
LDunfordPettis property in Banach spaces
A. Retbi, B. El Wahbi

Methods Funct. Anal. Topology, Volume 22, Number 4, 2016, pp. 387–392

Link to this article: http://mfat.imath.kiev.ua/article/?id=916

How to cite this article: 
A. Retbi and B. El Wahbi, LDunfordPettis property in Banach spaces, Methods
Funct. Anal. Topology 22 (2016), no. 4, 387–392.

© The Author(s) 2016. This article is published with open access at mfat.imath.kiev.ua

http://mfat.imath.kiev.ua/article/?id=916
http://mfat.imath.kiev.ua/


Methods of Functional Analysis and Topology
Vol. 22 (2016), no. 4, pp. 387–392

L-DUNFORD-PETTIS PROPERTY IN BANACH SPACES

A. RETBI AND B. EL WAHBI

Abstract. In this paper, we introduce and study the concept of L-Dunford-Pettis
sets and L-Dunford-Pettis property in Banach spaces. Next, we give a characteriza-
tion of the L-Dunford-Pettis property with respect to some well-known geometric
properties of Banach spaces. Finally, some complementability of operators on Banach
spaces with the L-Dunford-Pettis property are also investigated.

1. Introduction and notation

A norm bounded subset A of a Banach space X is called Dunford-Pettis (DP for
short) if every weakly null sequence (fn) in X ′ converge uniformly to zero on A, that is,
lim

n→∞ supx∈A |fn(x)| = 0.
An operator T between two Banach spaces X and Y is completely continuous if T

maps weakly null sequences into norm null ones.
Recall from [11], that an operator T : X → Y between two Banach spaces is Dunford-

Pettis completely continuous (abb. DPcc) if it carries a weakly null sequence, which is a
DP set in X to norm null ones in Y . It is clear that every completely continuous operator
is DPcc. Also every weakly compact operator is DPcc (see Corollary 1.1 of [11]).

A Banach space X has:
– a relatively compact Dunford-Pettis property (DPrcP for short) if every Dunford-

Pettis set in X is relatively compact [5]. For example, every Schur spaces have
the DPrcP.

– a Grothendieck property (or a Banach space X is a Grothendieck space) if weak�

and weak convergence of sequences in X ′ coincide. For example, each reflexive
space is a Grothendieck space.

– a Dunford-Pettis property (DP property for short) if every weakly compact opera-
tor T fromX into another Banach space Y is completely continuous, equivalently,
if every relatively weakly compact subset of X is DP.

– a reciprocal Dunford-Pettis property (RDP property for short) if every com-
pletely continuous operator on X is weakly compact.

A subspace X1 of a Banach space X is complemented if there exists a projection P
from X to X1 (see page 9 of [2]).

Recall from [1], that a Banach lattice is a Banach space (E, ‖ · ‖) such that E is a
vector lattice and its norm satisfies the following property: for each x, y ∈ E such that
|x| ≤ |y|, we have ‖x‖ ≤ ‖y‖.

We denote by c0, �1, and �∞ the Banach spaces of all sequences converging to zero,
all absolutely summable sequences, and all bounded sequences, respectively.

Let us recall that a norm bounded subset A of a Banach space X ′ is called L-set
if every weakly null sequence (xn) in X converge uniformly to zero on A, that is,
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lim
n→∞ supf∈A |f(xn)| = 0. Note also that a Banach space X has the RDP property if

and only if every L-set in X ′ is relatively weakly compact.
In his paper, G. Emmanuelle in [4] used the concept of L-set to characterize Banach

spaces not containing �1, and gave several consequences concerning Dunford-Pettis sets.
Later, the idea of L-set is also used to establish a dual characterization of the Dunford-
Pettis property [6].

The aim of this paper is to introduce and study the notion of L-Dunford-Pettis set
in a Banach space, which is related to the Dunford-Pettis set (Definition 2.1), and note
that every L-set in a topological dual of a Banach space is L-Dunford-Pettis set (Proposi-
tion 2.3). After that, we introduce the L-Dunford-Pettis property in Banach space which
is shared by those Banach spaces whose L-Dunford-Pettis subsets of his topological dual
are relatively weakly compact (Definition 2.6). Next, we obtain some important con-
sequences. More precisely, a characterizations of L-Dunford-Pettis property in Banach
spaces in terms of DPcc and weakly compact operators (Theorem 2.7), the relation be-
tween L-Dunford-Pettis property with DP and Grothendieck properties (Theorem 2.8), a
new characterizations of Banach space with DPrcP (resp, reflexive Banach space) (The-
orem 2.5) (resp, Corollary 2.10). Finally, we investigate the complementability of the
class of weakly compact operators from X into �∞ in the class of DPcc from X into �∞

(Theorem 2.13 and Corollary 2.14).
The notations and terminologies are standard. We use the symbols X , Y for arbitrary

Banach spaces. We denoted the closed unit ball of X by BX , the topological dual of X
by X ′ and T ′ : Y ′ → X ′ refers to the adjoint of a bounded linear operator T : X → Y .
We refer the reader for undefined terminologies to the references [1, 8, 9].

2. Main results

Definition 2.1. Let X be a Banach space. A norm bounded subset A of the dual space
X ′ is called an L-Dunford-Pettis set, if every weakly null sequence (xn), which is a DP
set in X converges uniformly to zero on A, that is, lim

n→∞ supf∈A |f(xn)| = 0.

For a proof of the next Proposition, we need the following Lemma which is just
Lemma 1.3 of [11].

Lemma 2.2. A sequence (xn) in X is DP if and only if fn(xn)→ 0 as n→∞ for every
weakly null sequence (fn) in X ′.

The following Proposition gives some additional properties of L-Dunford-Pettis sets
in a topological dual Banach space.

Proposition 2.3. Let X be a Banach space. Then
(1) every subset of an L-Dunford-Pettis set in X ′ is L-Dunford-Pettis,
(2) every L-set in X ′ is L-Dunford-Pettis,
(3) relatively weakly compact subset of X ′ is L-Dunford-Pettis,
(4) absolutely closed convex hull of an L-Dunford-Pettis set in X ′ is L-Dunford-

Pettis.

Proof. (1) and (2) are obvious.
(3) Suppose A ⊂ X ′ is relatively weakly compact but it is not an L-Dunford-Pettis

set. Then, there exists a weakly null sequence (xn), which is a DP set in X , a sequence
(fn) in A and an ε > 0 such that |fn(xn)| > ε for all integer n. As A is relatively weakly
compact, there exists a subsequence (gn) of (fn) that converges weakly to an element g
in X ′. But from

|gn(xn)| ≤ |(gn − g)(xn)|+ |g(xn)|
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and Lemma 2.2, we obtain that |gn(xn)| → 0 as n→∞. This is a contradiction.
(4) Let A be a L-Dunford-Pettis set in X ′, and (xn) be a weakly null sequence, which

is a DP set in X . Since

supf∈aco(A) |f(xn)| = supf∈A |f(xn)|

for each n, where aco(A) = {∑n
i=1 λixi : xi ∈ A, ∀i,

∑n
i=1 |λi| ≤ 1} is the absolutely

closed convex hull of A (see [1, pp. 148, 151]), then it is clear that aco(A) is L-Dunford-
Pettis set in X ′. �

We need the following Lemma which is just Lemma 1.2 of [11].

Lemma 2.4. A Banach space X has the DPrcP if and only if any weakly null sequence,
which is a DP set in X is norm null.

From Lemma 2.4, we obtain the following characterization of DPrcP in a Banach space
in terms of an L-Dunford-Pettis set of his topological dual.

Theorem 2.5. A Banach space X has the DPrcP if and only if every bounded subset of
X ′ is an L-Dunford-Pettis set.

Proof. (⇐) Let (xn) be a weakly null sequence, which is a DP set in X . As

‖xn‖ = supf∈BX′ |f(xn)|
for each n, and by our hypothesis, we see that ‖xn‖ → 0 as n → ∞. By Lemma 2.4 we
deduce that X has the DPrcP.

(⇒) Assume by way of contradiction that there exist a bounded subset A, which is
not an L-Dunford-Pettis set of X ′. Then, there exists a weakly null sequence (xn), which
is a Dunford-Pettis set of X such that supf∈A |f(xn)| > ε > 0 for some ε > 0 and each
n. Hence, for every n there exists some fn in A such that |fn(xn)| > ε.

On the other hand, since (fn) ⊂ A, there exist some M > 0 such that ‖fn‖X′ ≤ M
for all n. Thus,

|fn(xn)| ≤M ‖xn‖
for each n, then by our hypothesis and Lemma 2.4, we have |fn(xn)| → 0 as n → ∞,
which is impossible. This completes the proof. �

Remark 1. Note by Proposition 2.3 assertion (3) that every relatively weakly compact
subset of a topological dual Banach space is L-Dunford-Pettis. The converse is not true in
general. In fact, the closed unit ball B�∞ of �∞ is L-Dunford-Pettis set (see Theorem 2.5),
but it is not relatively weakly compact.

We make the following definition.

Definition 2.6. A Banach space X has the L-Dunford-Pettis property, if every L-
Dunford-Pettis set in X ′ is relatively weakly compact.

As is known a DPcc operator is not weakly compact in general. For example, the
identity operator Id�1 : �1 → �1 is DPcc, but it is not weakly compact.

In the following Theorem, we give a characterizations of L-Dunford-Pettis property of
Banach space in terms of DPcc and weakly compact operators.

Theorem 2.7. Let X be a Banach space, then the following assertions are equivalent:
(1) X has the L-Dunford-Pettis property,
(2) for each Banach space Y, every DPcc operator from X into Y is weakly compact,
(3) every DPcc operator from X into �∞ is weakly compact.



390 A. RETBI AND B. EL WAHBI

Proof. (1) ⇒ (2) Suppose that X has the L-Dunford-Pettis property and T : X → Y is
DPcc operator. Thus T ′(BY ′) is an L-Dunford-Pettis set in X ′. So by hypothesis, it is
relatively weakly compact and T is a weakly compact operator.

(2)⇒ (3) Obvious.
(3)⇒ (1) IfX does not have the L-Dunford-Pettis property, there exists an L-Dunford-

Pettis subset A of X ′ that is not relatively weakly compact. So there is a sequence
(fn) ⊆ A with no weakly convergent subsequence. Now, we show that the operator
T : X → �∞ defined by T (x) = (fn(x)) for all x ∈ X is DPcc but it is not weakly
compact. As (fn) ⊆ A is L-Dunford-Pettis set, for every weakly null sequence (xm),
which is a DP set in X we have

‖T (xm)‖ = supn |fn(xm)| → 0, as m→∞,

so T is a Dunford-Pettis completely continuous operator. We have T ′((λn)∞n=1) =∑∞
n=1 λnfn for every (λn)∞n=1 ∈ �1 ⊂ (�∞)′. If e′n is the usual basis element in �1

then T ′(e′n) = fn, for all n ∈ N . Thus, T ′ is not a weakly compact operator and neither
is T . This finishes the proof. �
Theorem 2.8. Let E be a Banach lattice.
If E has both properties of DP and Grothendieck, then it has the L-Dunford-Pettis pro-
perty.

Proof. Suppose that T : E → Y is DPcc operator. As E has the DP property, it follows
from Theorem 1.5 [11] that T is completely continuous.

On the other hand, �1 is not a Grothendieck space and Grothendieck property is
carried by complemented subspaces. Hence the Grothendieck space E does not have
any complemented copy of �1. By [10], E has the RDP property and so the completely
continuous operator T is weakly compact. From Theorem 2.7 we deduce that E has the
L-Dunford-Pettis property. �
Remark 2. Since �∞ has the Grothendieck and DP properties, it has the L-Dunford-
Pettis property.

Let us recall that K is an infinite compact Hausdorff space if it is a compact Hausdorff
space, which contains infinitely many points.

For an infinite compact Hausdorff spaceK, we have the following result for the Banach
space C(K) of all continuous functions on K with supremum norm.

Corollary 2.9. If C(K) contains no complemented copy of c0, then it has L-Dunford-
Pettis property.

Proof. Since C(K) contains no complemented copy of c0, it is a Grothendieck space [3].
On the other hand, C(K) be a Banach lattice with the DP property, and by Theorem
2.8 we deduce that C(K) has L-Dunford-Pettis property. �
Corollary 2.10. A DPrc space has the L-Dunford-Pettis property if and only if it is
reflexive.

Proof. (⇒) If a Banach space X has the DPrcP, then by Theorem 1.3 of [11], the identity
operator IdX on X is DPcc. As X has the L-Dunford-Pettis property, it follows from
Theorem 2.7 that IdX is weakly compact, and hence X is reflexive.

(⇐) Obvious. �
Remark 3. Note that the Banach space �1 is not reflexive and has the DPrcP, then
from Corollary 2.10, we conclude that �1 does not have the L-Dunford-Pettis property.

Theorem 2.11. If a Banach space X has the L-Dunford-Pettis property, then every
complemented subspace of X has the L-Dunford-Pettis property.
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Proof. Consider a complemented subspace X1 of X and a projection map P : X → X1.
Suppose T : X1 → �∞ is DPcc operator, then TP : X → �∞ is also DPcc. Since X has
L-Dunford-Pettis, by Theorem 2.7, TP is weakly compact. Hence T is weakly compact,
also from Theorem 2.7 we conclude that X1 has L-Dunford-Pettis, and this completes
the proof. �

Let X be a Banach space. We denote by L(X, �∞) the class of all bounded linear
operators from X into �∞, by W (X, �∞) the class of all weakly compact operators from
X into �∞, and by DPcc(X, �∞) the class of all Dunford-Pettis completely continuous
operators from X into �∞.

Recall that Bahreini [2] investigated the complementability of W (X, �∞) in L(X, �∞),
and she proved that if X is not a reflexive Banach space, then W (X, �∞) is not com-
plemented in L(X, �∞). In the next Theorem, we establish the complementability of
W (X, �∞) in DPcc(X, �∞).

We need the following lemma of [7] .

Lemma 2.12. Let X be a separable Banach space, and φ : �∞ → L(X, �∞) is a bounded
linear operator with φ(en) = 0 for all n, where en is the usual basis element in c0. Then
there is an infinite subset M of N such that for each α ∈ �∞(M), φ(α) = 0, where
�∞(M) is the set of all α = (αn) ∈ �∞ with αn = 0 for each n /∈M .

Theorem 2.13. If X does not have the L-Dunford-Pettis property, then W (X, �∞) is
not complemented in DPcc(X, �∞).

Proof. Consider a subset A of X ′ that is L-Dunford-Pettis but it is not relatively weakly
compact. So there is a sequence (fn) in A such that has no weakly convergent subse-
quence. Hence S : X → �∞ defined by S(x) = (fn(x)) is an DPcc operator but it is
not weakly compact. Choose a bounded sequence (xn) in BX such that (S(xn)) has no
weakly convergent subsequence. Let X1 = 〈xn〉, the closed linear span of the sequence
(xn) in X . It follows that X1 is a separable subspace of X such that S/X1 is not a
weakly compact operator. If gn = fn/X1, we have (gn) ⊆ X ′

1 is bounded and has no
weakly convergent subsequence.

Now define the operator T : �∞ → DPcc(X, �∞) by T (α)(x) = (αnfn(x)), where
x ∈ X and α = (αn) ∈ �∞. Then

‖T (α)(x)‖ = supn |αnfn(x)| ≤ ‖α‖ . ‖fn‖ . ‖x‖ <∞.

We claim that T (α) ∈ DPcc(X, �∞) for each α = (αn) ∈ �∞.
Let α = (αn) ∈ �∞ and let (xm) be a weakly null sequence, which is a DP set in X .

As (fn) is L-Dunford-Pettis set supn |fn(xm)| → 0 as m→∞. So we have

‖T (α)(xm)‖ = supn |αnfn(xm)| ≤ ‖α‖ . supn |fn(xm)| → 0,

as m → ∞. Then this finishes the proof that T is a well-defined operator from �∞ into
DPcc(X, �∞).

Let R : DPcc(X, �∞)→ DPcc(X1, �
∞) be the restriction map and define

φ : �∞ → DPcc(X1, �
∞) by φ = RT .

Now suppose that W (X, �∞) is complemented in DPcc(X, �∞) and

P : DPcc(X, �∞)→W (X, �∞)

is a projection. Define ψ : �∞ → W (X1, �
∞) by ψ = RPT . Note that as T (en) is a one

rank operator, we have T (en) ∈W (X, �∞). Hence

ψ(en) = RPT (en) = RT (en) = φ(en)
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for all n ∈ N . From Lemma 2.12, there is an infinite set M ⊆ N such that ψ(α) = φ(α)
for all α ∈ �∞(M). Thus φ(χM ) is a weakly compact operator. On the other hand, if e′n
is the usual basis element of �1, for each x ∈ X1 and each n ∈M , we have

(φ(χM ))′(e′n)(x) = fn(x).

Therefore (φ(χM ))′(e′n) = fn/X1 = gn for all n ∈ M . Thus (φ(χM ))′ is not a weakly
compact operator and neither is φ(χM ). This contradiction ends the proof. �

As a consequence of Theorem 2.7 and Theorem 2.13, we obtain the following result.

Corollary 2.14. Let X be a Banach space. Then the following assertions are equivalent:
(1) X has the L-Dunford-Pettis property,
(2) W (X, �∞) = DPcc(X, �∞),
(3) W (X, �∞) is complemented in DPcc(X, �∞).
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