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HOMEOTOPY GROUPS OF ROOTED TREE LIKE NON-SINGULAR

FOLIATIONS ON THE PLANE

YU. YU. SOROKA

Abstract. Let F be a non-singular foliation on the plane with all leaves being closed
subsets, H+(F ) be the group of homeomorphisms of the plane which maps leaves

onto leaves endowed with compact open topology, and H+

0
(F ) be the identity path

component of H+(F ). The quotient π0H+(F ) = H+(F )/H+

0
(F ) is an analogue of

a mapping class group for foliated homeomorphisms. We will describe the algebraic
structure of π0H+(F ) under an assumption that the corresponding space of leaves
of F has a structure similar to a rooted tree of finite diameter.

1. Introduction

Non-singular foliations on the plane were studied by W. Kaplan [5, 6] and H. Whit-
ney [17] in the 40–50 years of the XX century. In particular, W. Kaplan in [6] has
generalized a theorem of E. Kamke and proved that every non-singular foliation F on
the plane admits a continuous function f : R2 → R such that

1) the leaves of f are connected components of level sets f−1(c), c ∈ R;
2) near each z ∈ R2 there are local coordinates (u, v) in which f(u, v) = u+ f(z).

This result was further extended to foliations with singularities by W. Boothby [2],
and J. Jenkins and M.Morse [4]. Topological classification of different kinds of func-
tions on surfaces was investigated in many papers, see e.g. A. Fomenko and A. Bolsi-
nov [1], A. Oshemkov [9], V. Sharko [14], [15], O. Prishlyak [12], [13], E. Polulyakh and
I. Yurchuk [10], E. Polulyakh [11], V. Sharko and Yu. Soroka [16].

W.Kaplan in [5, 6] has also mentioned that a non-singular foliation on the plane is
glued of countably many strips along open boundary intervals and such that each strip
has a foliation by parallel lines. In a recent paper S. Maksymenko and E. Polulyah [8]
studied non-singular foliations F on arbitrary non-compact surfaces Σ glued from strips
in a similar way. They proved contractibility of the connected components of groups
H(F ) of homeomorphisms of Σ mapping leaves onto leaves. Thus the homotopy type of
H(F ) is determined by the quotient group π0H(F ) = H(F )/H0(F ) of path components
of H(F ), where H0(F ) is the identity path component of H(F ).

In the present paper we compute the groups π0H(F ) for a special class of non-singular
foliations on the plane whose spaces of leaves have the structure similar to rooted trees
of finite diameter, see Theorem 4.5.

2. Striped surfaces

Let Σi be a surface with a foliation Fi, i = 1, 2. Then a homeomorphism h : Σ1 → Σ2

will be called foliated if it maps leaves of F1 onto leaves of F2.

Definition 2.1. A subset S ⊂ R2 will be called a model strip if the following two
conditions hold:
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1) R× (−1, 1) ⊆ S ⊂ R× [−1, 1];
2) S ∩ R× {−1, 1} is a union of open mutually disjoint finite intervals.

Put

∂−S = S ∩ (R× {−1}), ∂+S = S ∩ (R× {1}), ∂S = ∂−S ∪ ∂+S.

Notice that every model strip has an oriented foliation consisting of horizontal arcs
R× t, t ∈ (−1, 1), and connected components of ∂S.

Let {Sλ}λ∈Λ be an arbitrary family of model strips, and

X = ∪
λ∈Λ

∂−Sλ, Y = ∪
λ∈Λ

∂+Sλ.

By Definition 2.1, X and Y are disjoint unions of open intervals, therefore one can
also write

X = ∪
α∈A

Xα, Y = ∪
β∈B

Yβ ,

where Xα and Yβ are open boundary intervals of those models strips and A and B are
some index sets.

We will now glue model strips Sλ by identifying some of the intervals of Xα with
some of the intervals of Yβ . In order to make this let us fix any set of indexes C and
two injective maps p : C → A and q : C → B. Notice that for each γ ∈ C there exists
a unique preserving orientation affine homeomorphism ϕγ : Xp(γ) → Yq(γ). Then the
quotient space

(2.1) Σ :=
⊔

λ∈Λ

Sλ

/
{Xp(γ)

ϕγ

∼ Yq(γ)}

will be called a striped surface.

Remark 2.2. A unique preserving orientation affine homeomorphism φ : (a, b) → (c, d) is
given by φ(t) = c−d

b−a
(t− a).

Remark 2.3. In [8] a wider class of striped surfaces is considered: it is also allowed to iden-
tify arbitrary connected components of

⊔
λ∈Λ

∂Sλ and the gluing affine homeomorphisms

may reverse orientation.

Let also p :
⊔

λ∈Λ

Sλ → Σ be the quotient map and pλ : Sλ → Σ be the restriction of p

to the model strip Sλ. Then the pair (Sλ, pλ) will be called a chart for the strip Sλ.
Since the homeomorphism ϕγ identifies leaves of such foliations, we see that every

striped surface has the foliation F consisting of foliations on model strips. This foliation
will be called canonical.

Moreover, each leaf of the foliation on the model strip is oriented and the gluing
preserves orientation. Therefore all leaves of F are oriented.

Special leaves. Let U ⊂ Σ be a subset. Then the union of all leaves of F intersecting
U is called the saturation of U with respect to F and denoted by Sat(U).

A leaf ω of F will be called special if

ω 6=
⋂

N(ω)

Sat (N(ω)),

where N(ω) runs over all open neighborhoods of ω.
For instance each leaf ω belonging to the interior of a strip is non-special. Moreover,

suppose ω = Xp(γ) ∼ Yq(γ) is a leaf such that ∂−Sλ = Xp(γ) and ∂+Sλ′ = Yp(γ), see
Figure 2.1(a). Then the topological structure of the foliation F near ω is “similar” to
the structure of F near “internal” leaves of strips and such a leaf is non-special as well,
see [8, Lemma 3.2].



HOMEOTOPY GROUPS OF ROOTED TREE LIKE NONSINGULAR FOLIATIONS 285

It also follows from that lemma that ω is special if and only if one of the following two
conditions hold, see Figure 2.1(b):

1) ω is the image of gluing of leaves Xp(γ) and Yq(γ) such that either Xp(γ) ( ∂−Sλ

or Yp(γ) ( ∂+Sλ′ for some γ ∈ C, λ, λ′ ∈ Λ;
2) ω ( ∂−Sλ or ω ( ∂+Sλ for some λ ∈ Λ.

(a) Non-special leaf (b) Special leaves

Figure 2.1

Reduced striped surfaces. A striped surface Σ will be called reduced whenever a
leaf ω is special if and only if one of the following conditions holds:

1) ω is an image of gluing of some leaves Xp(γ) ∼ Yq(γ) for some γ ∈ C;
2) ω ( ∂−Sλ or ω ( ∂+Sλ for some λ ∈ Λ.

Let S be a model strip such that ∂−S = (0, 1) × −1 and ∂+S = (0, 1) × 1. Let also
φ : ∂−S → ∂+S be a homeomorphism defined by φ(t,−1) = (t, 1), t ∈ (0, 1), and C = S/φ
be the quotient space obtained by identifying each x ∈ ∂−S with φ(x) ∈ ∂+S.

Then C is a striped surface homeomorphic with a cylinder, and its canonical foliation
has no special leaves.

It follows from [8, Theorem 3.7] that every striped surface (in the sense of (2.1), see
Remark 2.3) is foliated homeomorphic either to C or to a reduced surface.

Graph of a striped surface. For a reduced striped surface Σ not foliated homeo-
morphic with C define an oriented graph Γ(Σ) whose vertexes are strips and whose
edges are special leaves. More precisely: if ω = Xp(γ) ∼ Yq(γ) is a special leaf of F ,
Xp(γ) ⊂ ∂−Sλ0

, and Yq(γ) ⊂ ∂+Sλ1
, then we assume that ω is an edge between vertices

Sλ0
and Sλ1

oriented from Sλ1
to Sλ0

.
If λ0 = λ1, then ω correspond to a loop in Γ(Σ) at Sλ0

= Sλ1
being a vertex of Γ(Σ).

Since a model strip may have infinitely many boundary components, we see that a
graph Γ(Σ) can be not locally finite. On the other hand, it can have a finite diameter
diamΓ(Σ), being the minimal non-negative integer d such that every two vertices v1 and
v2 are connected in Γ(Σ) by a path consisting at most d edges.

Admissible striped surfaces. Recall that a family V = {Vi}i∈Λ of subsets in a
topological space X is called locally finite whenever for each x ∈ X there exists an open
neighborhood intersecting only finitely many elements from V .

It is well known and is easy to see that a union of a locally finite family of closed

subsets is closed, e.g. [7, Chapter 1, § 5.VIII].

Definition 2.4. A model strip S will be called admissible if the closures of intervals in
∂−S and ∂+S are mutually disjoint and constitute a locally finite family in R2.

Example 2.5. A model strip with

∂+S =
⋃

n∈Z\{−1,0}

(
1

n+1 ,
1
n

)
× 1

is not admissible, since condition 2) of Definition 2.1 fails.
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It will be convenient to use the following notation:

[0] = ∅, [n] = {1, 2, . . . , n}, −N = {−1,−2, . . .}.

Let also Ji = (i, i+ 0.5), i ∈ Z, and for a subset ∆ ⊂ Z denote

A∆ =
⋃

i∈∆

Ji.

In particular, consider the following collections of mutually disjoint open intervals:

A[n] =

n⋃

i=1

(i, i+ 0.5), n = 0, 1, . . . , AN =
⋃

i∈N

(i, i+ 0.5),

A−N =
⋃

−i∈N

(i, i+ 0.5), AZ =
⋃

i∈Z

(i, i+ 0.5),

which will be called standard. The following easy lemma is left for the reader.

Lemma 2.6. Let S be an admissible model strip. Then there exists a homeomorphism

h : R2 → R2 preserving each line R × t, t ∈ (−1, 1), with its orientation, and such

that h(S) is a model strip with ∂−h(S) = Aα × {−1} and ∂+h(S) = Aβ × {1}, where
Aα and Aβ are standard collections of intervals, i.e. α, β ∈ {[0], [1], . . . ,N,−N,Z}, see
Figure 2.2. Moreover, α and β do not depend on a particular choice of such h.

A[n] AN

A−N AZ

Figure 2.2. Types of ∂+S

Thus for an admissible model strip S its foliated topological type is determined by
the ordinal type of collections of boundary intervals in ∂−S and ∂+S.

3. Wreath products

Let H and S be two groups. Denote by Map(H,S) the group of all maps (not
necessarily homomorphisms) ϕ : H → S with respect to the point-wise multiplication.
Then the group H acts on Map(H,S) by the following rule: the result of the action of
ϕ ∈ Map(H,S) on h ∈ H is the composition map:

ϕ ◦ h : H −→ H −→ S.

The semidirect product Map(H,S)⋊H corresponding to this action will be denoted by
S ≀H and called the wreath product of S and H . Thus

S ≀H = Map(H,S)⋊H

is the Cartesian product Map(H,S)×H with the multiplication given by the formula

(ϕ1, h1) · (ϕ2, h2) =
(
(ϕ1 ◦ h2) · ϕ2, h1 · h2

)

for (ϕ1, h1), (ϕ2, h2) ∈ Map(H,S)⋊H .
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Let ε : H → S be the constant map into the unit of S. Then the pair (ε, idH) is the
unit element of S ≀H . Moreover, if (ϕ, h) ∈ S ≀H and ϕ−1 ∈ Map(H,S) is the point-wise
inverse of ϕ, then (ϕ−1 ◦ h−1, h−1) is the inverse of (ϕ, h) in S ≀H .

We also have the following exact sequence:

1 → Map(H,S)
i

−−→ S ≀H
π

−−→ H → 1,

where i(ϕ) = (ϕ, e), e is the unit of H , and π(ϕ, h) = h. Moreover, π admits a section
s : H → S ≀H defined by s(h) = (ε, h).

4. Main result

Homeotopy group of a canonical foliation. Let Σ be striped surface with a
canonical foliation F . Denote by H(F ) the groups of all foliated homeomorphisms h :
Σ → Σ, i.e. homeomorphisms mapping leaves of F onto leaves. We will endow H(F )
with the corresponding compact open topology.

Recall that all leaves of F are oriented. Then we denote by H+(F ) the subgroup of
H(F ) consisting of homeomorphisms h : Σ → Σ such that for each leaf ω the restriction
map h : ω → h(ω) is orientation preserving.

Let H+
0 (F ) be the identity path component of H+(F ). It consists of all h ∈ H+(F )

isotopic to idΣ in H+(F ). Then H+
0 (F ) is a normal subgroup of H+(F ), and the corres-

ponding quotient

π0H
+(F ) = H+(F )/H+

0 (F )

will be called the homeotopy group of F .

Class F. Denote by F the class of striped surfaces

Σ =
⊔

λ∈Λ

Sλ

/
{Xp(γ)

ϕγ

∼ Yq(γ)}

satisfying the following conditions:

1) each Sλ, λ ∈ Λ, is admissible,

∂−Sλ = J1 × {−1} = A[1] × {−1}, ∂+Sλ = A∆λ
× {1},

where ∆λ coincides with one of the standard collections A[n], AN, A−N, or AZ;
2) the graph Γ(Σ) is connected and has a finite diameter and no cycles.

In particular, if Σ ∈ F, then each model strip Sλ of Σ regarded as a vertex of Γ(Σ)
has at most one incoming edge and at most countably many outcoming edges linearly
ordered with respect to ∆λ.

Since Γ(Σ) is connected and has a finite diameter and no cycles, it follows that there
exists a unique vertex having no incoming edges. We will call this vertex a root and the
corresponding strip a root strip.

Thus every surface Σ ∈ F of diameter d can be represented as follows, see Figure 4.1:

(4.1) Σ = S ∪
∂+S

(⋃

i∈∆

Σi

)
,

where

• S is a root strip of Σ,

∂−S = J1 × {−1}, ∂+S = ∪
i∈∆

Ji × {1},

where ∆ ∈ {[0], [1], . . . ,N,−N,Z}.
• Σi is either empty or it is a striped surface belonging to F and its graph Γ(Σi)
has diameter less than d.
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• Suppose Σi is non-empty and let Si be the root strip of Σi. Then ∂−Si =
J1×{−1} is glued to the boundary interval Ji×{1} of ∂+S by the homeomorphism

ϕ : J1 ≡ (1, 1.5) −→ Ji ≡ (i, i+ 0.5), ϕ(t) = t+ i− 1.

Figure 4.1. A striped surface Σ ∈ F whose graph Γ(Σ) has diameter 3

Obviously, Σ ∈ F is a connected and simply connected non-compact surface. Therefore
it follows from [3] that the interior of Σ is homeomorphic to R2.

The class of homeotopy groups of foliations on striped surfaces which belongs to the
class F will be denoted by P , i.e.

P = {π0H
+(F ) | F is a canonical foliation of some striped surface Σ ∈ F}.

We will also define another class of groups G.

Definition 4.1. Let G be the minimal class of groups satisfying the following conditions:

1) {1} ∈ G;
2) if Ai ∈ G for i ∈ N, then

∏
i∈N

Ai ∈ G;

3) if A ∈ G, then A ≀ Z ∈ G.

Lemma 4.2. A group G belongs to G if and only if it can be obtained from the unit

group {1} by a composition of finitely many operations of the following types:

(a) countable direct products;

(b) wreath product with the group Z.

Proof. Let G0 be the class of groups G which can be obtained from the unit group {1} by
a composition of finitely many operations of types (a) and (b). Then any class of groups
satisfying conditions 1)–3) of Definition 4.1 contains G0, whence G0 ⊂ G. On the other
hand, G0 also satisfies conditions 1)–3) of Definition 4.1, whence G ⊂ G0 as well. �

Every representation ξ(G) of G as a composition of operations (a) and (b) will be
called a representation of G in the class G. Such a representation is not unique. For
example,

(4.2) Z ∼= {1} ≀ Z ∼= 1× (1 ≀ Z) ∼= (1× 1× 1) ≀ Z.

Definition 4.3. The height of a representation ξ(G) of G in the class G is a non-negative
integer defined inductively as follows:

1) h({1}) = 0;
2) h(ξ(G) ≀ Z) = 1 + h(ξ(G));

3) h

(∏
i∈Λ

ξ(Ai)

)
= 1 +max

i
{h(ξ(Ai))}.
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Example 4.4. Below are examples of representations of groups {1}, Z and Z ≀ Z in the
class G and their heights:

h({1}) = 0, h({1} × {1}) = 1,

h({1} ≀ Z) = 1, h(({1} × {1}) ≀ Z) = 2,

h
(
({1} ≀ Z) × ({1} ≀ Z)

)
= 2, h

(
(({1} × {1}) ≀ Z) × ({1} ≀ Z)

)
= 3.

Let G′ ⊂ G be a subclass of G consisting of groups admitting a representation of finite
height in G. The aim of the present paper is to prove the following theorem:

Theorem 4.5. Classes P and G′ coincide.

In other words, a group G is isomorphic with a homeotopy group H+(F ) of some
striped surface Σ ∈ F with a canonical foliation F if and only if G can be obtained from
the unit group {1} by a composition of finitely many operations of types (a) and (b) of
Lemma 4.2.

5. Preliminaries

Let Σ be a striped surface belonging to F presented in the form (4.1), and S be the
root strip of Σ. We will use coordinates (x, y) from the chart for S, so we can assume
that ∂+S = ∪i∈∆Ji × {1}.

Notice that if h ∈ H+(F ), then h(S) = S, whence there exists a unique number
η(h) ∈ Z such that in the chart for S we have that

h(Ji × {1}) = Ji+η(h) × {1}

for all i ∈ ∆. One can easily check that the correspondence h 7→ η(h) is a homomorphism

(5.1) η : H+(F ) → Z.

Obviously, η can be a non-zero homomorphism only when ∆ = Z.
Consider the following two subgroups of H+(F ):

QS =
{
h ∈ H+(F ) | h(ω) = ω, for each leaf ω of F ⊂ S

}
,

H+(F, S) =
{
h ∈ H+(F ) | h|S = id|S

}
.

It is evident that

(5.2) H+(F, S) ⊂ QS ⊂ ker(η).

Lemma 5.1. Embeddings (5.2) are homotopy equivalences.

Proof. First we will construct a deformation of ker(η) into QS . Let h ∈ ker(η). Since
h(S) = S, it follows that h interchanges leaves of F . In the coordinates (x, y) in the
chart for S these leaves are the lines y = const, whence

h(x, y) = (α(x, y), β(y)) ,

where α : S → R and β : [−1, 1] → [−1, 1] are continuous functions such that for each
y ∈ (0, 1) the correspondence x 7→ α(x, y) is a preserving orientation homeomorphism
R → R.

Then h ∈ QS iff β(y) = y for all y ∈ [0, 1]. Define the map H : ker(η)× [0, 1] → ker(η)
by the formula

H(h, t)(z) =

{
(α(x, y), (1 − t)β(y) + ty) , z = (x, y) ∈ S,

z, z ∈ Σ \ S.

One can easily check thatH0 = idker(η), Ht(QS) ⊂ QS for all t ∈ [0, 1], andH(h, 1) ∈ QS .
Hence H is a deformation of ker(η) into QS , and so the inclusion QS ⊂ ker(η) is a
homotopy equivalence.
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Similarly, let h ∈ QS , so

h(x, y) = (α(x, y), y)

for all (x, y) ∈ S. Notice that h ∈ H+(F, S) iff α(x, y) = x and β(y) = y for all (x, y) ∈ S.
Let

h(x, y) = (αi(x, y), βi(y))

be the restriction of h onto root strip Si of Σi in the corresponding chart of Si. Since
∂−Si = J1 × {−1}, we see that if h ∈ H+(F, S), then αi(x,−1) = x for all x ∈ J1 and
i ∈ ∆.

Fix a continuous function ε : [−1, 1] → [0, 1] such that

ε(y) =

{
0, y ∈ (−1,−0.8),

1, y ∈ (0, 1)

and define the following homotopy G : QS × [0, 1] → QS by

G(h, t)(z) =





((1 − t)α(x, y) + tx, y) , z = (x, y) ∈ S,(
(1− tε(y))αi(x, y) + tε(y)x, β(y)

)
, z = (x, y) ∈ Si,

z z 6∈ S ∪
(
∪i∈∆Si

)
.

Since ∂−Si is glued to the boundary component Ji × {1} by an affine homeomorphism,
and the formulas for G are affine for each fixed t and y, it follows that those formulas
agree on Ji × {1} and ∂−Si, c.f. [8]. This implies that G is a continuous map.

Moreover, one can easily check that G0 = idQS
, Gt(H

+(F, S)) ⊂ H+(F, S) for all
t ∈ [0, 1], and G1(QS) ⊂ H+(F, S). Hence G is a deformation of QS into H+(F, S), and
therefore the inclusion H+(F, S) ⊂ QS is a homotopy equivalence as well. �

Suppose Σi is non-empty for some i ∈ ∆. Let Fi be the canonical foliation on Σi

and Si be the root strip of Σi. We will denote by H+(Fi, ∂−Si) the subgroup of H+(Fi)
consisting of homeomorphisms fixed on ∂−Si.

If Σi = ∅, then we will assume that H+(Fi, ∂−Si) = {1}.

Lemma 5.2. We have an isomorphism

π0 ker(η) ∼=
∏

i∈∆

π0H
+(Fi, ∂−Si).

Proof. Evidently, we have a canonical isomorphism

α : H+(F, S) ∼=
∏

i∈∆

H+(Fi, ∂−Si), α(h) = (h|Σi
)i∈∆.

Then from Lemma 5.1 we get the following sequence of isomorphisms:

π0 ker(η) ∼= π0H
+(F, S) ∼= π0

∏

i∈∆

H+(Fi, ∂−Si) =
∏

i∈∆

π0H
+(Fi, ∂−Si).

Lemma is proved. �

Theorem 5.3. 1) If η is zero homomorphism, then the group π0H
+(F ) is isomorphic

to
∏
i∈∆

π0H
+(Fi, ∂−Si).

2) Suppose the image of η is kZ for some k ≥ 1, so ∆ = Z. Then the group π0H
+(F )

is isomorphic to

(
k−1∏
i=0

π0H
+(Fi, ∂−Si)

)
≀ Z.
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Proof. 1) The assumption that η is zero homomorphism means that H+(F ) = ker(η),
whence we get from Lemma 5.2 that

π0H
+(F ) ∼=

∏

i∈∆

π0H
+(Fi, ∂−Si).

2) Suppose Im η = kZ. Then we have an epimorphism η̂ : H+(F ) → Z defined by
η̂(h) = η(h)/k and such that

h(Σr) = Σr+k·η̂(h), r = 0, 1, . . . , k − 1.

Let

X =

k−1⋃

i=0

Σi, ∂−X =

k−1⋃

i=0

∂−Si,

and FX be the oriented foliation on X induced by F . Denote by H+(FX , ∂−X) the
group of homeomorphisms of X fixed on ∂−X and mapping leaves of FX onto leaves and
preserving their orientation. Then we have a natural isomorphism

k−1∏

i=0

H+(Fi, ∂−Si) ∼= H+(FX , ∂−X)

which yields an isomorphism

k−1∏

i=0

π0H
+(Fi, ∂−Si) ∼= π0H

+(FX , ∂−X).

Therefore for the proof of Theorem 5.3 we should construct an isomorphism

β : π0H
+(F ) −→ π0H

+(FX , ∂−X) ≀ Z ≡ Map
(
Z, π0H

+(FX , ∂−X)
)
⋊ Z.

Fix any g ∈ H+(F ) with η̂(g) = 1. Then

g−η̂(h) ◦ h (Σi) = Σi,

for all h ∈ H+(F ) and i ∈ Z, whence g−η̂(h) ◦ h ∈ ker(η). Thus we get a well-defined
function

ϕh : Z → π0H
+(FX , ∂−X), ϕh(j) =

[
g−j−η̂(h) ◦ h ◦ gj

∣∣
X

]
.

Define the following map:

β : π0H
+(F ) −→ π0H

+(FX , ∂−X)

by the formula

β(h) = (ϕh, η̂(h)) , h ∈ π0H
+(F ).

We claim that β is an isomorphism. First notice that the composition operation in
H+(FX , ∂−X) ≀ Z is given by the following rule:

(ϕh1
, n) · (ϕh2

,m) = (ϕm
h1

· ϕh2
, n+m),

where ϕm
h (j) = ϕh(j +m).

Proof that β is a homomorphism. Let h1, h2 ∈ H+(F ). Then

β(h1) ◦ β(h2) =
(
ϕh1

, η̂(h1)
)
·
(
ϕh2

, η̂(h2)
)

=
(
ϕ
η̂(h2)
h1

· ϕh2
, η̂(h1) + η̂(h2)

)

=
([
g−j−η̂(h1)−η̂(h2) ◦ h1 ◦ g

j+η̂(h2) ◦ g−j−η̂(h2) ◦ h2 ◦ g
j |X

]
, η̂(h1 ◦ h2)

)

=
([
g−j−η̂(h1◦h2) ◦ h1 ◦ h2 ◦ g

j|X
]
, η̂(h1 ◦ h2)

)

=
(
ϕh1◦h2

, η̂(h1 ◦ h2)
)
= β(h1 ◦ h2).
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Proof that β is injective. Let h ∈ H+(F ) be such that [h] ∈ kerβ. We should
prove that h is isotopic in H+(F ) to idΣ.

The assumption [h] ∈ kerβ means that β(h) = (ϕh, η̂(h)) = (ε, 0), where ε : Z → [idX ]
is the constant map into the unit of π0H

+(FX , ∂−X). In particular, since η(h) = 0, we get
from Lemma 5.1 that h is isotopic in H+(F ) to a homeomorphism fixed on S. Therefore
we can assume that h itself is fixed on S, that is h ∈ H+(F, S). Then

(5.3) ϕh(j) =
[
g−j ◦ h ◦ gj|X

]
= ε(j) = [idX ] ∈ π0H

+(FX , ∂−X)

for each j ∈ Z. In other words, g−j ◦ h ◦ gj|X is isotopic to idX relatively ∂−X .
It suffices to prove that for each i ∈ Z the restriction h|Σi

is isotopic in H+(Fi, ∂−Si)
to idΣi

relatively to ∂−Si.
Write i = r+ jk for a unique r ∈ {0, k− 1}. Then we have the following commutative

diagram:
Therefore, we get from (5.3) that [h|Σi

] = [idΣi
] ∈ H+(Fi, ∂−Si). Hence h is isotopic

ot idΣ in H+(F ).
Proof that β is surjective. Let (ϕ, n) ∈ π0H

+(FX , ∂−X) ≀ Z. For each j ∈ Z fix
a homeomorphism hj ∈ H+(FX , ∂−X) such that [hj ] = φ(j) ∈ π0H

+(FX , ∂−X). Now

define the following homeomorphism ĥ of Σ by the formula:

ĥ =

{
idS , on S,

[gj ◦ hj ◦ g
−j] on gj(X)

and put h = gn ◦ ĥ. Then it is easy to see that β([h]) = (φ, n), whence β is surjective.
Thus β is an isomorphism. �

6. Proof of Theorem 4.5

We should prove that P = G′.
1. First we will show that G′ ⊂ P .
Let G ∈ G′, so G has a representation ξ(G) in the class G of finite height k = h(ξ(G)).

We have to show that there exists a striped surface Σ ∈ F with canonical foliation F
such that G ∼= π0H

+(F ).
If k = h(ξ(G)) = 0, then G is the unit group {1} and ξ(G) = {1}. Let S be an

admissible model strip with ∂−S = A[1] × {−1} and ∂+S = ∅. Then S ∈ F. Let also F
be the canonical foliation on S. Then

π0H
+(F ) = {1} = G,

i.e. G ∈ P .
Suppose that we have established our statement for all k being less than some k̄ > 0.

Let us prove it for k = k̄. It follows from Definition 4.3 that either

(i) ξ(G) =
∏
i∈N

Ai where each group Ai has a representation ξ(Ai) in the class G of

height h(ξ(Ai)) < k, or
(ii) ξ(G) = A≀Z, and A has a representation ξ(A) in the class G of height h(ξ(A)) < k.

In the case (i) due to the inductive assumption for each i ∈ N there exists a striped
surface Σi ∈ F with foliations Fi such that Ai = π0H

+(Fi).
Let S be an admissible model strip with ∂−S = A[1] × {−1} and ∂+S = AN × {1},

and Si be the root strip of Σi, i ∈ N. Define the striped surface

Σ = S ∪
∂+S

(
∪
i∈N

Σi

)

obtained by identifying ∂−Si ⊂ Σi with Ji × {1} ⊂ ∂+S. Then by Theorem 5.3 η is a
trivial homomorphism, and π0H

+(F ) ∼=
∏

i∈N
π0H

+(Fi) ∼=
∏
i∈N

Ai
∼= G. So G ∈ P .
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In the case (ii) again by inductive assumption there exists a striped surface Σ̂ ∈ F

with a canonical foliation F̂ such that A = π0H
+(F̂ ).

Take countably many copies Σ̂i, i ∈ Z, of Σ̂. Let Ŝi be the root strip of Σ̂i and F̂i be

the canonical foliation on Σ̂i.
Let also S be an admissible model strip with ∂−S = A[1]×{−1} and ∂+S = AZ×{1}.

Define the following striped surface:

Σ = S ∪
∂+S

(
∪
i∈N

Σ̂i

)
.

Obtained by gluing each Σ̂i to S by identifying ∂−Ŝi ⊂ Σ̂i with Ji × {1} ⊂ ∂+S, i ∈ Z.

Then for every pair i, j ∈ Z there exists h ∈ H+(F ) such that h(Σ̂i) = Σ̂j , whence
the homomorphism η, see (5.1) is surjective. Hence by Theorem 5.3

π0H
+(F ) ∼= π0H

+(F̂ ) ≀ Z ∼= A ≀ Z ∼= G.

Thus, G ∈ P and so G′ ⊂ P .

2. Conversely, let us show that P ⊂ G′.
Let Σ ∈ F be a striped surface presented in the form (2.1) with canonical foliation F

and such diamΓ(Σ) = k. We should prove that π0H
+(F ) has a finite presentation in the

class G, which means that π0H
+(F ) ∈ G′.

If k = 0, then Σ is an admissible model strip with

∂−Σ = A[1] × {−1}, ∂+Σ = Aα, α ∈ {[0], [1], . . . ,N,−N,Z}.

Then it easily follows from Theorem 5.3 that π0H
+(F ) ∼= Z ∼= {1} ≀ Z if α = Z, and

π0H
+(F ) ∼= {1} otherwise. In both cases π0H

+(F ) ∈ G.
Suppose that we have established our statement for all k being less than some k̄ > 0.

We should prove it for k = k̄. Let

Σ = S ∪
∂+S

(⋃

i∈∆

Σi

)
∈ F

be such that Γ(Σ) has diameter k. Then Γ(Σi) has diameter less than k, and so by
inductive assumption π0H

+(Fi, ∂−Si) ∈ G. Moreover, according to Theorem 5.3 we have
that

(i) if image(η) = 0, then π0H
+(F ) ∼=

∏
i∈∆

π0H
+(Fi, ∂−Si) ∈ G,

(ii) if image(η) = kZ, then π0H
+(F ) ∼=

(
k−1∏
i=0

π0H
+(Fi, ∂−Si)

)
≀ Z ∈ G.

Thus P ⊂ G′, and so P = G′. Theorem 5.3 completed.
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