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ON NEW INVERSE SPECTRAL PROBLEMS FOR WEIGHTED

GRAPHS

L. P. NIZHNIK AND V. I. RABANOVICH

Abstract. In this paper, we consider various new inverse spectral problems (ISP) for

metric graphs, using maximal eigen values of the adjacency matrix of the graph and
its subgraphs as well as the corresponding eigen vectors or some of their components
as spectral data. We give examples of spectral data that uniquely determine the
metric on the graph. Effective algorithms for solving the considered ISP are given.

1. Introduction

At the present time, spectral theory of matrices is a well developed part of linear
algebra. Together with general spectral theory of matrices, spectral properties of special
classes of matrices have been well studied. These classes include the class of Jacobi
matrices, matrices with nonnegative entries, oscillation matrices, adjacency matrices of
metric (weighted) graphs, etc., see, for example, [7]. Due to various applications, a
number of inverse spectral problems for various classes of matrices were posed and solved
in the literature. Such problems deal with recovering a matrix or its part from its
spectrum or spectrum of its submatrices [1, 2]. Such problems also include cases where
the values of entries at some fixed places of the sought matrix are known. For example,
it is well known that a Jacobi matrix J can be recovered from its spectrum and spectrum
of a submatrix obtained by removing from J the last row and the last column, or from
the n× n-submatrix Ĵ obtained from the Jacobi 2n× 2n-matrix J by removing n lower
rows and n rightmost columns and the complete spectrum of the matrix J [6]. There are
many results on problems of finding matrices with a fixed structure (adjacency matrices
of graphs with incomplete information on edge weights) from a given spectrum or from a
spectrum that satisfies certain conditions on multiplicities of eigen values [7, 3]. However,
no complete theory for inverse spectral problems has been developed.

For matrices, an inverse spectral problem in a general setting can be formulated as
follows. Suppose we only know elements of a matrix A that are located at certain places,
and the rest of the elements are to be found. Let A be a set of such matrices, and some
functionals f1(A), . . . , fk(A) be defined on A. A collection of values of these functionals
for a matrix A is considered to be known and will be called input data for the inverse
problem. They will be denoted by ID(A) = {f1(A), . . . , fk(A)}. The inverse problem for
a matrix A ∈ A consists of finding all nonnegative elements of the matrix A, or, if such
a recovering is not unique, of all matrices Â from the set A such that ID(Â) = ID(A).
An inverse problem for finding a matrix A in the set A from the data ID(A) is called
well-posed if such a problem has a finite nonempty set of matrix solutions in the set A.

An example of a well-posed inverse problem is the problem of finding diagonal ele-
ments of a matrix A from its spectrum, that is, from a collection of all its eigen values,
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counting multiplicities [3]. An example of an “ill-posed inverse problem” is the problem
of recovering all elements of an arbitrary matrix from its spectrum.

Among the functionals ID(A) that define the initial data for inverse spectral problems
for matrices there are certain particular collections of eigen values of the matrix A and
eigen values of some submatrices Aτ constructed from the matrix A. Additional func-
tionals could be some components of the eigen vectors corresponding to the eigen values,
or other spectral characteristics. In such cases, ID(A) will be called spectral data and
denoted by SD(A). An inverse problem with initial spectral data SD(A) will be briefly
called ISP.

An important spectral data are the largest eigen values of the matrix or corresponding
eigen values of certain submatrices. This the case, first of all, for nonnegative irreducible
symmetric matrices. Since the works of Frobenius, its well known that knowledge of a
maximal eigen value and the corresponding eigen vector of such a matrix helps to find
additional information on elements of the matrix. As far as the adjacency matrix of a
graph is concerned, the largest eigen values of the matrix is called index of the graph. This
notion is important in the theory of graphs. For oscillation matrices, the corresponding
eigen value is directly related to the principle (the least) frequency of oscillation of the
mechanical system described by the initial oscillation matrix [4].

In this paper, we consider a number of new formulations for inverse spectral prob-
lems, ISP, for weighted graphs such that certain SD uniquely define the weights on all
the edges and the vertices. Since an arbitrary connected graph admits an indexing of the
vertices such that, as vertices are inductively removed the resulting subgraphs remain
connected, the SDV in Definition 5 is defined to be indices of these subgraphs, together
with the corresponding eigen vectors.

For graphs that are trees, we consider several definitions of SD (Definition 8, Re-
marks 5, 6) that lead to uniqueness of solution of the IP (Theorem 3).

If a connected graph is not a tree, then an inductive removal of vertices will lead to
a subgraph that will be a tree. Such a subgraph will be called a skeleton of the initial
graph. For such a case, Definition 9 gives SD in the form of SDT for a skeleton of the
graph, together with indices of the graph and indices of the subgraphs obtained in the
course of removal of the vertices. Such SD imply uniqueness of the IP (Theorem 4).

In fact, the considered ISP for weighted graphs deal with their adjacency matrices that
are irreducible symmetric matrices with nonnegative entries off the main diagonal. Each
such a matrix can be regarded as an adjacency matrix of a weighed connected graph.
Hence the obtained results can be regarded as new formulations of ISP for such matrices.

2. Some facts from the theory of graphs and nonnegative matrices

Throughout this paper, by a graph G = G(V,E) we mean a simple undirected graph
(no loops, no multiple edges) with a nonempty set of vertices V = {v1, v2, . . . , vn} and
a set of edges E = {e1, e2, . . . , em}, where each edge e ∈ E corresponds to two distinct
vertices v1(e), v2(e) that connects them. Hence, an edge e, in an undirected graph,
can be identified with an unordered pair of vertices, (v1, v2), connected by the edge.
A graph G1 = G(V1, G1) is called a subgraph of the graph G = G(V,E), if V1 ⊂ V
and E1 ⊂ E. By subgraph G(V1) on vertices V1 ⊂ V , we mean a vertex-induced subgraph
of G that contains all edges of G with both ends in V1. By a subgraph G(E1) on edges
E1 ⊂ E, we mean an edge-induced subgraph of G that contains all the edges from E1

with their endpoints and no other vertices. Recall that a vertex v is called a leaf vertex,
if its degree equals one. Hence, for example, G(V,E \ {e}) 6= G(E \ {e}), if the edge e
comes from a leaf vertex.

A graph G(V,E) is called weighted if the is a real-valued function w defined on the
sets V and E such that to each edge e ∈ E there corresponds a positive number w(e), a
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wight of the edge e, end to every vertex v ∈ V there corresponds a real number w(v), a
weight of the vertex v. A weighted graph will be denoted by G(V,E,w). If the weight of
each vertex is zero, then the weighted graph is call a metric graph, and the number w(e)
is a weight of the edge e, or its length.

If all vertices of a graph are indexed with natural numbers 1, 2, . . . , n, then, to such
a graph, one assigns a square symmetric matrix A(G) = ‖aij‖

n
i,j=1, called an adjacency

matrix of the graph G, as follows: aij = w(ei,j), where the edge ei,j connects the vertex
indexed with i and the vertex indexed with j, if i 6= j. If there is no such an edge,
then aij = 0. Diagonal elements are defined by aii = w(vi), that is, the weights are
weights of the vertices with the corresponding indices.

The largest eigen value of the adjacency matrix of a graph G(V,E,w) is called an
index of the graph and is denoted by indG. It is clear that a change of indexing of the
vertices of a weighted graph leads to a certain permutation of rows and corresponding
columns of the adjacency matrix. Of course, the index of the graph does not depend on
a particular indexing of vertices of a weighted graph.

A sequence of edges (v1, v2), (v2, v3), . . . , (vk−1, vk) is called a path that connects the
vertex v1 with the vertex vk. A path is a closed, if vk = v1. A path is called a chain,
if all its edges are distinct, and it is a simple chain, if all its vertices are distinct. A
closed simple chain is called a simple cycle. A graph G is called connected, if each pair
of vertices can be connected with a path.

A graph is connected if and only if its adjacency matrix is irreducible. The length of
a path (a chain, a simple chain, respectively) is given by the number of edges needed
to be passed. A connected graph with no cycles is called a tree. A subgraph G(V,E1),
which is a tree, is called a skeleton of the graph G(V,E). The initial graph G(V,E) can
be obtained from a skeleton by supplementing it with edges in E \ E1. Each graph has
a skeleton.

Definition 1. A vertex v of a simple connected graph G(V,E) is called admissible for
removal, if the subgraph G(V \{v}) is connected. An edge e is called admissible for
removal, if the subgraph G(E \ {e}) is connected.

Proposition 1. Let G(V,E) be a connected graph.

1) An edge e ∈ E is admissible for removal if and only if one of the vertices con-
nected with this edge is a leaf vertex or else the graph G(V,E) has a cycle that
contains the edge e.

2) A vertex v ∈ V is admissible for removal if and only if this is a leaf vertex of
the graph G(V,E) or else each edge that comes out of the vertex v is a part of a
cycle of the graph G(V,E).

Proof. The proof directly follows from Definition 1. �

Remark 1. In a connected graph, admissible for removal are only leaf vertices and edges
that connect such leaf vertices.

Proposition 2. Every simple connected graph G(V,E) that has more than two vertices
always has at least two vertices admissible for removal, and at least two edges admissible
for removal.

Proof. If a connected graph G(V,E) has a cycle, then each edge of the cycle is admissible
for removal by Proposition 1. If the graph has no cycles, then it is a tree with more than
two vertices, which means that there are at least two leaf vertices. By Remark 1, the
graph has at least two edges admissible for removal.

Consider now removal of vertices. Let L = (v1, v2, . . . , vk) be a simple chain of maximal
length, with k ≥ 3, of a connected graph G(V,E) with n vertices. Let v1 be an initial
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vertex of the chain L, and vk be a terminal vertex. Then v1 and vk are vertices of G(V,E)
admissible for removal. Indeed, either v1 is a leaf vertex in G(V,E), hence it is admissible
for removal, or there are vertices vi1 , . . . , vis ∈ V such that ij > 2 and (v1, vij ) ∈ E
for all j = 1, . . . , s. Since L is a simple chain of maximal length, ij ∈ {3, . . . , k} for
every j = 1, . . . , s, that is, (v1, vij ) is a part of a cycle in G(V,E) for each value of j. By
Proposition 1, the vertex v1 is admissible for removal in this case. A similar reasoning
shows that the vertex vk is also admissible for removal. �

Definition 2. Let G be a simple connected graph with a finite number n of ver-
tices and m edges. A vertices indexing v1, . . . , vn (resp., edge indexing e1, . . . , em) is
called admissible if the subgraphs G(v1, . . . , vk) for all k = 1, . . . , n (resp., the sub-
graphs G(e1, . . . , es) for all s = 1, . . . ,m) are connected.

By the definition and Proposition 2, each simple connected graph has an admissible
vertex indexing and an admissible edge indexing. Moreover, we have the following.

Proposition 3. Let G(V,E) be a simple connected graph with a finite number n of ver-
tices and m edges. Then, for a fixed vertex v ∈ V there exists an admissible vertex index-
ing v1, . . . , vn such that v1 = v. There also exists an admissible edge indexing e1, . . . , em
such that the edge e1 coincides with a chosen edge e ∈ E.

Proof. Let v1, . . . , vn be a vertex indexing, and Gk = G(v1, . . . , vk), k = 1, . . . , n. By
Proposition 2 there are two vertices in Gk admissible for removal, if k ≥ 2. Without
loss of generality, we can assume that vk is a vertex in Gk admissible for removal and,
moreover, we assume that the chosen vertex is different from v, since there are at least two
vertices that can be chosen. By the assumption, such an indexing exists, is admissible,
and v1 = v.

A similar reasoning with a use of Proposition 3 shows that there is an admissible edge
indexing. �

Definition 3. Let a connected graph G(V,E) be a tree with n vertices. An admis-
sible vertex indexing v1, . . . , vn will be called matched with an admissible edge index-
ing e1, . . . , en−1 (and vice versa) if the subgraphs G(v1, . . . , vk) = G(e1, . . . , ek−1) coin-
cide for k = 2, . . . , n.

Remark 1 evidently implies the following.

Proposition 4. In a tree, an admissible vertex indexing is matched with an admissible
edge indexing if and only if for each k the edge ek−1 connects the vertex vk.

The problem of choosing admissible indexing on a graph is naturally related to a
skeleton tree of the graph. Recall that a skeleton of a graph G is a graph S(G) that
contains all vertices of the graph G. Here, if S(G) is a tree, then S(G) is called a skeleton
tree of G. Of course, each undirected connected graph G = G(V,E) has a skeleton
tree. The following proposition directly follows from the definition of an admissible edge
indexing.

Proposition 5. Let T (G) = G(V,E1) be a skeleton tree of a graph G(V,E),
{e1, . . . , en−1} = E1, and {f1, . . . , fm} = E \ E1. If e1, . . . , en−1 is an admissible edge
indexing of T (G), then any edge indexing of E \ E1 with numbers from n to n +m − 1
forms an admissible edge indexing of the graph G(V,E).

In order to consider the procedure of extracting an edge (or a vertex) from a graph G,
let us look at the action it produces on the adjacency matrix A(G). This matrix has real
entries, and adding a scalar matrix αI to it, with a sufficiently large α > 0, transforms it
to a matrix with nonnegative elements, which permits to apply a well developed theory
of nonnegative matrices. Let us recall the needed results.
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By the Peron-Frobenius theorem, the module greatest eigen value of a nonnegative
irreducible matrix A is a positive number λmax(A), it has multiplicity one, the corre-
sponding eigen vector φλmax

can be chosen to have positive coordinates. Moreover, if
there is another matrix C with nonnegative off-diagonal elements such that the differ-
ence A−C is a nonzero nonnegative matrix, then λmax(A) is greater than any real eigen
value of the matrix C, see [5, Theorem 6’, p. 355]. This gives the following.

Proposition 6. Let A, A1, A2 be matrices with real elements and nonnegative off-
diagonal elements. If A is irreducible and the differences A2−A and A−A1 are matrices
with nonnegative elements, that is,

(1) A1 6 A 6 A2,

then

(2) λmax(A1) ≤ λmax(A) ≤ λmax(A2),

where λmax(X) is the greatest real eigen value of the matrix X. With this, if Ai 6= A,
then the corresponding inequality in (2) is strict.

This shows that reducing (or making zero) the weights of edges or vertices reduces
the value of greatest eigen value of the corresponding adjacency matrix. This monotone
dependence permits to recover the value of a weight of the graph from its index. We will
show this by using properties of cofactors of nonnegative matrices, see [5, the proof of
the Frobenius Theorem, p. 342].

Proposition 7. Let A be an irreducible matrix with nonnegative elements and λmax(A)
its greatest real eigen value. Then any cofactor of the matrix λI − A is positive for λ >
λmax(A).

Proposition 8. Let A be an irreducible matrix with nonnegative entries. If there is only
one unknown element aij in a matrix A but the greatest real eigen value λ is known,
then aij is uniquely expressed in terms of the known elements of A and λ.

Proof. The determinant of the matrix λIn−A equals zero by construction. Let us expand
it in the ith row. Let Bkl be a cofactor of the element λδkl − akl in the matrix λI − A,
where δkl is Kronecker’s symbol. Then

(3)
Bi1(−ai1) + · · ·+Bi i−1(−ai i−1) +Bii(λ− aii)

+Bi i+1(−ai i+1) + · · ·+Bin(−ain) = 0.

By Proposition 7, Bij 6= 0. Hence, it follows from (3) that aij can be uniquely expressed
in terms of all other elements of A and the number λ. �

Remark 2. Proposition 8 is also true if the matrix A, in addition, is symmetric. A
nonnegative element aij = aji can be uniquely found from the equation det(λI−A) = 0,
which, for i 6= j, can be reduced to a quadratic equation that has a unique nonnegative
solution.

3. Inverse spectral problems for graphs

Spectral theory of weighted graphs is a spectral theory of their adjacency matrices.
Since an adjacency matrix is a symmetric matrix with nonnegative off-diagonal elements,
the theory of Perron-Frobenius, which is developed to great details, gives a number of
spectral characteristics of such matrices [7, 5, 4]. As we have already mentioned, an index
of a graph G is the greatest eigen value of its adjacency matrix A(G). By spectrum of a
graph G, we understand spectrum of its adjacency matrix, σ(G) = σ(A(G)), that is, the
set of all eigen values of the adjacency matrix.
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Definition 4. A spectral pair of a graph G is the pair (indG,φ), where φ is an eigen
vector of the adjacency matrix A(G) of the graph G corresponding to the greatest eigen
value λmax(A) = indG. The vector φ satisfies a special normalization condition, the last
coordinate equals one, φ = (φ1, . . . , φn−1, 1).

Lemma 1. Let G(V,E, w̃) be a weighted tree with a vertex admissible indexing v1, . . . , vn.
Let w̃(vj) = 0 for j = 2, . . . , n, and let a spectral pair S(G) = (indG,φ) of the graph G
be given. Then all weights of the edges and the weight of the vertex v1 are uniquely
determined.

Proof. Let A = ‖aij‖
n
i,j=1 be the adjacency matrix of the graph G. All the diagonal

elements aii, save for one, are equal to zero, aii = 0, i = 2, . . . , n. By the Frobenius
theorem, all components of the eigen vector φ of the irreducible matrix A are positive.
Denoting λ = indG we have

(4) Aφ = λφ.

Consider the last component in the vector identity (4). There is only one element in the
last row of the matrix A = ‖aij‖

n
i,j=1 which is nonzero. This is ank, where k in the number

of the vertex that is connected to the vertex vn with an edge. This implies that ankφk =
λφn, which yields ank = λφ−1

k , since φn = 1. Consider, in the vector identity (4), the
subsequent components; first, with the index n − 1, then with the index n − 2, etc., up
to component with the index s, s > 1. Since there is only one edge that can connect the
vertices vs and vr, where r is less than s, for otherwise G would have a cycle, which is
impossible for a tree, the inductive computation for n− 1, n− 2, . . . , 2 using (4) permits
to uniquely calculate all the elements aij of the matrix A except for the element a11.
However, the equality of the first components in (4) gives a11φ1 +

∑n

j=2 a1jφj = λφ1,
which uniquely defines a11. �

Actually, Lemma 1 is a result of the inverse spectral problem for a tree. Inverse
spectral problems for weighted graphs consist in recovering or finding weights of edges
and vertices from certain spectral information that will be called spectral data, (SD),
which is the initial data for the ISP.

Let us list several important general conditions on the SD.

1) SD should have a clear physical meaning and be experimentally verifiable.
2) The number of numeric parameters in SD must coincide with the number of

weights to be found.
3) A solution of the IP with a given SD must be unique or the number of solutions

must be finite, that is, such an ISP must be a well-posed problem.

Definition 5. Let G(V,E,w) be a simple connected weighted graph with an admissible
vertex indexing v1, . . . , vn. A collection of spectral pairs for the subgraphs G(v1, . . . , vk),
k = 1, . . . , n, will be called graph spectral data corresponding to the admissible vertex
indexing. It will be denoted by SDV(G),
(5)

SDV(G) = {S(G(v1, . . . , vk)) | k = 1, . . . , n} = {(indG(v1, . . . , vk), φ
(k)) | k = 1, . . . , n},

where φ(k) is an eigen vector of the adjacency matrix of the subgraph G(v1, . . . , vk)
corresponding to the eigen value indG(v1, . . . , vk). The problem of finding the weights
of a connected graph G from SDV(G) will be denoted by ISPV.

Theorem 1. If G is a simple weighted graph, then the problem ISPV has a unique
solution.

Proof. Consider the subgraph G(v1). This is a one-vertex graph with w(v1) = indG(v1).
For the subgraphG(v1, v2), the adjacency matrix is symmetric and can be written asA2 =
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‖aij‖
2
i,j=1, where a11 has already been found but the elements a12 = a21 and a22 are

still unknown. They can be found from the spectral pair S(G(v1, v2)) = (λ2, φ
(2)).

Indeed, A2φ
(2) = λ2φ

(2), which leads, using φ
(2)
2 = 1, to the linear system

{

a11φ
(2)
1 + a12 = λ2φ

(2)
1 ,

a12φ
(2)
1 + a22 = λ2.

Since φ
(2)
1 is not zero, the unknowns a12 and a22 can be uniquely determined.

Suppose now that all elements of the adjacency matrix As−1 of the subgraph
G(v1, . . . , vs−1) have been found, and show that the spectral pair S(G(v1, . . . , vs)) =
(λs, φ

(s)) uniquely determines all elements of the adjacency matrix As of the
graph G(v1, . . . , vs). Indeed, only the elements a1s = as1, a2s = as2, . . . , ass of the
matrix As are unknown. These elements can uniquely be found from the equation

(6) Asφ
(s) = λsφ

(s)

in terms of λs and the eigen vector φ(s) that define a spectral pair of the sub-
graph S(G(v1, . . . , vs)). Indeed, write (6) as the system

(7) (As−1 − λsIs−1)col(φ
(s)
1 , . . . , φ

(s)
s−1) + col(a1s, . . . , as−1 s) = 0

and one equation written separately,

(8)

s−1
∑

j=1

ajsφ
(s)
j + ass = λs.

Using (7) we can find all a1s, . . . , as−1 s, since As−1−λsIs−1 is invertible by Proposition 7.
Then (8) permits to uniquely find the unknown element ass. Hence, the elements of the
matrix As can uniquely be found from As−1 and the spectral pair S(G(v1, . . . , vs)).

By using inductively the spectral pairs in ISPV, we can continue this process until s =
n. This gives all elements of the adjacency matrix of the weighted graphG(V,E,w), hence
the weight function w on the graph. �

Remark 3. For a connected graph G(V,E,w) that has n vertices, the number of param-
eters in SDV equals n(n+1)/2. The number of weights in the graph G(V,E,w) is n+m,
where m is the number of edges. For a complete graph where each pair of vertices is
connected with an edge, we have m = C2

n = n(n−1)/2. Thus, the number of parameters
in SDV coincides with the number of the sought weights. If a graph is not complete,
then its adjacency matrix has a number of zeros, and then n+m < n(n+ 1)/2. In such
a case, the SDV is overdetermined. A close look at the proof of Theorem 1 shows that,
in the algorithm for solving the SDV in the case where the adjacency matrix has zeros
as entries, a number of components of the eigen vectors in SDV are not used and thus
such parameters can be dropped in the definition of the SD.

Definition 6. Let G(V,E,w) be a simple connected graph, and v ∈ V be a vertex
admissible for removal. A truncated spectral pair for a graph G with a fixed vertex v is
a pair S(indG,φ) such that the only given components of the specially normalized eigen
vector φ are φi1 , . . . , φik , where the numbers i1, . . . , ik are indexes of all vertices of the
graph which are connected with the vertex v. We will briefly denote this spectral pair
by

Sv(G) = (indG,φi1 , . . . , φik).

Definition 7. Let G(V,E,w) be a simple connected weighted graph with an admissi-
ble vertex indexing v1, . . . , vn. By minimal spectral data minSDV(G) connected with
an admissible sequence of vertices we call the set of truncated spectral pairs of all sub-
graphs G(v1, . . . , vk), k = 1, . . . , n.
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Theorem 2. The inverse spectral problem of recovering all weights from minSDV(G)
for a simple connected graph with an admissible vertex indexing has a unique solution.

Proof. The adjacency matrix A1 of the graph G(v1) is the number indG(v1).
Let s > 1, Svs

(G(v1, . . . , vs)) = (λs, φi1 , . . . , φik) be a truncated spectral pair for the
graph G(v1, . . . , vs), and assume that all weights of the graph G(v1, . . . , vs−1) are known,
and denote its adjacency matrix by As−1. The proof of the theorem relies on the proof
of Theorem 1, and we will use the same notations. The identities (7) and (8) hold true.
Let j1, . . . , js−k be an increasing sequence of vertex indexes that are not connected to vs
in G(v1, . . . , vs). Since ajl s = 0, l = 1, . . . , s− k, it follows from (7) that

(9) Ãcol(φ
(s)
j1

, . . . , φ
(s)
js−k

) + B̃col(φ
(s)
i1

, . . . , φ
(s)
ik

) = 0,

where Ã is a submatrix of the matrix As−1 − λsIs−1, which is formed by elements

of the matrix As−1 − λsIs−1 with the indexes j1, . . . , js−k, and B̃ is a submatrix of the
matrix As−1−λsIs−1 formed by elements in columns with the indexes i1, . . . , is and rows

with the indexes j1, . . . , js−k. By Proposition 7, Ã is invertible and, hence, φ
(s)
j1

, . . . , φ
(s)
js−k

can be uniquely expressed in terms of elements of the matrix As−1, φ
(s)
i1

, . . . , φ
(s)
ik

, and λs.

This permits to recover the entire eigen vector (φ
(s)
1 , . . . , φ

(s)
s−1, 1), and now Theorem 2

follows directly from Theorem 1. �

Definition 8. Let T (V,E,w) be a connected tree with an admissible vertex indexing
v1, . . . , vn, and T (V,E, w̃) be the same graph with another weight w̃ that coincides with w
on all edges e ∈ E and on the vertex v1: w̃(v1) = w(v1), however, w̃(vj) = 0 for

each j = 2, . . . , n. Let (indT, φ) be a spectral pair for the graph T (V,E,w) and (ind T̃ , φ̃)
be a spectral pair for T (V,E, w̃). Spectral data SDT for the tree T (V,E,w) will be a

collection of the vectors φ and φ̃, together with the index indT or ind T̃ ,

(10) SDT = {φ, φ̃, λ}, λ = indT λ = ind T̃ .

Theorem 3. The weights of a connected weighted graph T (V,E,w) with an admissible
vertex indexing are uniquely recovered from the spectral data SDT of the form (10).

Proof. Let SDT = {φ, φ̃, ind T̃}. By Lemma 1 all the associated weights w̃ are uniquely

determined, hence the same is true for all the elements of the adjacency matrix Ã(T̃ ).

Since the adjacency matrixA(T ) coincides with Ã(T̃ ) except for the diagonal elements ajj ,
j = 2, . . . , n, the identity

(11) Aφ = indTφ

for the first components

(12)
n
∑

i=1

a1iφi =
n
∑

i=1

ã1iφi = indTφ1

gives the index of indT . The unknown diagonal elements ajj , j ≥ 2, can be found from
the corresponding jth equation of system (11),

(13)

n
∑

i=1

ajiφi = ajjφj +

n
∑

i=1

ãjiφi = indTφj .

If SDT = {φ, φ̃, indT}, then, as in the proof of Lemma 1, aij = ρij ind T̃ , i 6= j,
or i = j = 1, where ρij can be explicitly expressed in terms of components of the

vector φ̃. But then (12) gives the identity

ind T̃

n
∑

i=1

ρ1iφi = indTφ1.
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This identity, if the vectors φ and φ̃ are given, permits to uniquely express ind T̃ in terms
of indT . Hence, in the case where SDT = {φ, φ̃, indT}, the proof directly follows from

the case considered above, SDT = {φ, φ̃, ind T̃}. �

Remark 4. It is easy to see that the number of SDT in Theorem 3 equals 2n − 1 and
coincides with the number of the weights, since the number of edges in a tree is m = n−1,
that is, the SDT do not make overdetermined data.

Remark 5. Theorem 2 on uniqueness of a solution of the ISPV can also be applied
to connected trees T (V,E,w). In such a case, the SDV differ from the SDT consid-
ered in Theorem 2. A truncated spectral pair for a subgraph T (v1, . . . , vk) consists
of indT (v1, . . . , vk) and the value φk of one of the components of the normalized eigen
vector φ. This component is defined by the index s(k) < k of the vertex connected to the
vertex vk with an edge, Svk

(T (v1, . . . , vk)) = {indT (v1, . . . , vk), s(k), φs}. A collection
of all such quantities for k = 1, 2, . . . , n makes spectral data SDTV for the tree. By
Theorem 2, ISPTV has a unique solution.

Remark 6. For trees, one can also consider spectral data other than SDT and SDTV.
In particular, for a connected weighted tree T (V,E,w) with an admissible vertex index-
ing v1, . . . , vn, spectral data can be taken as the collection indT (v1, . . . , vk), k = 1, . . . , n,
together with the collection indT (v1, . . . , vk | w(vk) = 0) for the subgraphs with the
weight w(vk) = 0 modified only in a single vertex vk. Such spectral data will be denoted
by SDTW. It is easy to see that SDTW uniquely define weights for the tree T (V,E,w).

Definition 9. Let G(V,E,w) be a simple weighted graph and T (V,E1, w) be its skeleton
tree. Let n be the number of vertices in V , n−1 the number of edges in E1, and en, . . . , em
all edges in E \ E1. By spectral data SDVT for the graph G with a skeleton T , we call
the union SDT of spectral data for the skeleton T and a sequence of indices of the
subgraphs G(V,E1 ∪ {en, . . . , es}, w), where s assumes the values from n to m,

(14) SDVT(G,T ) = {SDT, indG(V,E1 ∪ {en, . . . , es}, w), s = n, . . . ,m}.

Theorem 4. The inverse spectral problem for determining weights of a weighted graph G
with a skeleton tree T from the SD in the form of (14) has a unique solution.

Proof. By Theorem 3, the SDT permits to recover all weights of the vertices in V and all
weights of the edges that belong to the skeleton tree T . By Remark 2, one can uniquely
find the weight w(en) of the edge en from indG(V,E1 ∪ {en, }, w). Now, using the value
of w(en) and taking into account Remark 2 we can find the weight of the edge en+1.
Continuing this process, we get values of w(es) for all s = n, . . . ,m. �
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