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ON APPROXIMATION OF SOLUTIONS OF
OPERATOR-DIFFERENTIAL EQUATIONS WITH THEIR ENTIRE

SOLUTIONS OF EXPONENTIAL TYPE

V. M. GORBACHUK

Abstract. We consider an equation of the form y′(t)+Ay(t) = 0, t ∈ [0,∞), where
A is a nonnegative self-adjoint operator in a Hilbert space. We give direct and inverse
theorems on approximation of solutions of this equation with its entire solutions of
exponential type. This establishes a one-to-one correspondence between the order of
convergence to 0 of the best approximation of a solution and its smoothness degree.
The results are illustrated with an example, where the operator A is generated by a
second order elliptic differential expression in the space L2(Ω) (the domain Ω ⊂ �

n

is bounded with smooth boundary) and a certain boundary condition.

1. Let A be a nonnegative self-adjoint operator in a Hilbert space H with a scalar
product (·, ·). Denote by C{1}(A) the set of all its exponential type entire vectors (see
[4]), namely,

C{1}(A) =
{
f ∈ C∞(A) =

∞⋂
n=1

D(An)
∣∣∃α > 0, ∃c = c(f) > 0 :

‖Anf‖ ≤ cαn, n ∈ N0 = N ∪ {0}
}

(everywhere in the sequel c denotes various numerical constants corresponding to the
situations under consideration, D(A) is a domain of A and ‖f‖ =

√
(f, f)). The number

σ(f,A) = inf
{
α > 0

∣∣∃c > 0, ∀n ∈ N0 : ‖Anf‖ ≤ cαn
}

is called the type of the vector f with respect to the operator A.
As has been shown in [3] that

C{1}(A) =
{
f ∈ H

∣∣f = E(λ)g, ∀λ > 0, ∀g ∈ H
}
,

where E(λ) = E([0, λ]) is the spectral measure of A.
Now, consider the equation

(1) y′(t) +Ay(t) = 0, t ∈ R+ = [0,∞).
By a weak solution of this equation we mean a continuous vector-valued function y(t) :
R+ 
→ H such that for any t ∈ R+,∫ t

0

y(s) ds ∈ D(A) and y(t) = −A
∫ t

0

y(s) ds+ y(0).

Denote by S the set of all weak solutions of (1). As it was established in [1],
(2) S =

{
y(t) : R+ 
→ H

∣∣ y(t) = e−Atf, f ∈ H
}
,

where
e−Atf =

∫ ∞

0

e−λt dE(λ)f.
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Note that the set of all strong (or simply) solutions of (1) is given by formula (2) with f
ranging over whole D(A).

It is not difficult to verify that S is a Hilbert space with the norm
(3) ‖y‖S = sup

t∈R+

∥∥e−Atf
∥∥ = ‖f‖.

If the operator A is bounded, then each weak solution y(t) of equation (1) can be
extended to an entire H-valued vector function y(z) of exponential type,

σ(y) = inf
{
α > 0 : ‖y(z)‖ ≤ ceα|z|

}
.

But it is not the case if A is unbounded. The set S0 of all weak solutions of (1) admitting
an extension to an entire vector function of exponential type is described by the following
theorem.

Theorem 1. A weak solution y(t) of equation (1) belongs to S0 if and only if it can be
represented in form (2) with f ∈ C{1}(A). The set S0 is dense in S, and σ(y) = σ(f,A).

Proof. Let f ∈ C{1}(A). Then f = E(α)f , where α = σ(f,A). By (2),

y(t) =
∫ α

0

e−λt dE(λ)f.

From this it follows that y(t) can be extended to an entire vector-valued function y(z)
and

‖y(z)‖2 =
∫ α

0

e−2Rezλ d(E(λ)f, f) ≤ e2σ(f,A)|z|‖f‖2,
that is, y(z) is an entire H-valued function of exponential type σ(y) ≤ σ(f,A).

Conversely, if y(t) = e−Atf admits an extension to an entire vector-valued function of
exponential type σ(y), then, by virtue of

‖y(−t)‖2 =
∫ ∞

0

e2λt d(E(λ)f, f) ≤ ce2σ(y)t, t ≥ 0,

we have ∫ ∞

σ(y)

e2t(λ−σ(y)) d(E(λ)f, f) ≤ c.

Passing to the limit under the integral sign as t → ∞, we conclude, on the basis of
the Fatou theorem, that the measure generated by the monotone function (E(λ)f, f) is
concentrated on the interval [0, σ(y)]. Hence, σ(f,A) ≤ σ(y).

Density of S0 in S follows from the density in H of the set {E([0, α])f, ∀α > 0, ∀f ∈
H}. �

In view of Theorem 1, it is reasonable to ask whether it is possible to approximate
an arbitrary weak solution of equation (1) with its exponential type entire solutions.
An answer to the question is given below. We prove direct an inverse theorems which
ascertain the relationship between the degree of smoothness of a solution and the rate of
convergence to 0 of its best approximation. In doing so, the operator approach developed
in [7, 4, 5] plays an important role.

2. Recall some definitions and notations of the approximation theory required to
formulate further results.

For y ∈ S and a number r > 0, we put
Er(y) = inf

y0∈S0:σ(y0)≤r
‖y − y0‖S.

Thus, Er(y) is the best approximation of a weak solution y(t) of equation (1) with its
entire solutions of exponential type not exceeding r. If y is fixed, the function Er(y) does
not increase and, since S0 = S, Er(y)→ 0 as r →∞.
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For f ∈ H, set also

Er(f,A) = inf
f0∈C{1}(A):σ(f0,A)≤r

‖f − f0‖ = ‖(I − E(r))f‖.

If y(t) = e−Atf , then, by virtue of (3),

(4) Er(y) = Er(f,A).
Besides, for any k ∈ N0, we introduce the function

ωk(t, y) = sup
|h|≤t

sup
s∈R+

∥∥∥ k∑
j=0

(−1)k−jCj
ky(s+ jh)

∥∥∥, k ∈ N; ω0(t, y) ≡ ‖y‖S, t > 0.

Taking into account (2) and the equality e−Asy(t) = y(t+ s), we conclude that

∀k ∈ N0 : ωk(t, y) = sup
|h|≤t

∥∥∥(e−Ah − I)k y∥∥∥
S

(I is the identity operator).
The following theorem establishes a relation between Er(y) and ωk(t, y), and it is an

analog of the well-known Jackson’s theorem on approximation of a continuous periodic
function by trigonometric polynomials.

Theorem 2. Let y ∈ S. Then

(5) ∀k ∈ N, ∃ck > 0 : Er(y) ≤ ckωk

(
1
r
, y

)
, r > 0.

Proof. By (2), y(t) = e−Atf, f ∈ H. From (3), (4), it follows that

ω2
k(t, y) = sup

0≤s≤t

∥∥∥(e−As − I)k y∥∥∥2
S
≥
∥∥∥(e−At − I)k y∥∥∥2

S
= sup

s∈R+

∥∥∥(e−At − I)k e−Asf
∥∥∥2

=
∥∥∥(e−At − I)k f∥∥∥2 =

∫ ∞

0

(
e−λt − 1

)2k
d(E(λ)f, f)

≥
∫ ∞

1
t

(
e−λt − 1

)2k
d(E(λ)f, f) ≥ (1− e−1

)2k E 1
t
(y).

So,

∀t > 0 : E 1
t
(y) ≤ (1− e−1

)k
ωk(t, y).

Setting r = 1
t and ck =

(
1− e−1

)k, we obtain (5). �

Denote by Cn(R+,H) the set of all n times continuously differentiable on R+ H-valued
vector-valued functions. Since the operator A is closed, the inclusion y ∈ S ∩Cn(R+,H)
implies that y(k) ∈ S, k = 1, 2, . . . , n.

Theorem 3. Suppose that y ∈ Cn(R+,H), n ∈ N0. Then

∀r > 0, ∀k ∈ N0 : Er(y) ≤ ck+n

rn
ωk

(
1
r
, y(n)

)
,

where the constants ck are the same as in Theorem 2.

Proof. Let y ∈ Cn(R+,H), r > 0 and 0 ≤ t < 1
r . Using properties of a contraction

C0-semigroup, we get∥∥∥(e−At − I)k+n
y(s)

∥∥∥ =
∥∥∥(e−At − I)n (e−At − I)k y(s)∥∥∥

≤
∫ t

0

. . .

∫ t

0

∥∥∥e−A(s1+...sn)
∥∥∥∥∥∥(e−At − I)k Any(s)

∥∥∥ ds1 . . . dsn

≤ tn
∥∥∥(e−At − I)k y(n)(s)

∥∥∥ ,
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whence

ωk+n

(
1
r
, y

)
≤ 1
rn
ωk

(
1
r
, y(n)

)
and, because of (5),

Er(y) ≤ ck+nωk+n

(
1
r
, y

)
≤ ck+n

rn
ωk

(
1
r
, y(n)

)
,

which is what had to be proved. �

Setting, in Theorem 3, k = 0 and taking into account that ω0(t, y(n)) = ‖y(n)‖S, we
arrive at the following assertion.

Corollary 1. Let y ∈ Cn(R+,H), n ∈ N. Then

∀r > 0 : Er(y) ≤ cn
rn
‖y(n)‖S.

For numbers h > 0 and k ∈ N0, we put

Δk
h =

(
e−Ah − I)k =

k∑
j=0

(−1)k−jCj
ke

−Ajh.

Lemma 1. If y ∈ S0 and σ(y) = α, then

(6) ∀h > 0, ∀k, n ∈ N0 :
∥∥∥Δk

hy
(n)
∥∥∥

S
≤ (αh)kαn‖y‖S.

Proof. It follows from the inequality
1− λh− e−λh ≤ 0 (λ ≥ 0, h > 0)

and the representation y(t) = e−Atf that∥∥∥Δk
hy

(n)
∥∥∥2 =

∫ α

0

(
1− e−λh

)2k
e−2λtλ2n d(E(λ)f, f)

≤
∫ α

0

(λh)2kλ2n d(E(λ)f, f) ≤ (αh)2kα2n‖f‖.
This and (3) imply ∥∥∥Δk

hy
(n)
∥∥∥

S
≤ (αh)kαn‖f‖ = (αh)kαn‖y‖S. �

Taking in (6) k = 0, we arrive at an analog of Bernstein’s inequality, namely

(7) ∀n ∈ N :
∥∥∥y(n)

∥∥∥ ≤ αn‖y‖S.
Putting there n = 0, we obtain

∀n ∈ N :
∥∥Δk

hy
∥∥

S
≤ (αh)k‖y‖S = (αh)kαn‖y‖S.

It should be noted that the inequality

(8) Er(y) ≤ c

rn
, r > 0, n ∈ N,

does not yet imply the inclusion y ∈ Cn(R+,H). Nevertheless, the following statement,
inverse to Theorem 3, is valid.

Theorem 4. Suppose that y ∈ S, and let ω(t) be a continuity module type function, i.e.,
1) ω(t) is continuous and nondecreasing on R+;
2) ω(0) = 0;
3) ∃c > 0, ∀t > 0 : ω(2t) ≤ cω(t).

In order that y ∈ Cn(R+,H), it is sufficient that there exist a number m > 0 such that

(9) ∀r > 0, ∀n ∈ N : Er(y) ≤ m

rn
ω

(
1
r

)
.
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Proof. Assume that, for y ∈ S, condition (9) is fulfilled. Then there exists a sequence
yi ∈ S : σ(yi) < 2i (i ∈ N) such that

‖y − yi‖S → 0 as i→∞.
In view of (7) and the inequality σ(yi − yi−1) < 2i (i ∈ N), we have∥∥∥y(n)

i − y(n)
i−1

∥∥∥
S
≤2in‖yi − yi−1‖S ≤ 2in(‖y − yi‖S + ‖y − yi−1‖S)

≤2in

(
m

2in
ω

(
1
2i

)
+

m

2(i−1)n
ω

(
1

2i−1

))
.

From this it follows that∥∥∥y(n)
i − y(n)

i−1

∥∥∥
S
≤ m2n

(
1
2n

+ c

)
ω

(
1
2i

)
,

and therefore ∥∥∥y(n)
i − y(n)

i−1

∥∥∥
S
→ 0 as i→∞.

Since the space S is complete, there exists ỹ ∈ S such that∥∥∥y(n)
i − ỹ

∥∥∥
S
→ 0 when i→∞.

Thus, yi → y, y
(n)
i → ỹ (i → ∞) in the space S. Taking into account that the operator

dn

dtn is closed in S, we conclude that y ∈ Cn(R+,H) and y(n)(t) ≡ ỹ(t). �

Replacing in inequality (8) n by n+ ε and thus strengthening it, we shall arrive at the
following consequence.

Corollary 2. Let, for y ∈ S,

∃c > 0, ∃ε > 0 : Er(y) ≤ c

rn+ε
.

Then y ∈ Cn(R+,H).

3. Now let {mn}n∈N0 be a nondecreasing sequence of numbers (there is no loss of
generality in assuming that m0 = 1). We put

C{mn} = C{mn}(R+,H) =
⋃
α>0

Cα
mn
, C(mn) = C(mn)(R+,H) =

⋂
α>0

Cα
mn
,

where
Cα

mn
= Cα

mn
(R+,H)

=
{
y ∈ C∞(R+,H)

∣∣∃c = c(y) > 0, ∀k ∈ N0 : sup
t∈R+

∥∥∥y(k)(t)
∥∥∥ ≤ cmkα

k
}

is a Banach space with respect to the norm

‖y‖Cα
mn

= sup
k∈N

supt∈R+

∥∥y(k)(t)
∥∥

αkmk
.

The spaces C{mn} and C(mn) are equipped with the topologies of inductive and projective
limits of the spaces Cα

mn
, respectively. Note that the spaces C{n!}, C(n!) (mn = n!) and

C{1} (mn ≡ 1) are nothing that, respectively, the spaces of bounded on R+ with all their
derivatives analytic, entire, and entire of exponential type H-valued vector functions.

In what follows, we assume in addition that {mn}n∈N0 satisfies the condition
(10) ∀α > 0, ∃c = c(α) : mn ≥ cαn

and put

(11) τ(λ) =
∞∑

n=0

λn

mn
.

It is clear that τ(λ) is entire, τ(λ) ≥ 1 for λ ≥ 0, and τ(λ) ↑ ∞ as λ→∞.
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Theorem 5. Suppose the condition

(12) ∃c > 0, ∃h > 1, ∀n ∈ N0 : mn+1 ≤ chnmn

to be fulfilled for the sequence {mn}n∈N0. Then the following equivalence relations hold:

y ∈ C∞(R+,H) ⇐⇒ ∀α > 0 : Er(y) = O
(

1
rα

)
(r →∞),

y ∈ C{mn} ⇐⇒ ∃α > 0 : Er(y) = O
(
τ−1(αr)

)
(r →∞),

y ∈ C(mn) ⇐⇒ ∀α > 0 : Er(y) = O
(
τ−1(αr)

)
(r →∞)

(τ(λ) is defined by (11)).

Proof. Let C∞(A) denote the set of all infinitely differentiable vectors of the operator A,

C∞(A) =
⋂

n∈N0

D(An).

For a number α > 0, we put

Cα
mn

(A) =
{
f ∈ C∞(A)

∣∣∃c = c(f) > 0, ∀n ∈ N0 : ‖Anf‖ ≤ cαnmn

}
.

The set Cα
mn

(A) is a Banach space with respect to the norm

‖f‖Cα
mn

(A) = sup
n∈N0

‖Anf‖
αnmn

.

Then
C{mn}(A) =

⋃
α>0

Cα
mn

(A) and C(mn)(A) =
⋂
α>0

Cα
mn

(A)

are linear locally convex spaces with topologies of the inductive and the projective limits,
respectively.

Let
Er(f,A) = inf

f0∈C{1}(A)
‖f − f0‖.

As it has been shown in [4], the following equivalence relations take place:

(13)
f ∈ C∞(A) ⇐⇒ ∀α > 0 : Er(f,A) = O

(
1

rα

)
(r →∞),

f ∈ C{mn}(A) ⇐⇒ ∃α > 0 : Er(f,A) = O
(
τ−1(αr)

)
(r →∞),

f ∈ C(mn)(A) ⇐⇒ ∀α > 0 : Er(f,A) = O
(
τ−1(αr)

)
(r →∞).

Consider the map F : H 
→ S,
Ff = e−Atf.

Since, for y ∈ S, there exists a unique vector f ∈ H such that y = e−Atf , this transfor-
mation is one-to-one. From (3) it follows that F maps H onto S isometrically and

(14) F (C∞(A)) = C∞(R+,H), F
(
C{mn}(A)

)
= C{mn}, F

(
C(mn)(A)

)
= C(mn).

The proof of the theorem follows from (13), (14) because of Er(f,A) = Er
(
e−Atf

)
. �

If mn = nnβ (β > 0), then τ(r) = e−r1/β

and Theorem 5 yields the following assertion.

Corollary 3. The following equivalence relations are valid:

y ∈ C{nnβ}(A) ⇐⇒ ∃α > 0 : Er(y) = O
(
e−αr1/β

)
(r →∞),

y ∈ C(nnβ)(A) ⇐⇒ ∀α > 0 : Er(y) = O
(
e−αr1/β

)
(r →∞).

Recall that an entire H-valued vector function x(λ) has a finite order of growth if

∃γ > 0, ∀λ ∈ C : ‖x(λ)‖ ≤ exp(|λ|γ).

The greatest lower bound ρ(x) of such γ is the order of x(λ). The type of an entire
vector-valued function x(λ) of an order ρ is determined as

σ(x) = inf {a > 0 : ‖x(λ)‖ ≤ exp(a|λ|ρ)} .
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Since the semigroup
{
e−At

}
t≥0

is analytic, every weak solution y(t) of equation (1) is
analytic on (0,∞). It is not difficult to show that it is analytic on [0,∞) if and only if
y ∈ C{nn}.

By Corollary 3,
∃α > 0 : Er(y) = O

(
e−αr

)
(r →∞).

As for the extendability of y(t) to an entire vector function of order ρ and finite type,
the answer to the question gives the next theorem.

Theorem 6. In order that a weak solution of equation (1) admit an extension to an
entire H-valued vector function y(z), it is necessary and sufficient that
(15) ∀α > 0 : Er(y) = O

(
e−αr

)
(r →∞).

The extension y(z) is of finite order ρ and finite type if and only if

∃α > 0 : Er(y) = O
(
e−αr1/β

)
(r →∞),

where β and ρ are connected with each other by the formula

β =
ρ− 1
ρ

< 1.

Note that we may always suppose ρ > 1. Indeed, if ρ ≤ 1 and the type is finite, then
y ∈ S0 and it has no sense to approximate a solution from S0 by solutions from the same
space.

Proof of Theorem 6. Let y(t) be a weak solution of equation (1). By Corollary 3, y ∈
C(nn), so y(t) admits an extension to an entire vector function if and only if relation (15)
is fulfilled.

Assume that y(t) admits an extension to an entire H-valued vector function y(z) which
has an order ρ and a finite type σ. Then

∀σ1 > σ, ∃c = c(σ1) : ‖y(z)‖ ≤ ceσ1|z|ρ .
Hence,

∀r > 0, ∀n ∈ N0 :
∥∥∥y(n)(z)

∥∥∥ ≤ n!
2π

∫
|z−ζ|=r

‖y(ζ)‖
|z − ζ|n+1

dζ ≤ cσ1n!
rn

exp (2σ1r
ρ) .

Taking into account that the function exp(arρ)
rn reaches its minimum at the point

(
n
aρ

)1/ρ

and using Stirling’s formula

n! = nne−n
√

2πn
(

1 +O

(
1
n

))
(n→∞),

we get ∥∥∥y(n)(z)
∥∥∥ ≤ c (2e1−ρσ1ρ

) 1
ρ n

ρ−1
ρ n,

which shows that y ∈ C{nnβ}, where

(16) β ≤ ρ− 1
ρ
⇐⇒ ρ ≥ 1

1− β , β < 1.

By Corollary 3,

(17) ∃α > 0 : Er(y) = O
(
e−αr1/β

)
(r →∞).

Conversely, let (17) hold true. Then Corollary 3 implies that y ∈ C{nnβ} (0 < β < 1)

is an entire vector-valued function and it can be represented by the series
∑∞

k=0
y(k)(0)

k! zk.
For its order of growth ρ we have

ρ = lim
n→∞

n lnn
ln n!

‖y(n)(0)‖
≤ lim

n→∞
n lnn

ln (n!n−nβ)
=

1
1− β ,
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that is,

(18) ρ ≤ 1
1− β .

It follows from (16) and (18) that

ρ =
1

1− β , 0 < β < 1. �

4. The direct and inverse theorems of the approximation theory are usually formulated
for Banach space. Proving them is slightly more complex than in the case of a Hilbert
space. Below we show how, for example, Theorem 5 can be reformulated in a Banach
space. To this end we introduce the following notations:

Hn = D(An), ‖f‖Hn =
(‖f‖2 + ‖Anf‖2)1/2

.

The space Hn is continuously and densely embedded into H. Denote by H−n the comple-
tion of H in the norm ‖f‖H−n =

∥∥∥(A+ I)−n
f
∥∥∥, the so called negative space associated

with the positive space Hn in the chain

Hn ⊆ H ⊆ H−n

(see [2]). By a suitable choice of the norms in Hn and H−n, one can attain the relation

‖f‖H−n ≤ ‖f‖ ≤ ‖f‖Hn.

Theorem 7. Let B be a Banach space inside the chain

(19) Hk1 ⊆ B ⊆ H−k2

of continuously and densely embedded into each other spaces with some k1, k2 ∈ N, and
let a sequence {mn}n∈N0 possess the properties (10) and (12). Then for a weak solution
y(t) of equation (1), the following equivalence relations hold true:

y ∈ C∞(R+,H) ⇐⇒ ∀α > 0 : Er(y,B) = O (r−α) (r →∞),
y ∈ C{mn} ⇐⇒ ∃α > 0, : Er(y,B) = O

(
τ−1(αr)

)
(r →∞),

y ∈ C(mn) ⇐⇒ ∀α > 0 : Er(y,B) = O
(
τ−1(αr)

)
(r →∞),

where
Er(y,B) = inf

y0∈S0:σ(y0)≤r
sup

s∈R+

‖y(s)− y0(s)‖B,

τ(λ) is defined by (11), ‖ · ‖B is the norm in B.

Proof. Show first that the spaces C{mn}(A) and C(mn)(A) considered as subspaces of H

coincide with the corresponding subspaces Ck
{mn}(A) and Ck

(mn)(A) constructed in the
Hilbert space Hk from the restriction A � Hk which is a nonnegative self-adjoint operator
in Hk.

So, let f ∈ C{mn}(A). Then

∃α > 0, ∃c > 0 :
∥∥Aif

∥∥
Hk =

(∥∥Aif
∥∥2 +

∥∥Ai+kf
∥∥2)1/2

(20) ≤ c
(
α2im2

i + α2(i+k)m2
k+i

)1/2

≤ c̃ (αhk
)i
mi,

i.e., C{mn}(A) ⊆ Ck
{mn}(A). From (19) we also have the embedding C(mn)(A) ⊆

Ck
(mn)(A). The inverse embeddings are consequences of the estimate

∥∥Aif
∥∥

B
≤ ∥∥Aif

∥∥
Hk .

Thus we have

(21) C{mn}(A) = Ck
{mn}(A), C(mn)(A) = Ck

(mn)(A).

It is also evident that C∞
k (A) = C∞(A).
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Since for a vector g ∈ C{1}(A) (mn ≡ 1) of type σ(g,A) ≤ k, the inequality∥∥Aif
∥∥

Hk =
(∥∥Aig

∥∥2 +
∥∥Ai+kg

∥∥2)1/2

≤ c
(
α2i + α2(i+k)

)1/2

≤ c̃αi, c̃ =
(
1 + α2k

)1/2
,

is valid, the space C{1}(A) coincides with Ck
{1}(A). Moreover, the type of g for the

operator A in the space C{1}(A) is the same as the one for A � Hk in the space Ck
{1}(A).

Denote by Ã the closure of A in the space H−k. It is easy to make sure that Ã is a
nonnegative self-adjoint operator in H−k and if the space H is considered as a subspace
of H−k, then we arrive at the previous situation. For this reason,

(22) C{mn}(A) = C−k
{mn}(A), C(mn)(A) = C−k

(mn)(A),

and
∀g ∈ C{1}(A) = Ck

{1}(A) : σ(g,A) = σ(g, Ã).

Taking into account that the restriction (extension) of the semigroup
{
e−At

}
t∈R+

to the

space Hk1 , k1 > 0, (to H−k2 , k2 > 0) is an analytic contractive C0-semigroup in Hk1 (in
H−k2), the embeddings Ck

{mn}(A) ⊆ B, C(mn)(A) ⊆ B and the chain (19), we obtain for
y(t) = e−Atf, f ∈ C{mn}(A) and y0(t) = e−Atg, g ∈ C{1}(A) that∥∥e−Atf − e−Asg

∥∥
B
≤ ∥∥e−Atf − e−Asg

∥∥
Hk1
≤ ‖f − g‖Hk1 ,

whence

Er(y,B) = inf
y0∈S0:σ(y0)≤r

sup s ∈ R+

∥∥e−Asf − e−Asg
∥∥

B
≤ ‖f − g‖Hk1 ,

that is,

(23) Er(y,B) ≤ Er(f,A � Hk1).
From (19) it follows that

∀t ∈ R+ :
∥∥e−Atf − e−Atg

∥∥
H−k2

≤ ∥∥e−Atf − e−Atg
∥∥

B
.

This implies that

‖f − g‖H−k2 = sup
t∈R+

∥∥e−Atf − e−Atg
∥∥

H−k2
≤ sup

t∈R+

∥∥e−Atf − e−Atg
∥∥

B

and, hence,

inf
g∈C{1}(A):σ(g)≤r

‖f − g‖H−k2 ≤ inf
y0∈S0:σ(y0)≤r

sup
t∈R+

‖y(t)− y0(t)‖B.

Thus,

(24) Er(f, Ã) ≤ Er(y,B).

Inequalities (23) and (24), with regard to (19), (21), (22) and Theorem 5, complete the
proof of Theorem 7. �

5. Let A be a self-adjoint operator in H whose spectrum is discrete. Assume that
its eigenvalues λk = λk(A), k ∈ N, satisfy the condition

∑∞
k=1 λ

−p
k < ∞ with some

p > 0. Suppose also that λk are enumerated in ascending order and each one is counted
according to its multiplicity and denote by {en}n∈N the orthonormal basis in H consisting
of eigenvectors of A. Then the spectral function E(λ) of the operator A has the form

E(λ)f =
∑

λk≤λ

fkek,

where fk = (fk, ek) are the Fourier coefficients of f , and

Er(f,A) =
∑

λk>r

fkek.

As it has been shown in [6], the following assertion holds true.
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Proposition 1. The following equivalence relations are valid:
f ∈ C∞(A) ⇐⇒ ∀α > 0, ∃c = c(α) > 0 : |fk| ≤ cλ−α

k ,
f ∈ C{1}(A) ⇐⇒ ∃n0 ∈ N : fk = 0 as k ≥ n0,

f ∈ C{mn}(A) ⇐⇒ ∃α > 0, ∃c > 0 : |fk| ≤ cτ−1(αλk),
f ∈ C(mn)(A) ⇐⇒ ∀α > 0, ∃c = c(α) > 0 : |fk| ≤ cτ−1(αλk).

(The function τ(λ) was defined in (11)).

Let now y(t) be a weak solution of (1). Then

(25) y(t) =
∞∑

k=1

e−λktfkek,

∞∑
k=1

|fk|2 <∞.

The solution y(t) is an entire vector-valued function of exponential type (y ∈ S0) if and
only if

∃n0 ∈ N : fk = 0 as k ≥ n0.

Proposition 1, Theorems 3, 5 and (13) imply the following.

Theorem 8. The following equivalence relations take place:
y ∈ Cn(R+,H) ⇐⇒ Eλk

(y) = o
(
λ−n

k+1

)
(n→∞),

y ∈ C∞(R+,H) ⇐⇒ ∀α > 0 : Eλk
(y) = O

(
λ−α

k+1

)
(n→∞),

y ∈ C{mn} ⇐⇒ ∃α > 0 : Eλk
(y) = O

(
τ−1(αλk+1)

)
(n→∞),

y ∈ C(mn) ⇐⇒ ∀α > 0 : Eλk
(y) = O

(
τ−1(αλk+1)

)
(n→∞).

6. Put H = L2(Ω), where Ω is a bounded domain in Rq with piecewise smooth
boundary ∂Ω, and denote by B′ the operator generated in L2(Ω) by the differential
expression

(26) (Lu)(x) = −
q∑

i=1

q∑
k=1

∂

∂xi

(
aik(x)

∂u(x)
∂xk

)
+ c(x)u(x),

on
(27) D(B′) =

{
u ∈ C2(Ω)

∣∣u �∂Ω= 0
}
.

It is assumed that aik(x), c(x) ∈ C∞(Ω), c(x) ≥ 0. Suppose also the expression (26) to
be of elliptic type in Ω. In this case all the eigenvalues μi(x), i = 1, . . . q, of the matrix
‖aik(x)‖qi,k=1, x ∈ Ω, have the same sign; without loss of generality we may assume
μi(x) > 0, x ∈ Ω.

It is not hard to make sure that B′ is a positive definite Hermitian operator with dense
domain in L2(Ω). So, B′ admits a closure to a positive definite selfadjoint operator B
on L2(Ω). We shall call B the operator generated by (26), (27). The spectrum of B is
discrete, and for its eigenvalues, λ1(B) < λ2(B) < · · · < λn(B) < . . . , the estimate

(28) c1n
2/q ≤ λn(B) ≤ c2n2/q, 0 < ci = const, i = 1, 2.

is valid (see [8]). Denote by en(x), n ∈ N, the orthonormal basis in L2(Ω), consisting of
eigenfunctions of B.

In the case where Ω is a q-dimensional cube, 0 < xk < a, k = 1, . . . , q, a > 0,
and L = −∑q

i=1
∂2

∂x2
i
, the following formulas for the eigenvalues λn1...nq , nk ∈ N, and

eigenfunctions en1...nq(x) of the operator B hold:

λn1...nq =
π2

a2

q∑
k=1

n2
k; en1...nq(x) =

(
2
a

)q/2 q∏
k=1

sin
π

a
xk.

Let y(t) = u(t, x) ∈ C(R+, L2(Ω)) be a weak solution of the problem

(29)

(
∂

∂t
−

q∑
k=1

q∑
i=1

∂

∂xk

(
aki(x)

∂

∂xi

)
+ c(x)

)
u(t, x) = 0,



ON APPROXIMATION OF SOLUTIONS OF OPERATOR-DIFFERENTIAL EQUATIONS . . . 255

(30) ∀t > 0, ∀x ∈ ∂Ω : u(t, x) = 0,
where the conditions on aki(x) and c(x) are the same as before. Then u(t, x) admits a
representation of form (25). Set

Ln
2 = D(Bn), ‖f‖Ln

2
=
(
‖f‖2 + ‖Bnf‖2

)1/2

,

where B is an operator generated in the space L2(Ω) by expression (26) and boundary
value condition (27). The space Ln

2 is continuously and densely embedded into L2(Ω).
Denote by L−n

2 the negative space corresponding to the positive one Ln
2 ⊂ L2(Ω). In

the case where L = −∑q
k=1

∂2

∂x2
k
, Ln

2 is none other than the well-known Sobolev space
◦
W

2n

2 (Ω).
Using estimate (28) for λk(B) and Theorem 8, we obtain in a way analogous to that

used in the proof of Theorem 7 the following assertion.

Theorem 9. Let B be a Banach space and let
Ln1

2 ⊆ B ⊆ L−n2
2 , n1, n2 ∈ N,

be a chain of continuously and densely embedded into each other spaces. Suppose also
the sequence {mn}∞n=1 to satisfy (10) and (12). Then

y(t) = u(t, x) ∈ C∞(R+, L2(Ω)) ⇐⇒ α > 0 : EB
λk

(y) = O
(

1
(k+1)α

)
,

y(t) ∈ C{mn} ⇐⇒ ∃α > 0 : EB
λk

(y) = O
(
τ−1

(
α(k + 1)2/q

))
,

y(t) ∈ C(mn
⇐⇒ ∀α > 0 : EB

λk
(y) = O

(
τ−1

(
α(k + 1)2/q

))
,

where
EB

λk
(y) = inf

y0∈S0:σ(y0)≤λk

sup
s∈R+

‖y(s)− y0(s)‖B.

It is relevant to remark that in the case where aki(x) = δki and c(x) ≡ 0, by virtue of
the embedding theorems for Sobolev spaces, one can take the space C(Ω) of continuous
in Ω functions or Lp(Ω), 1 ≤ p <∞, as B and consider not only the Dirichlet but some
other boundary value problems, in particular, the Neumann problem.
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