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EVOLUTION OF STATES AND MESOSCOPIC SCALING FOR
TWO-COMPONENT BIRTH-AND-DEATH DYNAMICS IN

CONTINUUM

MARTIN FRIESEN AND OLEKSANDR KUTOVIY

Abstract. Two coupled spatial birth-and-death Markov evolutions on �
d are ob-

tained as unique weak solutions to the associated Fokker-Planck equations. Such
solutions are constructed by its associated sequence of correlation functions satisfy-
ing the so-called Ruelle-bound. Using the general scheme of Vlasov scaling we are
able to derive a system of non-linear, non-local mesoscopic equations describing the
effective density of the particle system. The results are applied to several models of
ecology and biology.

1. Introduction

In the last years we observe an increasing interest to interacting particle systems in
the continuum in regard to particular models of ecology, biology and social sciences,
cf. [4, 5, 6, 9, 33]. An important part of the general theory of interacting particle
systems in the continuum is related to the construction of the associated dynamics and
the study of their scalings. In particular, from the point of view of applications it is
worthy to investigate the corresponding mesoscopic equations. Within this framework,
each particle is described by its position x ∈ Rd and the collection of all particles by
the configuration γ. Assuming that each two particles cannot occupy the same position
and all particles are indistinguishable, we will choose the configuration space Γ to be the
collection of all admissible particle configurations γ, i.e.

Γ = {γ ⊂ Rd | |γ ∩K| <∞ for all compacts K ⊂ Rd}.
Here and subsequently |A| denotes the number of elements in the set A ⊂ Rd. It is
assumed that the microscopic dynamics consists of two elementary events. Namely, the
death of a particle (γ �−→ γ\{x}) and the birth of a particle (γ �−→ γ ∪ {x}). A detailed
analysis of such birth-and-death dynamics can be found in [11], see also the references
therein. However, many particular models from ecology and biology require that we have
at least two different types of particles.
The aim of this work is to extend the known results for two-component interacting

particle systems. Since two particles of different types cannot occupy the same position,
a proper state space for the dynamics is naturally given by the configuration space

Γ2 := {(γ+, γ−) ∈ Γ× Γ | γ+ ∩ γ− = ∅},
cf. [17]. The stochastic time-evolution is incorporated in the particular form of the
associated Markov (pre-)generator L. The fact that particles can only die or create new
particles leads to the special form of the corresponding generator L = L+ + L−, where
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both operators L± are given on polynomially bounded cylinder functions F on Γ2 by

(L−F )(γ) =
∑

x∈γ−
d−(x, γ+, γ−\{x})(F (γ+, γ−\{x})− F (γ))(1.1)

+
∫

Rd

b−(x, γ)(F (γ+, γ− ∪ {x})− F (γ)) dx

and

(L+F )(γ) =
∑

x∈γ+

d+(x, γ+\{x}, γ−)(F (γ+\{x}, γ−)− F (γ))(1.2)

+
∫

Rd

b+(x, γ)(F (γ+ ∪ {x}, γ−)− F (γ)) dx.

For simplicity of notation, we write γ = (γ+, γ−), γ±\x and γ±∪x instead of γ±∪{x} and
γ±\{x}, respectively. The birth-and-death Markov process associated to the operator L,
provided it exists, consists of two elementary events. The death intensities d±(x, γ) ≥ 0
determine the probability that the particle x ∈ γ± disappears from the configuration
γ±. The birth intensities b±(x, γ) ≥ 0 determine the probability for a new particle
to appear at x ∈ Rd. Multi-species birth-and-death dynamics in the continuum are
especially important in ecological, biological and physical applications. For example, the
famous Widom-Rowlinson approach to the phase transition in the continuum is based
on a two-component classical gas model. This approach was extended to more general
Potts-type systems (see [22]). Recently, the dynamical versions of these models were
studied in [13]. The corresponding Markov statistical dynamics was constructed with
the help of Glauber dynamics on Γ. The dynamical phase transition was shown there in
the mesoscopic limit of this dynamics. In contrast to that work we are able to construct
the corresponding dynamics for all t ≥ 0. Different kinds of other models, additional
comments and explanations for the modeling of tumor growth can be found in [9] and
the references therein.
The Markov process associated with the (pre-)generator L may be obtained as the

unique solution to certain stochastic differential equations, cf. [21]. Unfortunately the
conditions given in the latter paper are too restrictive for some applications. A different,
functional analytic, approach to the construction of the processes is related to the con-
struction of solutions to the (backward) Kolmogorov equation on functions F : Γ2 −→ R

∂Ft

∂t
= LFt, Ft|t=0 = F0, t ≥ 0.(1.3)

Until now, however, there exist up to our knowledge no techniques which can be used to
solve (1.3) in any space of continuous functions on Γ2. The construction of an associated
Markov process with general birth-and-death rates is, therefore, still unsolved. This
difficulty comes from the necessity to control the number of particles in any bounded
domain in Rd. One therefore tries to construct an associated evolution of probability
measures on Γ2, that is the one-dimensional distributions of the Markov process. The
evolution of one-dimensional distributions is an essential problem on its own right.
A probability measure μ on Γ2 describes in this setting the distribution of particles

located in Rd. Functions F : Γ2 −→ R are called observables and

〈F, μ〉 :=
∫
Γ2

F (γ) dμ(γ)

are considered as measurable quantities of the particle system. Above duality yields a
weak formulation for the dual equation to (1.3), i.e.

d

dt
〈F, μt〉 = 〈LF, μt〉, μt|t=0 = μ0, t ≥ 0.(1.4)
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It is known as the (forward) Kolmogorov equation. In the physical literature (1.4) is also
called Fokker-Planck equation. Because of the Markovian property of the operator L we
expect that solutions to (1.4) can be constructed in the class of probability measures on
Γ2 and hence determine an evolution of states. Solutions to the Fokker-Planck equation
determine the distributions of the associated Markov process, provided, of course, it
exists. Hence (μt)t≥0 is referred to as the ’statistical description’ of the birth-and-death
process.
For many, from the point of view of applications, interesting interacting particle sys-

tems it seems impossible to solve (1.4) for any initial state μ0. Note that the particular
choice μ0 = δγ , where γ ∈ Γ2, is related with the construction of an associated Markov
process on Γ2. It is necessary to restrict ourselves to a certain set of admissible ini-
tial states. Here we see a crucial difference comparing with Markov stochastic processes
framework where the evolution can be constructed for any initial data. One possible class
of admissible initial states is given by the collection of all sub-Poissionian states, cf. [24]
for the one-component case. Such states are described in terms of their associated corre-
lation functions (k(n,m)

μ )∞n,m=0. For the convenience of the reader we repeat the definition
of correlation functions and their properties in the next section. The one-component case
with general location space X (here X = Rd) was considered in the pioneering works
[27, 29, 30] to mention some. The collection of correlation functions (k(n,m)

μ )∞n,m=0 is
called sub-Poissonian if it satisfies the Ruelle bound

k(n,m)
μ (x1, . . . , xn; y1, . . . , ym) ≤ Aeαneβm, n, m ∈ N0

for some constantsA > 0 and α, β ∈ R. A sub-Poissonian state μ is therefore a probability
measure on Γ2 for which the associated correlation functions exist and are sub-Poissonian.
The Cauchy problem (1.4) is then formally equivalent to a system of Banach space-valued
differential equations

∂k
(n,m)
t

∂t
= (LΔkt)(n,m), k

(n,m)
t |t=0 = k

(n,m)
0 , n, m ∈ N0,(1.5)

where LΔ can be seen as an infinite operator-valued matrix. We provide, under some
reasonable conditions, existence and uniqueness of weak solutions to (1.5) and conse-
quently derive existence and uniqueness of weak solutions to (1.4). Note that a solution
(k(n,m)

t )∞n,m=0 to (1.5), in general, does not need to be the correlation function of some
state μt on Γ2. For such property additional analysis is required which was only achieved
for particular models (see e.g. [23, 24, 25]).
This work is organized as follows. Notations and preliminary results are introduced in

the second section. The third section is devoted to the construction of solutions to the
pre-dual equation to (1.5). To this end we first prove that the pre-dual equation is well-
posed and show that solutions can be obtained by the action of an analytic semigroup
of contractions, see Theorem 3.1. The adjoint semigroup is related to existence and
uniqueness of solutions to (1.5). It is shown that such solutions are the correlation
functions corresponding to an evolution of states, see Theorem 3.7 and Proposition 3.13.
The fourth section extends the Vlasov scaling, cf. [11], to the case of two-component
Markov evolutions, see Theorem 4.1–4.3. Examples are considered in the last section.

2. Preliminaries

Space of finite configuration. One-component case. Denote by Γ0 the configura-
tion space of all finite subsets of Rd, i.e.

Γ0 = {η ⊂ Rd | |η| <∞},
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where |η| denotes the number of particles in the set η. This space has a natural decom-
position into n-particle spaces, Γ0 =

⊔∞
n=0 Γ

(n)
0 , where Γ(n)0 = {η ⊂ Rd | |η| = n}, n ≥ 1

and in the case n = 0 we set Γ(0)0 = {∅}. Denote by (̃Rd)n the space of all sequences

(x1, . . . , xn) ∈ (Rd)n with xi �= xj for i �= j. Γ(n)0 can be identified with (̃Rd)n via the
symmetrization map

symn : (̃Rd)n −→ Γ(n)0 , (x1, . . . , xn) �−→ {x1, . . . , xn},
which defines a topology on Γ(n)0 . Namely, a set A ⊂ Γ(n)0 is open if and only if

sym−1n (A) ⊂ (̃Rd)n is open. On Γ0 we define the topology of disjoint unions, i.e. a
set A ⊂ Γ0 is open iff A∩Γ(n)0 is open in Γ(n)0 for all n ∈ N. Then Γ0 is a locally compact
Polish space. Let B(Γ0) stand for the Borel-σ-algebra on Γ0. Denote by dx the Lebesgue
measure on Rd and by d⊗nx the product measure on (Rd)n. Let d(n)x be the image
measure Γ(n)0 w.r.t. symn. The Lebesgue-Poisson measure is defined by

λ = δ∅ +
∞∑

n=1

1
n!

d(n)x.

Given a measurable function G : Γ0 × Γ0 × Γ0 −→ R, then∫
Γ0

∑
ξ⊂η

G(ξ, η\ξ, η) dλ(η) =
∫
Γ0

∫
Γ0

G(ξ, η, η ∪ ξ) dλ(ξ)dλ(η)(2.1)

holds, provided one side of the equality is finite for |G| (see e.g. [27]). For a given
measurable function f : Rd −→ R the Lebesgue-Poisson exponential is defined by

eλ(f ; η) :=
∏
x∈η

f(x)

and satisfies the combinatorial formula∑
ξ⊂η

eλ(f ; ξ) = eλ(1 + f ; η).

For computations we will use the identity∫
Γ0

eλ(f ; η) dλ(η) = exp

(∫
Rd

f(x) dx

)
,

whenever f ∈ L1(Rd).

Space of finite configurations. Two-component case. In this part we want to
provide a brief overview for the two-component configuration space Γ20, see [15, 17] and
the references therein. We suppose that two different particles cannot occupy the same
location x ∈ Rd and therefore define the two-component state space by

Γ20 = {(η+, η−) ∈ Γ0 × Γ0 | η+ ∩ η− = ∅}.
Here and in the following we simply write η instead of (η+, η−) ∈ Γ20 if no confusion may
arise. Set operations ξ ⊂ η, ξ ∪ η and η\ξ are defined component-wise, i.e. by ξ± ⊂ η±,
etc. For η ∈ Γ20 we let |η| := |η+|+ |η−|. The space Γ20 has the natural decomposition

Γ20 =
∞⊔

n,m=0

Γ(n,m)
0 ,

where Γ(n,m)
0 = {(η+, η−) ⊂ Rd ×Rd | η+ ∩ η− = ∅, |η+| = n, |η−| = m}. The topology

on Γ(n,m)
0 and Γ20 is defined in the same way as for Γ(n)0 and Γ0. It is not difficult to

see that this topology is the same as the subspace topology of the product topology on
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Γ0 × Γ0. In particular Γ20 is a Polish space. The product measure λ ⊗ λ on Γ0 × Γ0
satisfies

λ⊗ λ({(η+, η−) ∈ Γ0 × Γ0 | η+ ∩ η− �= ∅}) = 0,(2.2)

see e.g. [16]. The Lebesgue-Poisson measure λ2 on Γ20 is defined as the restriction of λ⊗λ
to Γ20. Since no confusion may arise we use the same notation λ for the Lebesgue-Poisson
measure λ2 on Γ20 and λ on Γ0. One can show that integrals w.r.t. integrable functions
G : Γ20 −→ R can be also written as∫

Γ2
0

G(η) dλ(η) =
∫
Γ0

∫
Γ0

G(η+, η−) dλ(η+)dλ(η−).(2.3)

By (2.1), (2.2) and, (2.3) we see that the two-component Lebesgue-Poisson measure
satisfies ∫

Γ2
0

∑
ξ⊂η

G(ξ, η\ξ, η) dλ(η) =
∫
Γ2

0

∫
Γ2

0

G(ξ, η, η ∪ ξ) dλ(ξ)dλ(η)(2.4)

provided one side of the equality is finite for |G|. A set M ⊂ Γ20 is called bounded if
there exist a compact Λ ⊂ Rd and N ∈ N0 such that

M ⊂ {(η+, η−) ∈ Γ20 | η± ⊂ Λ, |η| ≤ N}.
A function G is said to have bounded support if it is supported on a bounded set. Denote
by Bbs(Γ20) the space of all bounded, measurable functions having bounded support. We
say that H : Γ20 −→ R is locally integrable if it is integrable for any bounded set. This is
the same as regarding that the integral

∫
Γ2

0
G(η)|H(η)| dλ(η) is finite for all non-negative

functions G ∈ Bbs(Γ20).

Space of locally finite configurations. The one-component configuration space Γ
consists of all locally finite subsets γ of Rd and it is equipped with the smallest topology
for which γ �−→ ∑

x∈γ f(x) is continuous for any continuous function f : Rd −→ R

having compact support. Then Γ is a Polish space on which we consider the associated
Borel-σ-algebra. Given α ∈ R, the Poisson measure πeα on Γ is defined as the unique
probability measure having the Laplace transform∫

Γ

e
�

x∈γ f(x) dπeα (γ) = exp

(
eα

∫
Rd

(ef(x) − 1) dx

)
,

see [27]. For two-component systems we consider the product space Γ×Γ equipped with
the product topology. For simplicity of notation we write γ := (γ+, γ−). Likewise we
use for η ∈ Γ20 the notation η ⊂ γ and γ\η by which we mean that η+ ⊂ γ+, η− ⊂ γ−

and γ+\η+, γ−\η−.
By [16] it follows that the product measure πeα ⊗ πeβ on Γ × Γ with α, β ∈ R is

concentrated on
Γ2 := {(γ+, γ−) ∈ Γ× Γ | γ+ ∩ γ− = ∅},

i.e. πeα ⊗πeβ (Γ2) = 1. Here Γ2 is the configuration space for Markov evolutions of parti-
cles with two different types (see [17]). It is equipped with the restriction of the product
topology on Γ × Γ. The additional restriction is due to the fact that any two particles
cannot occupy the same position. The two-component Poisson measure is defined by
πeα,eβ := πeα ⊗ πeβ |Γ2 . Below we describe the class of measures for which equation (1.4)
will be considered.
Let Λ+,Λ− ⊂ Rd be two compacts, define

(Γ× Γ)Λ+,Λ− = {(γ+, γ−) ∈ Γ× Γ | γ± ⊂ Λ±},
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and set projections pΛ+,Λ− : Γ × Γ −→ (Γ × Γ)Λ+,Λ− , (γ+, γ−) �−→ (γ+ ∩ Λ+, γ− ∩ Λ−)
A probability measure μ on Γ × Γ is said to be locally absolutely continuous w.r.t. the
Poisson measure if μΛ+,Λ− := μ◦p−1Λ+,Λ− is absolutely continuous w.r.t. πeα⊗πeβ ◦p−1Λ+,Λ− .
Note that this definition is independent of the particular choice of α and β. Any such
measure μ satisfies μ(Γ2) = 1 (see [16]).
For G ∈ Bbs(Γ20) define the K-transform by

(KG)(γ) =
∑
η�γ

G(η),(2.5)

where η � γ means that the sum only runs over all finite subsets η of γ. Then KG
is a polynomially bounded cylinder function, i.e. there exists a compact Λ ⊂ Rd and
constants C > 0, N ∈ N such that (KG)(γ+, γ−) = (KG)(γ+ ∩ Λ, γ− ∩ Λ) and

|(KG)(γ)| ≤ C(1 + |γ+ ∩ Λ|+ |γ− ∩ Λ|)N , γ ∈ Γ2

holds. The K-transform K : Bbs(Γ20) −→ FP(Γ2) := K(Bbs(Γ20)) is a positivity preserv-
ing isomorphism with inverse given by

(K−1F )(η) :=
∑
ξ⊂η

(−1)|η\ξ|F (ξ), η ∈ Γ20.

Denote by K0 the restriction of K determined by evaluating KG only on Γ20. Its inverse is
then denoted by K−10 . Let μ be locally absolutely continuous w.r.t. the Poisson measure
and assume that it has finite local moments, i.e.∫

Γ2
|γ+ ∩ Λ+|n|γ− ∩ Λ−|n dμ(γ) <∞

for all n ∈ N0 and all compacts Λ± ⊂ Rd. It can be shown that there exists a function
kμ : Γ20 −→ R+ satisfying the relation∫

Γ2
KG(γ) dμ(γ) =

∫
Γ2

0

G(η)kμ(η) dλ(η), G ∈ Bbs(Γ20),(2.6)

see [16]. This function is the so-called correlation function associated with μ. In such
a case the K-transform can be uniquely extended to a bounded linear operator K :
L1(Γ20, kμdλ) −→ L1(Γ2, dμ) such that ‖KG‖L1(Γ2,dμ) ≤ ‖G‖L1(Γ2

0,kμdλ) and (2.5) holds
for μ-a.a. γ ∈ Γ2 (repeat e.g. the arguments given in [27]). Let Lkμ := L1(Γ20, kμdλ), for
kμ(η) := eα|η+|eβ|η−| we also write Lkμ ≡ Lα,β. A function G ∈ Lα,β is called positive
definite if KG ≥ 0. Denote by L+α,β the cone of all positive definite functions.
The duality 〈G, k〉 := ∫

Γ2
0
G(η)k(η) dλ(η) is used for the identification L∗α,β

∼= Kα,β .
Here Kα,β stands for the Banach space of all equivalence classes of functions k : Γ20 −→ R

equipped with norm

‖k‖Kα,β
= ess sup

η∈Γ2
0

|k(η)|e−α|η+|e−β|η−|.

A function k ∈ Kα,β is said to be positive definite if 〈G, k〉 ≥ 0 holds for all G ∈
B+

bs(Γ
2
0) := Bbs(Γ20) ∩ L+α,β . Let K+α,β be the space of all positive definite functions

in Kα,β . Denote by Pα,β the collection of all probability measures having finite local
moments and being locally absolutely continuous w.r.t. the Poisson measure such that
for each μ ∈ Pα,β its correlation function kμ belongs to Kα,β .

Theorem 2.1. [27, 29, 30] The following assertions are satisfied.
(1) Let μ ∈ Pα,β with correlation function kμ. Then kμ(∅) = 1 and kμ is positive

definite.
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(2) Conversely, let k ∈ K+α,β and assume that k(∅) = 1 holds. Then there exists a
unique μ ∈ Pα,β with k as its correlation function.

Let μ ∈ Pα,β, then by Fubini’s theorem∫
Γ2

KG(γ) dμ(γ) =
∫
Γ

∫
Γ

KG(γ+, γ−) dμ(γ+, γ−)

holds for all G ∈ Lα,β .

3. Construction of dynamics

Let L = L− +L+ be given by (1.1) and (1.2). We suppose that the intensities satisfy
the condition given below.

(A) For all x ∈ Rd

Rd × Γ2 � (x, γ) �−→ d+(x, γ+\x, γ−), d−(x, γ+, γ−\x), b+(x, γ), b−(x, γ) ∈ [0,∞](3.1)

are measurable w.r.t the product Borel-σ-algebras on Rd × Γ2 and B(R), where
R = R ∪ {∞}. Moreover, their restrictions to Rd × Γ20 take values in [0,∞) and,
for any compact Λ ⊂ Rd and bounded set M ⊂ Γ20∫

Λ

∫
M

(d+(x, η) + d−(x, η) + b+(x, η) + b−(x, η)) dλ(η)dx <∞.(3.2)

3.1. Quasi-observables. Introduce the cumulative death intensity by

M(η) :=
∑

x∈η−
d−(x, η+, η−\x) +

∑
x∈η+

d+(x, η+\x, η−)

and set c(L, α, β; η) = c(η) = c(α, β; η) by

c(L, α, β; η) :=
∑

x∈η−

∫
Γ2

0

eα|ξ+|eβ|ξ−||K−10 d−(x, · ∪ η+, · ∪ η−\x)|(ξ) dλ(ξ)(3.3)

+
∑

x∈η+

∫
Γ2

0

eα|ξ+|eβ|ξ−||K−10 d+(x, · ∪ η+\x, · ∪ η−)|(ξ) dλ(ξ)

+ e−β
∑

x∈η−

∫
Γ2

0

eα|ξ+|eβ|ξ−||K−10 b−(x, · ∪ η+, · ∪ η−\x)|(ξ) dλ(ξ)

+ e−α
∑

x∈η+

∫
Γ2

0

eα|ξ+|eβ|ξ−||K−10 b+(x, · ∪ η+\x, · ∪ η−)|(ξ) dλ(ξ).

Define a linear mapping on Bbs(Γ20) by L̂ := K−10 LK0. Using the methods proposed in
[11, 17] we can compute L̂. It has the form L̂ = A+B. The latter expressions are given
by (AG)(η) = −M(η)G(η) and by

(BG)(η) =−
∑
ξ�η

G(ξ)
∑

x∈ξ−
(K−10 d−(x, · ∪ ξ+, · ∪ ξ−\x))(η\ξ)

−
∑
ξ�η

G(ξ)
∑

x∈ξ+

(K−10 d+(x, · ∪ ξ+\x, · ∪ ξ−))(η\ξ)

+
∑
ξ⊂η

∫
Rd

G(ξ+, ξ− ∪ x)(K−10 b−(x, · ∪ ξ+, · ∪ ξ−))(η\ξ) dx

+
∑
ξ⊂η

∫
Rd

G(ξ+ ∪ x, ξ−)(K−10 b+(x, · ∪ ξ+, · ∪ ξ−))(η\ξ) dx.
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Below we consider the linear mapping L̂ in one fixed Banach space and construct a
semigroup associated to the Cauchy problem for quasi-observables

∂Gt

∂t
= L̂Gt, Gt|t=0 = G0 ∈ Lα,β .(3.4)

Note that solutions to (1.3) are formally related to (3.4) by Ft = KGt. Denote by 1I∗ the

function given by 1I∗(η) := 0|η| =

{
1, |η| = 0
0, otherwise

.

Theorem 3.1. Suppose that (A) is satisfied and assume that there exists α, β ∈ R and
a constant a = a(α, β) ∈ (0, 2) such that

c(α, β; η) ≤ a(α, β)M(η), η ∈ Γ20(3.5)

holds. Then the following assertions are true:
(a) The closure of (L̂, Bbs(Γ20)) is the generator of an analytic semigroup (T̂α,β(t))t≥0

of contractions on Lα,β such that T̂α,β(t)1I∗ = 1I∗ holds. Moreover, the closure is
given by

Dα,β(L̂) = {G ∈ Lα,β | M ·G ∈ Lα,β}
with L̂ = A+B defined as above.

(b) Suppose that (3.5) holds for all α ∈ (α∗, α∗) and β ∈ (β∗, β∗) with α∗ < α∗ and
β∗ < β∗, and possibly different constants a = a(α, β). Then, for any α′ < α and
β′ < β the space Lα,β is invariant for T̂α′,β′(t) and T̂α,β(t) = T̂α′,β′(t)|Lα,β

holds.

Proof. (a) Set Dα,β(A) := {G ∈ Lα,β | M · G ∈ Lα,β}. Then, since M ≥ 0, the
operator (A, Dα,β(A)) is the generator of an analytic (of angle π

2 ), positive C0-semigroup
(e−tM )t≥0 on Lα,β , see [7]. Let B′ be defined for any G ∈ Bbs(Γ20) by

(B′G)(η+, η−) :=
∑
ξ�η

G(ξ)
∑

x∈ξ−
|K−10 d−(x, · ∪ ξ+, · ∪ ξ−\x)|(η\ξ)

+
∑
ξ�η

G(ξ)
∑

x∈ξ+

|K−10 d+(x, · ∪ ξ+\x, · ∪ ξ−)|(η\ξ)

+
∑
ξ⊂η

∫
Rd

G(ξ+, ξ− ∪ x)|K−10 b−(x, · ∪ ξ+, · ∪ ξ−)|(η\ξ) dx

+
∑
ξ⊂η

∫
Rd

G(ξ+ ∪ x, ξ−)|K−10 b+(x, · ∪ ξ+, · ∪ ξ−)|(η\ξ) dx.

Fix r ∈ (0, 1), cf. (3.5), such that a(α, β) < 1 + r < 2. For each 0 ≤ G ∈ Dα,β(A), see
(2.4), we obtain by (3.5)∫

Γ2
0

B′G(η)eα|η+|eβ|η−| dλ(η) =
∫
Γ2

0

(c(α, β; η) −M(η))G(η)eα|η+ |eβ|η−| dλ(η)

≤ r

∫
Γ2

0

M(η)G(η)eα|η+|eβ|η−| dλ(η)

and hence
∫
Γ2

0

(
A+ 1

r B′
)
G(η)eα|η+|eβ|η−| dλ(η) ≤ 0 holds. Therefore by [34, Theo-

rem 2.2] the operator (A + B′, Dα,β(A)) is the generator of a strongly continuous semi-
group (U(s))s≥0 of contractions which preserves positivity. By [1, Theorem 1.1, Theorem
1.2] the operator (A + B, Dα,β(A)) is the generator of an analytic semigroup (T̂ (s))s≥0
such that |T̂ (s)G| ≤ U(s)|G| holds for all G ∈ Lα,β . Since U(s) is a contraction operator,
so is T̂ (s). It remains to show that the closure of (L̂, Bbs(Γ20)) is given by (A+B, Dα,β(A)).
To this end it suffices to show that Bbs(Γ20) is a core for A+B.
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Let G ∈ Dα,β(A), An ⊂ Γ20 an increasing sequence of bounded sets with
⋃

n≥1
An =

Γ20 and let Gn(η) := 1IAn(η)1I|G|≤n(η)G(η). Then |Gn| ≤ |G| and Gn −→ G almost
everywhere. Hence, M ·Gn −→M ·G and by dominated convergence also BGn −→ BG,
as n →∞ a.e. As a consequence L̂Gn −→ L̂G, as n →∞ almost everywhere. By

|L̂Gn| ≤M |Gn|+B′|Gn| ≤ (M +B′)|G| ∈ Lα,β

and dominated convergence we obtain L̂Gn −→ L̂G in Lα,β . Therefore Bbs(Γ20) ⊂
Dα,β(L̂) is dense in the graph norm, i.e. the closure of (L̂, Bbs(Γ20)) is given by (A +
B, Dα,β(A)).
(b) Let α′ < α and β′ < β such that (3.5) also holds for (α′, β′). Denote by

(T̂α′,β′(s))s≥0 the corresponding semigroup on Lα′,β′ with generator (L̂, Dα′,β′(L̂)) on
the domain

Dα′,β′(L̂) := {G ∈ Lα′,β′ | M ·G ∈ Lα′,β′}.
We have to show that Lα,β is invariant for T̂α′,β′(s) and

T̂ (s)G = T̂α′,β′(s)G, G ∈ Lα,β, s ≥ 0.(3.6)

To this end we define a linear isomorphism

S : Lα,β −→ Lα′,β′ , (SG)(η) = e(α−α′)|η+|e(β−β′)|η−|G(η)

with inverse S−1 given by (S−1G)(η) = e−(α−α′)|η+|e−(β−β′)|η|G(η). Define on Lα′,β′ a
new operator by L̂1 := SL̂S−1 equipped with the domain

Dα′,β′(L̂1) = {G ∈ Lα′,β′ | S−1G ∈ Dα,β(L̂)} = {G ∈ Lα′,β′ | MS−1G ∈ Lα,β}.
Since ‖MS−1G‖Lα,β

= ‖MG‖Lα′,β′ we obtain Dα′,β′(L̂1) = Dα′,β′(L̂). Let us show that
(L̂1, Dα′,β′(L̂1)) is the generator of a C0-semigroup on Lα′,β′ . The definition of S and
S−1 implies L̂1 = A+B1 where A is the same as for L̂ and B1 is given by

(B1G)(η) =

−
∑
ξ�η

G(ξ)e(α−α′)|η+\ξ+|e(β−β′)|η−\ξ−| ∑
x∈ξ−

(K−10 d−(x, · ∪ ξ+, · ∪ ξ−\x))(η\ξ)

−
∑
ξ�η

G(ξ)e(α−α′)|η+\ξ+|e(β−β′)|η−\ξ−| ∑
x∈ξ+

(K−10 d+(x, · ∪ ξ+\x, · ∪ ξ−))(η\ξ)

+ e−(β−β′)
∑
ξ⊂η

∫
Rd

G(ξ+, ξ− ∪ x)e(α−α′)|η+\ξ+|e(β−β′)|η−\ξ−|(K−10 b−(x, · ∪ ξ))(η\ξ) dx

+ e−(α−α′)
∑
ξ⊂η

∫
Rd

G(ξ+ ∪ x, ξ−)e(α−α′)|η+\ξ+|e(β−β′)|η−\ξ−|(K−10 b+(x, · ∪ ξ))(η\ξ) dx.

Define analogously to B′ the positive operator B′1 such that |B1G| ≤ B′1|G|, then for any
non-negative function G ∈ Dα′,β′(L̂1) we obtain∫

Γ2
0

B′1G(η)e
α′|η+|eβ′|η−| dλ(η) =

∫
Γ2

0

(c(α, β; η) −M(η))G(η)eα′|η+|eβ′|η−| dλ(η).

The same arguments as for the construction of T̂α,β(t) show that (A+B′1, Dα′,β′(L̂1)) is
the generator of a sub-stochastic semigroup and hence (L̂1, Dα′,β′(L̂1)) is the generator
of a C0-semigroup. Now [31, Chapter 4, Theorem 5.5, Theorem 5.8] implies that Lα,β is
invariant for T̂α′,β′(t) and the restriction to Lα,β is a C0-semigroup given by T̃α,β(t) :=
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T̂α′,β′(t)|Lα,β
. The generator of T̃α,β(t) is given by the part of (L̂, Dα′,β′(L̂)) in Lα,β ,

that is by

Dα′,β′(L̂)|Lα,β
:={G ∈ Dα′,β′(L̂) ∩ Lα,β | L̂G ∈ Lα,β}
={G ∈ Lα,β | M ·G ∈ Lα′,β′ , L̂G ∈ Lα,β}.

Condition (3.5) therefore implies Dα,β(L̂) ⊂ Dα′,β′(L̂)|Lα,β
and hence (L̂, Dα′,β′(L̂)|Lα,β

)
is an extension of (L̂, Dα,β(L̂)). Denote by R(λ; L̂) the resolvent for (L̂, Dα,β(L̂)) and by
R̃(λ; L̂) the resolvent for (L̂, Dα′,β′(L̂)|Lα,β

). For sufficiently large λ > 0 it follows that
R(λ, L̂)G ∈ Dα,β(L̂) ⊂ Dα′,β′(L̂)|Lα,β

for any G ∈ Lα,β and thus

R̃(λ; L̂)G−R(λ; L̂)G = R̃(λ; L̂)((λ − L̂)− (λ− L̂))R(λ; L̂)G = 0,

where we have used that for elements in Dα,β(L̂) the action of the generators is given by
the formulas for L̂ = A+B and hence coincide. �
For one-component models, i.e. b− = 0 = d−, a similar construction was already done

in [11]. The main assumption was that each term in c(α, β; η) is bounded by 3
2M(η) and

it was not clear whether T̂α,β(t) is a contraction operator for t ≥ 0. The next example
shows that the constant 2 in (3.5) is optimal.

Example 3.2. Take d− = 1, b− = z > 0 constant and b+ = d+ = 0, then condition
(3.5) can be restated to z < eβ and α ∈ R is arbitrary. The evolution equation (3.4)
is in this case exactly solvable and hence has for every initial condition G0 the solution
(Gt)t≥0 given by

Gt(η) = e−t|η−|
∫
Γ0

G(η+, η− ∪ ξ−)eλ

(
z(1− e−t); ξ−

)
dλ(ξ−), η ∈ Γ20,

see [8] for the one-component case. If condition (3.5) is satisfied, then Gt ∈ Lα,β.
Suppose that a(α, β) > 2, i.e. z > eβ and let t0 > 0 such that (1 − e−t)z > eβ for all
t ≥ t0 and hence

z(1− e−t)(e−β + e−t) ≥ z(1− e−t)e−β > 1.
Take 0 ≤ G ∈ Lα,β such that G �∈ Lα,β′ for any β′ > β. The unique solution Gt is then
positive and satisfies

‖Gt‖Lα,β
=
∫
Γ2

0

∫
Γ0

e−t|η−|G(η+, η− ∪ ξ−)eλ(z(1− e−t); ξ−)eα|η+|eβ|η−| dλ(ξ−)dλ(η)

=
∫
Γ2

0

G(η+, ξ−)
(
(e−β + e−t)z(1− e−t)

)|ξ−|
eα|η+|eβ|ξ−| dλ(η+, ξ−) =∞.

Below we show that T̂α,β(t) depends continuously (in a certain sense) on the birth-
and-death rates. Let d±n , d± and b±n , b± be such that condition (A) is satisfied. Let

cn(α, β; η) =
∑

x∈η−

∫
Γ2

0

eα|ξ+|eβ|ξ−||K−10 (d− − d−n )(x, · ∪ η+, · ∪ η−\x)|(ξ) dλ(ξ)

+
∑

x∈η+

∫
Γ2

0

eα|ξ+|eβ|ξ−||K−10 (d+ − d+n )(x, · ∪ η+\x, · ∪ η−)|(ξ) dλ(ξ)

+ e−β
∑

x∈η−

∫
Γ2

0

eα|ξ+|eβ|ξ−||K−10 (b− − b−n )(x, · ∪ η+, · ∪ η−\x)|(ξ) dλ(ξ)

+ e−α
∑

x∈η+

∫
Γ2

0

eα|ξ+|eβ|ξ−||K−10 (b+ − b+n )(x, · ∪ η+\x, · ∪ η−)|(ξ) dλ(ξ)

and Mn(η) =
∑

x∈η− d−n (x, η+, η−\x) +∑x∈η+ d+n (x, η+\x, η−).
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Theorem 3.3. Suppose that the following conditions are satisfied.

(1) There exist α, β ∈ R and a constant a = a(α, β) ∈ (0, 2) (independent of n) such
that

cn(α, β; η) ≤ a(α, β)Mn(η), η ∈ Γ20, n ≥ 1

holds.
(2) There exist constants C > 0, N ∈ N and τ ≥ 0 such that

d−n (x, η) + d+n (x, η) ≤ C(1 + |η|)Neτ |η|, η ∈ Γ20, x ∈ Rd

holds.
(3) cn(α, β; η) −→ 0, n →∞ holds for all η ∈ Γ20.

Then (3.5) is satisfied. Let T̂α,β(t) and T̂ n
α,β(t) be the associated semigroups on Lα,β.

Then T̂ n
α,β(t)G −→ T̂α,β(t)G, as n → ∞ in Lα,β uniformly on compacts for t ≥ 0 and

all G ∈ Lα,β.

Proof. Denote by c(L, α, β; η) the function defined in (3.3). Let c(Ln, α, β; η) be given
as in (3.3) with d±, b± replaced by d±n , b±n . It is not difficult to see that

|c(Ln, α, β; η) − c(L, α, β; η)| ≤ cn(α, β; η)

and |Mn(η)−M(η)| ≤ cn(α, β; η) holds. Thus, for any η ∈ Γ20
c(L, α, β; η) = lim

n→∞ c(Ln, α, β; η) ≤ a(α, β) lim
n→∞ Mn(η) = a(α, β)M(η)

and hence (3.5) holds. Let T̂α,β(t) and T̂ n
α,β(t) be the associated semigroups on Lα,β .

By Trotter-Kato approximation and since Bbs(Γ20) is a core for the generators of both
semigroups, it suffices to show L̂nG −→ L̂G for any G ∈ Bbs(Γ20). To this end one can
show that

‖L̂nG− L̂G‖Lα,β
≤
∫
Γ2

0

cn(α, β; η)|G(η)|eα|η+ |eβ|η−| dλ(η).

Note that the integrand tends for a.a. η to zero. Since cn(α, β; η) ≤ a(α, β)(M(η) +
Mn(η)) and by M(η) = limn→∞ Mn(η) ≤ C|η|N+1eτ |η| it follows that cn(α, β; η) ≤
2a(α, β)C|η|N+1eτ |η|. Dominated convergence implies L̂nG −→ L̂G, as n → ∞ for all
G ∈ Bbs(Γ20). �

3.2. Correlation functions. Suppose that condition (A) and (3.5) are fulfilled. Denote
by T̂α,β(t)∗ the adjoint semigroup on Kα,β and by (L̂∗, Dα,β(L̂∗)) the adjoint operator
to (L̂, Dα,β(L̂)), i.e. 〈L̂G, k〉 = 〈G, L̂∗k〉 for G ∈ Dα,β(L̂) and k ∈ Dα,β(L̂∗).

Remark 3.4. Let α′ < α and β′ < β be such that condition (3.5) holds for α′, β′ and
α, β. Let (T̂α′,β′(s))s≥0 be the analytic semigroup constructed in Theorem 3.1. Then by
(3.6) for any G ∈ Lα,β ⊂ Lα′,β′ and k ∈ Kα′,β′ ⊂ Kα,β we obtain

〈G, T̂α′,β′(t)∗k〉 = 〈T̂α′,β′(t)G, k〉 = 〈T̂α,β(t)G, k〉 = 〈G, T̂α,β(t)∗k〉

and hence T̂α,β(t)∗k = T̂α′,β′(t)∗k holds.
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We consider the linear operator LΔ

(LΔk)(η) =−
∑

x∈η−

∫
Γ2

0

k(η ∪ ξ)(K−10 d−(x, · ∪ η+, · ∪ η−\x))(ξ) dλ(ξ)

−
∑

x∈η+

∫
Γ2

0

k(η ∪ ξ)(K−10 d+(x, · ∪ η+\x, · ∪ η−))(ξ) dλ(ξ)

+
∑

x∈η−

∫
Γ2

0

k(η+ ∪ ξ+, η− ∪ ξ−\x)(K−10 b−(x, · ∪ η+, · ∪ η−\x))(ξ) dλ(ξ)

+
∑

x∈η+

∫
Γ2

0

k(η+ ∪ ξ+\x, η− ∪ ξ−)(K−10 b+(x, · ∪ η+\x, · ∪ η−))(ξ) dλ(ξ)

on the maximal domain

Dα,β(LΔ) = {k ∈ Kα,β | LΔk ∈ Kα,β}.

Introduce the following additional conditions.

(B) There exist constants C > 0, τ ≥ 0 and N ∈ N such that for all x ∈ Rd and
η ∈ Γ20

d+(x, η) + d−(x, η) + b+(x, η) + b−(x, η) ≤ C(1 + |η|)Neτ |η|(3.7)

holds.
(C) Let α, β and a(α, β) be as in (3.5). There exist constants α′, β′ ∈ R with α′+τ <

α, β′ + τ < β and another constant a(α′, β′) > 0 such that

c(α′, β′; η) ≤ a(α′, β′)M(η), η ∈ Γ20
holds.

Lemma 3.5. Suppose that (3.5) and conditions (A)–(C) are satisfied. Then

L̂∗ = LΔ ∈ L(Kα′,β′ ,Kα,β).

In particular Kα′,β′ ⊂ Dα,β(LΔ) holds.

Proof. Observe that for k ∈ Kα′,β′

|LΔk(η)| ≤ ‖k‖Kα′,β′a(α
′, β′)C|η|N+1e(α

′+τ)|η+|e(β
′+τ)|η−|.

Then

|η|N+1e−(α−α′−τ)|η+|e−(β−β′−τ)|η−| ≤ |η|N+1e−min{α−α′−τ,β−β′−τ}|η|

≤ (N + 1)N+1e−(N+1)

(min{α− α′ − τ, β − β′ − τ})N+1

implies

|LΔk(η)| ≤ Ca(α′, β′)(N + 1)N+1e−(N+1)

(min{α− α′ − τ, β − β′ − τ})N+1
eα|η+|eβ|η−|‖k‖Kα′,β′ ,
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i.e. LΔ is bounded from Kα′,β′ to Kα,β . Let us prove the second assertion. Define a
positive linear mapping

(Ck)(η) =
∑

x∈η−

∫
Γ2

0

k(η ∪ ξ)|K−10 d−(x, · ∪ η+, · ∪ η−\x)|(ξ) dλ(ξ)

+
∑

x∈η+

∫
Γ2

0

k(η ∪ ξ)|K−10 d+(x, · ∪ η+\x, · ∪ η−)|(ξ) dλ(ξ)

+
∑

x∈η−

∫
Γ2

0

k(η+ ∪ ξ+, η− ∪ ξ−\x)|K−10 b−(x, · ∪ η+, · ∪ η−\x)|(ξ) dλ(ξ)

+
∑

x∈η+

∫
Γ2

0

k(η+ ∪ ξ+\x, η− ∪ ξ−)|K−10 b+(x, · ∪ η+\x, · ∪ η−)|(ξ) dλ(ξ).

Then, for G ∈ Bbs(Γ20) and k ∈ Kα,β we have

|k(η)| · (M(η)|G(η)| +B′|G|(η)) ≤ ‖k‖Kα,β
eα|η+|eβ|η−|(M(η)|G(η)| +B′|G|(η))

and
|G(η)| · C|k|(η) ≤ c(α, β; η)‖k‖Kα,β

|G(η)|eα|η+|eβ|η−|

which shows that |k| · (A + B′)|G| and |G(η)| · C|k| are both integrable. Hence we can
apply (2.4) and obtain by a simple computation∫

Γ2
0

(L̂G)(η)k(η) dλ(η) =
∫
Γ2

0

G(η)(LΔk)(η) dλ(η).

Let k ∈ Dα,β(LΔ), then above equality implies LΔ ⊂ L̂∗. Conversely take k ∈ Dα,β(L̂∗).
Then ∫

Γ2
0

G(η)(L̂∗k)(η) dλ(η) =
∫
Γ2

0

(L̂G)(η)k(η) dλ(η) =
∫
Γ2

0

G(η)(LΔk)(η) dλ(η)

implies LΔk = L̂∗k ∈ Kα,β and Dα,β(L̂∗) ⊂ Dα,β(LΔ). �

Since Lα,β is not reflexive, T̂α,β(t)∗ does not need to be strongly continuous. However,
it is continuous w.r.t. the topology σ((Lα,β)∗,Kα,β) = σ(Kα,β ,Lα,β). Here σ(Kα,β ,Lα,β)
is the smallest topology such that for each k ∈ Kα,β , Lα,β � G �−→ 〈G, k〉 is continuous.
It is well-known that T̂α,β(t)∗ is strongly continuous on the proper subspace K�α,β =
Dα,β(LΔ) and its restriction T̂α,β(t)� := T̂α,β(t)∗|K�α,β

is a C0-semigroup with generator

L̂�k = LΔk,
Dα,β(L̂�) = {k ∈ Dα,β(LΔ) | LΔk ∈ K�α,β},

see e.g. [7]. Hence, for each k0 ∈ Dα,β(L̂�) there exists a unique classical solution to (1.5)
on the Banach space K�α,β , which is given by T̂α,β(t)∗k0 =: kt (that is kt is continuously
differentiable w.r.t. the norm in Kα,β and its derivative satisfies (1.5)).

Remark 3.6. Note that Dα,β(L̂�) depends on the generator. Using the theory of sun-
dual semigroups it is possible to find certain invariant subspaces which are only charac-
terized by the constant τ in condition (B), and prove that the restriction of T̂α,β(t)∗ onto
such spaces is a strongly continuous semigroup. This can be used to prove existence and
uniqueness of classical solutions to (1.5) on this subspaces (see [11, 12]).

Below we consider another approach, which can be used to show weak uniqueness of
solutions to (1.5). Let C(Kα,β,Lα,β) =: C be the topology of uniform convergence on
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compact subsets of Lα,β. A basis of neighbourhoods around 0 is given by sets of the
form

{k ∈ Kα,β | sup
G∈K

|〈G, k〉| < ε},
with ε > 0 and a compact K ⊂ Lα,β , see [28, 35, 36] and the references therein. The
semigroup (T̂α,β(t)∗)t≥0 becomes continuous w.r.t. C and its generator w.r.t. C is exactly
the adjoint operator (LΔ, Dα,β(LΔ)), cf. [36, Theorem 1.4]. The next theorem provides
existence, uniqueness and regularity of solutions to the Cauchy problem

d

dt
〈G, kt〉 = 〈L̂G, kt〉, kt|t=0 = k0, G ∈ Bbs(Γ20).(3.8)

Theorem 3.7. Suppose that (3.5) and (A) are satisfied. Then for any k0 ∈ Kα,β the
equation (3.8) has a unique solution given by kt = T̂α,β(t)∗k0. This means that kt is
continuous w.r.t. the topology C and satisfies

〈G, kt〉 = 〈G, k0〉+
∫ t

0

〈L̂G, ks〉 ds, G ∈ Bbs(Γ20).(3.9)

Assume that conditions (B) and (C) are fulfilled and let α′, β′ be the corresponding con-
stants. Then the following assertions are true:

(1) If k0 ∈ Kα′,β′ , then kt is continuous w.r.t. to the norm in Kα,β.
(2) If k0 ∈ Kα′,β′ and α′ + 2τ < α, β′ + 2τ < β, then kt is also continuously

differentiable w.r.t. to the norm in Kα,β and the unique classical solution to
(1.5).

Proof. Existence and uniqueness for the Cauchy problem (3.9) follows from [36, Theo-
rem 2.1] and Theorem 3.1 if one replacesBbs(Γ20) byDα,β(L̂) in (3.9). But sinceBbs(Γ20) is
a core, uniqueness is proved. Moreover, since T̂α,β(t)∗ is continuous w.r.t. σ(Kα,β ,Lα,β),
t �−→ 〈L̂G, kt〉 is continuous and hence (3.9) implies (3.8).
1. If k0 ∈ Kα′,β′ , then by Lemma 3.5 LΔk0 ∈ Kα,β and hence k0 ∈ Dα,β(LΔ) ⊂ K�α,β

which implies the assertion.
2. Suppose that α′ + 2τ < α, β′ + 2τ < β and let α′′ ∈ (α′, α), β′′ ∈ (β′, β) be such

that α′ + τ < α′′, α′′ + τ < α and β′ + τ < β′′, β′′ + τ < β. By Lemma 3.5 the operator
LΔ is bounded as Kα′,β′ → Kα′′,β′′ and Kα′′,β′′ → Kα,β . Therefore k0 ∈ Dα,β(LΔ)
and LΔk0 ∈ Kα′′,β′′ ⊂ Dα,β(LΔ). Thus k0 ∈ Dα,β(L̂�) implies that kt is continuously
differentiable w.r.t. the norm in Kα,β and it is a classical solution to (1.5). �

3.3. Positive definiteness. Suppose that (A) and (3.5) are satisfied. We start with the
definition of solutions to the Fokker-Planck equation (1.4).

Definition 3.8. A family of Borel probability measures (μt)t≥0 ⊂ Pα,β is said to be a
weak solution to (1.4) if for any F ∈ FP(Γ2), t �−→ 〈LF, μt〉 is locally integrable and
satisfies

〈F, μt〉 = 〈F, μ0〉+
∫ t

0

〈LF, μs〉 ds, t ≥ 0.(3.10)

Note that 〈F, μt〉 is well-defined since F is a polynomially bounded cylinder function
and μt has finite local moment. Uniqueness is stated in the next theorem.

Theorem 3.9. (Uniqueness) Suppose that (A) and (3.5) are fulfilled. Then equation
(1.4) has at most one weak solution (μt)t≥0 ⊂ Pα,β such that its correlation functions
(kt)t≥0 satisfy

sup
t∈[0,T ]

‖kt‖Kα,β
<∞, ∀T > 0.
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Proof. Let (μt)t≥0 ⊂ Pα,β be a solution to (1.4), and denote by (kt)t≥0 ⊂ Kα,β the
associated correlation functions. Let F ∈ FP(Γ2) and G ∈ Bbs(Γ20) ⊂ Dα,β(L̂) such that
F = KG. Then by kt(η) ≤ ‖kt‖Kα,β

eα|η+|eβ|η−| it follows that G, L̂G ∈ Lα,β ⊂ Lkt .
Since K : Lkt −→ L1(Γ2, dμt) is continuous it follows that F = KG, LKG = KL̂G belong
to L1(Γ2, dμt) for any t ≥ 0. Moreover,

〈LF, μt〉 = 〈KL̂G, μt〉 = 〈L̂G, kt〉
shows that t �−→ 〈L̂G, kt〉 is locally integrable and hence

〈G, kt〉 = 〈G, k0〉+
∫ t

0

〈L̂G, ks〉 ds, t ≥ 0, G ∈ Bbs(Γ20)

holds. Thus kt is continuous w.r.t. σ(Kα,β ,Lα,β) and since kt is norm-bounded on
[0, T ] [36, Lemma 1.10] implies that kt is also continuous w.r.t. the topology C. As a
consequence (kt)t≥0 is a weak solution to (3.9) and hence it is given by kt = T̂α,β(t)∗k0.

�

Remark 3.10. Let k0 ∈ Kα,β be positive definite and suppose that kt := T̂α,β(t)∗k0 ∈
Kα,β is positive definite. Then (kt)t≥0 is a weak solution to (3.9) and for each t ≥ 0
there exists a unique μt ∈ Pα,β having correlation function kt. By 〈G, kt〉 = 〈F, μt〉 and
〈L̂G, kt〉 = 〈LF, μt〉 it follows that (μt)t≥0 is a weak solution to (1.4).

Above considerations show that for existence of weak solutions to (1.4), it suffices
to show that T̂α,β(t)∗ preserves the cone of positive definite functions. To this and
we approximate kt = T̂α,β(t)∗k0 by an auxiliary evolution T̂ δ

α,β(t)
∗k0 and prove that

T̂ δ
α,β(t)

∗k0 is positive definite. Such approximation scheme was used for particular models
in [14, 23].
Let (Rδ)δ>0 be a sequence of continuous integrable functions with 0 < Rδ ≤ 1 and

Rδ(x) ↗ 1 as δ → 0 for all x ∈ Rd. In the following we simply say that (Rδ)δ>0 is
a localization sequence. Define new birth intensities by b+δ (x, η) := Rδ(x)b+(x, η) and
b−δ (x, η) := Rδ(x)b−(x, η) for all x ∈ Rd and η ∈ Γ20. Then for any η ∈ Γ20 and δ > 0∫

Rd

(
b+δ (x, η) + b−δ (x, η)

)
dx < ∞(3.11)

holds. Denote by Lδ the operator L with b+, b− replaced by b+δ , b−δ . We will consider the
latter operator on a proper set of functions F : Γ20 −→ R.
Let Dδ(η) = M(η) +

∫
Rd b+δ (x, η) dx +

∫
Rd b−δ (x, η) dx and define

Qδρ(η) =
∫

Rd

d−(x, η)ρ(η+, η− ∪ x) dx +
∫

Rd

d+(x, η)ρ(η+ ∪ x, η−) dx

+
∑

x∈η−
b−δ (x, η+, η−\x)ρ(η+, η−\x) +

∑
x∈η+

b+δ (x, η+\x, η−)ρ(η+\x, η−).

The linear operator Iδ = −Dδ +Qδ is considered on the domain

D(Iδ) = {ρ ∈ L1(Γ20, dλ) | Dδρ ∈ L1(Γ20, dλ)},
where Dδ acts as a multiplication operator on L1(Γ20, dλ). Note that an analogue of Dδ

was already introduced in [32]. Since Qδ preserves positivity and satisfies∫
Γ2

0

Qδρ(η) dλ(η) =
∫
Γ2

0

Dδ(η)ρ(η) dλ(η), 0 ≤ ρ ∈ D(Iδ),

it follows that (Iδ, D(Iδ)) has an extension (Gδ, D(Gδ)) which is the generator of a sub-
stochastic semigroup (Sδ(t))t≥0 on L1(Γ20, dλ), cf. [34, Theorem 2.2]. Here sub-stochastic
means that Sδ(t) is a strongly continuous semigroup of contractions which preserves
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positivity. Moreover, this semigroup is minimal in the sense that given another sub-
stochastic semigroup Uδ(t) such that its generator is an extension of (Iδ, D(Iδ)), then
Sδ(t) ≤ Uδ(t). Note that, in general, ‖Sδ(t)ρ0‖L1(Γ2

0, dλ) < ‖ρ0‖L1(Γ2
0, dλ) may happen for

some t > 0 (see e.g. [3] and the references therein). It is related to Iδ = Gδ and is the
main ingredient for the next condition.

(D) There exists a localization sequence (Rδ)δ>0 such that Iδ = Gδ, i.e. for each
ρ0 ∈ D(Gδ) there exists a unique classical solution to

∂ρδ
t

∂t
= Gδρ

δ
t , ρδ

t |t=0 = ρ0.(3.12)

Note that condition (D) implies that the semigroup Sδ(t) is stochastic. For technical
reasons we will need the adjoint semigroup on L∞(Γ20, dλ). Let (Jδ, D(Jδ)) be the
adjoint operator to (Iδ, D(Iδ)) on L∞(Γ20, dλ). The next lemma follows by standard
arguments and (2.4).

Lemma 3.11. For any F ∈ D(Jδ) it holds that JδF = LδF .

Remark 3.12. Condition (D) is a non-explosion condition. It is fulfilled, provided one
can find a proper Lyapunov functional. Sufficient conditions and related results how such
condition can be checked are given in [18, 20]. A general (and rather easy) criterion can
be found in [34]. A general approach to study condition (D) in an abstract setting is given
in [3] (see also the references therein).

The next statement provides existence and uniqueness of solutions to (1.4).

Proposition 3.13. (Existence) Suppose that (A)–(D) and (3.5) are fulfilled. Then
T̂α,β(t)∗K+α′,β′ ⊂ K+α,β. In particular for any μ0 ∈ Pα′,β′ there exists exactly one weak so-
lution (μt)t≥0 ⊂ Pα,β to (1.4). The correlation functions are given by kμt = T̂α,β(t)∗kμ0 .
If conditions (B) and (C) hold for all τ > 0, then T̂α,β(t)∗K+α,β ⊂ K+α,β holds.

Existence of an associated Markov function is stated in the next corollary, cf. [24].

Corollary 3.14. Suppose that (A)–(D) hold for any τ > 0 and assume that (3.5) holds.
Then for any μ ∈ Pα,β there exists a Markov function (Xμ

t )t≥0 on the configuration space
Γ2 with the initial distribution μ associated with the generator L.

The rest of this section is devoted to the proof of Proposition 3.13.

Lemma 3.15. For any δ > 0 Theorem 3.1 and Theorem 3.7 hold with L replaced by Lδ.
Let T̂ δ

α,β(t) be the semigroup on Lα,β. Then, for any G ∈ Lα,β

T̂ δ
α,β(t)G −→ T̂α,β(t)G, δ → 0

holds uniformly on compacts in t ≥ 0.

Proof. The first claim follows by Rδ(x) ≤ 1 and an repetition of the arguments given
in the proofs of Theorem 3.1 and Theorem 3.7. In particular, such repetition shows
that L̂δ := K−10 LδK0 is given by L̂δ = A + Bδ, where A is given as before and Bδ is
obtained from B by multiplication of the terms for the birth by Rδ(x). In particular, it
is the generator of an analytic semigroup T̂ δ

α,β(t) of contractions on Lα,β . Note that this
generator is considered on the same domain Dα,β(L̂) as L̂. It is not difficult to see that
L̂δG −→ L̂G, as δ → 0 for all G ∈ Dα,β(L̂). In view of Trotter-Kato approximation the
assertion is proved. �
Let Bα,β be the Banach space of all equivalence classes of functions G with norm

|‖G|‖Bα,β
=
∫
Γ2

0

|G(η)|eλ(Rδ; η+)eλ(Rδ; η−)eα|η+|eβ|η−| dλ(η).
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Its dual Banach space B∗α,β can be identified with the Banach space of all equivalence
classes of functions k with norm

|‖k|‖B∗
α,β

= ess sup
η∈Γ2

0

|k(η)|
eλ(Rδ; η+)eλ(Rδ; η−)eα|η+|eβ|η−| .

Here and in the following we let δ > 0 be arbitrary but fixed. To omit cumbersome
notation will not explicitly state the dependence of Bα,β,B∗α,β on δ.

Remark 3.16. Note that such spaces have the following two important properties.
1. The space Bα,β is large in the sense that⋃

α′′,β′′∈R

Kα′′,β′′ ⊂ Bα,β.

2. The space B∗α,β is small in the sense that

B∗α,β ⊂
⋂

α′′,β′′∈R

Lα′′,β′′ .

The same arguments as for the proof of Theorem 3.1 and Theorem 3.7 show that we
can replace Lα,β ,Kα,β also by Bα,β and B∗α,β. Note that it requires to introduce another
function cδ(α, β; η) which is an analogue of c(α, β; η). A simple computation shows that
it is given by c(α, β; η) with eα|ξ+|eβ|ξ−| replaced by eλ(Rδ; ξ+)eλ(Rδ; ξ−)eα|ξ+|eβ|ξ−|. At
this point it is necessary to use the additional factor Rδ in b±δ . Now cδ(α, β; η) ≤ c(α, β; η)
shows that the same arguments as for the proof of Theorem 3.1 and Theorem 3.7 can
be applied. Denote by Uδ(t) and Uδ(t)∗ the corresponding semigroups on Bα,β and B∗α,β,
respectively. Let (L̂δ, D

B
α,β(L̂)) be the generator of Uδ(t). The proofs of Theorem 3.1

and 3.7 show that
DBα,β(L̂) = {G ∈ Bα,β | M ·G ∈ Bα,β}.

Thus the Cauchy problem

d

dt
〈G, uδ

t 〉 = 〈L̂δG, uδ
t 〉, uδ

t |t=0 = u0, ∀G ∈ Bbs(Γ20)(3.13)

has for every u0 ∈ B∗α,β a unique weak solution in B∗α,β given by Uδ(t)∗u0.

Lemma 3.17. Let k0 ∈ B∗α,β, then T̂ δ
α,β(t)

∗k0 = Uδ(t)∗k0 holds.

Proof. First observe that B∗α,β ⊂ Kα,β continuously and hence k0 ∈ Kα,β . In particular
uδ

t := Uδ(t)∗k0 and kδ
t := T̂ δ

α,β(t)
∗k0 are well-defined. Moreover, since Lα,β is con-

tinuously embedded into Bα,β we obtain Dα,β(L̂) ⊂ DBα,β(L̂), i.e. (L̂δ, D
B
α,β(L̂)) is an

extension of (L̂δ, Dα,β(L̂)). Therefore (uδ
t )t≥0 is also a weak solution to (3.9) and thus

by uniqueness uδ
t = kδ

t , t ≥ 0. �

Lemma 3.18. Let k0 ∈ B∗α′,β′ be positive definite. Denote by uδ
t ∈ B∗α,β the unique weak

solution to (3.13), then uδ
t is positive definite for any t ≥ 0.

Proof. Define for any u ∈ B∗α,β a linear operatorHu(η) :=
∫
Γ2

0
(−1)|ξ|u(η∪ξ) dλ(ξ). Then

Hu is well-defined and satisfies for any C+, C− > 0∫
Γ2

0

|Hu(η)|C|η+|
+ C

|η−|
− dλ(η)

≤ |‖u|‖B∗α,β

∫
Γ2

0

(1 + C+)|η
+|(1 + C−)|η

−|eα|η+|eβ|η−|eλ(Rδ; η+)eλ(Rδ; η−) dλ(η),
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i.e. H : B∗α,β −→ Llog(C+),log(C−) is continuous. Let G ∈ Bα,β be arbitrary, then for any
u ∈ B∗α,β we get by Fubini’s theorem and (2.4) that

〈K0G,Hu〉 = 〈G, u〉(3.14)

holds. We can apply Fubini’s theorem and (2.4) since∫
Γ2

0

∫
Γ2

0

∫
Γ2

0

|G(ξ)||u(η ∪ ξ ∪ ζ)| dλ(ζ)dλ(ξ)dλ(η)

≤ ‖u‖B∗α,β
e2e

α〈Rδ〉e2e
β〈Rδ〉

∫
Γ2

0

|G(ξ)|eα|ξ+|eβ|ξ−|eλ(Rδ; ξ+)eλ(Rδ; ξ−) dλ(ξ)

is satisfied, where 〈Rδ〉 :=
∫

Rd Rδ(x) dx. For the same u and G ∈ DBα,β(L̂) we obtain by
(3.14) and K0L̂δG = LδK0G

〈L̂δG, u〉 = 〈K0L̂δG,Hu〉 = 〈LδK0G,Hu〉.(3.15)

Now let Uδ(t)∗k0 = uδ
t ∈ B∗α,β , then

〈G, uδ
t 〉 = 〈G, u0〉+

∫ t

0

〈L̂δG, uδ
s〉 ds, G ∈ DBα,β(L̂).

Observe that condition (B) implies Klog(2),log(2) ⊂ DBα,β(L̂). Hence by (3.14) and (3.15)
it follows for Rδ

t := Huδ
t ∈ L1(Γ20, dλ), t ≥ 0 that

〈K0G, Rδ
t 〉 = 〈K0G, R0〉+

∫ t

0

〈LδK0G, Rδ
s〉 ds, G ∈ Klog(2),log(2)

holds. For any F ∈ D(Jδ) ⊂ L∞(Γ0, dλ) we get |K−10 F (η)| ≤ ‖F‖L∞2|η| and hence
D(Jδ) ⊂ K0Klog(2),log(2). Thus we can find G ∈ Klog(2),log(2) such that K0G = F ∈
D(Jδ). Lemma 3.11 therefore implies

〈F, Rδ
t 〉 = 〈F, R0〉+

∫ t

0

〈JδF, Rδ
s〉 ds, F ∈ D(Jδ).

Since k0 ∈ B∗α′,β′ we get by Theorem 3.7.1 that uδ
t is continuous in t ≥ 0 w.r.t. the norm

in B∗α,β. Because H : B∗α,β −→ L1(Γ20, dλ) is continuous, Rδ
t = Huδ

t is continuous w.r.t.
t ≥ 0 on L1(Γ20, dλ). Hence (Rδ

t )t≥0 is a weak solution to (3.12). The main result from
[2] therefore implies Rδ

t = Sδ(t)R0 ≥ 0. Finally, for any G ∈ B+
bs(Γ

2
0) we get

〈G, uδ
t 〉 = 〈K0G, Rδ

t 〉 ≥ 0, t ≥ 0. �

We are now prepared to complete the proof of positive definiteness.

Proof. (Proposition 3.13) Let μ0 ∈ Pα′,β′ with correlation function k0 ∈ Kα′,β′ . Define

k0,δ(η) := k0(η)eλ(Rδ; η+)eλ(Rδ; η−), δ > 0, η ∈ Γ20,
then k0,δ ∈ B∗α′,β′ and it is positive definite, cf. [8, 15]. By Lemma 3.17 we get
T̂ δ

α,β(t)
∗k0,δ = Uδ(t)∗k0,δ ∈ B∗α,β and by Lemma 3.18 the latter expression is positive

definite. Let G ∈ B+
bs(Γ

2
0). Then it suffices to show that

〈G, T̂ δ
α,β(t)

∗k0,δ〉 −→ 〈G, T̂α,β(t)∗k0〉, δ → 0.

To this end observe that

〈G, T̂ δ
α,β(t)

∗k0,δ〉 = 〈T̂ δ
α,β(t)

∗G− T̂α,β(t)G, k0,δ〉+ 〈T̂α,β(t)G, k0,δ〉.
The first term can be estimated by

‖T̂ δ
α,β(t)G− T̂α,β(t)G‖Lα,β

‖k0‖Kα,β
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and hence tends by Lemma 3.15 to zero. The second term tends by dominated con-
vergence to 〈T̂α,β(t)G, k0〉 = 〈G, T̂α,β(t)∗k0〉, which implies that T̂α,β(t)∗k0 is positive
definite.
If conditions (B) and (C) hold for all τ > 0, then k0,δ(η) := e−δ|η|k0(η) belongs to

Kα−δ,β−δ for any δ > 0. Consequently, above considerations imply that T̂α,β(t)∗k0,δ ∈
Kα,β is positive definite. Taking the limit δ → 0 yields the assertion. �

Remark 3.19. Suppose instead of (B) the following to be satisfied: There exist C > 0,
N ∈ N and νb ≥ 0, ν1, ν2 ≥ 0 such that for all x ∈ Rd and η ∈ Γ20:

b+(x, η) + b−(x, η) ≤ C(1 + |η|)Neνb|η|,

d+(x, η) ≤ C(1 + |η|)Neν1|η|,

d−(x, η) ≤ C(1 + |η|)Neν2|η|.

Then for any positive definite k0 ∈ Kα′,β′ the evolution T̂α,β(t)∗k0 is positive definite,
provided (C) holds for α′ + ν1 < α, β′ + ν2 < β.

4. Vlasov scaling

General description of Vlasov scaling. Let us briefly explain the Vlasov scaling in
the two-component case. A motivation and additional explanations can be found in [10].
Let L be a Markov (pre-)generator on Γ2, the aim is to find a scaling Ln such that the
following scheme holds. Let TΔ

n (t) = etLΔ
n be the (heuristic) representation of the scaled

evolution of correlation functions, see (1.5). The particular choice of L → Ln should
preserve the order of singularity, that is the limit

n−|η|TΔ
n (t)n

|η|k −→ TΔ
V (t)k, n → 0(4.1)

should exist and the evolution TΔ
V (t) should preserve Lebesgue-Poisson exponentials, i.e.

if r0(η) = eλ(ρ−0 , η−)eλ(ρ+0 ; η
+), then TΔ

V (t)r0(η) = eλ(ρ−t , η−)eλ(ρ+t ; η+). In such a case
ρ−t , ρ+t satisfy the system of non-linear integro-differential equations

∂ρ−t
∂t

= v−(ρ−t , ρ+t ),
∂ρ+t
∂t

= v+(ρ−t , ρ+t ).(4.2)

The functionals v−, v+ can be computed explicitly for a large class of models and (4.2) is
the system of kinetic equations for the densities ρ−t , ρ+t for the particle system. Instead
of investigating the limit (4.1), we define renormalized operators LΔn,ren := n−|η|LΔn n|η|

and study the behaviour of the semigroups TΔ
n,ren(t) when n → ∞. In such a case one

can compute a limiting operator

LΔn,ren −→ LΔV(4.3)

and show that LΔV is associated to a semigroup TΔ
V (t). The limit (4.1) is then obtained

by showing the convergence

TΔ
n,ren(t) −→ TΔ

V (t)(4.4)

in a proper sense.

Scaling of two-component model. Consider the scaled intensities d+n , d−n , b+n , b−n ≥ 0
and suppose they satisfy condition (A) for any n ∈ N. Let Ln = L−n + L+n where

L−n F (γ) =
∑

x∈γ−
d−n (x, γ+, γ−\x)(F (γ+, γ−\x)− F (γ+, γ−))

+ n

∫
Rd

b−n (x, γ+, γ−)(F (γ+, γ− ∪ x) − F (γ+, γ−)) dx
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and

L+n (t)F (γ) =
∑

x∈γ+

d+n (x, γ+\x, γ−)(F (γ+\x, γ−)− F (γ+, γ−))

+ n

∫
Rd

b+n (x, γ+, γ−)(F (γ+ ∪ x, γ−)− F (γ+, γ−)) dx.

Introduce

cn(α, β; η) := +
∑

x∈η−

∫
Γ2

0

|K−10 d−n (x, · ∪ η+, · ∪ η−\x)|(ξ)n|ξ|eα|ξ+|eβ|ξ−| dλ(ξ)

∑
x∈η+

∫
Γ2

0

|K−10 d+n (x, · ∪ η+\x, · ∪ η−)|(ξ)n|ξ|eα|ξ+|eβ|ξ−| dλ(ξ)

+ e−β
∑

x∈η−

∫
Γ0

|K−10 b−n (x, · ∪ η+, · ∪ η−\x)|(ξ)n|ξ|eα|ξ+|eβ|ξ−| dλ(ξ)

+ e−α
∑

x∈η+

∫
Γ0

|K−10 b+n (x, · ∪ η+\x, · ∪ η−)|(ξ)n|ξ|eα|ξ+|eβ|ξ−| dλ(ξ)

and Mn(η) :=
∑

x∈η− d−n (x, η+, η−\x) +∑x∈η+ d+n (x, η+\x, η−). We will suppose the
following conditions to be satisfied:
(V1) There exists a(α, β) ∈ (0, 2) such that for all η ∈ Γ20 and n ∈ N

cn(α, β; η) ≤ a(α, β)Mn(η)

is satisfied.
(V2) For all ξ ∈ Γ20 and x ∈ Rd the following limits exist in Lα,β and are independent

of ξ

lim
n→∞n|·|(K−10 d−n (x, · ∪ ξ)) = lim

n→∞n|·|(K−10 d−n (x, ·)) =: DV,−
x ,

lim
n→∞n|·|(K−10 d+n (x, · ∪ ξ)) = lim

n→∞n|·|(K−10 d+n (x, ·)) =: DV,+
x ,

lim
n→∞n|·|(K−10 b−n (x, · ∪ ξ)) = lim

n→∞n|·|(K−10 b−n (x, ·)) =: BV,−
x ,

lim
n→∞n|·|(K−10 b+n (x, · ∪ ξ)) = lim

n→∞n|·|(K−10 b+n (x, ·)) =: BV,+
x .

(V3) Let MV (η) :=
∑

x∈η+ D+
x (∅) +

∑
x∈η− D−x (∅), then there exists σ > 0 such that

either
Mn(η) ≤ σMV (η), η ∈ Γ20, n ∈ N

or
Mn(η) ≤ σMV (η), η ∈ Γ20, n ∈ N

are satisfied.
Note that here and below the constants α, β are fixed. For simplicity of notation, we
omit, whenever it is possible, the dependence on these constants. Define L̂n := K−10 LnK0

and the renormalized operators L̂n,ren := RnL̂nRn−1 , where RκG(η) = κ|η|G(η). Then
for any G ∈ Bbs(Γ20) and k ∈ Kα,β the relation 〈L̂n,renG, k〉 = 〈G, LΔn,renk〉 holds.

Statements. The next statement provides the existence and uniqueness of an evolution
of quasi-observables and correlation functions for any fixed n ∈ N.

Theorem 4.1. Suppose that condition (V1) is satisfied. Then for any fixed n ∈ N the
following assertions are true:
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(1) The closure of (L̂n,ren, Bbs(Γ20)) is given by (L̂n,ren, D(L̂n,ren)), where

D(L̂n,ren) = {G ∈ Lα,β | Mn ·G ∈ Lα,β}.
It is the generator of an analytic semigroup (T̂n,ren(s))s≥0 of contractions on
Lα,β.

(2) Let T̂n,ren(t)∗ be the adjoint semigroup with (LΔn,ren, D(L
Δ
n,ren)) considered on the

(maximal) domain

D(LΔn,ren) = {k ∈ Kα,β | LΔn,renk ∈ Kα,β}.
For any n ∈ N and k0 ∈ Kα,β, there exists a unique weak solution to

∂

∂t
〈G, kt,n〉 = 〈L̂n,renG, kt,n〉, kt,n|t=0 = k0, G ∈ Bbs(Γ20)

given by kt,n = T̂n,ren(t)∗k0.

The case n = 1 is covered by the results obtained in Theorem 3.7. Following the
arguments there, it is not difficult to adopt the proofs to this case. In the next step
we construct the limiting dynamics when n → ∞. Condition (V2) suggests to consider
the limit L̂n,renG −→ L̂V G, as n → ∞. The operator L̂V := AV + BV is given by
AV G(η) = −MV (η)G(η), where

MV (η) =
∑

x∈η+

DV,+
x (∅) +

∑
x∈η−

DV,−
x (∅),

BV G(η) =−
∑

ξ+�η+

ξ−�η−

G(ξ)
∑

x∈ξ+

DV,+
x (η\ξ)−

∑
ξ+�η+

ξ−�η−

G(ξ)
∑

x∈ξ−
DV,−

x (η\ξ)

+
∑
ξ⊂η

∫
Rd

G(ξ+ ∪ x, ξ−)BV,+
x (η\ξ) dx +

∑
ξ⊂η

∫
Rd

G(ξ+, ξ− ∪ x)BV,−
x (η\ξ) dx.

Let D(L̂V ) := {G ∈ Lα,β | MV ·G ∈ Lα,β}, define
cV (α, β; η) :=

+
∑

x∈η+

∫
Γ2

0

|DV,+
x (ξ)|eα|ξ+|eβ|ξ−| dλ(ξ) + e−α

∑
x∈η+

∫
Γ2

0

|BV,+
x (ξ)|eα|ξ+|eβ|ξ−| dλ(ξ)

+
∑

x∈η−

∫
Γ2

0

|DV,−
x (ξ)|eα|ξ+|eβ|ξ−| dλ(ξ) + e−β

∑
x∈η−

∫
Γ2

0

|BV,−
x (ξ)|eα|ξ+|eβ|ξ−| dλ(ξ)

and finally

(LΔV k)(η) :=

−
∑

x∈η+

∫
Γ2

0

k(η ∪ ξ)DV,+
x (ξ) dλ(ξ) +

∑
x∈η+

∫
Γ2

0

k(η+\x ∪ ξ+, η+ ∪ ξ+)BV,+
x (ξ) dλ(ξ)

−
∑

x∈η−

∫
Γ2

0

k(η ∪ ξ)DV,−
x (ξ) dλ(ξ) +

∑
x∈η−

∫
Γ2

0

k(η+ ∪ ξ+, η−\x ∪ ξ−)BV,−
x (ξ) dλ(ξ).

Theorem 4.2. Assume that conditions (V1), (V2) are satisfied. Then the following
assertions are true:

(1) The operator (L̂V , D(L̂V )) is the generator of an analytic semigroup (T̂ V (t))t≥0
of contractions on Lα,β.
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(2) Let (T̂ V (t)∗)t≥0 be the adjoint semigroup on Kα,β, then for any r0 ∈ Kα,β there
exists a unique solution rt = T̂ V (t)∗r0 to the Cauchy problem

∂

∂t
〈G, rt〉 = 〈L̂V G, rt〉, rt|t=0 = r0, G ∈ Bbs(Γ20).(4.5)

(3) Let r0(η) =
∏

x∈η+ ρ+0 (x)
∏

x∈η− ρ−0 (x) and ρ+0 , ρ−0 ∈ L∞(Rd) with ‖ρ+0 ‖L∞ ≤ eα,
‖ρ−0 ‖L∞ ≤ eβ. Assume that (ρ+t , ρ−t ) is a classical solution to

∂ρ−t
∂t

(x) =−
∫
Γ2

0

eλ(ρ+t ; ξ
+)eλ(ρ−t ; ξ

−)DV,−
x (ξ) dλ(ξ)ρ−t (x)

+
∫
Γ2

0

eλ(ρ+t ; ξ
+)eλ(ρ−t ; ξ

−)BV,−
x (ξ) dλ(ξ),

∂ρ+t
∂t

(x) =−
∫
Γ2

0

eλ(ρ+t ; ξ
+)eλ(ρ−t ; ξ

−)DV,+
x (ξ) dλ(ξ)ρ+t (x)

+
∫
Γ2

0

eλ(ρ+t ; ξ
+)eλ(ρ−t ; ξ

−)BV,+
x (ξ) dλ(ξ)

with initial conditions ρ+t |t=0 = ρ+0 , ρ−t |t=0 = ρ−0 and

‖ρ+t ‖L∞ ≤ eα ‖ρ−t ‖L∞ ≤ eβ.

Then rt(η) :=
∏

x∈η+ ρ+t (x)
∏

x∈η− ρ−t (x) is a weak solution to (4.5) in Kα,β.

Proof. By conditions (V1) and (V2) it follows that cV (α, β; η) ≤ a(α, β)MV (η) holds.
Define a positive operator B′V on D(L̂V ) by

B′V G(η) =
∑

ξ+�η+

ξ−�η−

G(ξ)
∑

x∈ξ+

|DV,+
x (η\ξ)|+

∑
ξ+�η+

ξ−�η−

G(ξ)
∑

x∈ξ−
|DV,−

x (η\ξ)|

+
∑
ξ⊂η

∫
Rd

G(ξ+ ∪ x, ξ−)|BV,+
x (η\ξ)| dx

+
∑
ξ⊂η

∫
Rd

G(ξ+, ξ− ∪ x)|BV,−
x (η\ξ)| dx.

Then it is not difficult to see that for any 0 ≤ G ∈ D(L̂V )∫
Γ2

0

B′V G(η)eα|η+|eβ|η−| dλ(η) ≤ (a(α, β) − 1)
∫
Γ2

0

MV (η)G(η)eα|η+|eβ|η−| dλ(η)

is fulfilled. The same arguments as in the proof of Theorem 4.1 yield existence, analyticity
and the contraction property of the semigroup T̂ V (t). For the last assertion we only show
that rt is continuous w.r.t. C. The other assertions are simple computations, see e.g. [10].
First observe that by |rt(η)| ≤ eα|η+|eβ|η−| the function rt is norm-bounded and hence it
suffices to show that it is continuous w.r.t. σ(Kα,β ,Lα,β). But this function is continuous
in t ≥ 0 for any η and hence the assertion follows by dominated convergence. �

Theorem 4.3. Suppose that conditions (V1)–(V3) are fulfilled. Then T̂n,ren(t) −→
T̂ V (t) holds strongly in Lα,β and uniformly on compacts in t ≥ 0.

Proof. We are going to apply [11, Lemma 4.3] and Trotter-Kato approximation. Fix
λ > 0 and denote by R(λ;An) and R(λ, AV ) the resolvent for An and AV , respectively.
Then it follows that ‖R(λ;An)‖L(Lα,β), ‖R(λ;AV )‖L(Lα,β) ≤ 1

λ , ‖BnR(λ;An)G‖Lα,β
≤

(a(α, β) − 1)‖G‖Lα,β
and likewise ‖BV R(λ;AV )G‖Lα,β

≤ (a(α, β) − 1)‖G‖Lα,β
. Since
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Mn −→MV as n →∞, it is easy to show by dominated convergence that R(λ;An) −→
R(λ;AV ) holds strongly in Lα,β as n →∞. Hence it remains to show the convergence

BnR(λ;An)G −→ BV R(λ;AV )G, n →∞.(4.6)

This can be proved, similarly to [11], by dominated convergence. �

Remark 4.4. The proof shows that condition (V3) can be replaced by

d−n (x, η) + d+n (x, η) ≤ C(1 + |η|)Neτ |η|, x ∈ Rd, η ∈ Γ20, n ∈ N

for some constants C > 0, N ∈ N and τ ≥ 0.

5. Examples

We introduce four models describing the stochastic behaviour of particle systems on
Γ2. Interactions of particles, of the same and also of different type, are modelled by the
relative energy function

Eϕ(x, γ±) :=
∑

y∈γ±
ϕ(x − y), x ∈ Rd, γ± ∈ Γ,

where ϕ is a symmetric, non-negative and integrable function. Associated to above
relative energy is the following functional

C(ϕ) :=
∫

Rd

|e−ϕ(x) − 1| dx.(5.1)

Since ϕ is non-negative, we obtain C(ϕ) ≤ ∫
Rd ϕ(x) dx =: 〈ϕ〉. Note that below we will

give no proofs of the statements. Conditions (A)–(C) are rather standard and can be
checked by similar methods to [11, 12]. The last condition can be checked similarly to
[18, 20]. Note that a general criterion for condition (D) can be also found in [34].

5.1. Two-interacting BDLP-model. Suppose that the death intensities are given by

d−(x, γ+, γ−\x) = m− +
∑

y∈γ−\x
a−(x− y),

d+(x, γ+\x, γ−) = m+ +
∑

y∈γ+\x
b−(x− y) +

∑
y∈γ−

ϕ−(x− y).

This means that the particles in γ± have a random lifetime determined by the parameters
m+, m− > 0. The additional terms describe the competition of particles for resources.
Namely, each particle x ∈ γ− may die due to the competition for resources with another
particle y ∈ γ−\x from the same type. The rate of this event is determined by a−(x−y).
Likewise each particle x ∈ γ+ may be die due to the interaction with another particle by
y ∈ γ+\x with the rate b−(x − y). Moreover, this particle x ∈ γ+ may also die due to
the competition for resources with another particle y ∈ γ− of different type. The rate of
this event is described by the interaction potential ϕ−(x− y).
The birth intensities are assumed to be given by

b−(x, γ) =
∑

y∈γ−
a+(x− y) + z,

b+(x, γ) =
∑

y∈γ+

b+(x− y) +
∑

y∈γ−
ϕ+(x− y).

The terms corresponding to a+ and b+ describe the free branching of particles γ± inde-
pendently of each other. Additionally, each particle y ∈ γ− may create a new particle
at position x ∈ Rd of opposite type. The spatial distribution of the new particle is
determined by the function ϕ+. By definition, such events occur independently of each



EVOLUTION OF STATES AND MESOSCOPIC SCALING FOR TWO-COMPONENT . . . 369

other. The term including z ≥ 0 describes the additional creation of particles by an outer
source. Suppose that a±, b±, ϕ± are non-negative, symmetric and integrable.

Theorem 5.1. Suppose that a±, b±, ϕ± are bounded and there exist constants b1, b2 ≥ 0
and ϑ1, ϑ2, ϑ3 > 0 such that∑

x∈η+

∑
y∈η+\x

b+(x− y) ≤ ϑ1
∑

x∈η+

∑
y∈η+\x

b−(x− y) + b1|η+|,
∑

x∈η−

∑
y∈η−\x

a+(x− y) ≤ ϑ2
∑

x∈η−

∑
y∈η−\x

a−(x− y) + b2|η−|,

and ϕ+ ≤ ϑ3ϕ
− hold. Moreover, assume that the parameters satisfy the relations ϑ1, ϑ3 <

eα, ϑ2 < eβ,

m+ > eα〈b−〉+ eβ〈ϕ−〉+ e−αb1 + 〈b+〉+ 〈ϕ+〉,
m− > eβ〈a−〉+ e−β(b2 + z) + 〈a+〉.

Then conditions (A)–(D) hold for τ = 0 and (3.5) is fulfilled.

Remark 5.2. Note that the one-component case has been considered in [11, 23].

Suppose that the conditions given above are fulfilled. Then (V1)–(V3) are satisfied
and after Vlasov scaling we arrive at the kinetic equations

∂ρ−t
∂t

(x) =−m−ρ−t (x)− ρ−t (x)(a
− ∗ ρ−t )(x) + (a+ ∗ ρ−t )(x) + z,

∂ρ+t
∂t

(x) =− (m+ + (ϕ− ∗ ρ−t )(x)
)
ρ+t (x) − ρ+t (x)(b

− ∗ ρ+t )(x)

+ (b+ ∗ ρ+t )(x) + (ϕ+ ∗ ρ−t )(x).

Here (f ∗ g)(x) :=
∫

Rd f(x− y)g(y) dy denotes the usual convolution of functions on Rd.

5.2. Two interacting Glauber-models. Suppose that the death intensities are given
by

d−(x, γ+, γ−\x) = exp
(−sEψ+(x, γ+)

)
,

d+(x, γ+\x, γ−) = exp
(−sEψ−(x, γ−)

)
,

where s ∈ [0, 12 ] and ψ+, ψ− are symmetric, non-negative and integrable. The birth
intensities are assumed to be of the form

b−(x, γ) = z− exp
(−(1− s)Eψ+(x, γ+)

)
exp

(−Eφ−(x, γ−)
)
,

b+(x, γ) = z+ exp
(−(1− s)Eψ−(x, γ−)

)
exp

(−Eφ+(x, γ+)
)
,

where z−, z+ > 0 and φ−, φ+ are assumed to be non-negative, symmetric and integrable.
This model describes the time-evolution of two interacting types of particles. In contrast
to the previous model, the branching of this particles is replaced by an additional source.
The next theorem provides an evolution of states.

Theorem 5.3. Let φ+, φ−, ψ+, ψ− be symmetric, non-negative and integrable and as-
sume that the paramters satisfy the relations

eeαC(sψ+) + e−βz−eeαC((1−s)ψ+)eeβC(φ−) < 2,(5.2)

eeβC(sψ−) + e−αz+eeβC((1−s)ψ−)eeαC(φ+) < 2.(5.3)

Then conditions (A)–(D) are satisfied for τ = 0 and (3.5) holds.
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In the case s = 0 conditions (5.2) and (5.3) simplify to

z−eeαC(ψ+)eeβC(φ−) < eβ ,(5.4)

z+eeβC(ψ−)eeαC(φ+) < eα.(5.5)

Of particular interest is the special case φ+ = 0 = φ−, also known as the Widom-
Rowlinson model. The non-equilibrium dynamics for this model has recently been ana-
lysed in [13], but without conditions (5.4) and (5.5) only existence of a local evolution of
correlation functions could have been shown. Conditions (5.4) and (5.5) are satisfied for
e−α = C(ψ+) and e−β = C(ψ−) if

z− <
1

eC(ψ−)
and z+ <

1
eC(ψ+)

are satisfied. An extension of such model with density dependent mutation rates (i.e.
particles can change their types) has been recently considered in [19].

Vlasov scaling. For simplicity we consider the case s = 0, hence the death intensities
need not to be scaled, i.e. are given by

d−(x, γ+, γ−\x) = 1 = d+(x, γ+\x, γ−).

The scaled birth intensities are given by

b−n (x, γ) = z− exp
(
− 1

n
Eψ+(x, γ+)

)
exp

(
− 1

n
Eφ−(x, γ−)

)
,

b+n (x, γ) = z+ exp
(
− 1

n
Eψ−(x, γ−)

)
exp

(
− 1

n
Eφ+(x, γ+)

)
.

All previous results can be applied which yields the mesoscopic equations, cf. (4.2)

∂ρ−t
∂t

(x) = −ρ−t (x) + z−e−(φ
−∗ρ−t )(x)e−(ψ

+∗ρ+
t )(x),(5.6)

∂ρ+t
∂t

(x) = −ρ+t (x) + z+e−(φ
+∗ρ+

t )(x)e−(ψ
−∗ρ−t )(x).(5.7)

5.3. BDLP-model in Glauber environment. Let us consider death intensities given
by

d−(x, γ+, γ−\x) = 1,

d+(x, γ+\x, γ−) = m+ +
∑

y∈γ+\x
a−(x− y) +

∑
y∈γ−

φ(x − y),

where m+ > 0 and 0 ≤ a−, φ ∈ L1(Rd) are symmetric. The birth intensities are assumed
to be of the form

b−(x, γ) = z− exp
(−Eψ(x, γ−)

)
,

b+(x, γ) =
∑

y∈γ+

a+(x− y) +
∑

y∈γ−
b+(x− y),

where z− > 0 and 0 ≤ ψ, a+, b+ ∈ L1(Rd) are symmetric.

Theorem 5.4. Suppose that a±, b+, φ are bounded and there exist θ ∈ (0, eα) and b ≥ 0
such that ∑

x∈η+

∑
y∈η+\x

a+(x− y) ≤ θ
∑

x∈η+

∑
y∈η+\x

a−(x− y) + b|η+|(5.8)
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is satisfied. Moreover, assume that for some ϑ ∈ (0, eα) and

ϑφ ≥ b+,(5.9)

eβ > z− exp
(
eβC(ψ)

)
,(5.10)

m+ > eα〈a−〉+ eβ〈φ〉+ 〈a+〉+ 〈b+〉+ e−αb(5.11)

hold. Then conditions (A)–(D) are satisfied with τ = 0 and (3.5) holds.

Vlasov scaling. Suppose that a±, b+, φ, ψ are bounded and (5.8)–(5.11) with z−eeβ〈ψ〉 <
eβ instead of (5.10) hold. Scaling of the potentials by 1

n yields for the death

d−(x, γ+, γ−\x) = 1,

d+n (x, γ+\x, γ−) = m+ +
1
n

∑
y∈γ+\x

a−(x− y) +
1
n

∑
y∈γ−

φ(x − y).

For the birth we obtain

b−n (x, γ) = z− exp
(
− 1

n
Eψ(x, γ−)

)
,

b+n (x, γ) =
1
n

∑
y∈γ+

a+(x− y) +
1
n

∑
y∈γ−

b+(x− y).

Taking n →∞ yields DV,−
x (η) = 0|η| and

DV,+
x (η) = 0|η|m+ + 0|ξ

−|1IΓ(1)(ξ+)
∑

y∈ξ+

a−(x− y) + 0|ξ
+|1IΓ(1)(ξ−)

∑
y∈ξ−

φ(x − y).

We obtain for the birth intensities

BV,−
x (η) = z−eλ

(−ψ(x− ·); ξ−) 0|ξ+|,

BV,+
x (η) = 0|ξ

−|1IΓ(1)(ξ+)
∑

y∈ξ+

a+(x− y) + 0|ξ
+|1IΓ(1)(ξ−)

∑
y∈ξ−

b+(x− y).

The kinetic equation is therefore given by

∂ρ−t
∂t

(x) =− ρ−t (x) + z−e−(ψ∗ρ
−
t )(x),

∂ρ+t
∂t

(x) =− (m+ + (φ ∗ ρ−t )(x)
)
ρ+t (x)− ρ+t (x)(a

− ∗ ρ+t )(x)

+ (a+ ∗ ρ+t )(x) + (b+ ∗ ρ−t )(x).

5.4. Density dependent branching in Glauber environment. Suppose that the
death intensities are given by

d−(x, γ+, γ−\x) = 1,

d+(x, γ+\x, γ−) = m+ exp
(
Eφ+(x, γ+\x)) ,

where m+ > 0. The birth intensities are given by

b−(x, γ) = z− exp
(−Eφ−(x, γ−)

)
,

b+(x, γ) =
∑

y∈γ+

exp
(−Eψ−(y, γ−)

)
a+(x − y)

with z− > 0 and a+, φ−, φ+, ψ− symmetric, non-negative and integrable.
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Theorem 5.5. Suppose that 0 �= φ+, a+ are bounded, there exist constants κ > 0 and
b ≥ 0 such that for all η+ ∈ Γ0∑

x∈η+

∑
y∈η+\x

a+(x− y) ≤ ϑ
∑

x∈η+

∑
y∈η+\x

φ+(x− y) + b|η+|(5.12)

and the parameters satisfy the relations

eβ > z− exp
(
eβC(φ−)

)
,

2 > eeαC(−φ+) +
max{〈a+〉+ be−α, ϑe−α}

m+
eeβC(ψ−).

Then conditions (A)–(D) hold with τ = ‖φ+‖∞ and (3.5) is satisfied.

Vlasov scaling. Scaling all potentials by 1
n gives d−(x, γ+, γ−\x) = 1,

d+(x, γ+\x, γ−) = m+ exp
(
1
n

Eφ+(x, γ+\x)
)

and for the birth intensities

b−(x, γ) = z− exp
(
− 1

n
Eφ−(x, γ−)

)
,

b+(x, γ) =
1
n

∑
y∈γ+

exp
(
− 1

n
Eψ−(y, γ−)

)
a+(x− y).

Suppose that 0 �= φ+, a+, φ−, ψ−, a+ are bounded, (5.12) holds and the parameters
satisfy the stronger relations

eβ > z− exp
(
eβ〈φ−〉) ,

2 > eeα〈φ+〉 +
max{〈a+〉+ be−α, ϑe−α}

m+
eeβ〈ψ−〉.

Then conditions (V1)–(V3) are satisfied. This yields the kinetic equations

∂ρ−t
∂t

(x) =− ρ−t (x) + z−e−(φ
−∗ρ−t )(x),

∂ρ+t
∂t

(x) =−m+ρ+t (x)e
(φ+∗ρ+

t )(x) + (a+ ∗ ρ+t )(x)e
−(ψ−∗ρ−t )(x).
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