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L-DUNFORD-PETTIS PROPERTY IN BANACH SPACES

A. RETBI AND B. EL WAHBI

ABSTRACT. In this paper, we introduce and study the concept of L-Dunford-Pettis
sets and L-Dunford-Pettis property in Banach spaces. Next, we give a characteriza-
tion of the L-Dunford-Pettis property with respect to some well-known geometric
properties of Banach spaces. Finally, some complementability of operators on Banach
spaces with the L-Dunford-Pettis property are also investigated.

1. INTRODUCTION AND NOTATION

A norm bounded subset A of a Banach space X is called Dunford-Pettis (DP for
short) if every weakly null sequence (f,,) in X’ converge uniformly to zero on A, that is,
Jim sup, e [fa(2)] = 0.

An operator T between two Banach spaces X and Y is completely continuous if T
maps weakly null sequences into norm null ones.

Recall from [11], that an operator T : X — Y between two Banach spaces is Dunford-
Pettis completely continuous (abb. DPcc) if it carries a weakly null sequence, which is a
DP set in X to norm null ones in Y. It is clear that every completely continuous operator
is DPcc. Also every weakly compact operator is DPcc (see Corollary 1.1 of [11]).

A Banach space X has:

— arelatively compact Dunford-Pettis property (DPrcP for short) if every Dunford-
Pettis set in X is relatively compact [5]. For example, every Schur spaces have
the DPrcP.

— a Grothendieck property (or a Banach space X is a Grothendieck space) if weak*
and weak convergence of sequences in X’ coincide. For example, each reflexive
space is a Grothendieck space.

— a Dunford-Pettis property (DP property for short) if every weakly compact opera-
tor T from X into another Banach space Y is completely continuous, equivalently,
if every relatively weakly compact subset of X is DP.

— a reciprocal Dunford-Pettis property (RDP property for short) if every com-
pletely continuous operator on X is weakly compact.

A subspace X of a Banach space X is complemented if there exists a projection P
from X to X; (see page 9 of [2]).

Recall from [1], that a Banach lattice is a Banach space (E,|| - ||) such that E is a
vector lattice and its norm satisfies the following property: for each x,y € E such that
2] < Jyl, we have [l2]] < ||yl

We denote by cg, ¢!, and £>° the Banach spaces of all sequences converging to zero,
all absolutely summable sequences, and all bounded sequences, respectively.

Let us recall that a norm bounded subset A of a Banach space X’ is called L-set
if every weakly null sequence (z,) in X converge uniformly to zero on A, that is,
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lim supge 4 |f(zn)| = 0. Note also that a Banach space X has the RDP property if

and only if every L-set in X’ is relatively weakly compact.

In his paper, G. Emmanuelle in [4] used the concept of L-set to characterize Banach
spaces not containing ¢!, and gave several consequences concerning Dunford-Pettis sets.
Later, the idea of L-set is also used to establish a dual characterization of the Dunford-
Pettis property [6].

The aim of this paper is to introduce and study the notion of L-Dunford-Pettis set
in a Banach space, which is related to the Dunford-Pettis set (Definition 2.1), and note
that every L-set in a topological dual of a Banach space is L-Dunford-Pettis set (Proposi-
tion 2.3). After that, we introduce the L-Dunford-Pettis property in Banach space which
is shared by those Banach spaces whose L-Dunford-Pettis subsets of his topological dual
are relatively weakly compact (Definition 2.6). Next, we obtain some important con-
sequences. More precisely, a characterizations of L-Dunford-Pettis property in Banach
spaces in terms of DPcc and weakly compact operators (Theorem 2.7), the relation be-
tween L-Dunford-Pettis property with DP and Grothendieck properties (Theorem 2.8), a
new characterizations of Banach space with DPrcP (resp, reflexive Banach space) (The-
orem 2.5) (resp, Corollary 2.10). Finally, we investigate the complementability of the
class of weakly compact operators from X into £°° in the class of DPcc from X into ¢£*°
(Theorem 2.13 and Corollary 2.14).

The notations and terminologies are standard. We use the symbols X, Y for arbitrary
Banach spaces. We denoted the closed unit ball of X by Bx, the topological dual of X
by X’ and T" : Y’ — X'’ refers to the adjoint of a bounded linear operator T': X — Y.
We refer the reader for undefined terminologies to the references [1, 8, 9].

2. MAIN RESULTS

Definition 2.1. Let X be a Banach space. A norm bounded subset A of the dual space
X' is called an L-Dunford-Pettis set, if every weakly null sequence (z,), which is a DP
set in X converges uniformly to zero on A, that is, lim supsc4 |f(2n)] = 0.

n—oo “

For a proof of the next Proposition, we need the following Lemma which is just
Lemma 1.3 of [11].

Lemma 2.2. A sequence (x,,) in X is DP if and only if fn(z,) — 0 as n — oo for every
weakly null sequence (fp) in X'.

The following Proposition gives some additional properties of L-Dunford-Pettis sets
in a topological dual Banach space.

Proposition 2.3. Let X be a Banach space. Then

(1) every subset of an L-Dunford-Pettis set in X' is L-Dunford- Pettis,

(2) every L-set in X' is L-Dunford-Pettis,

(3) relatively weakly compact subset of X' is L-Dunford-Pettis,

(4) absolutely closed conver hull of an L-Dunford-Pettis set in X' is L-Dunford-
Pettis.

Proof. (1) and (2) are obvious.

(3) Suppose A C X’ is relatively weakly compact but it is not an L-Dunford-Pettis
set. Then, there exists a weakly null sequence (x,,), which is a DP set in X, a sequence
(fn) in A and an € > 0 such that |f,(x,)| > € for all integer n. As A is relatively weakly
compact, there exists a subsequence (g,) of (f,) that converges weakly to an element g
in X’. But from

|gn(x0)] < [(gn — 9)(@n)] + |g(2n)]
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and Lemma 2.2, we obtain that |gy(z,)| — 0 as n — oo. This is a contradiction.
(4) Let A be a L-Dunford-Pettis set in X’, and (z,,) be a weakly null sequence, which
is a DP set in X. Since

SUP feaca(A) |f(zn)| = SUPfea | f (@)

for each n, where aco(4) = {1 Niw; sz € A, Vi, > i, |A| <1} is the absolutely
closed convex hull of A (see [1, pp. 148, 151]), then it is clear that aco(A) is L-Dunford-
Pettis set in X'. O

We need the following Lemma which is just Lemma 1.2 of [11].

Lemma 2.4. A Banach space X has the DPrcP if and only if any weakly null sequence,
which is a DP set in X 1is norm null.

From Lemma 2.4, we obtain the following characterization of DPrcP in a Banach space
in terms of an L-Dunford-Pettis set of his topological dual.

Theorem 2.5. A Banach space X has the DPrcP if and only if every bounded subset of
X' is an L-Dunford-Pettis set.

Proof. (<) Let (z,,) be a weakly null sequence, which is a DP set in X. As

[2n]l = supsep,, [f(@n)]

for each n, and by our hypothesis, we see that ||z,| — 0 as n — co. By Lemma 2.4 we
deduce that X has the DPrcP.

(=) Assume by way of contradiction that there exist a bounded subset A, which is
not an L-Dunford-Pettis set of X’. Then, there exists a weakly null sequence (z,,), which
is a Dunford-Pettis set of X such that sup;c 4 |f(zn)| > € > 0 for some € > 0 and each
n. Hence, for every n there exists some f,, in A such that |f,(x,)| > €.

On the other hand, since (f,) C A, there exist some M > 0 such that ||f,||y, < M
for all n. Thus,

[fn(@n)| < M |||

for each n, then by our hypothesis and Lemma 2.4, we have |f,(x,)] — 0 as n — oo,
which is impossible. This completes the proof. (]

Remark 1. Note by Proposition 2.3 assertion (3) that every relatively weakly compact
subset of a topological dual Banach space is L-Dunford-Pettis. The converse is not true in
general. In fact, the closed unit ball By of £°° is L-Dunford-Pettis set (see Theorem 2.5),
but it is not relatively weakly compact.

We make the following definition.

Definition 2.6. A Banach space X has the L-Dunford-Pettis property, if every L-
Dunford-Pettis set in X’ is relatively weakly compact.

As is known a DPcc operator is not weakly compact in general. For example, the
identity operator Ids : ¢' — ¢' is DPcc, but it is not weakly compact.

In the following Theorem, we give a characterizations of L-Dunford-Pettis property of
Banach space in terms of DPcc and weakly compact operators.

Theorem 2.7. Let X be a Banach space, then the following assertions are equivalent:

(1) X has the L-Dunford-Pettis property,
(2) for each Banach space Y, every DPcc operator from X into Y is weakly compact,
(3) every DPcc operator from X into £°° is weakly compact.
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Proof. (1) = (2) Suppose that X has the L-Dunford-Pettis property and 7' : X — Y is
DPcc operator. Thus T’(By-) is an L-Dunford-Pettis set in X’. So by hypothesis, it is
relatively weakly compact and T is a weakly compact operator.

(2) = (3) Obvious.

(3) = (1) If X does not have the L-Dunford-Pettis property, there exists an L-Dunford-
Pettis subset A of X’ that is not relatively weakly compact. So there is a sequence
(fn) € A with no weakly convergent subsequence. Now, we show that the operator
T : X — £ defined by T(z) = (fn(x)) for all x € X is DPcc but it is not weakly
compact. As (f,) € A is L-Dunford-Pettis set, for every weakly null sequence (x.,),
which is a DP set in X we have

||T($m)|| = sup,, |fn(33m>| — 0, as m — 00,

so T is a Dunford-Pettis completely continuous operator. We have T'((A\,)2;) =
oo L Anfn for every (A,)32, € ¢ C (¢°°). 1If €, is the usual basis element in ¢!

then T'(el,) = fn, for all n € N. Thus, T” is not a weakly compact operator and neither
is T'. This finishes the proof. (I

Theorem 2.8. Let E be a Banach lattice.
If E has both properties of DP and Grothendieck, then it has the L-Dunford-Pettis pro-
perty.

Proof. Suppose that T : E — Y is DPcc operator. As E has the DP property, it follows
from Theorem 1.5 [11] that T is completely continuous.

On the other hand, ¢! is not a Grothendieck space and Grothendieck property is
carried by complemented subspaces. Hence the Grothendieck space E does not have
any complemented copy of /1. By [10], E has the RDP property and so the completely
continuous operator 7' is weakly compact. From Theorem 2.7 we deduce that E has the
L-Dunford-Pettis property. O

Remark 2. Since ¢°° has the Grothendieck and DP properties, it has the L-Dunford-
Pettis property.

Let us recall that K is an infinite compact Hausdorff space if it is a compact Hausdorff
space, which contains infinitely many points.

For an infinite compact Hausdorff space K, we have the following result for the Banach
space C(K) of all continuous functions on K with supremum norm.

Corollary 2.9. If C(K) contains no complemented copy of co, then it has L-Dunford-
Pettis property.

Proof. Since C(K) contains no complemented copy of ¢, it is a Grothendieck space [3].
On the other hand, C(K) be a Banach lattice with the DP property, and by Theorem
2.8 we deduce that C(K) has L-Dunford-Pettis property. O

Corollary 2.10. A DPrc space has the L-Dunford-Pettis property if and only if it is
reflexive.

Proof. (=) If a Banach space X has the DPrcP, then by Theorem 1.3 of [11], the identity
operator Idx on X is DPcc. As X has the L-Dunford-Pettis property, it follows from
Theorem 2.7 that Idyx is weakly compact, and hence X is reflexive.

(<) Obvious. O

Remark 3. Note that the Banach space ¢! is not reflexive and has the DPrcP, then
from Corollary 2.10, we conclude that ¢! does not have the L-Dunford-Pettis property.

Theorem 2.11. If a Banach space X has the L-Dunford-Pettis property, then every
complemented subspace of X has the L-Dunford-Pettis property.
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Proof. Consider a complemented subspace X7 of X and a projection map P : X — Xj.
Suppose T : X7 — £°° is DPcc operator, then TP : X — £ is also DPcc. Since X has
L-Dunford-Pettis, by Theorem 2.7, TP is weakly compact. Hence T' is weakly compact,
also from Theorem 2.7 we conclude that X; has L-Dunford-Pettis, and this completes
the proof. a

Let X be a Banach space. We denote by L(X,£>) the class of all bounded linear
operators from X into £°°, by W (X, £°) the class of all weakly compact operators from
X into £*°, and by DPcc(X,¢>) the class of all Dunford-Pettis completely continuous
operators from X into £°°.

Recall that Bahreini [2] investigated the complementability of W (X, £>°) in L(X, £>°),
and she proved that if X is not a reflexive Banach space, then W (X, £°°) is not com-
plemented in L(X,£>). In the next Theorem, we establish the complementability of
W(X,£>) in DPcc(X, £>).

We need the following lemma of [7] .

Lemma 2.12. Let X be a separable Banach space, and ¢ : £° — L(X,£>) is a bounded
linear operator with ¢(e,) = 0 for all n, where e, is the usual basis element in co. Then
there is an infinite subset M of N such that for each o € £*(M), ¢(a)) = 0, where
(M) is the set of all a = (aw,) € £°° with a, =0 for each n ¢ M.

Theorem 2.13. If X does not have the L-Dunford-Pettis property, then W (X, 0>°) is
not complemented in DPcc(X, (7).

Proof. Consider a subset A of X’ that is L-Dunford-Pettis but it is not relatively weakly
compact. So there is a sequence (f,) in A such that has no weakly convergent subse-
quence. Hence S : X — (°° defined by S(z) = (f.(z)) is an DPcc operator but it is
not weakly compact. Choose a bounded sequence (x,) in Bx such that (S(z,)) has no
weakly convergent subsequence. Let X; = (z,,), the closed linear span of the sequence
() in X. It follows that X; is a separable subspace of X such that S/X; is not a
weakly compact operator. If g, = f,/X1, we have (g,) C X7 is bounded and has no
weakly convergent subsequence.

Now define the operator T : > — DPcc(X,£°) by T(a)(z) = (anfn(x)), where
xz € X and a = () € £°. Then

1T () (@)l = sup, |an fu(@)] < [lall - [|fn]l - [lz] < oo

We claim that T'(a)) € DPcc(X, () for each o = (o) € £°.
Let o = () € £°° and let (2,,,) be a weakly null sequence, which is a DP set in X.
As (fy) is L-Dunford-Pettis set sup,, | fn(zm)| — 0 as m — oo. So we have

1T () (@m)|| = supp, [an f(zm)| < llall.sup,, [fo(zm)] =0,

as m — o0o. Then this finishes the proof that T' is a well-defined operator from £>° into
DPce(X, ).
Let R: DPcc(X,£°) — DPcc(X1,£%) be the restriction map and define

¢ : 4> — DPce(X1,0*) by ¢=RT.
Now suppose that W (X, £°°) is complemented in DPcc(X, £°°) and
P : DPce(X,0%°) — W (X, %)

is a projection. Define ¢ : £*° — W (X1,£°°) by ¢» = RPT. Note that as T'(e,) is a one
rank operator, we have T'(e,) € W(X, £>°). Hence

Y(en) = RPT(en) = RT (en) = ¢(en)
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for all n € N. From Lemma 2.12, there is an infinite set M C N such that ¢ (a) = ¢(«)
for all & € £°°(M). Thus ¢(xar) is a weakly compact operator. On the other hand, if e/,
is the usual basis element of ¢!, for each € X; and each n € M, we have

(@0xm)) (en) () = fu(2).

Therefore (¢(xar)) (€),) = fn/X1 = gn for all n € M. Thus (¢(xar))" is not a weakly
compact operator and neither is ¢(xas). This contradiction ends the proof. O

As a consequence of Theorem 2.7 and Theorem 2.13, we obtain the following result.

Corollary 2.14. Let X be a Banach space. Then the following assertions are equivalent:
(1) X has the L-Dunford-Pettis property,
(2) W(X,£%°) = DPce(X,0),
(3) W(X,£>) is complemented in DPcc(X, ().

11.
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