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ON THE GENERATION OF BEURLING TYPE CARLEMAN

ULTRADIFFERENTIABLE C0-SEMIGROUPS BY SCALAR TYPE

SPECTRAL OPERATORS

MARAT V. MARKIN

Abstract. A characterization of the scalar type spectral generators of Beurling type
Carleman ultradifferentiable C0-semigroups is established, the important case of the
Gevrey ultradifferentiability is considered in detail, the implementation of the general
criterion corresponding to a certain rapidly growing defining sequence is observed.

1. Introduction

The problem of finding conditions necessary and sufficient for a densely defined closed
linear operator A in a complex Banach space X to be the generator of a C0-semigroup
{S(t)|t ≥ 0} with a certain regularity property such as strong differentiability or ana-
lyticity of its orbits on (0,∞) and thus, of the weak/mild solutions of the associated
abstract evolution equation

y′(t) = Ay(t), t ≥ 0,

[1, 8] is central in qualitative theory.
The well known general generation criteria of analytic and (infinite) differentiable C0-

semigroups [14, 26, 27, 31, 32] (cf. also [8]) contain restrictions on the location of the
generator’s spectrum in the complex plane and on its resolvent behavior. As is shown
in [18, 19, 21], when the potential generators are selected from the class of scalar type
spectral operators (see Preliminaries), the restrictions of the second kind can be dropped
in the foregoing and other cases, which makes the results more transparent, easier to
handle, and inherently qualitative.

The characterization of the scalar type spectral generators of Roumieu type Gevrey
ultradifferentiable C0-semigroups found in [19] is generalized in [21] to the case of the
Roumieu type Carleman ultradifferentiable C0-semigroups. However, neither in [19], nor
in [21], the case of Beurling type ultradifferentiability has been treated.

In the present paper, we are to establish a generation criterion of a Beurling type
Carleman ultradifferentiable C0-semigroup corresponding to a sequence of positive num-
bers {mn}∞n=0 by a scalar type spectral operator, consider in detail the important case of
the Gevrey ultradifferentiability, and observe the implementation of the general criterion
corresponding to a certain rapidly growing defining sequence.

2. Preliminaries

For the reader’s convenience, we shall outline here certain essential preliminaries.
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2.1. Scalar Type Spectral Operators. Henceforth, unless specified otherwise, A is
supposed to be a scalar type spectral operator in a complex Banach space (X, ‖ · ‖) and
EA(·) to be its spectral measure (the resolution of the identity), the operator’s spectrum
σ(A) being the support for the latter [4, 7].

In a complex Hilbert space, the scalar type spectral operators are precisely those
similar to the normal ones [30].

A scalar type spectral operator in complex Banach space has an operational calculus
analogous to that of a normal operator in a complex Hilbert space [4, 6, 7]. To any
Borel measurable function F : C→ C (or F : σ(A)→ C, C is the complex plane), there
corresponds a scalar type spectral operator

F (A) :=

∫
C

F (λ) dEA(λ) =

∫
σ(A)

F (λ) dEA(λ)

defined as follows:

F (A)f := lim
n→∞Fn(A)f, f ∈ D(F (A)),

D(F (A)) :=
{
f ∈ X

∣∣ lim
n→∞Fn(A)f exists

}
(D(·) is the domain of an operator), where

Fn(·) := F (·)χ{λ∈σ(A) | |F (λ)|≤n}(·), n ∈ N,

(χδ(·) is the characteristic function of a set δ ⊆ C, N := {1, 2, 3, . . . } is the set of natural
numbers) and

Fn(A) :=

∫
σ(A)

Fn(λ) dEA(λ), n ∈ N,

are bounded scalar type spectral operators on X defined in the same manner as for a
normal operator (see, e.g., [6, 28]).

In particular,

(2.1) An =

∫
C

λn dEA(λ) =

∫
σ(A)

λn dEA(λ), n ∈ Z+,

(Z+ := {0, 1, 2, . . . } is the set of nonnegative integers).
If a scalar type spectral operator A generates C0-semigroup of linear operators, it is

of the form

etA =

∫
C

etλ dEA(λ) =

∫
σ(A)

etλ dEA(λ), t ≥ 0

[2, 18, 25].
The properties of the spectral measure EA(·) and the operational calculus, exhaustively

delineated in [4, 7], underly the entire subsequent discourse. Here, we shall outline a few
facts of particular importance.

Due to its strong countable additivity, the spectral measure EA(·) is bounded [5, 7],
i.e., there is such an M > 0 that, for any Borel set δ ⊆ C,

(2.2) ‖EA(δ)‖ ≤M.

The notation ‖ · ‖ has been recycled here to designate the norm in the space L(X) of
all bounded linear operators on X. We shall adhere to this rather common economy of
symbols in what follows adopting the same notation for the norm in the dual space X∗

as well.
For any f ∈ X and g∗ ∈ X∗, the total variation v(f, g∗, ·) of the complex-valued Borel

measure 〈EA(·)f, g∗〉 (〈·, ·〉 is the pairing between the space X and its dual X∗) is a finite
positive Borel measure with

(2.3) v(f, g∗,C) = v(f, g∗, σ(A)) ≤ 4M‖f‖‖g∗‖
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(see, e.g., [19, 20]). Also (Ibid.), F : C→ C (or F : σ(A)→ C) being an arbitrary Borel
measurable function, for any f ∈ D(F (A)), g∗ ∈ X∗, and an arbitrary Borel set σ ⊆ C,

(2.4)

∫
σ

|F (λ)| dv(f, g∗, λ) ≤ 4M‖EA(σ)F (A)f‖‖g∗‖.

In particular,

(2.5)

∫
C

|F (λ)| dv(f, g∗, λ) =
∫
σ(A)

|F (λ)| dv(f, g∗, λ) ≤ 4M‖F (A)f‖‖g∗‖.

The constant M > 0 in (2.3)–(2.5) is from (2.2).
Subsequently, the frequent terms ”spectral measure” and ”operational calculus” will

be abbreviated to s.m. and o.c., respectively.

2.2. The Carleman Classes of Functions. Let I be an interval of the real axis R,
C∞(I,X) be the space of all X-valued functions strongly infinite differentiable on I, and
{mn}∞n=0 be a sequence of positive numbers.

The subspaces of C∞(I,X)

C{mn}(I,X) :=
{
g(·) ∈ C∞(I,X)

∣∣ ∀[a, b] ⊆ I ∃α > 0 ∃c > 0 :

max
a≤t≤b

‖g(n)(t)‖ ≤ cαnmn, n ∈ Z+

}
,

C(mn)(I,X) :=
{
g(·) ∈ C∞(I,X)

∣∣ ∀[a, b] ⊆ I ∀α > 0 ∃c > 0 :

max
a≤t≤b

‖g(n)(t)‖ ≤ cαnmn, n ∈ Z+

}
are called the Carleman classes of strongly ultradifferentiable on I vector functions cor-
responding to the sequence {mn}∞n=0 of Roumieu and Beurling type, respectively (for
scalar functions, see [3, 15, 16]).

The inclusions

(2.6) C(mn)(I,X) ⊆ C{mn}(I,X) ⊆ C∞(I,X)

are obvious.
If two sequences of positive numbers

{
mn

}∞
n=0

and
{
m′n

}∞
n=0

are related as follows:

∀γ > 0 ∃c = c(γ) > 0 : m′n ≤ cγnmn, n ∈ Z+,

we also have the inclusion

(2.7) C{m′n}(I,X) ⊆ C(mn)(I,X),

the sequences being subject to the condition

∃γ1, γ2 > 0, ∃c1, c2 > 0 : c1γ
n
1mn ≤ m′n ≤ c2γ

n
2mn, n ∈ Z+,

their corresponding Carleman classes coincide:

(2.8) C{mn}(I,X) = C{m′n}(I,X), C(mn)(I,X) = C(m′n)(I,X).

Considering Stirling’s formula and the latter,

E{β}(I,X) := C{[n!]β}(I,X) = C{nβn}(I,X),

E(β)(I,X) := C([n!]β)(I,X) = C(nβn)(I,X)

with β ≥ 0 are the well-known Gevrey classes of strongly ultradifferentiable on I vector
functions of order β of Roumieu and Beurling type, respectively (for scalar functions,
see [9]). In particular, E{1}(I,X) and E(1)(I,X) are the classes of analytic on I and en-
tire vector functions, respectively; E{0}(I,X) and E(0)(I,X) (i.e., the classes C{1}(I,X)
and C(1)(I,X) corresponding to the sequence mn ≡ 1) are the classes of entire vector
functions of exponential and minimal exponential type, respectively.
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2.3. The Carleman Classes of Vectors. Let A be a densely defined closed linear
operator in a complex Banach space (X, ‖ · ‖) and {mn}∞n=0 be a sequence of positive
numbers and

C∞(A) :=

∞⋂
n=0

D(An).

The subspaces of C∞(A)

C{mn}(A) :=
{
f ∈ C∞(A)

∣∣∃α > 0 ∃c > 0 : ‖Anf‖ ≤ cαnmn, n ∈ Z+

}
,

C(mn)(A) :=
{
f ∈ C∞(A)

∣∣∀α > 0 ∃c > 0 : ‖Anf‖ ≤ cαnmn, n ∈ Z+

}
are called the Carleman classes of ultradifferentiable vectors of the operator A corres-
ponding to the sequence {mn}∞n=0 of Roumieu and Beurling type, respectively.

For the Carleman classes of vectors, the inclusions analogous to (2.6) and (2.7) and
the equalities analogous to (2.8) are valid.

For β ≥ 0,

E{β}(A) := C{[n!]β}(A) = C{nβn}(A),

E(β)(A) := C([n!]β)(A) = C(nβn)(A)

are the well-known Gevrey classes of strongly ultradifferentiable vectors of A of order β
of Roumieu and Beurling type, respectively (see, e.g., [11, 12, 13]). In particular, E{1}(A)
and E(1)(A) are the well-known classes of analytic and entire vectors of A, respectively
[10, 24]; E{0}(A) and E(0)(A) (i.e., the classes C{1}(A) and C(1)(A) corresponding to the
sequence mn ≡ 1) are the classes of entire vectors of exponential and minimal exponential
type, respectively (see, e.g., [13, 29]).

2.4. Conditions on the Sequence {mn}∞n=0. If a sequence of positive numbers
{mn}∞n=0 satisfies the condition

(WGR) ∀α > 0 ∃c = c(α) > 0 : cαn ≤ mn, n ∈ Z+,

the scalar function

(2.9) T (λ) := m0

∞∑
n=0

λn

mn
, λ ≥ 0 (00 := 1)

first introduced by S. Mandelbrojt [16], is well-defined (cf. [13]). The function is con-
tinuous, strictly increasing, and T (0) = 1.

Hence, the function

(2.10) M(λ) := lnT (λ), λ ≥ 0,

is continuous, strictly increasing and M(0) = 0. Its inverse M−1(·) is defined on [0,∞)
and inherits all the aforementioned properties of M(·).

As is shown in [11] (see also [13] and [12]), the sequence {mn}∞n=0 satisfying the
condition (WGR), for a normal operator A in a complex Hilbert space X, the equalities

C{mn}(A) =
⋃
t>0

D(T (t|A|)),

C(mn)(A) =
⋂
t>0

D(T (t|A|))
(2.11)

are true, the operators T (t|A|), t > 0, defined in the sense of the operational calculus for
a normal operator (see, e.g., [6, 28]) and the function T (·) being replaceable with any
nonnegative, continuous, and increasing on [0,∞) function F (·) satisfying
(2.12) c1F (γ1λ) ≤ T (λ) ≤ c2F (γ2λ), λ ≥ R,
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with some γ1, γ2, c1, c2 > 0 and R ≥ 0, in particular, with

S(λ) := m0 sup
n≥0

λn

mn
, λ ≥ 0, or P (λ) := m0

[ ∞∑
n=0

λ2n

m2
n

]1/2
, λ ≥ 0,

(cf. [13]).
In [20, Theorem 3.1], the above is generalized to the case of a scalar type spectral

operator A in a reflexive complex Banach space X, the reflexivity requirement shown to
be superfluous in [23, Theorem 3.1].

In [21], the sequence {mn}∞n=0 is subject to the following conditions:

(GR) ∃α > 0 ∃c > 0 : cαnn! ≤ mn, n ∈ Z+,

and

(SBC) ∃h,H > 1 ∃l, L > 0 : lhn ≤
n∑

k=0

mn

mkmn−k
≤ LHn, n ∈ Z+.

The former is a stronger version of (WGR), both (WGR) and (GR) being restric-
tions on the growth of {mn}∞n=0, which explains the names. The latter resembles the
fundamental property of the binomial coefficients

n∑
k=0

(
n

k

)
= 2n, n ∈ Z+,

which also explains the name, and is precisely arrived at for mn = n!.
Both (GR) and (SBC) are satisfied for mn = [n!]β with β ≥ 1 (see [21] for details).
Here, the sequence {mn}∞n=0 will be subject to a stronger version of (GR)

(SGR) ∀α > 0 ∃c = c(α) > 0 : cαnn! ≤ mn, n ∈ Z+,

and a weaker version of (SBC)

(BC) ∃h > 1 ∃l > 0 : lhn ≤
n∑

k=0

mn

mkmn−k
, n ∈ Z+.

Both (SGR) and (BC) are satisfied for mn = [n!]β with β > 1, also for mn = en
2

(see [22] for details).
Observe that there are examples demonstrating the independence of the conditions

(GR) and (BC) [22] (cf. [21]).
As is shown in [21], the conditions (GR) and (SBC) have the following implications

for the function M(·) defined in (2.10) and its inverse M−1(·):
∃α > 0 ∃R > 0 : 2α−1M−1(λ) ≥ λ, λ ≥M(R),

and

∃h,H > 1 ∃l, L > 0 (the constants from the condition (SBC)) :

2−nM(hnλ) + [1− 2−n] ln(m0l) ≤M(λ) ≤ 2−nM(Hnλ) + [1− 2−n] ln(m0L),

n ∈ N, λ ≥ 0.

Observe that, from (SBC) with n = 0, the estimates

ln(m0l) ≤ 0 ≤ ln(m0L)

are inferred immediately.
The conditions (SGR) and (BC) imply

(2.13) ∀α > 0 ∃R = R(α) > 0 : 2α−1M−1(λ) ≥ λ, λ ≥M(R),
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and

(2.14)
∃h > 1 ∃l > 0 (the constants of the condition (BC)) :

2−nM(hnλ) + [1− 2−n] ln(m0l) ≤M(λ), n ∈ N, λ ≥ 0

(see [22] for details).
Substituting h−nλ for λ, we obtain the following equivalent version:

∃h > 1 ∃l > 0 (the constants from the condition (BC)) :

M(λ) ≤ 2nM(h−nλ)− [2n − 1] ln(m0l), λ ≥ 0, n ∈ N.
(2.15)

3. Beurling type Carleman ultradifferentiable C0-semigroups

Definition 3.1. Let {mn}∞n=0 be a sequence of positive numbers. We shall call a C0-

semigroup
{
S(t)

∣∣t ≥ 0
}
in a complex Banach space (X, ‖ · ‖) a Roumieu (Beurling) type

Carleman ultradifferentiable C0-semigroup corresponding to the sequence {mn}∞n=0, or
a C{mn}-semigroup (a C(mn)-semigroup), if each orbit S(·)f , f ∈ X, belongs to the
Roumieu (Beurling) type Carleman class of vector functions

C{mn} ((0,∞), X) (C(mn) ((0,∞), X) , respectively)

(cf. [21]).

Recall that in [21], we have proved the following statements.

Proposition 3.1. ([21, Proposition 4.1]). Let A be a scalar type spectral operator in a
complex Banach space (X, ‖ · ‖) generating a C0-semigroup

{
etA

∣∣t ≥ 0
}
and {mn}∞n=0 be

a sequence of positive numbers. Then the restriction of an orbit etAf , t ≥ 0, f ∈ X, to
a subinterval I ⊆ [0,∞) belongs to the Carleman class C{mn}(I,X) (C(mn)(I,X)) iff

etAf ∈ C{mn}(A) (C(mn)(A), respectively), t ∈ I.

Theorem 3.1. ([21, Theorem 5.1]). Let {mn}∞n=0 be a sequence of positive numbers
satisfying the conditions (GR) and (SBC). Then a scalar type spectral operator A in
a complex Banach space (X, ‖ · ‖) generates a C{mn}-semigroup iff there are b > 0 and
a ∈ R such that

Re λ ≤ a− bM(| Im λ|), λ ∈ σ(A),

where M(λ) = lnT (λ), 0 ≤ λ < ∞, and the function T (·) defined by (2.9) is replace-
able with any nonnegative, continuous, and increasing on [0,∞) function F (·) satisfying
(2.12).

Now, we are going to prove the following

Theorem 3.2. Let {mn}∞n=0 be a sequence of positive numbers satisfying the conditions
(SGR) and (BC). Then a scalar type spectral operator A in a complex Banach space
(X, ‖ · ‖) generates a C(mn)-semigroup iff, for any b > 0, there is an a ∈ R such that

Re λ ≤ a− bM(| Im λ|), λ ∈ σ(A),

where M(λ) = lnT (λ), 0 ≤ λ < ∞, and the function T (·) defined by (2.9) is replace-
able with any nonnegative, continuous, and increasing on [0,∞) function F (·) satisfying
(2.12).

Proof. ”If” Part. By the hypothesis,

Re λ ≤ a, λ ∈ σ(A),

with some a ∈ R, which, by [18, Proposition 3.1] implies that A does generate a C0-
semigroup of its exponentials

{
etA

∣∣t ≥ 0
}
(see [18], cf. also [2, 25]).

Consider an arbitrary orbit etAf , t ≥ 0, f ∈ X.
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By Proposition 3.1, we are to show that

etAf ∈ C(mn)(A), t > 0.

For arbitrary t > 0 and s > 0, let us fix a sufficiently large N ∈ N so that

h−N2s ≤ 1,

where h > 1 is the constant from the condition (BC), and set

b := 2N+1t−1 > 0.

Since, due to the condition (SGR), α > 0 in (2.13) is arbitrary, we can assume that
α := b > 0.

For any g∗ ∈ X∗,∫
σ(A)

T (s|λ|)etRe λ dv(f, g∗, λ)

=

∫
{λ∈σ(A)|Re λ≤min(−2−1bM(R),a)}

T (s|λ|)etRe λ dv(f, g∗, λ)

+

∫
{λ∈σ(A)|min(−2−1bM(R),a)<Re λ≤a}

T (s|λ|)etRe λ dv(f, g∗, λ) <∞,

where R = R(α) > 0 is the constant from (2.13).
Indeed, the latter of the two integrals in the right side of the equality is finite due

to the boundedness of the set
{
λ ∈ σ(A)

∣∣ min(−2−1bM(R), a) < Re λ ≤ a
}

(for

a ≤ −2−1bM(R), the set is, obviously, empty), the continuity of the integrand on C, and
the finiteness of the measure v(f, g∗, ·) (see (2.3)).

For the former one, there are the two possibilities

a ≤ 0 or a > 0.

If a ≤ 0,

(3.16)

∫
{λ∈σ(A)|Re λ≤min(−2−1bM(R),a)}

T (s|λ|)etRe λ dv(f, g∗, λ)

=

∫
{λ∈σ(A)|Re λ≤min(−2−1bM(R),a)}

eM(s|λ|)etRe λ dv(f, g∗, λ)

≤
∫
{λ∈σ(A)|Re λ≤min(−2−1bM(R),a)}

eM(s[|Re λ|+| Im λ|])etRe λ dv(f, g∗, λ)

for λ ∈ σ(A) with Re λ ≤ min(−2−1bM(R), a),

Re λ ≤ −2−1bM(R) ≤ 0 and | Im λ| ≤M−1(b−1[a− Re λ]);

≤
∫
{λ∈σ(A)|Re λ≤min(−2−1bM(R),a)}

eM(s[−Re λ+M−1(b−1[a−Re λ])])etRe λ dv(f, g∗, λ)

since a ≤ 0, a− Re λ ≤ −2Re λ whenever Re λ ≤ min(−2−1bM(R), a) ≤ 0;

≤
∫
{λ∈σ(A)|Re λ≤min(−2−1bM(R),a)}

eM(s[−Re λ+M−1(2b−1[−Re λ])])etRe λ dv(f, g∗, λ)

by (2.13), 2b−1[−Re λ] ≤ 2α−1M(2b−1[−Re λ]) whenever Re λ ≤ −2−1bM(R);

since α := b, −Re λ ≤M(2b−1[−Re λ]) whenever Re λ ≤ −2−1bM(R);

≤
∫
{λ∈σ(A)|Re λ≤min(−2−1bM(R),a)}

eM(2sM−1(2b−1[−Re λ]))etRe λ dv(f, g∗, λ)

by (2.15);
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=

∫
{λ∈σ(A)|Re λ≤min(−2−1bM(R),a)}

e2
NM(h−N2sM−1(2b−1[−Re λ]))−[2N−1] ln(m0l)

× etRe λ dv(f, g∗, λ)

= (m0L)
−[2N−1]

∫
{λ∈σ(A)|Re λ≤min(−2−1bM(R),a)}

e2
NM(h−N2sM−1(2b−1[−Re λ]))

× etRe λ dv(f, g∗, λ)

by choice, h−N2s ≤ 1;

≤ (m0L)
−[2N−1]

∫
{λ∈σ(A)|Re λ≤min(−2−1bM(R),a)}

e2
NM(M−1(2b−1[−Re λ]))

× etRe λ dv(f, g∗, λ)

= (m0L)
−[2N−1]

∫
{λ∈σ(A)|Re λ≤min(−2−1bM(R),a)}

e2
N+1b−1[−Re λ]+tRe λ dv(f, g∗, λ)

by choice, b := 2N+1t−1;

= (m0L)
−[2N−1]v

(
f, g∗,

{
λ ∈ σ(A)

∣∣Re λ ≤ min(−2−1bM(R), a)
})

≤ (m0L)
−[2N−1]v(f, g∗, σ(A))

by (2.3);

≤ (m0L)
−[2N−1]4M‖f‖‖g∗‖ <∞.

If a > 0,∫
{λ∈σ(A)|Re λ≤min(−2−1bM(R),a)}

T (s|λ|)etRe λ dv(f, g∗, λ)

=

∫
{λ∈σ(A)|Re λ≤min(−2−1bM(R),−a)}

T (s|λ|)etRe λetRe λ dv(f, g∗, λ)

+

∫
{λ∈σ(A)|min(−2−1bM(R),−a)<Re λ≤−2−1bM(R)}

T (s|λ|)etRe λ dv(f, g∗, λ) <∞.

Indeed, the latter of the two integrals in the right side of the equality is finite due to
the boundedness of the set

{
λ ∈ σ(A)

∣∣ min(−a,−2−1bM(R)) < Re λ ≤ −2−1bM(R)
}

(for a ≤ 2−1bM(R), the set is, obviously, empty), the continuity of the integrand on C,
and the finiteness of the measure v(f, g∗, ·) (see (2.3)).

For the former one, we have∫
{λ∈σ(A)|Re λ≤min(−2−1bM(R),−a)}

T (s|λ|)etRe λ dv(f, g∗, λ)

=

∫
{λ∈σ(A)|Re λ≤min(−2−1bM(R),−a)}

eM(s|λ|)etRe λ dv(f, g∗, λ)

≤
∫
{λ∈σ(A)|Re λ≤min(−2−1bM(R),−a)}

eM(s[|Re λ|+| Im λ|])etRe λ dv(f, g∗, λ)

for λ ∈ σ(A) with Re λ ≤ min(−2−1bM(R),−a),
Re λ ≤ −2−1bM(R) ≤ 0 and | Im λ| ≤M−1(b−1[a− Re λ]);∫

{λ∈σ(A)|Re λ≤min(−2−1bM(R),−a)}
eM(s[−Re λ+M−1(b−1[a−Re λ])])etRe λ dv(f, g∗, λ)

a− Re λ ≤ −2Re λ whenever Re λ ≤ −a;
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≤
∫
{λ∈σ(A)|Re λ≤min(−2−1bM(R),−a)}

eM(s[−Re λ+M−1(2b−1[−Re λ])])etRe λ dv(f, g∗, λ)

in the same manner as in (3.16);

<∞.

Thus, we have proved that, for arbitrary s > 0, t > 0, f ∈ X, and g∗ ∈ X∗,

(3.17)

∫
σ(A)

T (s|λ|)etRe λ dv(f, g∗, λ) <∞.

Furthermore, for any s > 0, t > 0, f ∈ X,

sup
{g∗∈X∗ | ‖g∗‖=1}

∫
{λ∈σ(A)|T (s|λ|)etRe λ>n}

T (s|λ|)etRe λ dv(f, g∗, λ)→ 0 as n→∞.

Indeed, as follows from the preceding argument, for any s, t > 0, the spectrum σ(A) can
be partitioned into two Borel subsets σ1 and σ2 (σ(A) = σ1 ∪ σ2, σ1 ∩ σ2 = ∅) in such a
way that σ1 is bounded and

T (s|λ|)etRe λ ≤ 1, λ ∈ σ2.

Therefore,

sup
{g∗∈X∗ | ‖g∗‖=1}

∫
{λ∈σ(A)|T (s|λ|)etRe λ>n}

T (s|λ|)etRe λ dv(f, g∗, λ)

= sup
{g∗∈X∗ | ‖g∗‖=1}

[∫
{λ∈σ1|T (s|λ|)etRe λ>n}

T (s|λ|)etRe λ dv(f, g∗, λ)

+

∫
{λ∈σ2|T (s|λ|)etRe λ>n}

T (s|λ|)etRe λ dv(f, g∗, λ)
]

since σ1 is bounded and T (s| · |)etRe · is continuous on C,

there is such a C ≥ 1 that T (s|λ|)etRe λ ≤ C, λ ∈ σ1;

≤ sup
{g∗∈X∗ | ‖g∗‖=1}

[
Cv

(
f, g∗, {λ ∈ σ1

∣∣T (s|λ|)etRe λ > n})
+ v

(
f, g∗, {λ ∈ σ2

∣∣T (s|λ|)etRe λ > n})]
≤ sup
{g∗∈X∗ | ‖g∗‖=1}

Cv
(
f, g∗, {λ ∈ σ(A)

∣∣T (s|λ|)etRe λ > n}) by (2.4) with F (λ) ≡ 1;

≤ sup
{g∗∈X∗ | ‖g∗‖=1}

C4M‖EA({λ ∈ σ(A)|T (s|λ|)etRe λ > n})f‖‖g∗‖

= 4CM‖EA({λ ∈ σ(A)|T (s|λ|)etRe λ > n})f‖ by the strong continuity of the s.m.;

→ 0 as n→∞.

According to [17, Proposition 3.1], (3.17) and (3) imply that, for any t > 0, f ∈ X,
and s > 0,

etAf ∈ D(T (s|A|)).
Hence, for any f ∈ X, due to (2.11),

etAf ∈
⋂
s>0

D(T (s|A|)) = C(mn)(A), t > 0,

which, by Proposition 3.1, implies that, for f ∈ X,

e·Af ∈ C(mn)((0,∞), X),

i.e., the C0-semigroup
{
etA

∣∣t ≥ 0
}
generated by A is a C(mn)-semigroup.
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”Only if” Part. We shall prove this part by contrapositive, i.e., assuming that there
is such a b > 0 that for any a ∈ R,

σ(A) \ {λ ∈ C
∣∣ Re λ ≤ a− bM(| Im λ|)} �= ∅,

we are to show that A does not generate a C(mn)-semigroup.
Observe that the latter readily implies that the set

σ(A) \ {λ ∈ C
∣∣Re λ ≤ −bM(| Im λ|)}

is unbounded,
For σ(A), there are two possibilities

sup
λ∈σ(A)

Re λ =∞ or sup
λ∈σ(A)

Re λ <∞.

The first one implies that A does not generate a C0-semigroup [14], let alone a C(mn)-
semigroup.

With

(3.18) sup
λ∈σ(A)

Re λ <∞

being the case, A generates a C0-semigroup of its exponentials
{
etA

∣∣t ≥ 0
}
[18] and one

can choose a sequence of points {λn}∞n=1 in the complex plane as follows:

λn ∈ σ(A), n ∈ N,

Re λn > −bM(| Im λn|), n ∈ N, and

λ0 := 0, |λn| > max
[
n, |λn−1|

]
, n ∈ N.

The latter, in particular, indicates that the points λn are distinct

λi �= λj , i �= j.

Since each set{
λ ∈ C

∣∣Re λ > −bM(| Im λ|), |λ| > max [n, |λn−1|]
}
, n ∈ N,

is open in C, there exists such an εn > 0 that, along with the point λn, the set contains
the open disk

Δn =
{
λ ∈ C

∣∣|λ− λn| < εn
}
,

i.e., for any λ ∈ Δn,

(3.19) Re λ > −bM(| Im λ|) and |λ| > max
[
n, |λn−1|

]
.

The radii of the disks εn can be chosen small enough so that

(3.20) 0 < εn < 1/n, n ∈ N, and Δi ∩Δj = ∅, i �= j,

i.e., the disks are pairwise disjoint.
Considering that each Δn ∩ σ(A) �= ∅, Δn being an open set, by the properties of the

s.m. and the latter, we infer

(3.21) EA(Δn) �= 0, n ∈ N, and EA(Δi)EA(Δj) = δijEA(Δi),

(δij is Kronecker’s delta symbol and 0, here and whenever appropriate, designates the
zero operator). Hence, the subspaces EA(Δn)X are nontrivial and

EA(Δi)X ∩ EA(Δj)X = {0} , i �= j.

Thus, choosing vectors

(3.22) en ∈ EA(Δn)X, n ∈ N, with ‖en‖ = 1,

we obtain a vector sequence {en}∞n=1 such that, by (3.21),

(3.23) EA(Δi)ej = δijei.
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The latter, showing the linear independence of {e1, e2, . . . }, goes a step beyond implying
the existence of an ε > 0 such that

(3.24) dn := dist
(
en, span

({
ei
∣∣i ∈ N, i �= n

})) ≥ ε, n ∈ N.

Otherwise, there is a vanishing subsequence
{
dn(k)

}∞
k=1

dn(k) → 0 as k →∞,

and hence, for any k ∈ N, there exists an

fn(k) ∈ span
({

ei
∣∣i ∈ N, i �= n(k)

})
with ‖en(k) − fn(k)‖ < dn(k) + 1/n(k),

which, considering (2.2), implies

en(k) = EA(Δn(k))[en(k) − fn(k)]→ 0 as k →∞
contradicting (3.22).

As follows from the Hahn-Banach Theorem (see, e.g., [5]), (3.24) implies that, for each
n ∈ N, there is an e∗n ∈ X∗ such that

(3.25) ‖e∗n‖ = 1 and 〈ei, e∗j 〉 = δijdi.

For the sequence of the real parts {Re λn}∞n=1, there are the two possibilities

sup
n∈N

|Re λn| <∞ or sup
n∈N

|Re λn| =∞.

Suppose that

(3.26) sup
n∈N

|Re λn| =: ω <∞.

Let

f :=

∞∑
n=1

1

n2
en ∈ X and g∗ :=

∞∑
n=1

1

n2
e∗n ∈ X∗,

the series strongly converging in X and X∗, respectively, due to (3.22) and (3.25). By
(3.25) and (3.24),

(3.27) 〈en, g∗〉 = 1

n2
〈en, e∗n〉 =

dn
n2
≥ ε

n2
, n ∈ N.

As can be easily deduced from (3.23),

(3.28) EA(Δn)f =
1

n2
en, n ∈ N, and EA(∪∞n=1Δn)f = f.

Considering the latter and (3.27),

(3.29) v(f, g∗,Δn) ≥ |〈EA(Δn)f, g
∗〉| =

〈
1

n2
en, g

∗
〉
≥ ε

n4
, n ∈ N.

For s = t = 1, we have

(3.30)

∫
σ(A)

T (|λ|)eRe λ dv(f, g∗, λ) by (3.28);

=

∫
σ(A)

T (|λ|)eRe λ dv(EA(∪∞n=1Δn)f, g
∗, λ) by the properties of the o.c.;

=

∫
∪∞n=1Δn

T (|λ|)eRe λ dv(f, g∗, λ) =
∞∑

n=1

∫
Δn

T (|λ|)eRe λ dv(f, g∗, λ)

for λ ∈ Δn, by (3.19), (3.26), and (3.20): |λ| ≥ n and

Re λ = Re λn − (Re λn − Re λ) ≥ Re λn − |λn − λ| ≥ −ω − εn ≥ −ω − 1;
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≥
∞∑

n=1

T (n)e−(ω+1)v(f, g∗,Δn) by (3.29);

≥ e−(ω+1)
∞∑

n=1

T (n)
ε

n4
=∞.

Indeed, by definition (2.9),

T (n) ≥ m0
n4

m4
, n ∈ N.

Hence, by [17, Proposition 3.1],

etAf
∣∣
t=1

�∈ D(T (|A|)).
Considering (2.11), the more so,

etAf
∣∣
t=1

�∈
⋂
s>0

D(T (s|A|)) = C(mn)(A).

Hence, according to Proposition 3.1,

e·Af �∈ C(mn) ((0,∞), X) ,

which implies that the C0-semigroup
{
etA

∣∣t ≥ 0
}
generated by A is not a C(mn)-semi-

group. Suppose that
sup
n∈N

|Re λn| =∞
and recall that we are also acting under hypothesis (3.18). Hence, there is a sub(3.22)

and (3.25)sequence
{
Re λn(k)

}∞
k=1

such that

(3.31) Re λn(k) ≤ −k, k ∈ N.

Let

f :=

∞∑
k=1

1

k2
en(k) ∈ X and g∗ :=

∞∑
k=1

1

k2
e∗n(k) ∈ X∗,

the series strongly converging in X and X∗, respectively, due to (3.22) and (3.25). By
(3.25) and (3.24),

(3.32) 〈en(k), g∗〉 = 1

k2
〈en(k), e∗n(k)〉 =

dn(k)

k2
≥ ε

k2
, k ∈ N.

By (3.23),

(3.33) EA(Δn(k))f =
1

k2
en(k), k ∈ N, and EA(∪∞k=1Δn(k))f = f.

Considering the latter and (3.32),

(3.34) v(f, g∗,Δn(k)) ≥ |〈EA(Δn(k))f, g
∗〉| =

〈
1

k2
en(k), g

∗
〉
≥ ε

k4
, k ∈ N.

Similarly to (3.30), for s = 1 and t = (2b)−1,∫
σ(A)

T (|λ|)e(2b)−1 Re λ dv(f, g∗, λ) =
∞∑
k=1

∫
Δn(k)

T (|λ|)e(2b)−1 Re λ dv(f, g∗, λ) =∞.

Indeed, for λ ∈ Δn(k), k ∈ N, by (3.19), (3.20), and (3.31),

− bM(| Im λ|) < Re λ = Re λn(k) − (Re λn(k) − Re λ) ≤ Re λn(k) + |λn(k) − λ|
≤ Re λn(k) + εn(k) ≤ −k + 1 ≤ 0

and hence,

Re λ ≤ −k + 1 ≤ 0 and |λ| ≥ | Im λ| ≥M−1
(
b−1[−Re λ]

)
.



ON THE GENERATION OF ULTRADIFFERENTIABLE C0-SEMIGROUPS 181

Using these estimates, for k ∈ N, we have∫
Δn(k)

T (|λ|)e(2b)−1 Re λ dv(f, g∗, λ) ≥
∫
Δn(k)

eM(|λ|)e(2b)
−1 Re λ dv(f, g∗, λ)

≥
∫
Δn(k)

eM(M−1(b−1[−Re λ]))e(2b)
−1 Re λ dv(f, g∗, λ)

=

∫
Δn(k)

eb
−1[−Re λ]e(2b)

−1 Re λ dv(f, g∗, λ) =
∫
Δn(k)

e(2b)
−1[−Re λ] dv(f, g∗, λ)

≥ e(2b)
−1(k−1)v(f, g∗,Δn(k)) by (3.34);

≥ e(2b)
−1(k−1) ε

k4
→∞ as k →∞.

Thus, by [17, Proposition 3.1],

etAf
∣∣
t=(2b)−1 �∈ D(T (|A|)).

Considering (2.11), the more so,

etAf
∣∣
t=(2b)−1 �∈

⋂
s>0

D(T (s|A|)) = C(mn)(A).

Hence, according to Proposition 3.1,

e·Af �∈ C(mn) ((0,∞), X) ,

which implies that the C0-semigroup
{
etA

∣∣t ≥ 0
}
generated by A is not a C(mn)-semi-

group.
This concludes the analysis of all the possibilities and thus, the proof of the ”only if”

part by contrapositive.
By [23, Theorem 3.1], the function T (·) defined by (2.9) can be replaced with any

nonnegative, continuous, and increasing on [0,∞) function F (·) satisfying (2.12). �

4. Gevrey ultradifferentiable C0-semigroups

Definition 4.1. Let β ≥ 0. We shall call a C0-semigroup
{
S(t)

∣∣t ≥ 0
}
in a complex Ba-

nach space (X, ‖ · ‖) a Roumieu (Beurling) type Gevrey ultradifferentiable C0-semigroup
of order β, or a E{β}-semigroup (E(β)-semigroup), if it is a C{[n!]β}-semigroup (C([n!]β)-
semigroup, respectively) in accordance with Definition 3.1.

The sequence mn = [n!]β with β ≥ 1 satisfying the conditions (GR) and (SBC) [21]

and the function T (·) being replaceable with F (λ) = eλ
1/β

, λ ≥ 0, (see [20] for details),
[19, Theorem 5.1] giving a characterization of the scalar type spectral generators of
Roumieu type Gevrey ultradifferentiable C0-semigroups of order β ≥ 1 (in particular, for
β = 1, of analytic semigroups [8, 14, 18]) immediately follows from Theorem 3.1.

The sequence mn = [n!]β with β > 1 satisfying the conditions (SGR) and (BC) (see
[22] for details), in the same manner, a ready consequence of Theorem 3.2 is the following

Corollary 4.1. Let β > 1. Then a scalar type spectral operator A in a complex Banach
space (X, ‖ · ‖) generates a E(β)-semigroup iff, for any b > 0, there is an a ∈ R such that

Re λ ≤ a− b| Im λ|1/β , λ ∈ σ(A).

Observe that, for 0 ≤ β ≤ 1, the sequence mn = [n!]β fails to satisfy the condition
(SGR), and, for 0 ≤ β < 1, even (GR). If a scalar type spectral operator A in a complex
Banach space (X, ‖ · ‖) generates a E{β}-semigroup with 0 ≤ β < 1 or a E(β)-semigroup
with 0 ≤ β ≤ 1, due to inclusions (2.6) and (2.7),

E(β)((0,∞), X) ⊆ E{β}((0,∞), X) ⊆ E(1)((0,∞), X),
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which implies that all the orbits e·Af , f ∈ X, are entire vector functions. Hence, being
defined of the whole space X, A ∈ L(X) by the Closed Graph Theorem and generates a
uniformly continuous semigroup (an entire semigroup of exponential type).

5. One more example

The rapidly growing sequence mn := en
2

also satisfies the conditions (SGR) and
(BC) and the function M(·) in this case can be replaced with

L(λ) :=

{
0 for 0 ≤ λ < 1,

[lnλ]2 for λ ≥ 1

(see [22] for details). Thus we have the following

Corollary 5.1. A scalar type spectral operator A in a complex Banach space (X, ‖ · ‖)
generates a C(en2 )-semigroup iff, for any b > 0, there is an a ∈ R such that

Re λ ≤ a− bL(| Im λ|), λ ∈ σ(A).

(cf. [19, Theorem 4.1]).

6. Final remark

Due to the scalar type spectrality of the operator A, Theorem 3.2 is void of restrictions
on its resolvent behavior, which appear to be inevitable for the results of this nature in
the general case (cf. [8, 14, 27]).
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