

Homeotopy groups of rooted tree like non-singular foliations on the plane

Yu. Yu. Soroka

Methods Funct. Anal. Topology, Volume 22, Number 3, 2016, pp. 283-294

Link to this article: http://mfat.imath.kiev.ua/article/?id=894

How to cite this article:

Yu. Yu. Soroka, *Homeotopy groups of rooted tree like non-singular foliations on the plane*, Methods Funct. Anal. Topology **22** (2016), no. 3, 283-294.

© The Author(s) 2016. This article is published with open access at mfat.imath.kiev.ua

HOMEOTOPY GROUPS OF ROOTED TREE LIKE NON-SINGULAR FOLIATIONS ON THE PLANE

YU. YU. SOROKA

ABSTRACT. Let F be a non-singular foliation on the plane with all leaves being closed subsets, $H^+(F)$ be the group of homeomorphisms of the plane which maps leaves onto leaves endowed with compact open topology, and $H_0^+(F)$ be the identity path component of $H^+(F)$. The quotient $\pi_0 H^+(F) = H^+(F)/H_0^+(F)$ is an analogue of a mapping class group for foliated homeomorphisms. We will describe the algebraic structure of $\pi_0 H^+(F)$ under an assumption that the corresponding space of leaves of F has a structure similar to a rooted tree of finite diameter.

1. INTRODUCTION

Non-singular foliations on the plane were studied by W. Kaplan [5, 6] and H. Whitney [17] in the 40–50 years of the XX century. In particular, W. Kaplan in [6] has generalized a theorem of E. Kamke and proved that every non-singular foliation F on the plane admits a continuous function $f : \mathbb{R}^2 \to \mathbb{R}$ such that

1) the leaves of f are connected components of level sets $f^{-1}(c), c \in \mathbb{R}$;

2) near each $z \in \mathbb{R}^2$ there are local coordinates (u, v) in which f(u, v) = u + f(z).

This result was further extended to foliations with singularities by W. Boothby [2], and J. Jenkins and M. Morse [4]. Topological classification of different kinds of functions on surfaces was investigated in many papers, see e.g. A. Fomenko and A. Bolsinov [1], A. Oshemkov [9], V. Sharko [14], [15], O. Prishlyak [12], [13], E. Polulyakh and I. Yurchuk [10], E. Polulyakh [11], V. Sharko and Yu. Soroka [16].

W. Kaplan in [5, 6] has also mentioned that a non-singular foliation on the plane is glued of countably many strips along open boundary intervals and such that each strip has a foliation by parallel lines. In a recent paper S. Maksymenko and E. Polulyah [8] studied non-singular foliations F on arbitrary non-compact surfaces Σ glued from strips in a similar way. They proved contractibility of the connected components of groups H(F) of homeomorphisms of Σ mapping leaves onto leaves. Thus the homotopy type of H(F) is determined by the quotient group $\pi_0 H(F) = H(F)/H_0(F)$ of path components of H(F), where $H_0(F)$ is the identity path component of H(F).

In the present paper we compute the groups $\pi_0 H(F)$ for a special class of non-singular foliations on the plane whose spaces of leaves have the structure similar to rooted trees of finite diameter, see Theorem 4.5.

2. Striped surfaces

Let Σ_i be a surface with a foliation F_i , i = 1, 2. Then a homeomorphism $h : \Sigma_1 \to \Sigma_2$ will be called *foliated* if it maps leaves of F_1 onto leaves of F_2 .

Definition 2.1. A subset $S \subset \mathbb{R}^2$ will be called a *model strip* if the following two conditions hold:

²⁰¹⁰ Mathematics Subject Classification. Primary 57S05; Secondary 57R30, 55Q05 .

Key words and phrases. Non-singular foliations, homeotopy groups.

1) $\mathbb{R} \times (-1,1) \subseteq S \subset \mathbb{R} \times [-1,1];$

2) $S \cap \mathbb{R} \times \{-1, 1\}$ is a union of open mutually disjoint finite intervals.

Put

$$\partial_{-}S = S \cap (\mathbb{R} \times \{-1\}), \quad \partial_{+}S = S \cap (\mathbb{R} \times \{1\}), \quad \partial S = \partial_{-}S \cup \partial_{+}S$$

Notice that every model strip has an oriented foliation consisting of horizontal arcs $\mathbb{R} \times t, t \in (-1, 1)$, and connected components of ∂S .

Let $\{S_{\lambda}\}_{\lambda \in \Lambda}$ be an arbitrary family of model strips, and

$$X = \underset{\lambda \in \Lambda}{\cup} \partial_{-} S_{\lambda}, \quad Y = \underset{\lambda \in \Lambda}{\cup} \partial_{+} S_{\lambda}.$$

By Definition 2.1, X and Y are disjoint unions of open intervals, therefore one can also write

$$X = \underset{\alpha \in A}{\cup} X_{\alpha}, \quad Y = \underset{\beta \in B}{\cup} Y_{\beta},$$

where X_{α} and Y_{β} are open boundary intervals of those models strips and A and B are some index sets.

We will now glue model strips S_{λ} by identifying some of the intervals of X_{α} with some of the intervals of Y_{β} . In order to make this let us fix any set of indexes C and two injective maps $p: C \to A$ and $q: C \to B$. Notice that for each $\gamma \in C$ there exists a unique preserving orientation affine homeomorphism $\varphi_{\gamma}: X_{p(\gamma)} \to Y_{q(\gamma)}$. Then the quotient space

(2.1)
$$\Sigma := \bigsqcup_{\lambda \in \Lambda} S_{\lambda} / \{ X_{p(\gamma)} \stackrel{\varphi_{\gamma}}{\sim} Y_{q(\gamma)} \}$$

will be called a *striped surface*.

Remark 2.2. A unique preserving orientation affine homeomorphism $\phi : (a, b) \to (c, d)$ is given by $\phi(t) = \frac{c-d}{b-a}(t-a)$.

Remark 2.3. In [8] a wider class of striped surfaces is considered: it is also allowed to identify arbitrary connected components of $\bigsqcup_{\lambda \in \Lambda} \partial S_{\lambda}$ and the gluing affine homeomorphisms

may reverse orientation.

Let also $p: \bigsqcup_{\lambda \in \Lambda} S_{\lambda} \to \Sigma$ be the quotient map and $p_{\lambda}: S_{\lambda} \to \Sigma$ be the restriction of p

to the model strip S_{λ} . Then the pair $(S_{\lambda}, p_{\lambda})$ will be called a *chart* for the strip S_{λ} .

Since the homeomorphism φ_{γ} identifies leaves of such foliations, we see that every striped surface has the foliation F consisting of foliations on model strips. This foliation will be called *canonical*.

Moreover, each leaf of the foliation on the model strip is oriented and the gluing preserves orientation. Therefore all leaves of F are oriented.

Special leaves. Let $U \subset \Sigma$ be a subset. Then the union of all leaves of F intersecting U is called the *saturation* of U with respect to F and denoted by Sat(U).

A leaf ω of F will be called *special* if

$$\omega \neq \bigcap_{N(\omega)} \overline{Sat\left(N(\omega)\right)},$$

where $N(\omega)$ runs over all open neighborhoods of ω .

For instance each leaf ω belonging to the interior of a strip is non-special. Moreover, suppose $\omega = X_{p(\gamma)} \sim Y_{q(\gamma)}$ is a leaf such that $\partial_{-}S_{\lambda} = X_{p(\gamma)}$ and $\partial_{+}S_{\lambda'} = Y_{p(\gamma)}$, see Figure 2.1(a). Then the topological structure of the foliation F near ω is "similar" to the structure of F near "internal" leaves of strips and such a leaf is non-special as well, see [8, Lemma 3.2].

It also follows from that lemma that ω is special if and only if one of the following two conditions hold, see Figure 2.1(b):

- 1) ω is the image of gluing of leaves $X_{p(\gamma)}$ and $Y_{q(\gamma)}$ such that either $X_{p(\gamma)} \subsetneq \partial_{-} S_{\lambda}$ or $Y_{p(\gamma)} \subsetneq \partial_{+} S_{\lambda'}$ for some $\gamma \in C, \lambda, \lambda' \in \Lambda$;
- 2) $\omega \subsetneq \partial_{-} S_{\lambda}$ or $\omega \subsetneq \partial_{+} S_{\lambda}$ for some $\lambda \in \Lambda$.

Figure 2.1

Reduced striped surfaces. A striped surface Σ will be called *reduced* whenever a leaf ω is special if and only if one of the following conditions holds:

- 1) ω is an image of gluing of some leaves $X_{p(\gamma)} \sim Y_{q(\gamma)}$ for some $\gamma \in C$;
- 2) $\omega \subsetneq \partial_{-} S_{\lambda}$ or $\omega \subsetneq \partial_{+} S_{\lambda}$ for some $\lambda \in \Lambda$.

Let S be a model strip such that $\partial_{-}S = (0,1) \times -1$ and $\partial_{+}S = (0,1) \times 1$. Let also $\phi : \partial_{-}S \to \partial_{+}S$ be a homeomorphism defined by $\phi(t,-1) = (t,1), t \in (0,1)$, and $\mathcal{C} = S/\phi$ be the quotient space obtained by identifying each $x \in \partial_{-}S$ with $\phi(x) \in \partial_{+}S$.

Then C is a striped surface homeomorphic with a cylinder, and its canonical foliation has no special leaves.

It follows from [8, Theorem 3.7] that every striped surface (in the sense of (2.1), see Remark 2.3) is foliated homeomorphic either to C or to a reduced surface.

Graph of a striped surface. For a reduced striped surface Σ not foliated homeomorphic with C define an oriented graph $\Gamma(\Sigma)$ whose vertexes are strips and whose edges are special leaves. More precisely: if $\omega = X_{p(\gamma)} \sim Y_{q(\gamma)}$ is a special leaf of F, $X_{p(\gamma)} \subset \partial_{-}S_{\lambda_{0}}$, and $Y_{q(\gamma)} \subset \partial_{+}S_{\lambda_{1}}$, then we assume that ω is an *edge* between vertices $S_{\lambda_{0}}$ and $S_{\lambda_{1}}$ oriented from $S_{\lambda_{1}}$ to $S_{\lambda_{0}}$.

If $\lambda_0 = \lambda_1$, then ω correspond to a loop in $\Gamma(\Sigma)$ at $S_{\lambda_0} = S_{\lambda_1}$ being a vertex of $\Gamma(\Sigma)$.

Since a model strip may have infinitely many boundary components, we see that a graph $\Gamma(\Sigma)$ can be not locally finite. On the other hand, it can have a finite diameter diam $\Gamma(\Sigma)$, being the minimal non-negative integer d such that every two vertices v_1 and v_2 are connected in $\Gamma(\Sigma)$ by a path consisting at most d edges.

Admissible striped surfaces. Recall that a family $\mathcal{V} = \{V_i\}_{i \in \Lambda}$ of subsets in a topological space X is called *locally finite* whenever for each $x \in X$ there exists an open neighborhood intersecting only finitely many elements from \mathcal{V} .

It is well known and is easy to see that a union of a locally finite family of closed subsets is closed, e.g. [7, Chapter 1, \S 5.VIII].

Definition 2.4. A model strip S will be called *admissible* if the closures of intervals in $\partial_{-}S$ and $\partial_{+}S$ are mutually disjoint and constitute a locally finite family in \mathbb{R}^{2} .

Example 2.5. A model strip with

$$\partial_+ S = \bigcup_{n \in \mathbb{Z} \setminus \{-1,0\}} \left(\frac{1}{n+1}, \frac{1}{n}\right) \times 1$$

is not admissible, since condition 2) of Definition 2.1 fails.

It will be convenient to use the following notation:

n

$$[0] = \emptyset, \quad [n] = \{1, 2, \dots, n\}, \quad -\mathbb{N} = \{-1, -2, \dots\}$$

Let also $J_i = (i, i + 0.5), i \in \mathbb{Z}$, and for a subset $\Delta \subset \mathbb{Z}$ denote

$$A_{\Delta} = \bigcup_{i \in \Delta} J_i.$$

In particular, consider the following collections of mutually disjoint open intervals:

$$A_{[n]} = \bigcup_{i=1}^{n} (i, i+0.5), \quad n = 0, 1, \dots, \qquad A_{\mathbb{N}} = \bigcup_{i \in \mathbb{N}} (i, i+0.5),$$
$$A_{-\mathbb{N}} = \bigcup_{i \in \mathbb{N}} (i, i+0.5), \qquad A_{\mathbb{Z}} = \bigcup_{i \in \mathbb{Z}} (i, i+0.5),$$

which will be called *standard*. The following easy lemma is left for the reader.

Lemma 2.6. Let S be an admissible model strip. Then there exists a homeomorphism $h : \mathbb{R}^2 \to \mathbb{R}^2$ preserving each line $\mathbb{R} \times t$, $t \in (-1,1)$, with its orientation, and such that h(S) is a model strip with $\partial_{-}h(S) = A_{\alpha} \times \{-1\}$ and $\partial_{+}h(S) = A_{\beta} \times \{1\}$, where A_{α} and A_{β} are standard collections of intervals, i.e. $\alpha, \beta \in \{[0], [1], \ldots, \mathbb{N}, -\mathbb{N}, \mathbb{Z}\}$, see Figure 2.2. Moreover, α and β do not depend on a particular choice of such h.

FIGURE 2.2. Types of $\partial_+ S$

Thus for an admissible model strip S its foliated topological type is determined by the ordinal type of collections of boundary intervals in $\partial_{-}S$ and $\partial_{+}S$.

3. Wreath products

Let H and S be two groups. Denote by Map(H, S) the group of all maps (not necessarily homomorphisms) $\varphi : H \to S$ with respect to the point-wise multiplication. Then the group H acts on Map(H, S) by the following rule: the result of the action of $\varphi \in Map(H, S)$ on $h \in H$ is the composition map:

$$\varphi \circ h: H \longrightarrow H \longrightarrow S.$$

The semidirect product $Map(H, S) \rtimes H$ corresponding to this action will be denoted by $S \wr H$ and called the *wreath product* of S and H. Thus

$$S \wr H = Map(H, S) \rtimes H$$

is the Cartesian product $Map(H, S) \times H$ with the multiplication given by the formula

$$(\varphi_1, h_1) \cdot (\varphi_2, h_2) = \left((\varphi_1 \circ h_2) \cdot \varphi_2, h_1 \cdot h_2 \right)$$

for $(\varphi_1, h_1), (\varphi_2, h_2) \in Map(H, S) \rtimes H$.

Let $\varepsilon : H \to S$ be the constant map into the unit of S. Then the pair $(\varepsilon, \mathrm{id}_H)$ is the unit element of $S \wr H$. Moreover, if $(\varphi, h) \in S \wr H$ and $\varphi^{-1} \in Map(H, S)$ is the point-wise inverse of φ , then $(\varphi^{-1} \circ h^{-1}, h^{-1})$ is the inverse of (φ, h) in $S \wr H$.

We also have the following exact sequence:

$$1 \to Map(H, S) \xrightarrow{i} S \wr H \xrightarrow{\pi} H \to 1,$$

where $i(\varphi) = (\varphi, e)$, e is the unit of H, and $\pi(\varphi, h) = h$. Moreover, π admits a section $s: H \to S \wr H$ defined by $s(h) = (\varepsilon, h)$.

4. Main result

Homeotopy group of a canonical foliation. Let Σ be striped surface with a canonical foliation F. Denote by H(F) the groups of all foliated homeomorphisms $h : \Sigma \to \Sigma$, i.e. homeomorphisms mapping leaves of F onto leaves. We will endow H(F) with the corresponding compact open topology.

Recall that all leaves of F are oriented. Then we denote by $H^+(F)$ the subgroup of H(F) consisting of homeomorphisms $h: \Sigma \to \Sigma$ such that for each leaf ω the restriction map $h: \omega \to h(\omega)$ is orientation preserving.

Let $H_0^+(F)$ be the identity path component of $H^+(F)$. It consists of all $h \in H^+(F)$ isotopic to id_{Σ} in $H^+(F)$. Then $H_0^+(F)$ is a normal subgroup of $H^+(F)$, and the corresponding quotient

$$\pi_0 H^+(F) = H^+(F) / H_0^+(F)$$

will be called the *homeotopy* group of F.

Class \mathfrak{F} . Denote by \mathfrak{F} the class of striped surfaces

$$\Sigma = \bigsqcup_{\lambda \in \Lambda} S_{\lambda} / \{ X_{p(\gamma)} \overset{\varphi_{\gamma}}{\sim} Y_{q(\gamma)} \}$$

satisfying the following conditions:

1) each $S_{\lambda}, \lambda \in \Lambda$, is admissible,

$$\partial_{-}S_{\lambda} = J_1 \times \{-1\} = A_{[1]} \times \{-1\}, \quad \partial_{+}S_{\lambda} = A_{\Delta_{\lambda}} \times \{1\},$$

where Δ_{λ} coincides with one of the standard collections $A_{[n]}$, $A_{\mathbb{N}}$, $A_{-\mathbb{N}}$, or $A_{\mathbb{Z}}$; 2) the graph $\Gamma(\Sigma)$ is connected and has a finite diameter and no cycles.

In particular, if $\Sigma \in \mathfrak{F}$, then each model strip S_{λ} of Σ regarded as a vertex of $\Gamma(\Sigma)$ has at most one incoming edge and at most countably many outcoming edges linearly ordered with respect to Δ_{λ} .

Since $\Gamma(\Sigma)$ is connected and has a finite diameter and no cycles, it follows that there exists a unique vertex having no incoming edges. We will call this vertex a *root* and the corresponding strip a *root* strip.

Thus every surface $\Sigma \in \mathfrak{F}$ of diameter d can be represented as follows, see Figure 4.1:

(4.1)
$$\Sigma = S \bigcup_{\partial_+ S} \left(\bigcup_{i \in \Delta} \Sigma_i \right),$$

where

• S is a root strip of Σ ,

$$\partial_{-}S = J_1 \times \{-1\}, \quad \partial_{+}S = \bigcup_{i \in \Delta} J_i \times \{1\},$$

where $\Delta \in \{[0], [1], \ldots, \mathbb{N}, -\mathbb{N}, \mathbb{Z}\}.$

• Σ_i is either empty or it is a striped surface belonging to \mathfrak{F} and its graph $\Gamma(\Sigma_i)$ has diameter less than d.

YU. YU. SOROKA

• Suppose Σ_i is non-empty and let S_i be the root strip of Σ_i . Then $\partial_-S_i =$ $J_1 \times \{-1\}$ is glued to the boundary interval $J_i \times \{1\}$ of $\partial_+ S$ by the homeomorphism

$$\varphi: J_1 \equiv (1, 1.5) \longrightarrow J_i \equiv (i, i+0.5), \quad \varphi(t) = t+i-1.$$

FIGURE 4.1. A striped surface $\Sigma \in \mathfrak{F}$ whose graph $\Gamma(\Sigma)$ has diameter 3

Obviously, $\Sigma \in \mathfrak{F}$ is a connected and simply connected non-compact surface. Therefore it follows from [3] that the interior of Σ is homeomorphic to \mathbb{R}^2 .

The class of homeotopy groups of foliations on striped surfaces which belongs to the class \mathfrak{F} will be denoted by \mathcal{P} , i.e.

 $\mathcal{P} = \{\pi_0 H^+(F) \mid F \text{ is a canonical foliation of some striped surface } \Sigma \in \mathfrak{F}\}.$

We will also define another class of groups \mathcal{G} .

Definition 4.1. Let \mathcal{G} be the minimal class of groups satisfying the following conditions:

- 1) $\{1\} \in \mathcal{G};$ 2) if $A_i \in \mathcal{G}$ for $i \in \mathbb{N}$, then $\prod A_i \in \mathcal{G}$; 3) if $A \in \mathcal{G}$, then $A \wr \mathbb{Z} \in \mathcal{G}$.

Lemma 4.2. A group G belongs to \mathcal{G} if and only if it can be obtained from the unit group $\{1\}$ by a composition of finitely many operations of the following types:

- (a) countable direct products;
- (b) wreath product with the group \mathbb{Z} .

Proof. Let \mathcal{G}_0 be the class of groups G which can be obtained from the unit group $\{1\}$ by a composition of finitely many operations of types (a) and (b). Then any class of groups satisfying conditions 1)–3) of Definition 4.1 contains \mathcal{G}_0 , whence $\mathcal{G}_0 \subset \mathcal{G}$. On the other hand, \mathcal{G}_0 also satisfies conditions 1)–3) of Definition 4.1, whence $\mathcal{G} \subset \mathcal{G}_0$ as well.

Every representation $\xi(G)$ of G as a composition of operations (a) and (b) will be called a representation of G in the class \mathcal{G} . Such a representation is not unique. For example,

 $\mathbb{Z} \cong \{1\} \wr \mathbb{Z} \cong 1 \times (1 \wr \mathbb{Z}) \cong (1 \times 1 \times 1) \wr \mathbb{Z}.$ (4.2)

Definition 4.3. The *height* of a representation $\xi(G)$ of G in the class \mathcal{G} is a non-negative integer defined inductively as follows:

1)
$$h(\{1\}) = 0;$$

2) $h(\xi(G) \wr \mathbb{Z}) = 1 + h(\xi(G));$
3) $h\left(\prod_{i \in \Lambda} \xi(A_i)\right) = 1 + \max_i \{h(\xi(A_i))\}$

Example 4.4. Below are examples of representations of groups $\{1\}$, \mathbb{Z} and $\mathbb{Z} \wr \mathbb{Z}$ in the class \mathcal{G} and their heights:

$$\begin{split} h(\{1\}) &= 0, & h(\{1\} \times \{1\}) = 1, \\ h(\{1\} \wr \mathbb{Z}) &= 1, & h((\{1\} \wr \mathbb{Z}) = 2, \\ h((\{1\} \wr \mathbb{Z}) \times (\{1\} \wr \mathbb{Z})) = 2, & h(((\{1\} \times \{1\}) \wr \mathbb{Z}) \times (\{1\} \wr \mathbb{Z})) = 3. \end{split}$$

Let $\mathcal{G}' \subset \mathcal{G}$ be a subclass of \mathcal{G} consisting of groups admitting a representation of finite height in \mathcal{G} . The aim of the present paper is to prove the following theorem:

Theorem 4.5. Classes \mathcal{P} and \mathcal{G}' coincide.

In other words, a group G is isomorphic with a homeotopy group $H^+(F)$ of some striped surface $\Sigma \in \mathfrak{F}$ with a canonical foliation F if and only if G can be obtained from the unit group $\{1\}$ by a composition of finitely many operations of types (a) and (b) of Lemma 4.2.

5. Preliminaries

Let Σ be a striped surface belonging to \mathfrak{F} presented in the form (4.1), and S be the root strip of Σ . We will use coordinates (x, y) from the chart for S, so we can assume that $\partial_+ S = \bigcup_{i \in \Delta} J_i \times \{1\}$.

Notice that if $h \in H^+(F)$, then h(S) = S, whence there exists a unique number $\eta(h) \in \mathbb{Z}$ such that in the chart for S we have that

$$h(J_i \times \{1\}) = J_{i+n(h)} \times \{1\}$$

for all $i \in \Delta$. One can easily check that the correspondence $h \mapsto \eta(h)$ is a homomorphism (5.1) $\eta: H^+(F) \to \mathbb{Z}.$

Obviously, η can be a non-zero homomorphism only when $\Delta = \mathbb{Z}$.

Consider the following two subgroups of $H^+(F)$:

$$Q_S = \left\{ h \in H^+(F) \mid h(\omega) = \omega, \text{ for each leaf } \omega \text{ of } F \subset S \right\},\$$

$$H^+(F,S) = \{h \in H^+(F) \mid h|_S = \mathrm{id}|_S\}.$$

It is evident that

(5.2)
$$H^+(F,S) \subset Q_S \subset \ker(\eta).$$

Lemma 5.1. Embeddings (5.2) are homotopy equivalences.

Proof. First we will construct a deformation of $\ker(\eta)$ into Q_S . Let $h \in \ker(\eta)$. Since h(S) = S, it follows that h interchanges leaves of F. In the coordinates (x, y) in the chart for S these leaves are the lines y = const, whence

$$h(x,y) = (\alpha(x,y),\beta(y)),$$

where $\alpha: S \to \mathbb{R}$ and $\beta: [-1,1] \to [-1,1]$ are continuous functions such that for each $y \in (0,1)$ the correspondence $x \mapsto \alpha(x,y)$ is a preserving orientation homeomorphism $\mathbb{R} \to \mathbb{R}$.

Then $h \in Q_S$ iff $\beta(y) = y$ for all $y \in [0, 1]$. Define the map $H : \ker(\eta) \times [0, 1] \to \ker(\eta)$ by the formula

$$H(h,t)(z) = \begin{cases} (\alpha(x,y), (1-t)\beta(y) + ty), & z = (x,y) \in S, \\ z, & z \in \Sigma \setminus S. \end{cases}$$

One can easily check that $H_0 = \mathrm{id}_{\mathrm{ker}(\eta)}$, $H_t(Q_S) \subset Q_S$ for all $t \in [0, 1]$, and $H(h, 1) \in Q_S$. Hence H is a deformation of $\mathrm{ker}(\eta)$ into Q_S , and so the inclusion $Q_S \subset \mathrm{ker}(\eta)$ is a homotopy equivalence. Similarly, let $h \in Q_S$, so

$$h(x, y) = (\alpha(x, y), y)$$

for all $(x, y) \in S$. Notice that $h \in H^+(F, S)$ iff $\alpha(x, y) = x$ and $\beta(y) = y$ for all $(x, y) \in S$. Let

$$h(x, y) = (\alpha_i(x, y), \beta_i(y))$$

be the restriction of h onto root strip S_i of Σ_i in the corresponding chart of S_i . Since $\partial_-S_i = J_1 \times \{-1\}$, we see that if $h \in H^+(F,S)$, then $\alpha_i(x,-1) = x$ for all $x \in J_1$ and $i \in \Delta$.

Fix a continuous function $\varepsilon: [-1,1] \rightarrow [0,1]$ such that

$$\varepsilon(y) = \begin{cases} 0, & y \in (-1, -0.8), \\ 1, & y \in (0, 1) \end{cases}$$

and define the following homotopy $G: Q_S \times [0,1] \to Q_S$ by

$$G(h,t)(z) = \begin{cases} ((1-t)\alpha(x,y) + tx,y), & z = (x,y) \in S, \\ ((1-t\varepsilon(y))\alpha_i(x,y) + t\varepsilon(y)x, \beta(y)), & z = (x,y) \in S_i, \\ z & z \notin S \cup (\cup_{i \in \Delta} S_i). \end{cases}$$

Since $\partial_{-}S_i$ is glued to the boundary component $J_i \times \{1\}$ by an affine homeomorphism, and the formulas for G are affine for each fixed t and y, it follows that those formulas agree on $J_i \times \{1\}$ and $\partial_{-}S_i$, c.f. [8]. This implies that G is a continuous map.

Moreover, one can easily check that $G_0 = \mathrm{id}_{Q_S}$, $G_t(H^+(F,S)) \subset H^+(F,S)$ for all $t \in [0,1]$, and $G_1(Q_S) \subset H^+(F,S)$. Hence G is a deformation of Q_S into $H^+(F,S)$, and therefore the inclusion $H^+(F,S) \subset Q_S$ is a homotopy equivalence as well. \Box

Suppose Σ_i is non-empty for some $i \in \Delta$. Let F_i be the canonical foliation on Σ_i and S_i be the root strip of Σ_i . We will denote by $H^+(F_i, \partial_-S_i)$ the subgroup of $H^+(F_i)$ consisting of homeomorphisms fixed on ∂_-S_i .

If $\Sigma_i = \emptyset$, then we will assume that $H^+(F_i, \partial_-S_i) = \{1\}$.

Lemma 5.2. We have an isomorphism

$$\pi_0 \ker(\eta) \cong \prod_{i \in \Delta} \pi_0 H^+(F_i, \partial_- S_i)$$

Proof. Evidently, we have a canonical isomorphism

$$\alpha: H^+(F,S) \cong \prod_{i \in \Delta} H^+(F_i, \partial_- S_i), \quad \alpha(h) = (h|_{\Sigma_i})_{i \in \Delta}.$$

Then from Lemma 5.1 we get the following sequence of isomorphisms:

$$\pi_0 \ker(\eta) \cong \pi_0 H^+(F, S) \cong \pi_0 \prod_{i \in \Delta} H^+(F_i, \partial_- S_i) = \prod_{i \in \Delta} \pi_0 H^+(F_i, \partial_- S_i).$$

Lemma is proved.

Theorem 5.3. 1) If η is zero homomorphism, then the group $\pi_0 H^+(F)$ is isomorphic to $\prod \pi_0 H^+(F_i, \partial_-S_i)$.

2) Suppose the image of η is $k\mathbb{Z}$ for some $k \ge 1$, so $\Delta = \mathbb{Z}$. Then the group $\pi_0 H^+(F)$ is isomorphic to $\left(\prod_{i=0}^{k-1} \pi_0 H^+(F_i, \partial_-S_i)\right) \wr \mathbb{Z}$.

Proof. 1) The assumption that η is zero homomorphism means that $H^+(F) = \ker(\eta)$, whence we get from Lemma 5.2 that

$$\pi_0 H^+(F) \cong \prod_{i \in \Delta} \pi_0 H^+(F_i, \partial_- S_i).$$

2) Suppose Im $\eta = k\mathbb{Z}$. Then we have an *epimorphism* $\hat{\eta} : H^+(F) \to \mathbb{Z}$ defined by $\hat{\eta}(h) = \eta(h)/k$ and such that

$$h(\Sigma_r) = \Sigma_{r+k \cdot \widehat{\eta}(h)}, \quad r = 0, 1, \dots, k-1.$$

Let

$$X = \bigcup_{i=0}^{k-1} \Sigma_i, \quad \partial_- X = \bigcup_{i=0}^{k-1} \partial_- S_i,$$

and F_X be the oriented foliation on X induced by F. Denote by $H^+(F_X, \partial_-X)$ the group of homeomorphisms of X fixed on ∂_-X and mapping leaves of F_X onto leaves and preserving their orientation. Then we have a natural isomorphism

$$\prod_{i=0}^{k-1} H^+(F_i, \partial_- S_i) \cong H^+(F_X, \partial_- X)$$

which yields an isomorphism

$$\prod_{i=0}^{k-1} \pi_0 H^+(F_i, \partial_- S_i) \cong \pi_0 H^+(F_X, \partial_- X).$$

Therefore for the proof of Theorem 5.3 we should construct an isomorphism

$$\beta: \pi_0 H^+(F) \longrightarrow \pi_0 H^+(F_X, \partial_- X) \wr \mathbb{Z} \equiv Map\Big(\mathbb{Z}, \pi_0 H^+(F_X, \partial_- X)\Big) \rtimes \mathbb{Z}$$

Fix any $g \in H^+(F)$ with $\widehat{\eta}(g) = 1$. Then

$$g^{-\widehat{\eta}(h)} \circ h(\Sigma_i) = \Sigma_i,$$

for all $h \in H^+(F)$ and $i \in \mathbb{Z}$, whence $g^{-\widehat{\eta}(h)} \circ h \in \ker(\eta)$. Thus we get a well-defined function

$$\varphi_h : \mathbb{Z} \to \pi_0 H^+(F_X, \partial_- X), \quad \varphi_h(j) = \left\lfloor g^{-j - \hat{\eta}(h)} \circ h \circ g^j \big|_X \right\rfloor.$$

Define the following map:

 $\beta: \pi_0 H^+(F) \longrightarrow \pi_0 H^+(F_X, \partial_- X)$

by the formula

$$\beta(h) = (\varphi_h, \widehat{\eta}(h)), \quad h \in \pi_0 H^+(F)$$

We claim that β is an isomorphism. First notice that the composition operation in $H^+(F_X, \partial_- X) \wr \mathbb{Z}$ is given by the following rule:

$$(\varphi_{h_1}, n) \cdot (\varphi_{h_2}, m) = (\varphi_{h_1}^m \cdot \varphi_{h_2}, n+m),$$

where $\varphi_h^m(j) = \varphi_h(j+m)$.

Proof that β is a homomorphism. Let $h_1, h_2 \in H^+(F)$. Then

$$\begin{split} \beta(h_1) \circ \beta(h_2) &= \left(\varphi_{h_1}, \ \widehat{\eta}(h_1)\right) \cdot \left(\varphi_{h_2}, \ \widehat{\eta}(h_2)\right) \\ &= \left(\varphi_{h_1}^{\widehat{\eta}(h_2)} \cdot \varphi_{h_2}, \ \widehat{\eta}(h_1) + \widehat{\eta}(h_2)\right) \\ &= \left(\left[g^{-j - \widehat{\eta}(h_1) - \widehat{\eta}(h_2)} \circ h_1 \circ g^{j + \widehat{\eta}(h_2)} \circ g^{-j - \widehat{\eta}(h_2)} \circ h_2 \circ g^j|_X\right], \ \widehat{\eta}(h_1 \circ h_2)\right) \\ &= \left(\left[g^{-j - \widehat{\eta}(h_1 \circ h_2)} \circ h_1 \circ h_2 \circ g^j|_X\right], \ \widehat{\eta}(h_1 \circ h_2)\right) \\ &= \left(\varphi_{h_1 \circ h_2}, \ \widehat{\eta}(h_1 \circ h_2)\right) = \beta(h_1 \circ h_2). \end{split}$$

Proof that β is injective. Let $h \in H^+(F)$ be such that $[h] \in \ker \beta$. We should prove that h is isotopic in $H^+(F)$ to $\operatorname{id}_{\Sigma}$.

The assumption $[h] \in \ker \beta$ means that $\beta(h) = (\varphi_h, \hat{\eta}(h)) = (\varepsilon, 0)$, where $\varepsilon : \mathbb{Z} \to [\operatorname{id}_X]$ is the constant map into the unit of $\pi_0 H^+(F_X, \partial_-X)$. In particular, since $\eta(h) = 0$, we get from Lemma 5.1 that h is isotopic in $H^+(F)$ to a homeomorphism fixed on S. Therefore we can assume that h itself is fixed on S, that is $h \in H^+(F, S)$. Then

(5.3)
$$\varphi_h(j) = \left[g^{-j} \circ h \circ g^j|_X\right] = \varepsilon(j) = [\mathrm{id}_X] \in \pi_0 H^+(F_X, \partial_- X)$$

for each $j \in \mathbb{Z}$. In other words, $g^{-j} \circ h \circ g^j|_X$ is isotopic to id_X relatively $\partial_- X$.

It suffices to prove that for each $i \in \mathbb{Z}$ the restriction $h|_{\Sigma_i}$ is isotopic in $H^+(F_i, \partial_-S_i)$ to id_{Σ_i} relatively to ∂_-S_i .

Write i = r + jk for a unique $r \in \{0, k - 1\}$. Then we have the following commutative diagram:

Therefore, we get from (5.3) that $[h|_{\Sigma_i}] = [\mathrm{id}_{\Sigma_i}] \in H^+(F_i, \partial_-S_i)$. Hence h is isotopic of id_{Σ} in $H^+(F)$.

Proof that β is surjective. Let $(\varphi, n) \in \pi_0 H^+(F_X, \partial_-X) \wr \mathbb{Z}$. For each $j \in \mathbb{Z}$ fix a homeomorphism $h_j \in H^+(F_X, \partial_-X)$ such that $[h_j] = \phi(j) \in \pi_0 H^+(F_X, \partial_-X)$. Now define the following homeomorphism \hat{h} of Σ by the formula:

$$\widehat{h} = \begin{cases} \mathrm{id}_S, & \mathrm{on}\ S, \\ [g^j \circ h_j \circ g^{-j}] & \mathrm{on}\ g^j(X) \end{cases}$$

and put $h = g^n \circ \hat{h}$. Then it is easy to see that $\beta([h]) = (\phi, n)$, whence β is surjective. Thus β is an isomorphism.

6. Proof of Theorem 4.5

We should prove that $\mathcal{P} = \mathcal{G}'$.

1. First we will show that $\mathcal{G}' \subset \mathcal{P}$.

Let $G \in \mathcal{G}'$, so G has a representation $\xi(G)$ in the class \mathcal{G} of finite height $k = h(\xi(G))$. We have to show that there exists a striped surface $\Sigma \in \mathfrak{F}$ with canonical foliation F such that $G \cong \pi_0 H^+(F)$.

If $k = h(\xi(G)) = 0$, then G is the unit group $\{1\}$ and $\xi(G) = \{1\}$. Let S be an admissible model strip with $\partial_{-}S = A_{[1]} \times \{-1\}$ and $\partial_{+}S = \emptyset$. Then $S \in \mathfrak{F}$. Let also F be the canonical foliation on S. Then

$$\pi_0 H^+(F) = \{1\} = G,$$

i.e. $G \in \mathcal{P}$.

Suppose that we have established our statement for all k being less than some $\bar{k} > 0$. Let us prove it for $k = \bar{k}$. It follows from Definition 4.3 that either

- (i) $\xi(G) = \prod_{i \in \mathbb{N}} A_i$ where each group A_i has a representation $\xi(A_i)$ in the class \mathcal{G} of height $h(\xi(A_i)) < k$, or
- (ii) $\xi(G) = A \mathbb{Z}$, and A has a representation $\xi(A)$ in the class \mathcal{G} of height $h(\xi(A)) < k$.

In the case (i) due to the inductive assumption for each $i \in \mathbb{N}$ there exists a striped surface $\Sigma_i \in \mathfrak{F}$ with foliations F_i such that $A_i = \pi_0 H^+(F_i)$.

Let S be an admissible model strip with $\partial_{-}S = A_{[1]} \times \{-1\}$ and $\partial_{+}S = A_{\mathbb{N}} \times \{1\}$, and S_i be the root strip of Σ_i , $i \in \mathbb{N}$. Define the striped surface

$$\Sigma = S \bigcup_{\partial_+ S} \left(\bigcup_{i \in \mathbb{N}} \Sigma_i \right)$$

obtained by identifying $\partial_{-}S_{i} \subset \Sigma_{i}$ with $J_{i} \times \{1\} \subset \partial_{+}S$. Then by Theorem 5.3 η is a trivial homomorphism, and $\pi_{0}H^{+}(F) \cong \prod_{i \in \mathbb{N}} \pi_{0}H^{+}(F_{i}) \cong \prod_{i \in \mathbb{N}} A_{i} \cong G$. So $G \in \mathcal{P}$.

In the case (ii) again by inductive assumption there exists a striped surface $\widehat{\Sigma} \in \mathfrak{F}$ with a canonical foliation \widehat{F} such that $A = \pi_0 H^+(\widehat{F})$.

Take countably many copies $\widehat{\Sigma}_i$, $i \in \mathbb{Z}$, of $\widehat{\Sigma}$. Let \widehat{S}_i be the root strip of $\widehat{\Sigma}_i$ and \widehat{F}_i be the canonical foliation on $\widehat{\Sigma}_i$.

Let also S be an admissible model strip with $\partial_{-}S = A_{[1]} \times \{-1\}$ and $\partial_{+}S = A_{\mathbb{Z}} \times \{1\}$. Define the following striped surface:

$$\Sigma = S \bigcup_{\partial_+ S} \left(\bigcup_{i \in \mathbb{N}} \widehat{\Sigma}_i \right).$$

Obtained by gluing each $\widehat{\Sigma}_i$ to S by identifying $\partial_-\widehat{S}_i \subset \widehat{\Sigma}_i$ with $J_i \times \{1\} \subset \partial_+S, i \in \mathbb{Z}$.

Then for every pair $i, j \in \mathbb{Z}$ there exists $h \in H^+(F)$ such that $h(\widehat{\Sigma}_i) = \widehat{\Sigma}_j$, whence the homomorphism η , see (5.1) is surjective. Hence by Theorem 5.3

$$\pi_0 H^+(F) \cong \pi_0 H^+(\widehat{F}) \wr \mathbb{Z} \cong A \wr \mathbb{Z} \cong G$$

Thus, $G \in \mathcal{P}$ and so $\mathcal{G}' \subset \mathcal{P}$.

2. Conversely, let us show that $\mathcal{P} \subset \mathcal{G}'$.

Let $\Sigma \in \mathfrak{F}$ be a striped surface presented in the form (2.1) with canonical foliation Fand such diam $\Gamma(\Sigma) = k$. We should prove that $\pi_0 H^+(F)$ has a finite presentation in the class \mathcal{G} , which means that $\pi_0 H^+(F) \in \mathcal{G}'$.

If k = 0, then Σ is an admissible model strip with

$$\partial_{-}\Sigma = A_{[1]} \times \{-1\}, \quad \partial_{+}\Sigma = A_{\alpha}, \quad \alpha \in \{[0], [1], \dots, \mathbb{N}, -\mathbb{N}, \mathbb{Z}\}.$$

Then it easily follows from Theorem 5.3 that $\pi_0 H^+(F) \cong \mathbb{Z} \cong \{1\} \wr \mathbb{Z}$ if $\alpha = \mathbb{Z}$, and $\pi_0 H^+(F) \cong \{1\}$ otherwise. In both cases $\pi_0 H^+(F) \in \mathcal{G}$.

Suppose that we have established our statement for all k being less than some $\bar{k} > 0$. We should prove it for $k = \bar{k}$. Let

$$\Sigma = S \bigcup_{\partial_+ S} \left(\bigcup_{i \in \Delta} \Sigma_i \right) \in \mathfrak{F}$$

be such that $\Gamma(\Sigma)$ has diameter k. Then $\Gamma(\Sigma_i)$ has diameter less than k, and so by inductive assumption $\pi_0 H^+(F_i, \partial_-S_i) \in \mathcal{G}$. Moreover, according to Theorem 5.3 we have that

(i) if
$$\operatorname{image}(\eta) = 0$$
, then $\pi_0 H^+(F) \cong \prod_{i \in \Delta} \pi_0 H^+(F_i, \partial_- S_i) \in \mathcal{G}$,

(ii) if
$$\operatorname{image}(\eta) = k\mathbb{Z}$$
, then $\pi_0 H^+(F) \cong \left(\prod_{i=0}^{k-1} \pi_0 H^+(F_i, \partial_- S_i)\right) \wr \mathbb{Z} \in \mathcal{G}$

Thus $\mathcal{P} \subset \mathcal{G}'$, and so $\mathcal{P} = \mathcal{G}'$. Theorem 5.3 completed.

References

- A. V. Bolsinov and A. T. Fomenko, Vvedenie v topologiyu integriruemykh gamiltonovykh sistem (introduction to the topology of integrable hamiltonian systems), Nauka, Moscow, 1997 (Russian).
- William M. Boothby, The topology of regular curve families with multiple saddle points, Amer. J. Math. 73 (1951), 405–438.
- 3. D. B. A. Epstein, Curves on 2-manifolds and isotopies, Acta Math. 115 (1966), 83-107.
- James A. Jenkins and Marston Morse, Contour equivalent pseudoharmonic functions and pseudoconjugates, Amer. J. Math. 74 (1952), 23–51.
- 5. Wilfred Kaplan, Regular curve-families filling the plane, I, Duke Math. J. 7 (1940), 154–185.
- 6. Wilfred Kaplan, Regular curve-families filling the plane, II, Duke Math J. 8 (1941), 11-46.
- K. Kuratowski, *Topology. Vol. I*, New edition, revised and augmented. Translated from the French by J. Jaworowski, Academic Press, New York-London; Panstwowe Wydawnictwo Naukowe, Warsaw, 1966.
- Sergiy Maksymenko and Eugene Polulyakh, Foliations with non-compact leaves on surfaces, Proceedings of Geometric Center 8 (2015), no. 3–4, 17–30, arXiv:1512.07809.

YU. YU. SOROKA

- A. A. Oshemkov, Morse functions on two-dimensional surfaces. Coding of singularities, Proc. Steklov Inst. Math. 205 (1995), no. 4, 119–127.
- E. Polulyakh and I. Yurchuk, On the pseudo-harmonic functions defined on a disk, vol. 80, Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 2009 (Ukrainian).
- E. A. Polulyakh, Kronrod-Reeb graphs of functions on noncompact two-dimensional surfaces. I, Ukrainian Math. J. 67 (2015), no. 3, 431–454.
- A. O. Prishlyak, Conjugacy of morse functions on surfaces with values on the line and circle, Ukrainian Math. J. 52 (2000), no. 10, 1623–1627.
- A. O. Prishlyak, Morse functions with finite number of singularities on a plane, Methods Funct. Anal. Topology 8 (2002), no. 1, 75–78.
- V. V. Sharko, Smooth and topological equivalence of functions on surfaces, Ukrainian Math. J. 55 (2003), no. 5, 832–846.
- V. V. Sharko, Smooth functions on non-compact surfaces, Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos. 3 (2006), no. 3, 443–473, arXiv:0709.2511.
- V. V. Sharko and Yu. Yu. Soroka, *Topological equivalence to a projection*, Methods Funct. Anal. Topology **21** (2015), no. 1, 3–5.

17. Hassler Whitney, Regular families of curves, Ann. of Math. (2) **34** (1933), no. 2, 244–270.

Taras Shevchenko National University of Kyiv, Kyiv, Ukraine $E\text{-}mail\ address:\ \texttt{sorokayulya150gmail.com}$

Received 31/03/2016