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FRACTIONAL STATISTICAL DYNAMICS AND FRACTIONAL
KINETICS

JOSÉ LUÍS DA SILVA, ANATOLY N. KOCHUBEI, AND YURI KONDRATIEV

Abstract. We apply the subordination principle to construct kinetic fractional sta-
tistical dynamics in the continuum in terms of solutions to Vlasov-type hierarchies.
As a by-product we obtain the evolution of the density of particles in the fractional
kinetics in terms of a non-linear Vlasov- type kinetic equation. As an application we
study the intermittency of the fractional mesoscopic dynamics.

1. Introduction

A general scheme for the study of Markov dynamics for interacting particle systems
(IPS for short) in the continuum includes the following steps. We start with a heuristic
Markov generator L defined on functions over a configuration space of the system. As-
sociated with this generator is a forward Kolmogorov equation for states of the system
(a.k.a. a Fokker–Planck equation (FPE)). A solution to this equation gives the so-called
statistical dynamics of the model under consideration [11]. A constructive approach to
the existence and uniqueness problem for solution of the FPE and for the analysis of its
properties exploits the possibility of writing this equation as a hierarchical chain of evo-
lution equations for time dependent correlation functions [11, 12]. This step corresponds
to a microscopic description of the system.

A mesoscopic level of the study is related with a Vlasov-type scaling limit for the
dynamics that leads to a kinetic or Vlasov hierarchy for correlation functions. This
scaling limit destroys the Markov property of the evolution of the limiting Vlasov–Fokker–
Planck equation (VFPE): for an initial probability measure the solution, in general, is no
longer a measure. Still, the resulting dynamics has a conditional Markov property in the
following sense. If we start with a Poisson initial state then the solution of the VFPE
will be given by a flow of Poisson measures on the configuration space. In theoretical
physics this fact is known as the chaos propagation property.

The Poisson flow which appears in the Vlasov limit is completely characterized by
the density function ρt(x), which corresponds to the Poisson measure from the flow at
time t ≥ 0. A specific feature of the mesoscopic limit is a non-linear Vlasov-type kinetic
equation for this density. In most cases this equation may be informally derived directly
from the form of the generator L. However, a rigorous realization of the above scheme is
a non-trivial task for each particular model [10, 11, 9]. The study of the resulting kinetic
equations for concrete Markov dynamics of interacting particle systems in the continuum
belongs to the general theory of non-local non-linear evolution equations which has been
under active development in recent years.

The aim of the present paper is to extend the concept of statistical dynamics and
related structures to the case of fractional time derivatives. From the probabilistic point
of view this means that we leave the Markov dynamical framework by introducing a
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random time change in the corresponding Markov process – see for example [28, 23]. In
the language of functional analysis we are no more in the arena of semigroup evolutions.

Below we discuss the concept of a fractional Fokker–Plank equation (FPE) and the
related fractional statistical dynamics, which is still an evolution in the space of proba-
bility measures on the configuration space. The mesoscopic scaling of the generator of
this evolutions leads to the same result as for the initial FPE. The latter leads us to the
concept of a fractional VFPE. A subordination principle provides for the representation
of the solution to this equation as a flow of measures that is a transformation of a Pois-
son flow for the initial VFPE. Note that the density function for the fractal kinetics is a
subordination of the solution to the initial Vlasov equation. This density characterizes
the kinetic behavior of the fractional statistical dynamics, but it is not the same as the
solution to the Vlasov equation with a fractional time derivative, as is typically assumed
in theoretical physics.

In this paper we leave open the problem of rigorous realization of scaling approach
for particular models. Instead, our considerations are focused on questions about the
properties of subordinated flows. In particular, we clarify the possibility of having time-
dependent random point processes with an asymptotic intermittency property as a result
of subordination of Poisson flows.

2. Preliminaries

Let B(Rd) be the family of all Borel sets in Rd, d ≥ 1 and let Bb(Rd) denote the system
of all bounded sets in B(Rd).

The space of n-point configurations in an arbitrary Y ∈ B(Rd) is defined by

Γ(n)
Y :=

{
η ⊂ Y ∣∣ |η| = n

}
, n ∈ N.

We also set Γ(0)
Y := {∅}. As a set, Γ(n)

Y may be identified with the symmetrization of

Ỹ n =
{
(x1, . . . , xn) ∈ Y n

∣∣xk �= xl if k �= l
}
.

The configuration space over the space Rd consists of all locally finite subsets (confi-
gurations) of Rd, namely,

(1) Γ = ΓRd :=
{
γ ⊂ Rd

∣∣|γ ∩ Λ| <∞, for all Λ ∈ Bb(Rd)
}
.

The space Γ is equipped with the vague topology, i.e., the minimal topology for which
all mappings Γ 	 γ 
→ ∑x∈γ f(x) ∈ R are continuous for any continuous function f on
Rd with compact support. Note that the summation in

∑
x∈γ f(x) is taken over only

finitely many points of γ belonging to the support of f . It was shown in [18] that with
the vague topology Γ may be metrizable and it becomes a Polish space (i.e., a complete
separable metric space). Corresponding to this topology, the Borel σ-algebra B(Γ) is the
smallest σ-algebra for which all mappings

Γ 	 γ 
→ |γΛ| ∈ N0 := N ∪ {0}
are measurable for any Λ ∈ Bb(Rd). Here γΛ := γ ∩ Λ, and | · | the cardinality of a finite
set.

It follows that one can introduce the corresponding Borel σ-algebra, which we denote
by B(Γ(n)

Y ). The space of finite configurations in an arbitrary Y ∈ B(Rd) is defined by

Γ0,Y :=
⊔

n∈N0

Γ(n)
Y .

This space is equipped with the topology of disjoint unions. Therefore one can introduce
the corresponding Borel σ-algebra B(Γ0,Y ). In the case of Y = Rd we will omit the index
Y in the notation, thus Γ0 := Γ0,Rd Γ(n) := Γ(n)

Rd .
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The restriction of the Lebesgue product measure (dx)n to
(
Γ(n),B(Γ(n))

)
will be de-

noted by m(n), and we set m(0) := δ{∅}. The Lebesgue–Poisson measure λ on Γ0 is
defined by

(2) λ :=
∞∑

n=0

1
n!
m(n).

For any Λ ∈ Bb(Rd), the restriction of λ to ΓΛ := Γ0,Λ will be also denoted by λ. The
space

(
Γ,B(Γ)

)
is the projective limit of the family of spaces

{
(ΓΛ,B(ΓΛ))

}
Λ∈Bb(Rd)

. The
Poisson measure π on

(
Γ,B(Γ)

)
is given as the projective limit of the family of measures

{πΛ}Λ∈Bb(Rd), where πΛ := e−m(Λ)λ is the probability measure on
(
ΓΛ,B(ΓΛ)

)
. Here

m(Λ) is the Lebesgue measure of Λ ∈ Bb(Rd).
For any measurable function f : Rd → R we define a Lebesgue–Poisson exponent

(3) eλ(f, η) :=
∏
x∈η

f(x), η ∈ Γ0; eλ(f, ∅) := 1.

Then, by (2), for f ∈ L1(Rd, dx) we obtain eλ(f) ∈ L1(Γ0, dλ) and

(4)
∫

Γ0

eλ(f, η) dλ(η) = exp
(∫

Rd

f(x) dx
)
.

A set M ∈ B(Γ0) is called bounded if there exists Λ ∈ Bb(Rd) and N ∈ N such
that M ⊂ ⊔N

n=0 Γ(n)
Λ . We will make use of the following classes of functions on Γ0:

(i) L0
ls(Γ0) is the set of all measurable functions on Γ0 which have local support, i.e.,

G ∈ L0
ls(Γ0), if there exists Λ ∈ Bb(Rd) such that G �Γ0\ΓΛ= 0, while (ii) Bbs(Γ0) is the

set of bounded measurable functions with bounded support, i.e., G �Γ0\B= 0 for some
bounded B ∈ B(Γ0).

In fact, any B(Γ0)-measurable function G on Γ0 is a sequence of functions
{
G(n)

}
n∈N0

,
where G(n) is a B(Γ(n))-measurable function on Γ(n).

On Γ we consider the set of cylinder functions Fcyl(Γ). These functions are charac-
terized by the relation F (γ) = F �ΓΛ (γΛ).

The following mapping from L0
ls(Γ0) into Fcyl(Γ) which plays the key role in our

further considerations:

(5) KG(γ) :=
∑
η�γ

G(η), γ ∈ Γ,

where G ∈ L0
ls(Γ0). (See, for example, [17], [21, 22]). The summation in (5) is taken over

all finite sub-configurations η ∈ Γ0 of the (infinite) configuration γ ∈ Γ; this relationship
is represented symbolically by η � γ. The mapping K is linear, positivity preserving,
and invertible, with

(6) K−1F (η) :=
∑
ξ⊂η

(−1)|η\ξ|F (ξ), η ∈ Γ0.

Here and in the sequel, inclusions like ξ ⊂ η hold for ξ = ∅ as well as for ξ = η. We
denote the restriction of K onto functions on Γ0 by K0.

A measure μ ∈M1
fm(Γ) is called locally absolutely continuous with respect to (w.r.t.)

a Poisson measure π if for any Λ ∈ Bb(Rd) the projection of μ onto ΓΛ is absolutely
continuous w.r.t. projection of π onto ΓΛ. By [17], there exists in this case a correlation
functional kμ : Γ0 → R+ such that the following equality holds for any G ∈ Bbs(Γ0):

(7)
∫

Γ

(KG)(γ) dμ(γ) =
∫

Γ0

G(η)kμ(η) dλ(η).
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Restrictions k(n)
μ of this functional on Γ(n)

0 , n ∈ N0, are called correlation functions of
the measure μ. Note that k(0)

μ = 1.

3. Mesoscopic statistical dynamics

In this section we introduce the general scheme of Vlasov scaling for the Markov
dynamics of IPS – interacting particle systems – on configuration space. Thus we assume
that the initial distribution (the state of particles) in our system is a probability measure
μ0 ∈ M1(Γ) with corresponding correlation function k0 = (k(n)

0 )∞n=0. The distribution
of particles at time t > 0 is the measure μt ∈ M1(Γ), and kt = (k(n)

t )∞n=0 its correlation
function. If the evolution of states (μt)t≥0 is determined a priori by a heuristic Markov
generator L, then μt is the solution of the forward Kolmogorov equation (or Fokker–Plank
equation (FPE)),

(8)

{
∂μt

∂t = L∗μt,

μt|t=0 = μ0,

where L∗ is the adjoint operator. In terms of the time-dependent correlation functions
(kt)t≥0 corresponding to (μt)t≥0, the FPE may be rewritten as an infinite system of
evolution equations

(9)

{
∂k

(n)
t

∂t = (L�kt)(n),

k
(n)
t |t=0 = k

(n)
0 , n ≥ 0,

where L� is the image of L∗ in a Fock-type space of vector-functions kt = (k(n)
t )∞n=0. In

applications to concrete models, the expression for the operator L� is obtained from the
operator L via combinatorial calculations (cf. [17]). The following diagram

L
duality ��

K

��

L∗

K∗

��

L̂ = K−1LK L� = L̂∗ = K∗L∗(K−1)∗

describes the relationships.
The evolution equation (9) is nothing but a hierarchical system of equations to the

Markov generator L. This system is the analogue of the BBGKY-hierarchy of the Hamil-
tonian dynamics [4].

Our interest now turns to Vlasov-type scaling of stochastic dynamics for the IPS in a
continuum. This scaling leads to so-called kinetic description of the considered model. In
the language of theoretical physics we are dealing with a mean-field type scaling which
is adopted to preserve the spatial structure. In addition, this scaling will lead to the
limiting hierarchy, which possesses a chaos propagation property. In other words, if the
initial distribution is Poisson (non-homogeneous) then the time evolution of states will
maintain this property. We refer to [10] for a general approach, concrete examples, and
additional references.

There exists a standard procedure for deriving Vlasov scaling L�
V from the generator

L� in (9). Heuristically, L�
V corresponds to a (non-Markov) generator LV on observables

which may be reconstructed form L�
V just on the level of combinatorial calculations. All

together, it gives us the following chain of transformed operators:
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L �� LV
�� L∗

V
�� L�

V .

The specific type of scaling is dictated by the model in question. The process leading from
L� to L�

V produces a non-Markovian generator LV since it lacks the positivity-preserving
property. Therefore instead of (8) we consider the following kinetic FPE,

(10)

{
∂μt

∂t = L∗
V μt,

μt|t=0 = μ0,

and observe that if the initial distribution satisfies μ0 = πρ0 , then the solution is of the
same type, i.e., μt = πρt .

In terms of correlation functions, the kinetic FPE (10) gives rise to the following
Vlasov-type hierarchical chain (Vlasov hierarchy)

(11)

{
∂k

(n)
t

∂t = (L�
V kt)(n),

k
(n)
t |t=0 = k

(n)
0 , n ≥ 0.

Remark 1. 1. In applications it is important to consider the Lebesgue–Poisson
exponents k0(η) = eλ(ρ0, η) =

∏
x∈η ρ0(x) as the initial condition. The scaling

L�
V should be such that the dynamics k0 
→ kt preserves this structure, or more

precisely, kt should be of the same type

(12) kt(η) = eλ(ρt, η) =
∏
x∈η

ρt(x), η ∈ Γ0.

2. Relation (12) is known as the chaos preservation property of the Vlasov hierar-
chy. It turns out that equation (12) implies, in general, a non-linear differential
equation

(13)
∂ρt(x)
∂t

= ϑ(ρt)(x), x ∈ Rd,

for ρt, which is called the Vlasov-type kinetic equation.

Remark 2. In general, if one does not start with a Poisson measure, the solution will
leave the space M1(Γ). To have a bigger class of initial measures, we may consider the
cone inside M1(Γ) generated by convex combinations of Poisson measures, denoted by
P(Γ).

We would now like to generalize the above general scheme to obtain the analog of
kinetic fractional statistical dynamics (or equivalently mesoscopic fractional statistical
dynamics). It would be tempting simply to replace the usual time derivative in equation
(13) by a time fractional derivative. Because the equation (13) in general is non-linear,
it is then much harder to obtain a solution. But more essential is the question of the
meaning of such an equation. A naive use of the fractional derivative in the Vlasov
equation is not justified by the microscopic dynamics and its scaling. Our alternative
approach to realizing this generalization is described in the following section.

4. Fractional statistical dynamics

The procedure of Section 3 is suitable for describing non-Markov evolutions. More
precisely, in the FPE (8) we change the usual time derivative by the Caputo–Djrbashian
fractional time derivative Dα

t (CDfd for short) and then study the corresponding frac-
tional dynamics.

In order to proceed, we first have to define the CDfd. Let f : R+ −→ R be given; then
the CDfd of f is given in the Laplace transform domain by(LDα

t f
)
(s) = sα(Lf)(s)− sα−1f(0), s > 0, α ∈ (0, 1],
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where Lf denotes the Laplace transform of f

(Lf)(s) =
∫ ∞

0

e−stf(t) dt.

Another possible representation of the CDfd is(
Dα

t f
)
(t) =

1
Γ(1− α)

d

dt

∫ t

0

f(τ)− f(0)
(t− τ)α

dτ, 0 < α < 1.

In case f is absolutely continuous, we have(
Dα

t f
)
(t) =

1
Γ(1− α)

∫ t

0

f ′(τ)
(t− τ)α

dτ, 0 < α < 1.

The definition of the CDfd has natural extensions to vector-valued or measure valued
functions on R+. We refer to the monographs [30] and [15] for more details and references
concerning the CDfd.

We will introduce the fractional statistical dynamics for a given Markov generator
L by changing the time derivative in the FPE to the CDfd. The resulting fractional
Fokker–Planck dynamics (if it exists!) will act in the space of states on Γ, i.e., it will
preserve probability measures on Γ. The fractional Fokker–Planck equation

(FFPE)

{
Dα

t μ
α
t = L∗μα

t ,

μα
t |t=0 = μα

0 .

describes a dynamical system with memory in the space of measures on Γ. The corres-
ponding evolution no longer has the semigroup property. However, if the solution μt

of equation (10) exists, then the subordination principle (see [31], [1, 2] and references
therein) gives the solution of the equation FFPE, namely

(14) μα
t =

∫ ∞

0

Φα(τ)μτtα dτ.

Here Φα(z) is the Wright function

Φα(z) :=
∞∑

n=0

(−z)n

n!Γ(−αn+ 1− α)
,

a probability density function in R+). It is known (see, for example, [13] and [26]) that

Φα(t) ≥ 0, t > 0,
∫ ∞

0

Φα(t) dt = 1,

and that the moments of Φα are given by

(15)
∫ ∞

0

tδΦα(t) dt =
Γ(δ + 1)
Γ(αδ + 1)

, δ > −1.

Its Laplace transform is given by∫ ∞

0

e−τtΦα(τ) dτ = Eα(−t), t > 0,

where Eα is the Mittag–Leffler function (see [15]):

Eα(z) :=
∞∑

n=0

zn

Γ(αn+ 1)
.

An application of the subordination principle may be justified in many particular models
where the evolution of correlation functions may be constructed by means a C0-semigroup
in a proper Banach space. In general, the subordination formula may be considered as a
rule for the transformation of Markov dynamics to fractional ones.
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It is easy to see that μα
t is a measure. Actually, positivity follows from that fact that

for any measurable set A we have

μα
t (A) =

∫ ∞

0

Φα(t, s)μs(A) ds ≥ 0,

since μs is a measure and Φα is a pdf. The σ-additivity property may be verified using the
standard procedure. The FFPE equation may be written in terms of time-dependent cor-
relation functions as an infinite system of evolution equations, the so-called hierarchical
chain: {

Dα
t k

(n)
α,t = (L�kα,t)(n),

k
(n)
α,t |t=0 = k

(n)
α,0, n ≥ 0.

The evolution of the correlation functions should also be given by the subordination
principle. More precisely, if the solution kt of equation (11) exists, then we have

kα,t =
∫ ∞

0

Φα(τ)kτtα ds.

5. Fractional kinetics and Poisson flows

As in the case of Markov statistical dynamics addressed above, we may consider
Vlasov-type scaling in the framework of the FFPE. We know that the kinetic statis-
tical dynamics for a Poisson initial state πρ0 is given by a flow of Poisson measures

R+ 	 t 
→ μt = πρt ∈M1(Γ),

where ρt is the solution to the corresponding Vlasov kinetic equation. Then the fractional
kinetic dynamics of states may be defined as the subordination of this flow (see comments
above). Specifically, for 0 < α < 1 we consider the subordinated flow

μα
t :=

∫ ∞

0

Φα(τ)μτtα dτ =
∫ ∞

0

Φα(τ)πρτtα dτ.

The family of measures μα
t is no longer a Poisson flow. We would like to analyze the

properties of these subordinated flows to distinguish the effects of fractional evolution.
Note first that the density of the fractional kinetic state is given by the formula

ρα
t (x) =

∫ ∞

0

Φα(τ)ρτtα(x) dτ.

The latter is the subordination of the solution to the Vlasov equation and is not related
to a fractional Vlasov equation as it is expected in several heuristic considerations in
physics.

It is reasonable to study the properties of subordinated flows from a more general point
of view when the evolution of densities ρt(x) is not necessarily related to a particular
Vlasov-type kinetic equation. Similar transformations of Poisson flows do appear due to
completely different motivations in several applications. See, for example, [8, 29] and,
for the related fractional Poisson process, [32, 20, 24, 25, 33, 27], and references therein.

Below we will study certain properties of the resulting flows affected by fractional
dynamics.

5.1. Front propagation for the density. Let us consider a density evolution of the
form

ρt(x) = 11[−1−vt,1+vt](x), t ≥ 0, x ∈ R,

where v > 0 is the constant speed of the density front. The subordinated density has the
following representation

ρα
t (x) =

∫ ∞

0

Φα(τ)11[−1−vtατ,1+vtατ ](x) dτ,
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and for |x| > 1

ρα
t (x) =

∫ ∞

A(x,t)

Φα(τ) dτ,

where

A(x, τ) =
|x| − 1
vtα

.

We have ρα
t (x)→ 1, t→∞, |x| > 1 and ρα

t (x)→ 0, x→∞, t ≥ 0. Consider

Ψα(s) =
∫ ∞

s

Φα(τ) dτ.

Due to monotonicity we may find a unique sα s.t. Ψα(sα) = 1/2. Define the front of ρα
t

for given t > 0 as x ∈ R, for which ρα
t (x) = 1/2. The motion of the front is then given

by the formula
|x| = 1 + sαvt

α.

The latter result means that in the subordinated dynamics the density will be expanded
sub-linearly and more slower for smaller α ∈ (0, 1).

5.2. Intermittency for subordinated flows. Each measure from the flow μα
t defines

a generalized random process on Rd given for f ∈ C0(Rd) by

Xf(γ) =
∑
x∈γ

f(x), γ ∈ Γ.

Let us consider the corresponding moments

mp
t (f) =

∫
Xp

f dμ
α
t , p ≥ 1.

The notion of asymptotic intermittency is well understood for regular random fields; see
for example [7, 6]. In the case of generalized random fields this notion may be formulated
as follows.

Definition 1. (Intermittency via moments). The flow μα
t , t ≥ 0 has the asymptotic

intermittency property if for any 0 ≤ f ∈ C0(Rd) and for all p1, . . . , pn ∈ N with
p1 + · · ·+ pn = p one had

lim
t→∞

mp
t (f)

mp1
t (f) . . .mpn

t (f)
=∞.

This property means that moments of the random field grow in time progressively
with the order. In the case of random point processes the leading growth of moments is
defined in terms of correlation functions of the corresponding orders.

This gives us the option of reformulating the definition of asymptotic intermittency
in terms more convenient for our purposes.

Definition 2. (Intermittency via correlation functions). The flow μα
t , t ≥ 0 has the

asymptotic intermittency property if for any η ∈ Γ0 and its decomposition η = η1∪· · ·∪ηn

in disjunct subsets for the correlation function kμα
t
, one has

lim
t→∞

kμα
t
(η)

kμα
t
(η1) . . . kμα

t
(ηn)

=∞.

For a detailed discussion of relations between different versions of the intermittency
property for random point processes, see [16].

Let us consider the dynamics of the density given by ρt(x) = eβtσ

, β, σ > 0. The flow of
Poisson measures πρt has, for each t ≥ 0, correlation functions k(n)

πρt
(x1, . . . , xn) = eβntσ

.
Therefore the intermittency is absent.
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Theorem 1. Let 0 < α < 1 be given. Consider the subordinated flow for the Poisson
flow introduced above,

μα
t :=

∫ ∞

0

Φα(τ)πρτtα dτ.

Assume σ(1 − α) < 1. Then the flow μα
t has the asymptotic intermittency property.

Proof. The n-th correlation function of μα
t is given by

(ρα
t )(n)(x1, . . . , xn) =

∫ ∞

0

Φα(τ)(ρτtα(x))n dτ

=
∫ ∞

0

Φα(τ)enβtσατσ

dτ =
∞∑

k=0

(nβtσα)k

k!

∫ ∞

0

Φα(τ)τσk dτ

=
∞∑

k=0

(nβtσα)k

k!
Γ(σk + 1)
Γ(σkα+ 1)

=
∞∑

k=0

nkzk

k!
Γ(σk + 1)
Γ(σkα+ 1)

,

where z := βtσα. It is known [5] that the series converges for all values of z if and only
if σ < 1/(1− α), and that

(ρα
t )(n)(x1, . . . , xn) ∼ C(nz)1/(2μ) exp

(
c(nz)1/μ

)
,

where C, c > 0, μ = 1 + σ(α − 1). Since 0 < μ < 1, this asymptotic behavior implies
intermittency. In fact, due to Definition 2, we need to consider the limiting behavior of
the ratio

exp(c(nz)
1
μ

exp
∑m

k=1

(
c(nkz)

1
μ
) , z = βtσα

for t → ∞ under the assumption
∑m

k=1 nk = n. This limit is equal +∞ due to the
inequality (

m∑
k=1

nk

) 1
μ

>

m∑
k=1

(nk)
1
μ

for 1/μ > 1 (see [3], Chapter 1, § 16). �

5.3. Polynomially growing density. Let us now consider the case of a polynomial
density ρt(x) = (1 + t)p, p ∈ N. For any n ∈ N, the nth correlation function is given by

(ρα
t )(n)(x1, . . . , xn) =

∫ ∞

0

Φα(τ)ρτtα(x1) . . . ρτtα(xn) dτ

=
∫ ∞

0

Φα(τ)(1 + τtα)pn dτ =
np∑

j=0

(
np

j

)
tαj

∫ ∞

0

τ jΦα(τ) dτ

=
np∑

j=0

(
np

j

)
tαj Γ(j + 1)

Γ(jα+ 1)
=

np∑
j=0

(np)!
(np− j)! t

αj 1
Γ(αj + 1)

=
(np)!

Γ(αnp+ 1)
tαnp + o(tαnp).

In particular, for n = 1, the 1st correlation function is equal to

(ρα
t )(1) = ρα

t =
p!

Γ(αp+ 1)
tαp + o(tαp).



206 JOSÉ LUÍS DA SILVA, ANATOLY N. KOCHUBEI, AND YURI KONDRATIEV

Therefore we obtain

(ρα
t )(n)

(ρα
t )n

=
(np)!

Γ(αnp+ 1)
tαnp ×

(
Γ(αp+ 1)

p!

)n 1
tαpn

+ o(1)

=
(np)!

Γ(αnp+ 1)
×
(

Γ(αp+ 1)
p!

)n

+ o(1),

which is constant as t goes to infinity. In conclusion, the power growth of the 1st cor-
relation function is not sufficient to organize intermittency in the subordinated flow.
Summarizing the above considerations, we conclude that subordinating a flow (which
corresponds to the dynamics of a system without intermittency) is a way to organize
intermittency.

6. Examples

In this section we apply the general scheme of the fractional statistical dynamics
developed here to concrete models, namely the contact model and the pure birth model,
also known as the Surgailis pure birth model.

Example 3. (Surgailis pure birth model). This is an example in which the kinetic frac-
tional statistical dynamics is a mixture of Poisson measures. The Surgailis pure birth
model (zero mortality) has generator given by

(LF )(γ) = z

∫
Rd

[F (γ ∪ x)− F (γ)] dx.

(cf. [19]). Starting from from the Poisson initial distribution μ0 = πρ0 , the solution of
the FPE {

∂μt

∂t = L∗μt,

μt|t=0 = πρ0

is of the same type
μt = πzt+ρ0 .

The solution of the fractional FPE{
Dα

t ν
α
t = L∗να

t ,

να
t |t=0 = πρ0

is then given by the subordination principle as

να
t =

∫ ∞

0

Φα(s)πztαs+ρ0 ds.

Hence the solution να
t , t > 0 is a mixture of Poisson measures. The correlation function of

the Poisson measure πztαs+ρ0 is ((ztαs+ρ0)n)∞n=0, and therefore the correlation function
of the mixture να

t is, for n ≥ 0,

r
(n)
t,α =

∫ ∞

0

Φα(s)(ztαs+ ρ0)n ds

=
n∑

j=0

(
n

j

)
(ztα)jρn−j

0

∫ ∞

0

Φα(s)sj ds.

The absolute moments of Φα (cf. eq. (15)) satisfy∫ ∞

0

sjΦα(s) ds =
Γ(j + 1)
Γ(αj + 1)

, j > −1.
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Accordingly, the nth order correlation function of the measure να
t reduces to

r
(n)
t,α =

n∑
j=0

(
n

j

)
ρn−j
0 (ztα)j j!

Γ(αj + 1)
= (ztα)n n!

Γ(αn+ 1)
+ o
(
(ztα)n

)
.

In particular (
r
(1)
t,α

)n =
(

ztα

Γ(α+ 1)

)n

+ o
(
(ztα)n

)
,

and thus

r
(n)
t,α(

r
(1)
t,α

)n = (ztα)n n!
Γ(nα+ 1)

×
(

Γ(α+ 1)
ztα

)n

+ o((ztα)n)

=
(n− 1)!
αΓ(nα)

(Γ(α + 1))n + o((ztα)n).

From this we see that as t → ∞ the above coefficient does not explode, which tell us
that this model has no asymptotic intermittency. In other words, the power growth of
the correlation function corresponding to the FPE is not sufficient to realize asymptotic
intermittency of the kinetic fractional statistical dynamics. In the next example we show
that under strong growth on the nth order correlation function of the FPE (exponential
growth), the kinetic fractional statistical dynamics does exhibit asymptotic intermittency.

Example 4. (Contact model). The contact model is one of the simplest models in the
theory of IPS. Nevertheless, it has interesting properties, e.g., its asymptotic behavior
and the structure of its equilibrium measures. We refer to [10] for more details.

The generator L of the stochastic dynamics is given informally by

(LF )(γ) =
∑
x∈γ

m
(
F (γ\x)− F (γ)

)
+
∫

Rd

b(x, γ)
(
F (γ ∪ x) − F (γ)

)
dx.

Here m > 0 is a constant mortality rate and the birth rate is

b(x, γ) =
∑
y∈γ

a(x− y),

where 0 ≤ a ∈ L1(Rd) is even.
In the kinetic limit, the correlation functions of the contact model in the super critical

regime are given by

r
(n)
t (x1, . . . , xn) = Cneβnt

for certain C, β > 0 [19], [10]. The correlation functions of the solution for the fractional
kinetic dynamics are then given by

r
(n)
t,α = Cn

∫ ∞

0

Φα(s)eβntαs ds = CnEα(βntα), n ∈ N.

Using the asymptotic behavior of the Mittag-Leffler function Eα as t→∞ (see eq. (6.4)
in [14]), we can conclude that the kinetic fractional statistical dynamics in the contact
model does exhibit asymptotic intermittency. Of course, this statement is a particular
case of Theorem 1 for σ = 1.
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