stζ̂) + C
(1)
t (ζ̂) + C

(2)
t (ζ̂)−Rt(ζ̂),

C
(1)
t (ζ̂)=

∑
γ,γ′�=∅

Mγ <mγ′+t

fγfγ′Ψγ(ζ̂)Ψ̂γ′+t(ζ̂), C
(2)
t (ζ̂)=

∑
γ,γ′�=∅

Mγ≥mγ′+t

fγfγ′Ψγ(ζ̂)Ψγ′+t(ζ̂)

and Rt(ζ̂) =
∑

γ,γ′	=∅ fγΨγ(ζ̂)fγ′〈Ψγ′〉χ(Mγ ≥ mγ′+t), where χ is the indicator function.
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As |〈Ψγ′〉| ≤ ‖〈Ψγ′|M0〉‖M we see, by (16) and (27), that

(58) ‖〈Rt(·)|M0〉‖M ≤
∑
γ′	=∅

|fγ′〈Ψγ′〉|
∑

γ:Mγ≥t

|fγ ‖〈Ψγ |M0〉‖M ≤ const ‖f̃‖2Cα κt.

Passing to C(1)
t , let γ, γ′ ∈ g be such that Mγ = r, mγ′ = m and r < m+ t. Taking

the conditional expectation with respect to Mr
0 we get by Proposition 5.1∣∣∣〈ΨγΨ̂γ′+t|M0

〉∣∣∣ = ∣∣∣〈Ψγ

[
T t+m−rĜγ′

]
(ηr)|M0

〉∣∣∣ ≤ C∗ μ
|γ|
∗ μ̄t+m−r‖Ĝγ′‖M ,

where Ĝγ′ is defined in (50). Therefore, again by Inequalities (16) and (27), we see that∥∥∥〈C(1)
t (·)|M0

〉∥∥∥
M
≤ const ‖f̃‖2α

∞∑
m=0

t+m−1∑
r=0

∞∑
k=0

μ̄t+m−r2−α(r+m+k)Ar
0A

m+k
m ,

where, for 0 ≤ j ≤ k ∈ Z+ we set Ak
j :=

∑
γ∈g μ

|γ|
∗ χ(mγ = j,Mγ = k) < (1 + μ∗)k−j+1.

As μ̄ < κ = 2−α(1 + μ∗) < 1, we get the estimate

(59)
∥∥∥〈C(1)

t (·)|M0

〉∥∥∥
M
≤ const ‖f‖2α

∞∑
m=0

2−αm
t+m−1∑

r=0

κrμ̄t+m−r ≤ const ‖f‖2α κt.

Turning to C(2)
t , observe that ΨγΨγ′ = ΨγΔγ′, where γΔγ′ = γ \ γ′ ∪ γ′ \ γ, so that

(60)
∥∥∥〈C(2)

t (·)|M0

〉∥∥∥
M
≤

∞∑
m,s,k=0

∑
γ:Mγ=t+m+s

|fγ |
∑

γ′:mγ′=m

Mγ′=m+k

|fγ′|
∣∣〈ΨγΔ{γ′+t}|M0

〉∣∣
M
.

Let n = min{s, k}, N = max{s, k}, Ωn = {m, . . . ,m + n} and γ1 = γ ∩ {0, . . . ,m − 1},
γ11 = γ ∩ Ωn, γ12 = γ′ ∩ Ωn, γ2 = γ ∪ {γ′+ t} ∩ {t+ n+ 1, . . . , t+N}. If γ̄ = γ11Δγ12
we have γΔ{γ′+ t} = γ1 ∪ γ̄ ∪ γ2, and the sets γ1, γ̄, γ2 have no common elements.
It is not hard to see by induction that∑

γ11,γ12⊆Ωn

μ
|γ11Δγ12|∗ = (2(1 + μ∗))n+1,

so that the sum on the right of (60), for fixed m, s, k, is bounded by

const ‖f̃‖2α κt+m2−αmκN−n(2−2α+1(1 + μ∗))n.

If α > 1/2 and μ̄ is so small that 2−2α+1(1 + μ∗) < 1, all series converge and we get

(61)
∥∥∥〈C(2)

t (·)|M0

〉
‖M

∥∥∥ ≤ const ‖f̃‖2α κt.

Finally, the inequality |f∅|‖〈f(St · |M0〉‖M ≤ const μ̄t‖f̃‖2Cα is an immediate conse-
quence of Theorem 2.1 and Lemma 3.4. The proof of (46) follows from this estimate,
together with the previous estimates (58), (59) and (61). ��
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