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ON NONSYMMETRIC RANK ONE SINGULAR PERTURBATIONS

OF SELFADJOINT OPERATORS

MYKOLA DUDKIN AND TETIANA VDOVENKO

Abstract. We consider nonsymmetric rank one singular perturbations of a selfad-
joint operator, i.e., an expression of the form Ã = A + α 〈·, ω1〉ω2, ω1 �= ω2, α ∈ C,
in a general case ω1, ω2 ∈ H−2.

Using a constructive description of the perturbed operator Ã, we investigate some

spectral and approximations properties of Ã. The wave operators corresponding to
the couple A, Ã and a series of examples are also presented.

1. Introduction

The theory of rank one (symmetric) singular perturbations of a self adjoint operator
has obtained much attention of physicists and mathematicians. Several papers and re-
search monographs are devoted to this theory (see, f.e., [1, 3, 13] and references therein).

The aim of the current paper is to investigate a generalization of the singular (sym-
metric) perturbation theory to the case of nonsymmetric perturbations of the form

Ã = A+α 〈·, ω1〉ω2, where A = A∗ is a given selfadjoint operator perturbed by α 〈·, ω1〉ω2

with vectors ω1 �= ω2 that belong to the negative space H−2 from the A-scale (the scale
is generated by the operator A) and α ∈ C.

If ω1 = ω2 and α ∈ R, then we meet the classical case, i.e., the well known theory of
a (symmetric) singular perturbation of selfadjoint operators [1, 3, 13].

In this article we continue our investigations started in [20], where we considered
only the case ω1, ω2 ∈ H−1. A significant improvement of the previous studies is in the
consideration of perturbations by arbitrary vectors, i.e., vectors from H−2, too.

Since the study of singularly perturbed operators is extended to perturbations by
nonsymmetric potentials, we will also expect that the spectral properties (in particular

the point spectrum of Ã) must be similar as in the classical case (including the unexpected
for the perception the so-called associated pair of eigenvalues).

The next important topic of this article is to clarify approximation properties of
these operators. In particular, we investigate an approximation of classical (symmet-
ric) perturbations by nonsymmetric perturbations taking into account H−1- and H−2-
perturbations.

When investigating wave operators for the couple A and a nonsymmetrically perturbed
Ã, we solve a number of problems, including the following: whether Ã is a spectral
type operator; whether Ã is additionally of a scalar type one; whether there exist wave
operators for the couple A and Ã; and whether we can write explicit expressions for these
wave operators and, as a consequence, the scattering matrix.

In general, the idea and motivations for considering nonsymmetric perturbations is
not new. Closely related investigations are in [15, 16], the ones carried out from the
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point of view of nonselfadjoint extensions in [19], and a non-local interactions approach
has been taken in [17, 18].

2. The main definitions and properties

Let H be a separable Hilbert space with a scalar product (·, ·) and the norm ‖ · ‖ =√
(·, ·). We consider a selfadjoint semi-bounded operator A = A∗ defined on a domain

DomA = D(A) in H. The sets σ(·), σp(·), σac(·), σc(·), ρ(·) denote the spectrum, the
point spectrum, the absolutely continuous spectrum, the continuous spectrum, and the
regular points of a corresponding operator, respectively.

An operator A is associated with the A-scale of Hilbert spaces [3]. We consider only
a part of the A-scale, namely,

(1) H−2 ⊃ H−1 ⊃ H ≡ H0 ⊃ H+1 ⊃ H+2

where H+1 := D(|A|1/2) and H+2 := D(A) are endowed with the norms ‖ϕ‖k = ‖(|A|+
I)k/2ϕ‖, k = 1, 2, ϕ ∈ Hk(A), respectively (I stands for the identity); and H−k :=
H−k(A) is the negative (dual) space, i.e., the completion of H with respect to the norm
‖f‖−k = ‖(|A|+I)−k/2f‖, k = 1, 2, f ∈ H. Let 〈·, ·〉 denote the usual dual scalar product
for the spaces Hk and H−k. The inner product in Hk and H−k is denoted by (·, ·)±k,
k = 1, 2.

The operator A has an extension by continuity to H (H1) and it is understood as a
bounded operator from H (H1) into H−2 (H−1). We denote such an extension by A and
Rz = (A− z)−1, z ∈ ρ(A), is a corresponding resolvent.

In some cases, we can continue the usual dual scalar product 〈·, ·〉 to the case 〈ω, φ〉,
where ω, φ ∈ H−2 (of course ω �= φ) in the following way. For example, if we can
decompose vectors ω = ω1 + ω2 and φ = φ1 + φ2 so that spsupp(ωi) ⊆ Πi, spsupp(φi) ⊆
Πi, i = 1, 2, Π ∩ Π = ∅ and ω1 ∈ H+2, ω2 ∈ H−2, φ1 ∈ H−2, φ2 ∈ H+2, then we can
have 〈ω, φ〉 = 〈ω1, φ1〉 + 〈ω2, φ2〉 < ∞, and 〈ω1, φ2〉 = 〈ω2, φ1〉 = 0, since spsupp(ω1) ∩
spsupp(φ2) = ∅ and spsupp(ω2) ∩ spsupp(φ1) = ∅. Here spsupp(·) denotes the spectral
support of the corresponding vector in the sense of the operator A. By definition (cf.
[9]), for ω ∈ H−2,

spsupp(ω) := {λ ∈ R | ∀Oλ,ε∃ψ ∈ C0(R) ∩ L2(R, dρ(λ)) :

supp(ψ) ⊂ Oλ,ε and

∫
R

ω̂(λ)ψ(λ) dρ(λ) �= 0},

where Oλ,ε is an ε-neighborhood of a point λ; C0(R) is the set of continues functions
with compact supports on R; ω̂(λ) denotes the Fourier image of the vector ω. According
to the central spectral theorem [8], the Fourier transform between H−2 and L2(R, dρ(λ))
takes the operator A to the multiplication operator by the independent variable λ in the
space L2(R, dρ(λ)) with the Borel measure dρ(λ).

Let us consider an operator V in the A-scale, such thatD(V ) ⊆ H+k andR(V ) ⊆ H−k,
k = 1, 2. In our case, V = V ω1,ω2 = 〈·, ω1〉ω2, ω1, ω2 ∈ H−k, k = 1, 2. Since the operator
A is bounded and acts from H0 into the whole H−k, k = 1, 2, the expression A+ V is a
bounded linear operator from H+k into H−k. Let us remark that due to [7] the adjoint
operator (A+ V )+ is correctly defined and acts also from H+k into H−k, k = 1, 2.

Now, the formal expression A + α〈·, ω1〉ω2 has a sense of an operator A + 〈·, ω1〉ω2

defined on H+k, acting from H+k into H−k, k = 1, 2, and restricted to H,

(2) Aω1,ω2 = (A+ 〈·, ω1〉ω2) �H .

In what follows, we write usually A instead of A and hence, Rz will be used instead
of Rz.
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Without loss of generality, supposing also that the operator A is strongly positive
A > 0, we give a constructive definition of the operator Aω1,ω2 .

Definition 1. Let A be a positive self-adjoint operator on a separable Hilbert space H,
and consider Aω1,ω2 in (2) with ωi ∈ H−2 \ H, ω1 �= ω2. We put ηi = A−1ωi, i = 1, 2.

I. The operator Aω1,ω2 is called singularly rank-one nonsymmetrically uniquely per-
turbed with respect to the operator A if |(A1/2η2, A

1/2η1)| <∞. Moreover,

(3) D(Aω1,ω2) =

{
ψ = ϕ+ bη2 | ϕ ∈ D(A), b = b(ϕ) =

(Aϕ, η1)

1 + (A1/2η2, A1/2η1)

}

in the case (A1/2η2, A
1/2η1) �= −1, and

(4) D(Aω1,ω2) = DH1
+̇{cη2}, DH1

= {ϕ ∈ D(A) | (Aϕ, η1) = 0}
in the case (A1/2η2, A

1/2η1) = −1, (this fact we denote by Aω1,ω2 ∈ P(A)).
II. The operator Aω1,ω2 is called singularly rank-one nonsymmetric parametrically

perturbed with respect to the operator A if (A1/2η2, A
1/2η1) does not exist. Moreover,

(5) D(Aω1,ω2) =
{
ψ = ϕ+ bη2 | ϕ ∈ D(A),

b = b(ϕ) =
(Aϕ, η1)

1 + τ + (A1/2(A2 + 1)−1/2η2, A1/2(A2 + 1)−1/2η1)

}

in the case (A1/2(A2 + 1)−1/2η2, A
1/2(A2 + 1)−1/2η1) �= −τ − 1, where τ ∈ C is a

parameter, and

(6) D(Aω1,ω2) = DH1
+̇{cη2}, DH1

= {ϕ ∈ D(A) | (Aϕ, η1) = 0}
in the case (A1/2(A2 + 1)−1/2η2, A

1/2(A2 + 1)−1/2η1) = −τ − 1, (this fact we denote by
Aω1,ω2 ∈ Pτ (A))

The action of the perturbed operator is given by the rule

Aω1,ω2ψ = Aϕ

in each case.

Remark 1. If |(A1/2η2, A
1/2η1)| <∞ in the second part of Definition 1, then taking

τ = (A1/2(A2 + 1)−1/2η2, A
1/2(A2 + 1)−1/2η1) we obtain the first part of Definition 1,

that was considered also in [20].
Remark 2. If (A1/2η2, A

1/2η1) does not exists i.e., we have the second part of Defi-
nition 1, then still |(A1/2(A2 + 1)−1/2η2, A

1/2(A2 + 1)−1/2η1)| <∞, since ω1, ω2 ∈ H−2.
Remark 3. The defined in Definition 1 operator Aω1,ω2 can be described in the

following way. A linear closed operator Aω1,ω2 �= A densely defined onH is nonsymmetric
singularly perturbed with respect to the operator A if both sets,

D = {f ∈ D(A) ∩D(Aω1,ω2) | Af = Ãf},(7)

D∗ = {f ∈ D(A) ∩D((Aω1,ω2)∗) | Af = Ã∗f},(8)

are dense in H. In general Ã ∈ Pτ (A).
It is clear that for each operator Aω1,ω2 ∈ Pτ (A), there exist densely defined symmetric

restrictions, i.e., operators Ȧ := A � D and Ȧ∗ := A � D∗ with nontrivial deficiency
indices

n±(Ȧ) = dim ker(Ȧ∓ z)∗ �= 0, n±(Ȧ∗) = dim ker(Ȧ∗ ∓ z)∗ �= 0, z ∈ ρ(A).

(In this article we meet often the case where n±(Ȧ) = n±(Ȧ∗) = 1.)

If D = D∗ and Ã = Ã∗, then we are in the case of the usual abstract definition of
singularly perturbed selfadjoint operators [3, 13] Ã ∈ Ps(A), that is, the definition given
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above generalizes the known definition of a selfadjoint singular perturbation to the case
of a nonselfadjoint one.

The operator defined above, Aω1,ω2 , has the following general properties.

Proposition 1. For an arbitrary nonzero constant a ∈ C we have Aaω1,ω2 = Aω1,āω2 .

Proof. From Definition 1 in both cases (3), (4) and (5), (6) it follows that D(Aaω1,ω2) =
D(Aω1,āω2) and Aaω1,ω2ψ = Aω1,āω2ψ = Aϕ. �
Proposition 2. The adjoint operator (Aω1,ω2)∗ satisfies the identity

(Aω1,ω2)∗ = Aω2,ω1 .

Proof. For the proof we use the second part of Definition 1 for Aω1,ω2 and Aω2,ω1 and
verify the identity

(9) (Aω1,ω2f1, f2) = (f1, A
ω2,ω1f2),

for f1 ∈ D(Aω1,ω2) and f2 ∈ D(Aω2,ω1) of the form f1 = ϕ1 + b1η2 and f2 = ϕ2 + b2η1,
correspondingly, ϕ1, ϕ2 ∈ D(A). The left-hand side of (9) is of the form

(10) (Aω1,ω2f1, f2) = (Aω1,ω2(ϕ1 + b1η2), (ϕ2 + b2η1)) = (Aϕ1, ϕ2) + b̄2(Aϕ1, η1),

where

b1 = b1(ϕ1) =
(Aϕ1, η1)

1 + τ + (A1/2(A2 + 1)−1/2η2, A1/2(A2 + 1)−1/2η1)
.

The right-hand side of (9) is of the form

(11) (f1, A
ω2,ω1f2) = ((ϕ1 + b1η2), A

ω2,ω1(ϕ2 + b2η1)) = (ϕ1, Aϕ2) + b1(η2, Aϕ2),

where

b2 = b2(ϕ2) =
(Aϕ2, η2)

1 + τ + (A1/2(A2 + 1)−1/2η1, A1/2(A2 + 1)−1/2η2)
.

The statement of the proposition follows from the obvious equality of last terms from
(10) and (11),

(Aϕ2, η2)

1 + τ + (A1/2(A2 + 1)−1/2η1, A1/2(A2 + 1)−1/2η2)
(Aϕ1, η1)

=
(Aϕ1, η1)

1 + τ + (A1/2(A2 + 1)−1/2η2, A1/2(A2 + 1)−1/2η1)
(η2, Aϕ2).

The proof in case (5), i.e., (A1/2(A2 + 1)−1/2η2, A
1/2(A2 + 1)−1/2η1) �= −τ − 1 is

completed. The case (6), i.e., (A1/2(A2 +1)−1/2η2, A
1/2(A2 +1)−1/2η1) = −τ − 1 is also

valid.
The cases (3), (4) are particular with respect to (5), (6). �

3. The description of a rank-one nonsymmetric singular perturbation by

resolvents

In this section we consider the perturbed operator with a parameter α ∈ C and denote
it by Ã = A + α〈·, ω1〉ω2, where ωi ∈ H−2 \ H and ‖ωi‖−1 = 1, i = 1, 2. The set of
such operators is also denoted by Pτ (A). At the beginning, let us briefly remark that if

Ã ∈ Pτ (A) then for the adjoint operator, we have Ã∗ ∈ Pτ (A), which is also due to the
investigations in [7] and Proposition 2.

Theorem 1. For the resolvents Rz = (A − z)−1 and R̃z = (Ã − z)−1 of operators

A = A∗ > 1 and Ã ∈ Pτ (A) on a separable Hilbert space H, a formula similar to

M. Krein’s formula holds for z, ξ, ζ ∈ ρ(A) ∩ ρ(Ã),
(12) R̃z = Rz + bz(·, nz̄)mz,
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with

(13) nz = (A− ξ)(A− z)−1nξ, mz = (A− ζ)(A− z)−1mζ ,

where nz,mz ∈ H \ H+2 and

(14) b−1
z − b−1

ξ = (ξ − z)(mξ, nz̄).

The vectors nz,mz and the number bz are connected with ω1, ω2 as follows:

(15) nz = Rzω1,mz = Rzω2, −b−1
z = α−1 + τ + 〈(A2 + 1)−1ω2, (1 + z̄A)Rz̄ω1〉,

where α �= 0.

The case α = 0 can be also included in the considerations, since in case α = 0, we put
bz ≡ 0 and obtain R̃z ≡ Rz.

Proof. From the expression Ã = A + α〈·, ω1〉ω2 and for some z ∈ ρ(A) ∩ ρ(Ã) we have

Ã− z = A− z + α〈·, ω1〉ω2, and hence

(16) (Ã− z)−1 = (A− z)−1 − α〈·, (A− z̄)−1ω1〉(Ã− z)−1ω2,

where (A−z)−1 and (Ã−z)−1 are considered as operators from H−2 into H. In the case
of the first part of Definition 1 we can continue our proof as in [20]. In the case of the
second (general) part of Definition 1 we need to consider the next expression following
from (16):

(17) (Ã− z)−1 = (A− z)−1 − α{〈A(A2 + 1)−1/2·, A(A− z̄)−1ω1〉
+ 〈(A2 + 1)−1·, (1 + z̄A)(A− z̄)−1ω1〉}(Ã− z)−1ω2.

In particular, for ω2 ∈ H−2 we have

(Ã− z)−1ω2 = (A− z)−1ω2 − α{τ + 〈(A2 + 1)−1ω2, (1 + z̄A)(A− z̄)−1ω1〉}(Ã− z)−1ω2.

where instead of 〈ω2, A(A
2 + 1)−1ω1〉 we write τ . Substituting

(Ã− z)−1ω2 =
α

1 + α{τ + 〈(A2 + 1)−1ω2, (1 + z̄A)(A− z̄)−1ω1〉} (A− z)−1ω2.

into (17) we get

(18) (Ã− z)−1 = (A− z)−1 − 1

α−1 + τ + 〈(A2 + 1)−1ω2, (1 + z̄A)(A− z̄)−1ω1〉
× (·, (A− z̄)−1ω1)(A− z)−1ω2.

where α �= 0. If we put

(19) nz = (A− z)−1ω1, mz = (A− z)−1ω2,

and

(20) b−1
z = −(α−1 + τ + 〈(A2 + 1)−1ω2, (1 + z̄A)(A− z̄)−1ω1〉),

then we obtain (15).

Analogously, starting with Ã∗ = A + ᾱ〈·, ω2〉ω1, we also go to (19) and (20) in the
equivalent form

b̄−1
z = −(ᾱ−1 + τ̄ + 〈(A2 + 1)−1ω1, (1 + zA)(A− z)−1ω2〉),

Let us remark that if ω1, ω2 ∈ H−2 \ H then nz,mz ∈ H \ H2 (see, for example [14]),
and, more precisely, if ω1, ω2 ∈ H−2\H−1, then nz,mz ∈ H\H+1 and if ω1, ω2 ∈ H−1\H,
then nz,mz ∈ H+1 \ H+2.

By using notations (19) in the form nz = (A−z)−1ω1 and nξ = (A−ξ)−1ω1 we obtain
ω1 = (A− z)nz = (A− ξ)nξ and consequently the first expression in (13),

nz = (A− ξ)(A− z)−1nξ.
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This expression makes sense in H if we consider A on H (but not A). Analogously we
obtain the second expression in (13). By a use of the Hilbert identity with (13), we
obtain (14),

b−1
z −b−1

ξ

= −〈(A2 + 1)−1ω2, (1 + z̄A)(A− z̄)−1ω1〉+ 〈(A2 + 1)−1ω2, (1 + ξ̄A)(A− ξ̄)−1ω1〉
= 〈(A2 + 1)−1ω2,

(
(1 + z̄A)(A− ξ̄)−1 − (1 + ξ̄A)(A− z̄)−1

)
ω1〉

= (ξ − z)〈(A− ξ)−1ω2, (A− z̄)−1ω1〉
= (ξ − z)(mξ, nz̄).

This completes the proof. �

Let us remark that it is possible that bz = ∞, and it is so iff z ∈ σp(Ã), but (12) is
also valid in such a case.

At the end of the article, we give an example that illustrates the following corollary
from Theorem 1.

Corollary 1. If the operators A = A∗ and Ã ∈ P(A) have inverses on a separable Hilbert

space H, i.e., 0 ∈ ρ(A) ∩ ρ(Ã), then (12), (13) and (14) have the form

(21) Ã−1 = A−1 + b0(·, n0)m0,

where

(22) n0 = A−1ω1, m0 = A−1ω2, −b−1
0 = α−1 + 〈ω2, A

−1ω1〉.
Proof. The proof follows from Theorem 1 in two ways. The first one is to take into
account that |〈ω2, A

−1ω1〉| < ∞ and repeat the proof of Theorem 1. The second one is
to substitute z = 0 into (12), (13) and (14). �

4. Spectral properties of rank one nonsymmetric singular perturbations

As a starting point, let us remark that the continuous spectrum σc(A) of the operator

A is unchanged by finite rank perturbations, i.e., σc(A) = σc(Ã), Ã ∈ Pτ (A).
Theorem 2. Let the perturbed operator Ã ∈ Pτ (A) possess a new eigenvalue λ ∈ C

comparing to A, i.e., there exist λ ∈ σp(Ã), λ �∈ σp(A). Then for the corresponding

eigenvectors ϕ, ψ: Ãϕ = λϕ and Ã∗ψ = λ̄ψ, the following relations hold true:

(23) (λ− z)bz(ϕ, nz̄) = 1, ϕ = (A− z)(A− λ)−1mz;

(24) (λ̄− z̄)b̄z(ψ,mz) = 1, ψ = (A− z̄)(A− λ̄)−1nz̄.

Proof. The proof follows from Theorem 1. Let Ãϕ = λϕ, i.e.,

R̃zϕ = Rzϕ+ bz(ϕ, nz̄)mz = (λ− z)−1ϕ.

Hence, bz(ϕ, nz̄)mz = [(λ− z)−1 −Rz]ϕ = (λ− z)−1(A− λ)(A− z)−1ϕ,

(25) (λ− z)bz(ϕ, nz̄)(A− z)(A− λ)−1mz = ϕ.

Multiplying the last expression by nz̄ we obtain that

(λ− z)bz(ϕ, nz̄)
(
(A− z)(A− λ)−1mz, nz̄

)
= (ϕ, nz̄),

and, hence,

(26) (λ− z)bz(ϕ, nz̄) = 1.

We remark that (25) and (26) gives ϕ = (A− z)(A− λ)−1mz. This proves (23). Analo-

gously, considering Ã∗ψ = λ̄ψ we can prove (24). �
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Corollary 2. Let us put z = 0 in the case Ã ∈ P(A) under the conditions of Theorem
2. Then (23) and (24) have the form

λb0(ϕ, n0) = 1, ϕ = A(A− λ)−1m0; λ̄b̄0(ψ,m0) = 1, ψ = A(A− λ̄)−1n0.

Proposition 3. Let the perturbed operator Ã ∈ P(A) possess a new eigenvalue λ ∈ C

in comparison with A and let the eigenvectors be ϕ and ψ, i.e., Ãϕ = λϕ and Ã∗ψ = λ̄ψ
then the relations (25) and (26) , in terms of ω1, ω2, have a form

(27) α〈(A− λ)−1ω2, ω1〉 = −1, ϕ = (A− λ)−1ω2;

(28) ᾱ〈(A− λ̄)−1ω1, ω2〉 = −1, ψ = (A− λ̄)−1ω1.

Proof. Taking nz and mz as in (15), we obtain (27) and (28). The second way to prove is

the following. Instead of (12) we take the representation Ã = A+α〈·, ω1〉ω2 and conduct
similar conversions with the corresponding calculations. �

5. The inverse spectral problem for a rank one nonsymmetric singular

perturbation

If we regard the formulation of the Theorem 2 as a direct spectral problem, then we
can consider the following Theorem as a corresponding inverse problem.

Theorem 3. For a given positive selfadjoint operator A = A∗ on a separable Hilbert
space H and λ ∈ C and vectors ϕ, ψ ∈ H\H+1 (ϕ, ψ ∈ H+1 \H+2), there exist a unique

Ã ∈ Pτ (A) (Ã ∈ P(A)) such that Ãϕ = λϕ and Ã∗ψ = λ̄ψ. Moreover, the operator Ã is
defined by (12) as follows:

(29) R̃z = Rz + bz(·, nz̄)mz,

with

(30) mz = (A− λ)(A− z)−1ϕ, nz̄ = (A− λ̄)(A− z̄)−1ψ

and

(31) b−1
z = (λ− z)(ϕ, nz̄),

(
b̄−1
z = (λ̄− z̄)(ψ,mz)

)
.

In general, the proof of Theorem 3 does not differ from the proof of the similar Theorem
in [20] and hence we give a sketch of the proof there.

Proof. Let us remark that if ϕ, ψ ∈ H \ H+1, then there exists Ã ∈ Pτ (A) (possibly

Ã ∈ P(A)) and if ϕ, ψ ∈ H+1 \ H+2, then there exists exactly Ã ∈ P(A).
The proof needs a supplementary proposition that has a general character. One of

them is known from [10].

Proposition 4. Let there be given a (half-bounded) positive selfadjoint operator A with
domain D(A) in a separable Hilbert space H. Then for an arbitrary vector η ∈ H\D(A)

and an arbitrary number z ∈ C, Im(z) �= 0, there exists a restriction Ȧ of the operator

A such that η = nz is its defect vector namely (Ȧ− z)∗nz = 0.

This proposition is used for Ȧ and Ȧ∗.
Next we use the result which, in some sense, is inverse to the one pointed out in

Theorem 1, — that is a formula similar to M. Krein’s formula but from the perturbation
point of view, i.e., the perturbation of the resolvent of the selfadjoint operator by a
one-dimensional skew projection.

Proposition 5. Let there be given a positive selfadjoint operator A on a separable Hilbert
space H. The operator-valued function

(32) R̃z := (A− z)−1 + bz(·, nz̄)mz
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1) is a resolvent of a closed operator, if nz and bz satisfy conditions (13) and (14)
and nz̄, (mz̄) is not an eigenvector of A− z, (A− z̄);

2) is the resolvent of a rank one singularly perturbed operator iff, additionally to the
previous assumption, the inclusions nz,mz ∈ H \ H+2 hold true.

Let us give also a sketch of the proof. The part 1) is verified due to Theorem 7.7.1

[11] as follows: R̃z is the resolvent of a closed operator iff

a) R̃z satisfies the Hilbert identity R̃z − R̃ξ = (z − ξ)R̃zR̃ξ, Imz, ξ �= 0;

b) R̃z has the trivial kernel, ker(R̃z) = {0}, Imz �= 0.

The part a) is verified by substituting (32) into the Hilbert identity for the resolvent.
The condition b) is verified by directly checking (32) for the vectors f ⊥ nz̄ and nz̄. The
condition 2) follows from the fact that nz,mz ∈ H \D(A).

We now return to the sketch of the proof of Theorem 3. Taking nz,mz in the form
(30) and (31) we will check identity (14). Since the vectors nz and mz belong to H\H+2,

by Proposition 5, i.e., by part 2), the operator Ã is singularly perturbed with respect of

A. The identity Ãϕ = λϕ is checked by direct calculation. The uniqueness is proved by
contradiction. �

Proposition 6. For a given selfadjoint operator A on a separable Hilbert space H,
and λ ∈ C, and vectors ϕ, ψ ∈ H+1 \ H+2, there exist a unique Ã ∈ P(A) such that

Ãϕ = λϕ, Ã∗ψ = λ̄ψ. Moreover, the operator Ã is defined by the expression Ã =
A+ α〈·, ω1〉ω2, where ω1 = (A− λ̄)ψ, ω2 = (A− λ)ϕ, and α−1 = −〈(A− λ)ω2, ω1〉, or
α−1 = −〈(A− λ̄)ω1, ω2〉.
Proof. The corresponding proof is an implication of Theorems 1 and 3. �

6. A dual pair of eigenvalues

Since Ã ∈ Pτ (A) is a non-self-adjoint operator, the definition of a dual pair of eigen-
values is different from [2].

Definition 2. A couple of numbers λ, μ ∈ C is called a dual pair of eigenvalues of a
singularly perturbed operator Ã ∈ Pτ (A) iff

Ãϕλ = λϕλ, Ãϕμ = μϕμ,(33)

Ã∗ψλ̄ = λ̄ψλ̄, Ã∗ψμ̄ = μ̄ψμ̄,(34)

(λ̄− μ̄)((A− μ)−1ϕλ, ψλ̄) = (ϕλ, ψλ̄).(35)

The next theorem describes a method how to construct an operator with a dual pair.

Theorem 4. Let A = A∗ ≥ c be a semibounded selfadjoint operator defined on D(A) in
a separable Hilbert space H. For an arbitrary μ ∈ ρ(A) and vectors ϕλ, ψλ̄ ∈ H \ H+2

there exists a unique nonsymmetric singularly perturbed operator Ã ∈ Pτ (A) such that

(μ, λ) is a dual pair, where λ̄ := μ̄+ (ϕλ,ψλ̄)
((A−μ)−1ϕλ,ψλ̄)

is an eigenvalue with the eigenvector

ϕμ = (A − λ)(A − μ)−1ϕλ. The adjoint operator Ã∗ ∈ Pτ (A) has also eigenvectors ψλ̄
and ψμ̄ = (A− λ̄)(A− μ̄)ψλ̄.

Remark 4. If Ã ∈ P(A), then in the form Ã = A+ α〈·, ω1〉ω2, we can calculate the
coupling constant α = − 1

(ϕλ,ω1)
(or ᾱ = − 1

(ψλ̄,ω2)
) and the corresponding vectors

(36) ω2 = (A− μ)ϕλ − (ψλ̄, ϕλ)

((A− μ)ψλ̄, ϕλ)
ϕλ, ω1 = (A− μ̄)ψλ̄ −

(ϕλ, ψλ̄)

((A− μ)ϕλ, ψλ̄)
ψλ̄.

Proof. The proof is given by a direct verification of only (33) and (34, since (35 is the
condition of Theorem. �
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For a real dual pair λ, μ ∈ R we have the following corollary that follows from Theorem
4.

Corollary 3. Let A = A∗ ≥ 0 be a positive selfadjoint operator defined on D(A) in a
separable Hilbert space H, so that σ(A) = σc(A) = [0,∞). For an arbitrary number μ < 0
and vectors ϕλ, ψλ̄ ∈ H+1\H+2 there exists a unique nonsymmetric singular perturbation

of rank one, Ã ∈ P(A), such that it has the dual pair (μ, λ), where λ = μ+ (ϕλ,ψλ)
((A−μ)−1ϕλ,ψλ)

,

as its eigenvalues with the eigenvectors ϕλ and ϕμ = (A − λ)(A − μ)−1ϕλ. Moreover,

the operator Ã∗ ∈ P(A) has the same eigenvalues but with different eigenvectors, ψλ and
ψμ = (A− λ)(A− μ)ψλ.

7. Approximations properties of perturbed operators

Different approximations of singularly perturbed selfadjoint operators are presented in
[4]. We have some generalization to the case of a nonsymmetric rank one perturbation.

Theorem 5. Let A be a semibounded self-adjoint operator defined on D(A) in a sep-
arable Hilbert space H, and two vectors ω1, ω2 ∈ H−2 such that 〈ω2, (A − z)−1ω1〉 does
not exist. Then there exist two sequences ω1,n, ω2,n ∈ H−2 converging to ωi, i = 1, 2,

correspondingly, such that the sequence of operators Ãn = A + α〈·, ω1,n〉ω2,n ∈ P(A)

converge to the operator Ã = A+ α〈·, ω1〉ω2 ∈ Pτ (A) in the norm resolvent sense if

lim
n→∞〈ω2,n, A(A

2 + 1)−1ω1,n〉 = τ.

Proof. Without loss of generality let us assume that A = A∗ ≥ 0. Resolvents of the
corresponding operators have the following forms:

(37) (Ãn − z)−1 = (A− z)−1

− 1

α−1 + 〈ω2,n, (A− z̄)−1ω1,n〉 〈·, (A− z̄)−1ω1,n〉(A− z)−1ω2,n;

(38) (Ã− z)−1 = (A− z)−1

− 1

α−1 + 〈ω2, (1 + z̄A)(A− z̄)−1(A2 + 1)−1ω1〉 〈·, (A− z̄)−1ω1〉(A− z)−1ω2.

The difference of the resolvents has the form

(Ãn−z)−1 − (Ã− z)−1 =

− 1

α−1 + 〈ω2,n, (A− z̄)−1ω1,n〉 〈·, (A− z̄)−1ω1,n〉(A− z)−1ω2,n

+
1

α−1 + 〈ω2, (1 + z̄A)(A− z̄)−1(A2 + 1)−1ω1〉 〈·, (A− z̄)−1ω1〉(A− z)−1ω2

=

[
− 1

α−1 + 〈ω2,n, (A− z̄)−1ω1,n〉
+

1

α−1 + 〈ω2, (1 + z̄A)(A− z̄)−1(A2 + 1)−1ω1〉
]

× 〈·, (A− z̄)−1ω1,n〉(A− z)−1ω2,n+

+
1

α−1 + 〈ω2, (1 + z̄A)(A− z̄)−1(A2 + 1)−1ω1〉
× 〈·, ((A− z̄)−1ω1,n − (A− z̄)−1ω1

)〉(A− z)−1ω2

+
1

α−1 + 〈ω2, (1 + z̄A)(A− z̄)−1(A2 + 1)−1ω1〉
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×〈·, (A− z̄)−1ω1〉
(
(A− z)−1ω2,n − (A− z)−1ω2

)
.

To prove that the resolvents of Ãn converge to the resolvent Ã with respect to the
operator norm it is enough to show that

(39) ‖(A− z)−1ωi,n − (A− z)−1ωi‖ −→ 0, i = 1, 2,

and

(40) 〈ω2,n, (A− z̄)−1ω1,n〉 −→ 〈ω2,n, A(A
2 + 1)−1ω1,n〉

+ τ + 〈ω2,n, (1 + z̄A)(A− z̄)−1(A2 + 1)−1ω1,n〉,
as n −→ ∞. Indeed, if ωi,n −→ ωi, in H−2, i = 1, 2, then (39) is valid.

Hence to prove the theorem it is sufficient to show that there exist sequences of vectors
ωi,n, i = 1, 2, with the properties

ωi,n −→ ω1 in H−2, and lim
n→∞〈ω2,n, A(A

2 + 1)−1ω1,n〉 = τ.

Since the case ωi,n ∈ H−1 would be trivial, we consider the general case ωi,n ∈ H−2. Let
us introduce the real sequence an = 〈E[0,n]ω2, A(A

2 + 1)−1ω1〉, where E is the spectral
measure of A. Since ωi �∈ H−1, i = 1, 2, there exists an interval [cn, dn] inside [0, n], so
that bn = 〈E[cn,dn]ω2, A(A

2 + 1)−1ω1〉 could be such that |bn| > |τ − an|. We choose the
sequence ωi,n = E[0,n]ωi + εi,nE[cn,dn]ωi, i = 1, 2. where εi,n are taken to be

ε1,n =

√|τ − an|√
bn

, ε2,n = (sgn(τ − an)sgnbn)ε1,n.

It is obvious that |εi,n| ≤ 1 and [〈ω2,n, A(A
2 − 1)−1ω1,n〉 = an + ε1,nε2,nbn = τ. And we

also have that ‖ωi,n − ωi‖−2 ≤ ‖E[0,∞]ωi‖−2 −→ 0, as n −→ ∞. Hence Ãn converges to

Ã in the norm resolvent sense. �

8. Wave operators

Assuming that i �∈ σ(Ã) we define the wave operators for A and Ã ∈ Pτ (A) in a usual
way [3],

(41) W±(A, Ã) = s− lim
t→±∞Ut = s− lim

t→±∞ e
iÃte−iAtP ac,

where

P acf =

∫ ∞

−∞
f̂ac(λ) dEac(λ)(A+ i)−1ω1, fac ∈ Hac,

P ac and P̃ ac denote the spectral projections onto the absolutely continuous parts σac(A)

and σac(Ã) of the spectrum of the operators A and Ã; Hac and H̃ac are the corresponding
subspaces,

Hac = P acH, H̃ac = P̃ acH;

f =

∫ ∞

−∞
f̂(λ) dE(λ)g =

∫ ∞

−∞
ˆ̃
f(λ) dẼ(λ)g̃, g = (A+ i)−1ω1, g̃ = (Ã+ i)−1ω2.

This definition of wave operators is correct due to Theorem 1.5 from [11], namely, Ã

is the spectral type operator and what is more, with this connection Ã is the scalar type
operator σac(A) = σac(Ã), and there exist wave operators for the couple A and Ã.

Theorem 6. Let, on a separable Hilbert space H, there be given a self-adjoint operator
A and its nonsymmetric singular perturbation of the form

Ã = A+ α〈·, ω1〉ω2, ω1, ω2 ∈ H−2 \ H, α ∈ C.
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Then there exist the defined in (41) wave operators W± in the form:

(42) W±f =

∫ ∞

−∞
(1 + τ + αF (λ± i0))f̂ac(λ) dẼ(λ)(Ã+ i)−1ω2,

where

P acf =

∫ ∞

−∞
f̂ac(λ) dE(λ)(A+ i)−1ω1, F (z) = 〈(A− z)−1ω2, (1 + z̄A)(A2 + I)−1ω1〉.

Proof. The proof can be carried out by a direct calculation as in [3] or by substituting
the corresponding expressions in the formulas obtained in [20] and taking into account

that Ã ∈ Pτ (A) instead of Ã ∈ P(A). �
The adjoint operator has the form

W ∗
+g =

∫ ∞

−∞

1

1 + τ + αF (λ+ i0)
ˆ̃gac(λ) dE(A+ i)−1ω1,

where

P̃ acg =

∫ ∞

−∞
ˆ̃gac dẼ(λ)(Ã+ i)−1ω2, g̃ = (Ã+ i)−1ω2 =

1

1 + τ + F (−i)g.

Then S(Ã, A) =W ∗
+W− is a scattering operator and

(43) S(Ã, A, λ, τ) =
1 + τ + αF (λ− i0)

1 + τ + αF (λ+ i0)
.

is a scattering matrix consisting of one (complex) number.

9. Examples

Example 1. Let us illustrate Theorems 1, 2, and 3. Let H = L2([2,∞), dx) = L2

and A be the operator of multiplication by the independent variable x2, namely

Af(x) = x2f(x), D(A) = {f(x) ∈ L2 | x2f(x) ∈ L2}.
It is obvious that the operator A ≥ 2 and A has purely absolutely continuous spectrum,
i.e., σ(A) = σac(A) = [2,∞).

Let us put H1 = L2([2,∞), x2dx) and H−1 = L2([2,∞), x−2dx) be the dual spaces.
In such a case, D(A) = H2 = L2([2,∞), x4dx), and H−2 = L2([2,∞), x−4dx).

Let us take ω1 = 1
x−1 and ω2 = 1

x+1 . It is obvious that ω1, ω2 ∈ H−1 \ H. So we can

illustrate the operator Ã ∈ P(A) in the form (12).

If we suppose additionally that Ã possess a new point of spectrum λ = 0, i.e., 0 ∈
σp(Ã), then due to Proposition 3 we calculate α = − 2

1−ln 3 by the formula (27), since

〈A−1ω2, ω1〉 =
∫ ∞

2

dx

x2(x2 − 1)
=

1− ln 3

2
.

Hence,

Ãf(x) = xf(x)− 2

1− ln 3

1

x+ 1

∫ ∞

2

f(x)

x− 1
dx.

Thus

ϕ =
1

x2(x+ 1)
, ψ =

1

x2(x− 1)
.

To illustrate Theorem 1, formulas (12) and Theorem 3, formulas (30), (31) (for the
case where λ = 0) we must put

nz =
1

(x2 − z)(x− 1)
, mz =

1

(x2 − z)(x+ 1)
, b−1

z =
2

1− ln 3
−
∫ ∞

2

dx

(x2 − z)(x2 − 1)
.

It is obvious that Ã ∈ P(A).
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Example 2. This example illustrates Theorem 4. Let H = L2(R
1, dx) and A be a

Laplace operator, namely Af(x) = −f ′′(x), D(A) = W 2
2 (R

1) is the Sobolev space. The
operator A ≥ 0 has purely absolutely continuous spectrum, namely σ(A) = σc(A) =
[0,∞).

We put ϕλ = e−|x−1| and ψλ = e−|x+1|, μ = −1 (we consider the case λ, μ ∈ R and
λ, μ ∈ ρ(A)). To calculate λ, we need

(ϕλ, ψλ) =

∫
R

e−|x−1|e−|x+1| dx = 3e−2.

By using [1], we calculate

(44) (A+ 1)−1ϕλ =

∫
R

1

2
e−|x−τ |e−|τ−1| dτ =

{
x
2 e
−x+1, x > 1,

2−x
2 ex−1, x < 1,

and ((A+1)−1ϕλ, ψλ) =
13
4 e
−2. Also, λ = − 1

13 < 0, α = − 4
13e

2. And from (36) we have
that

ω1 = δ−1(x)− 12

13
e−|x+1|, ω2 = δ+1(x)− 12

13
e−|x−1|.

The operator Ã = A + α〈·, ω1〉ω2 ∈ P(A) is such that Ãϕλ = λϕλ, Ã
∗ψλ = λψλ,

Ãϕμ = μϕμ, Ã
∗ψμ = μψμ, and ϕμ = (A− λ)(A− μ)−1ϕλ = e−|x+1|, ψμ = e−|x−1|.

Example 3. We illustrate once more Theorem 1. Let H = L2(R
3) and A play the

role of the Laplace operator, namely Af(x) = −Δf(x), D(A) = W 2
2 (R

3) is the Sobolev
space. The operator is positive A ≥ 0 and has purely absolutely continuous spectrum,
i.e., σ(A) = σc(A) = [0,∞). Let us consider the expression (4) that describes the

δ-interaction with retardation, i.e., the formal expression Ã = −Δ + α〈·, δ0〉δ1, where
δ0 is a δ-function at the point 0 = (0, 0, 0) ∈ R

3 and δ1 is a δ-function at the point
1 = (1, 0, 0) ∈ R

3.
Using [1] we can write the resolvent of such operators at the regular point i ∈ C

(corresponding to one parameter family) i.e its integral kernel,

(−Δ̃− i)−1(x, p) =
e−|x−p|

4π|x− p| +
1

α−1 + (4πe)−1

e−(|x|+|1−p|)

(4π)2|x||1− p|
since |〈δ1, (A − z̄)−1δ0〉| = 1

4πe , z =
√
i, we take (�√i > 0). It is obvious that −Δ̃ ∈

P(−Δ).
Example 4. Let us again illustrate Theorem 4. Let H = L2([1,∞), dx) and A be

the multiplication operator on x2, namely Af(x) = x2f(x), f ∈ D(A), where D(A) :=
{f(x) ∈ L2 | x2f(x) ∈ L2}. It is obvious that A ≥ 1 and D(A) = σ(A) = [1,∞). We

put 0 = μ /∈ σ(A) and ϕ = ϕλ = x−1 1
3 , ψ = ψλ = x−1 2

3 , ϕ, ψ ∈ H but ϕ, ψ �∈ H+1. In
particular H+2 = L2([1,∞), x4dx). Then

(ϕ, ψ) =

∫ ∞

1

dx

x3
=

1

2
, ((A− μ)−1ϕ, ψ) =

∫ ∞

1

dx

x5
=

1

4
.

Hence, λ = 2 ∈ σ(A), and

ϕμ = (A− 2)A−1ϕλ =
x2 − 2

x10/3
, ψμ = (A− 2)A−1ψλ =

x2 − 2

x11/3
.

Also from (30) we have that

mz = (A− λ)(A− z)−1ϕλ =
x2 − 2

x2 − z

1

x4/3
, nz = (A− λ̄)(A− z̄)−1ψλ =

x2 − 2

x2 − z

1

x5/3
,

and from (31) we have bz = (λ− z)−1(ϕλ, nz̄)
−1 = (2− z)−1(ϕλ, nz̄)

−1, where

(ϕλ, nz̄) =

∫ ∞

1

1

x4/3
x2 − 2

x2 − z

1

x5/3
dx =

(
1

z2
− 1

2z

)
ln
√
1− z +

1

z
.
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Hence (29) has the form

(Ã− z)−1 =
1

x2 − z
+ bz

(
·, x

2 − 2

x2 − z̄

1

x5/3

)
x2 − 2

x2 − z

1

x4/3
.

Moreover,

ω1 =
x2

x5/3
− 1/2

1/4

1

x5/3
=
x2 − 2

x5/3
, ω2 =

x2

x4/3
− 1/2

1/4

1

x4/3
=
x2 − 2

x4/3
.

Since ω1, ω2 ∈ H−2 \ H−1, Ã ∈ Pτ (A).
Example 5. This example is a modification of the previous one and illustrates Corol-

lary 3. Let H = L2([1,∞), dx) and, as above, A be an operator of multiplication by
x2, namely Af(x) = x2f(x), f ∈ D(A), where D(A) := {f(x) ∈ L2 | x2f(x) ∈ L2}.
For simplicity we also put 0 = μ /∈ σ(A), but ϕ = ϕλ = x−2 1

3 , ψ = ψλ = x−2 2
3 ,

ϕ, ψ ∈ H+1 = L2([1,∞), x2dx). In particular H+2 = L2([1,∞), x4dx) and ϕ, ψ /∈ H+2,
Then

(ϕ, ψ) =

∫ ∞

1

dx

x5
=

1

4
, ((A− μ)−1ϕ, ψ) =

∫ ∞

1

dx

x7
=

1

6
.

Hence, λ = 3/2 ∈ σ(A); and

ϕμ = (A− 3/2)A−1ϕλ =
x2 − 3/2

x13/3
, ψμ = (A− 3/2)A−1ψλ =

x2 − 3/2

x14/3
.

And also from (30) we have that

mz = (A−λ)(A−z)−1ϕλ =
x2 − 3/2

x2 − z

1

x7/3
, nz = (A− λ̄)(A− z̄)−1ψλ =

x2 − 3/2

x2 − z

1

x8/3
,

and from (31) it follows that bz = (λ− z)−1(ϕλ, nz̄)
−1 = (3/2− z)−1(ϕλ, nz̄)

−1, where

(ϕλ, nz̄) =

∫ ∞

1

1

x7/3
x2 − 3/2

x2 − z

1

x8/3
dx =

(
3

2z3
− 1

z2

)
ln
√
1− z +

(
3

4z2
− 1

2z

)
+

3

8z
.

Hence (29) has the form

(Ã− z)−1 =
1

x2 − z
+ bz

(
·, x

2 − 3/2

x2 − z̄

1

x8/3

)
x2 − 3/2

x2 − z

1

x7/3
.

Moreover,

ω1 =
x2

x8/3
− 1/4

1/6

1

x8/3
=
x2 − 3/2

x8/3
, ω2 =

x2

x7/3
− 1/4

1/6

1

x7/3
=
x2 − 3/2

x7/3
.

Since ω1, ω2 ∈ H−2\H−1, Ã ∈ Pτ (A), and we can exactly calculate the coupling constant.

〈ϕλ, ω1〉 =
∫ ∞

1

1

x7/3
x2 − 3/2

x8/3
dx = 〈ψλ, ω2〉 =

∫ ∞

1

1

x8/3
x2 − 3/2

x7/3
dx = 1/8.

Due to (27), (28) we have that α = − 1
〈ϕλ,ω1〉 = −8.

Example 6. This example once more illustrates Theorems 1, 2, and 3. Let H =
L2(R

1) and A be also the Laplace operator, namely Af(x) = −f ′′(x), D(A) = W 2
2 (R

1)
is the Sobolev space. The operator A ≥ 0 is positive and has purely absolutely continuous
spectrum, i.e., σ(A) = σc(A) = [0,∞). Let us consider the expression (4) that describes
the δ-interaction with retardation on the real line.

Using [1] we can write the resolvent of such operators (corresponding to one parameter
family) at a regular point k2, (�k2 > 0), i.e its integral kernel,

(−Δ̃− k2)−1(x, ξ) = (i/2k)eik|x−ξ| + α(2k)−1(iα+ 2k)−1eik[|x−x2|+|x1−ξ|],

where

Imk > 0, α ∈ C, x, ξ, x1, x2 ∈ R
1, x1 < x2.
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It is not hard to understand that the essential spectrum is σess(−Δ̃) = σac(−Δ) = [0,∞),

and, for the singularly continuous spectrum, we have σsc(−Δ̃) = ∅. Moreover, if �α < 0,

then the operators −Δ̃ (and −Δ̃∗) possess precisely one negative, simple eigenvalue
{−α2/4} (and {−ᾱ2/4}) with the corresponding normalized eigenfunction

ϕ = (−α/2)1/2eα|x−y1|/2, ψ = (−ᾱ/2)1/2eᾱ|x−y2|/2.

It is obvious that −Δ̃ ∈ P(−Δ).
Acknowledgments. The authors are grateful to Professor L. P. Nizhnik for stimulating

discussions and providing important suggestions about an approach of viewing nonsin-
gular perturbations.
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Basel—Boston—Berlin, 1996. (Russian edition: Vyshcha shkola, Kiev, 1990)

9. M. Dudkin, Invariant symmetric restrictions of a self-adjoint operator. II, Ukrain. Mat. Zh.
50 (1998), no. 6, 781–791. (Ukrainian); English transl. Ukrainian Math. J. 50 (1998), no. 6,
888–900.

10. M. Dudkin, Singularly perturbed normal operators, Ukrain. Mat. Zh. 51 (1999), no. 8, 1045–
1053. (Ukrainian); English transl. Ukrainian Mat. J. 51 (1999), no. 8, 1177–1187.

11. T. Kato, Perturbation Theory for Linear Operators, Die Grundlehren der Mathematischen
Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966.

12. T. Kato, Wave operators and similarity for some non-selfadjoint operators, Math. Annalen
162 (1966), 258–279.

13. V. Koshmanenko, Singular Quadratic Forms in Perturbation Theory, Mathematics and its
Applications, Vol. 474, Kluwer Academic Publishers, Dordrecht–Boston–London, 1999. (Russian

edition: Naukova Dumka, Kyiv, 1993)
14. V. Koshmanenko, Singularly perturbed operators. Mathematical results in quantum mechanics

(Blossin, 1993), Oper. Theory Adv. Appl., Vol. 70, Birkhauser, Basel, 1994, pp. 347–351.

15. V. B. Lidskii, The non-self-adjoint operator of Sturm-Liouville type with discrete spectrum,
Trudy Mosk. Mat. Obsh. 9 (1960), 45–79. (Russian)
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