STURM-LIOUVILLE OPERATORS WITH MATRIX DISTRIBUTIONAL COEFFICIENTS

ALEXEI KONSTANTINOV AND OLEKSANDR KONSTANTINOV

ABSTRACT. The paper deals with the singular Sturm-Liouville expressions

$$l(y) = -(py')' + qy$$

with the matrix-valued coefficients
$$p, q$$
 such that

$q = Q', \quad p^{-1}, \ p^{-1}Q, \ Qp^{-1}, \ Qp^{-1}Q \in L_1,$

where the derivative of the function Q is understood in the sense of distributions. Due to a suitable regularization, the corresponding operators are correctly defined as quasi-differentials. Their resolvent convergence is investigated and all self-adjoint, maximal dissipative, and maximal accumulative extensions are described in terms of homogeneous boundary conditions of the canonical form.

1. INTRODUCTION

Many problems of mathematical physics lead to a study of Schrödinger-type operators with strongly singular (in particular distributional) potentials, see the monographs [1, 2] and the more recent papers [5, 6, 18, 19] and references therein. It should be noted that the case of very general singular Sturm-Liouville operators defined in terms of appropriate quasi-derivatives has been considered in [3] (see also the book [7] and earlier discussions of quasi-derivatives in [23, 26]). Higher-order quasi-differential operators with matrixvalued valued singular coefficients were studied in [8, 9, 21, 25].

The paper [22] started a new approach to a study of one-dimensional Schrödinger operators with distributional potential coefficients in connection with such areas as extension theory, resolvent convergence, spectral theory and inverse spectral theory. An important development was achieved in [11] (see also [12, 14]), where it was considered the case of Sturm-Liouville operators generated by the differential expression

(1)
$$l(y) = -(py')'(t) + q(t)y(t), \quad t \in \mathcal{J}$$

with singular distributional coefficients on a finite interval $\mathcal{J} := (a, b)$. Namely it was assumed that

(2)
$$q = Q', \quad 1/p, \ Q/p, \ Q^2/p \in L_1(\mathcal{J}, \mathbb{C}),$$

where the derivative of Q is understood in the sense of distributions. A more general class of second order quasi-differential operators was recently studied in [19]. In [12, 13] two-term singular differential operators

(3)
$$l(y) = i^m y^{(m)}(t) + q(t)y(t), \quad t \in \mathcal{J}, \quad m \ge 2,$$

with distributional coefficient q were investigated. The case of matrix operators of the form (3) was considered in [17]. Let us also mention [20] where the deficiency indices

²⁰¹⁰ Mathematics Subject Classification. 34L40, 34B08, 47A10.

Key words and phrases. Sturm-Liouville problem, matrix quasi-differential operator, singular coefficients, resolvent approximation, self-adjoint extension.

of matrix Sturm-Liouville operators with distributional coefficients on a half-line were studied.

The purpose of the present paper is to extend the results of [11] to the matrix Sturm-Liouville differential expressions. In Section 2 we give a regularization of the formal differential expression (1) under a matrix analogue of assumptions (2). The question of norm resolvent convergence of such singular matrix Sturm-Liouville operators is studied in Section 3. In Section 4 we consider the case of the symmetric minimal operator and describe all its self-adjoint, maximal dissipative, and maximal accumulative extensions. In addition, we study in details the case of separated boundary conditions.

2. Regularization of singular expression

For a positive integer s, denote by $M_s \equiv \mathbb{C}^{s \times s}$ the vector space of $s \times s$ matrices with complex coefficients. Let $\mathcal{J} := (a, b)$ be a finite interval. Consider Lebesgue measurable matrix functions p, Q on \mathcal{J} into M_s such that p is invertible almost everywhere. In what follows we shall always assume that

(4)
$$p^{-1}, p^{-1}Q, Qp^{-1}, Qp^{-1}Q \in L_1(\mathcal{J}, M_s).$$

This condition should be considered as a matrix (noncommutative) analogue of the assumption (2). In particular (4) is valid under the (more restrictive) condition

$$\int_{\mathcal{J}} \| p^{-1}(t) \| (1 + \| Q(t) \|^2) dt < \infty,$$

which was (locally) assumed in the above-mentioned paper [20]. Consider the block Shin–Zettl matrix

(5)
$$A := \begin{pmatrix} p^{-1}Q & p^{-1} \\ -Qp^{-1}Q & -Qp^{-1} \end{pmatrix} \in L_1(\mathcal{J}, M_{2s})$$

and the corresponding quasi-derivatives

$$D^{[0]}y = y, \quad D^{[1]}y = py' - Qy, \quad D^{[2]}y = (D^{[1]}y)' + Qp^{-1}D^{[1]}y + Qp^{-1}Qy.$$

For q = Q' the Sturm-Liouville expression (1) is defined by

(6)
$$l[y] := -D^{[2]}y.$$

The quasi-differential expression (6) gives rise to the maximal quasi-differential operator in the Hilbert space $L_2(\mathcal{J}, \mathbb{C}^s) =: L_2$

$$L_{\max}: y \to l[y], \quad \text{Dom}(L_{\max}) := \left\{ y \in L_2 \ | \ y, D^{[1]}y \in AC([a, b], \mathbb{C}^s), D^{[2]}y \in L_2 \right\}.$$

The minimal quasi-differential operator is defined as a restriction of the operator L_{\max} onto the set

$$Dom(L_{min}) := \left\{ y \in Dom(L_{max}) \mid D^{[k]}y(a) = D^{[k]}y(b) = 0, k = 0, 1 \right\}.$$

Note that under the assumption

$$p^{-1}, q \in L_1(\mathcal{J}, M_s),$$

the operators $L_{\text{max}}, L_{\text{min}}$ introduced above coincide with the standard maximal and minimal matrix Sturm-Liouville operators. The regularization of the formally adjoint differential expression

$$l^+y := -(p^*y')'(t) + q^*(t)y(t)$$

can be defined in an analogous way (here $A^* = \overline{A^T}$ is the conjugate transposed matrix to A). Let $D^{\{k\}}$ (k = 0, 1, 2) be the Shin–Zettl quasi-derivatives associated with l^+ . Denote by L_{\max}^+ and L_{\min}^+ the maximal and the minimal operators generated by this expression on the space L_2 . The following results are proved in [8] (see also [21]) in the case of general quasi-differential matrix operators.

Lemma 1. (Green's formula). For any $y \in \text{Dom}(L_{\text{max}})$, $z \in \text{Dom}(L_{\text{max}}^+)$ there holds

$$\int_{a}^{b} \left(D^{[2]} y \cdot \overline{z} - y \cdot \overline{D^{\{2\}} z} \right) dt = \left(D^{[1]} y \cdot \overline{z} - y \cdot \overline{D^{\{1\}} z} \right) \Big|_{t=a}^{t=b}.$$

Lemma 2. For any $(\alpha_0, \alpha_1), (\beta_0, \beta_1) \in \mathbb{C}^{2s}$ there exists a function $y \in \text{Dom}(L_{\text{max}})$ such that

$$D^{[k]}y(a) = \alpha_k, \quad D^{[k]}y(b) = \beta_k, \quad k = 0, 1$$

Theorem 1. The operators L_{\min} , L_{\min}^+ , L_{\max} , L_{\max}^+ are closed and densely defined on $L_2([a,b], \mathbb{C}^s)$, and satisfy

$$L_{\min}^* = L_{\max}^+, \quad L_{\max}^* = L_{\min}^+.$$

In the case of Hermitian matrices p and Q the operator $L_{\min} = L_{\min}^+$ is symmetric with the deficiency indices (2s, 2s), and

$$L_{\min}^* = L_{\max}, \quad L_{\max}^* = L_{\min}.$$

3. Convergence of resolvents

Let $l_{\varepsilon}[y] = -D_{\varepsilon}^{[2]}y, \ \varepsilon \in [0, \varepsilon_0]$, be quasi-differential expressions with the coefficients $p_{\varepsilon}, Q_{\varepsilon}$ satisfying (4). These expressions generate the minimal operators $L_{\min}^{\varepsilon}, L_{\max}^{\varepsilon}$ in L_2 . Consider the quasi-differential operators

$$L_{\varepsilon}y = l_{\varepsilon}[y], \quad \operatorname{Dom}(L_{\varepsilon}) = \{ y \in \operatorname{Dom}(L_{\max}^{\varepsilon}) | \alpha(\varepsilon)\mathcal{Y}_{\varepsilon}(a) + \beta(\varepsilon)\mathcal{Y}_{\varepsilon}(b) = 0 \}.$$

Here $\alpha(\varepsilon), \beta(\varepsilon) \in \mathbb{C}^{2s \times 2s}$ are complex matrices and

$$\mathcal{Y}_{\varepsilon}(a) := \left\{ y(a), D_{\varepsilon}^{[1]} y(a) \right\}, \quad \mathcal{Y}_{\varepsilon}(b) := \left\{ y(b), D_{\varepsilon}^{[1]} y(b) \right\}.$$

Clearly, $L_{\min}^{\varepsilon} \subset L_{\varepsilon} \subset L_{\max}^{\varepsilon}$, $\varepsilon \in [0, \varepsilon_0]$. Denote by $\rho(L)$ the resolvent set of the operator L. Recall that L_{ε} is said to converge to L_0 in the norm resolvent sense, $L_{\varepsilon} \stackrel{R}{\Rightarrow} L_0$, if there is a number $\mu \in \rho(L_0)$, such that $\mu \in \rho(L_{\varepsilon})$ for all sufficiently small ε , and

(7)
$$||(L_{\varepsilon} - \mu)^{-1} - (L_0 - \mu)^{-1}|| \to 0, \quad \varepsilon \to 0 + .$$

It should be noted that if $L_{\varepsilon} \stackrel{R}{\Rightarrow} L_0$, then the condition (7) is fulfilled for all $\mu \in \rho(L_0)$ (see [15]).

Theorem 2. Suppose $\rho(L_0)$ is not empty and, for $\varepsilon \to 0+$, the following conditions hold:

(1)
$$\|p_{\varepsilon}^{-1} - p_{0}^{-1}\|_{1} \to 0,$$

(2) $\|p_{\varepsilon}^{-1}Q_{\varepsilon} - p_{0}^{-1}Q_{0}\|_{1} \to 0,$
(3) $\|Q_{\varepsilon}p_{\varepsilon}^{-1} - Q_{0}p_{0}^{-1}\|_{1} \to 0,$
(4) $\|Q_{\varepsilon}p_{\varepsilon}^{-1}Q_{\varepsilon} - Q_{0}p_{0}^{-1}Q_{0}\|_{1} \to 0$
(5) $\alpha(\varepsilon) \to \alpha(0), \quad \beta(\varepsilon) \to \beta(0),$

where $\|\cdot\|_1$ is the norm in the space $L_1(\mathcal{J}, M_s)$. Then $L_{\varepsilon} \stackrel{R}{\Rightarrow} L_0$.

Essentially, the proof of Theorem 2 repeats the arguments of [11] where the scalar case s = 1 was considered. Nevertheless the result seems to be new even in the case of one-dimensional Schrödinger operators with distributional matrix-valued potentials (p_{ε} is the identity matrix in \mathbb{C}^{s}). Recall the following definition [16].

Definition 1. Denote by $\mathcal{M}^m(\mathcal{J}) =: \mathcal{M}^m, m \in \mathbb{N}$, the class of matrix-valued functions

$$R(\cdot;\varepsilon):[0,\varepsilon_0]\to L_1(\mathcal{J},\mathbb{C}^{m\times m})$$

parametrized by ε such that the solution of the Cauchy problem

$$Z'(t;\varepsilon) = R(t;\varepsilon)Z(t;\varepsilon), \quad Z(a;\varepsilon) = I,$$

satisfies the limit condition

$$\lim_{\epsilon \to 0+} \|Z(\cdot;\varepsilon) - I\|_{\infty} = 0,$$

where $\|\cdot\|_{\infty}$ is the sup-norm.

We need the following result [16].

Theorem 3. Suppose that the vector boundary-value problem

(8)
$$y'(t;\varepsilon) = A(t;\varepsilon)y(t;\varepsilon) + f(t;\varepsilon), \quad t \in \mathcal{J}, \quad \varepsilon \in [0,\varepsilon_0],$$

(9)
$$U_{\varepsilon}y(\cdot;\varepsilon) = 0,$$

where the matrix-valued functions $A(\cdot, \varepsilon) \in L_1(\mathcal{J}, \mathbb{C}^{m \times m})$, the vector-valued functions $f(\cdot, \varepsilon) \in L_1(\mathcal{J}, \mathbb{C}^m)$, and the linear continuous operators

$$U_{\varepsilon}: C(\overline{\mathcal{J}}; \mathbb{C}^m) \to \mathbb{C}^m, \quad m \in \mathbb{N},$$

satisfy the following conditions.

1) The homogeneous limit boundary-value problem (8), (9) with $\varepsilon = 0$ and $f(\cdot; 0) \equiv 0$ has only a trivial solution;

2)
$$A(\cdot;\varepsilon) - A(\cdot;0) \in \mathcal{M}^m;$$

3) $||U_{\varepsilon} - U_0|| \to 0, \quad \varepsilon \to 0 + .$

Then, for a small enough ε , there exist Green matrices $G(t, s; \varepsilon)$ for problems (8), (9) and

(10)
$$\|G(\cdot,\cdot;\varepsilon) - G(\cdot,\cdot;0)\|_{\infty} \to 0, \quad \varepsilon \to 0+,$$

where $\|\cdot\|_{\infty}$ is the norm in the space $L_{\infty}(\mathcal{J} \times \mathcal{J}, \mathbb{C}^{m \times m})$.

It follows from [24] that conditions (1)-(4) of Theorem 2 imply

$$A(\cdot;\varepsilon) - A(\cdot;0) \in \mathcal{M}^{2s},$$

where the block Shin–Zettl matrix $A(\cdot;\varepsilon)$ is given by the formula

(11)
$$A(\cdot;\varepsilon) := \begin{pmatrix} p_{\varepsilon}^{-1}Q_{\varepsilon} & p_{\varepsilon}^{-1} \\ -Q_{\varepsilon}p_{\varepsilon}^{-1}Q_{\varepsilon} & -Q_{\varepsilon}p_{\varepsilon}^{-1} \end{pmatrix}$$

In particular $A(\cdot; 0) = A$ (see (5)). The following two lemmas reduce Theorem 2 to Theorem 3.

Lemma 3. The function y(t) is a solution of the boundary-value problem

(12)
$$l_{\varepsilon}[y](t) = f(t; \varepsilon) \in L_2, \quad \varepsilon \in [0, \varepsilon_0],$$

(13)
$$\alpha(\varepsilon)\mathcal{Y}_{\varepsilon}(a) + \beta(\varepsilon)\mathcal{Y}_{\varepsilon}(b) = 0,$$

if and only if the vector-valued function $w(t) = (y(t), D_{\varepsilon}^{[1]}y(t))$ is a solution of the boundary-value problem

(14)
$$w'(t) = A(t;\varepsilon)w(t) + \varphi(t;\varepsilon),$$

(15)
$$\alpha(\varepsilon)w(a) + \beta(\varepsilon)w(b) = 0$$

where the matrix-valued function $A(\cdot; \varepsilon)$ is given by (11) and $\varphi(\cdot; \varepsilon) := (0, -f(\cdot; \varepsilon))$.

Proof. Consider the system of equations

$$\begin{cases} (D_{\varepsilon}^{[0]}y(t))' = p_{\varepsilon}^{-1}(t)Q_{\varepsilon}(t)D_{\varepsilon}^{[0]}y(t) + p_{\varepsilon}^{-1}(t)D_{\varepsilon}^{[1]}y(t), \\ (D_{\varepsilon}^{[1]}y(t))' = -Q_{\varepsilon}(t)p_{\varepsilon}^{-1}(t)Q_{\varepsilon}(t)D_{\varepsilon}^{[0]}y(t) - Q_{\varepsilon}(t)p_{\varepsilon}^{-1}(t)D_{\varepsilon}^{[1]}y(t) - f(t;\varepsilon). \end{cases}$$

Let $y(\cdot)$ be a solution of (12), then the definition of a quasi-derivative implies that $y(\cdot)$ is a solution of this system. On the other hand, denoting $w(t) = (D_{\varepsilon}^{[0]}y(t), D_{\varepsilon}^{[1]}y(t))$ and $\varphi(t;\varepsilon) = (0, -f(t;\varepsilon))$, we rewrite this system in the form of equation (14). Taking into account that $\mathcal{Y}_{\varepsilon}(a) = w(a), \mathcal{Y}_{\varepsilon}(b) = w(b)$, one can see that the boundary conditions (13) are equivalent to the boundary conditions (15).

Lemma 4. Let a Green matrix

$$G(t,s,\varepsilon) = (g_{ij}(t,s,\varepsilon))_{i,j=1}^2 \in L_{\infty}(\mathcal{J} \times \mathcal{J}, \mathbb{C}^{2s \times 2s})$$

exist for the problem (14), (15) for small enough ε . Then there exists a Green function $\Gamma(t, s; \varepsilon)$ for the semi-homogeneous boundary-value problem (12), (13) and

$$\Gamma(t,s;\varepsilon) = -g_{12}(t,s;\varepsilon)$$
 a.e.

Proof. According to the definition of a Green matrix, a unique solution of the problem (14), (15) can be written in the form

$$w_{\varepsilon}(t) = \int_{a}^{b} G(t,s;\varepsilon)\varphi(s;\varepsilon)ds, \quad t \in \mathcal{J}.$$

Due to Lemma 3, the latter equality can be rewritten in the form

$$\begin{cases} D_{\varepsilon}^{[0]}y_{\varepsilon}(t) = \int_{a}^{b} g_{12}(t,s;\varepsilon)(-f(s;\varepsilon)) \, ds, \\ D_{\varepsilon}^{[1]}y_{\varepsilon}(t) = \int_{a}^{b} g_{22}(t,s;\varepsilon)(-f(s;\varepsilon)) \, ds, \end{cases}$$

where $y_{\varepsilon}(\cdot)$ is a unique solution of (12), (13). This implies the statement of Lemma 4. \Box

Proof of Theorem 2. Consider the matrices

$$Q_{\varepsilon(t),\mu} = Q_{\varepsilon}(t) + \mu t I, \ p_{\varepsilon(t),\mu} = p_{\varepsilon}(t)$$

corresponding to the operators $L_{\varepsilon} + \mu I$. Clearly assumption (4) and conditions (1)–(4) of Theorem 2 do not depend on μ and we can assume without loss of generality that $0 \in \rho(L_0)$. It follows that the homogeneous boundary-value problem

$$l_0[y](t) = 0, \quad \alpha(0)\mathcal{Y}_0(a) + \beta(0)\mathcal{Y}_0(b) = 0$$

has only a trivial solution. Due to Lemma 3 the homogeneous boundary-value problem

$$w'(t) = A(t; 0)w(t), \quad \alpha(0)w(a) + \beta(0)w(b) = 0$$

also has only a trivial solution. By conditions (1)-(4) of Theorem 2 we have that $A(\cdot; \varepsilon) - A(\cdot; 0) \in \mathcal{M}^{2s}$, where $A(\cdot; \varepsilon)$ is given by formula (11). Thus the statement of Theorem 2 implies that the problem (14), (15) satisfies conditions of Theorem 3. It follows that Green matrices $G(t, s; \varepsilon)$ of the problems (14), (15) exist. Taking into account Lemma 4 and (10) we have that

$$\begin{split} \|L_{\varepsilon}^{-1} - L_{0}^{-1}\| &\leq \|L_{\varepsilon}^{-1} - L_{0}^{-1}\|_{HS} = \|\Gamma(\cdot, \cdot; \varepsilon) - \Gamma(\cdot, \cdot; 0)\|_{2} \\ &\leq (b-a)\|\Gamma(\cdot, \cdot; \varepsilon) - \Gamma(\cdot, \cdot; 0)\|_{\infty} \to 0, \quad \varepsilon \to 0 + . \end{split}$$

Here $\|\cdot\|_{HS}$ is the Hilbert-Schmidt norm.

Remark 1. It follows from the proof that $(L_{\varepsilon} - \mu)^{-1} \to (L_0 - \mu)^{-1}$ in a Hilbert-Schmidt norm for all $\mu \in \rho(L_0)$.

4. EXTENSIONS OF SYMMETRIC MINIMAL OPERATOR

In what follows we additionally suppose that the matrix functions p, Q and, consequently, the distribution q = Q' are Hermitian. By Theorem 1 the minimal operator L_{\min} is symmetric and one may consider a problem of describing (in terms of homogeneous boundary conditions) all self-adjoint, maximal dissipative, and maximal accumulative extensions of the operator L_{\min} . Let us recall following definition.

Definition 2. Let L be a closed densely defined symmetric operator on a Hilbert space \mathcal{H} with equal (finite or infinite) deficient indices. A triplet (H, Γ_1, Γ_2) , where H is an auxiliary Hilbert space and Γ_1 , Γ_2 are linear mappings of $\text{Dom}(L^*)$ onto H, is called a *boundary triplet* of the symmetric operator L, if

(1) for any $f, g \in \text{Dom}(L^*)$,

$$(L^*f,g)_{\mathcal{H}} - (f,L^*g)_{\mathcal{H}} = (\Gamma_1 f,\Gamma_2 g)_{\mathcal{H}} - (\Gamma_2 f,\Gamma_1 g)_{\mathcal{H}}$$

(2) for any $f_1, f_2 \in H$ there is a vector $f \in \text{Dom}(L^*)$ such that $\Gamma_1 f = f_1, \Gamma_2 f = f_2$.

The definition of a boundary triplet implies that $f \in \text{Dom}(L)$ if and only if $\Gamma_1 f = \Gamma_2 f = 0$. A boundary triplet exists for any symmetric operator with equal non-zero deficient indices (see [10] and references therein). The following result is crucial for the rest of the paper.

Lemma 5. A triplet $(\mathbb{C}^{2s}, \Gamma_1, \Gamma_2)$, where Γ_1, Γ_2 are the linear mappings

$$\Gamma_1 y := \left(D^{[1]} y(a), -D^{[1]} y(b) \right), \quad \Gamma_2 y := \left(y(a), y(b) \right),$$

from $\text{Dom}(L_{\text{max}})$ onto \mathbb{C}^{2s} is a boundary triplet for the operator L_{\min} .

Proof. According to Theorem 1, $L_{\min}^* = L_{\max}$. Due to Lemma 1,

$$(L_{\max}y,z) - (y,L_{\max}z) = \left(y \cdot \overline{D^{[1]}z} - D^{[1]}y \cdot \overline{z}\right)\Big|_a^b.$$

But

$$(\Gamma_1 y, \Gamma_2 z) = D^{[1]} y(a) \cdot \overline{z(a)} - D^{[1]} y(b) \cdot \overline{z(b)},$$

$$(\Gamma_2 y, \Gamma_1 z) = y(a) \cdot \overline{D^{[1]} z(a)} - y(b) \cdot \overline{D^{[1]} z(b)}.$$

This means that condition 1) is fulfilled. Condition 2) is true due to Lemma 2. \Box

Let K be a linear operator on \mathbb{C}^{2s} . Denote by L_K the restriction of L_{\max} onto the set of functions $y \in \text{Dom}(L_{\max})$ satisfying the homogeneous boundary condition in the canonical form

(16)
$$(K-I)\Gamma_1 y + i(K+I)\Gamma_2 y = 0.$$

Similarly, L^K denotes the restriction of L_{\max} onto the set of the functions $y \in \text{Dom}(L_{\max})$ satisfying the boundary condition

(17)
$$(K-I)\Gamma_1 y - i(K+I)\Gamma_2 y = 0.$$

Clearly, L_K and L^K are the extensions of L for any K. Recall that a densely defined linear operator T on a complex Hilbert space \mathcal{H} is called *dissipative* (resp. *accumulative*) if

$$\Im(Tx, x)_{\mathcal{H}} \ge 0$$
 (resp. ≤ 0), for all $x \in \text{Dom}(T)$

and it is called *maximal dissipative* (resp. *maximal accumulative*) if, in addition, T has no non-trivial dissipative (resp. accumulative) extensions in \mathcal{H} . Every symmetric operator is both dissipative and accumulative, and every self-adjoint operator is a maximal dissipative and maximal accumulative one. Lemma 5 together with results of [10, Ch. 3] leads to the following description of dissipative, accumulative, and self-adjoint extensions of L_{\min} .

Theorem 4. Every L_K with K being a contracting operator in \mathbb{C}^{2s} , is a maximal dissipative extension of L_{\min} . Similarly every L^K with K being a contracting operator in \mathbb{C}^{2s} , is a maximal accumulative extension of the operator L_{\min} . Conversely, for any maximal dissipative (respectively, maximal accumulative) extension \tilde{L} of the operator L_{\min} there exists a contracting operator K such that $\tilde{L} = L_K$ (respectively, $\tilde{L} = L^K$). The extensions L_K and L^K are self-adjoint if and only if K is a unitary operator on \mathbb{C}^{2s} . These correspondences between operators $\{K\}$ and the extensions $\{\tilde{L}\}$ are all bijective.

Remark 2. It follows from Theorem 2 and Theorem 4 that the mapping $K \to L_K$ is not only bijective but also continuous. More accurately, if contracting operators K_n converge to an operator K, then $L_{K_n} \stackrel{R}{\Rightarrow} L_K$. The converse is also true, because the set of contracting operators in the space \mathbb{C}^{2s} is a compact set. This means that the mapping

$$K \to (L_K - \lambda)^{-1}$$
, $\operatorname{Im} \lambda < 0$,

is a homeomorphism for any fixed λ . Analogous result is true for L^K .

Now we pass to a description of separated boundary conditions. Denote by f_a the germ of a continuous function f at the point a.

Definition 3. The boundary conditions that define the operator $L \subset L_{\text{max}}$ are called *separated* if for arbitrary functions $y \in \text{Dom}(L)$ and any $g, h \in \text{Dom}(L_{\text{max}})$, such that

$$g_a = y_a, \quad g_b = 0, \quad h_a = 0, \quad h_b = y$$

we have $g, h \in \text{Dom}(L)$.

Theorem 5. Let K be a linear operator on \mathbb{C}^{2s} . Boundary conditions (16), (17) defining L_K and L^K respectively are separated if and only if K is block diagonal, i.e.,

(18)
$$K = \begin{pmatrix} K_a & 0\\ 0 & K_b \end{pmatrix},$$

where K_a, K_b are arbitrary $s \times s$ matrices.

Proof. We consider the operators L_K , the case of L^K can be treated in a similar way. The assumption $y_c = g_c$ implies that

(19)
$$y(c) = g(c), \quad (D^{[1]}y)(c) = (D^{[1]}g)(c), \quad c \in [a, b].$$

Let K have the form (18). Then (16) can be written in the form of a system,

$$\begin{cases} (K_a - I)D^{[1]}y(a) + i(K_a + I)y(a) = 0, \\ -(K_b - I)D^{[1]}y(b) + i(K_b + I)y(b) = 0. \end{cases}$$

Clearly these conditions are separated. Conversely, suppose that boundary conditions (16) are separated. The matrix $K \in \mathbb{C}^{2s \times 2s}$ can be written in the form

$$K = \left(\begin{array}{cc} K_{11} & K_{12} \\ K_{21} & K_{22} \end{array}\right).$$

We need to prove that $K_{12} = K_{21} = 0$. Let us rewrite (16) in the form of the system

$$\begin{cases} (K_{11} - I)D^{[1]}y(a) - K_{12}D^{[1]}y(b) + i(K_{11} + I)y(a) + iK_{12}y(b) = 0, \\ K_{21}D^{[1]}y(a) - (K_{22} - I)D^{[1]}y(b) + iK_{21}y(a) + i(K_{22} + I)y(b) = 0. \end{cases}$$

The fact that the boundary conditions are separated implies that a function g such that $g_a = y_a, g_b = 0$ also satisfies this system. It follows from (19) that for any $y \in \text{Dom}(L_K)$

$$\begin{cases} K_{11} \left[D^{[1]} y(a) + i y(a) \right] = D^{[1]} y(a) - i y(a), \\ K_{21} \left[D^{[1]} y(a) + i y(a) \right] = 0. \end{cases}$$

This means that for any $y \in \text{Dom}(L_K)$

(20)
$$D^{[1]}y(a) + iy(a) \in \operatorname{Ker}(K_{21}).$$

For any $z = (z_1, z_2) \in \mathbb{C}^{2s}$, consider the vectors -i(K+I)z and (K-I)z. Due to Lemma 5 and the definition of the boundary triplet, there exists a function $y_z \in \text{Dom}(L_{\text{max}})$ such that

(21)
$$\begin{cases} -i(K+I)z = \Gamma_1 y_z, \\ (K-I)z = \Gamma_2 y_z. \end{cases}$$

Clearly y_z satisfies (16) and $y_z \in \text{Dom}(L_K)$. Rewrite (21) in the form of the system

$$\begin{cases} -i(K_{11}+I)z_1 - iK_{12}z_2 = D^{[1]}y_z(a), \\ -iK_{21}z_1 - i(K_{22}+I)z_2 = -D^{[1]}y_z(b), \\ (K_{11}-I)z_1 + K_{12}z_2 = y_z(a), \\ K_{21}z_1 + (K_{22}-I)z_2 = y_z(b). \end{cases}$$

The first and the third equations of the system above imply that for any $z_1 \in \mathbb{C}^s$

$$D^{[1]}y_z(a) + iy_z(a) = -2iz_1$$

Due to (20) we have that $\operatorname{Ker}(K_{21}) = \mathbb{C}^s$ and therefore $K_{21} = 0$. Similarly one can prove that $K_{12} = 0$.

Remark 3. It follows from Lemma 5 and Theorem 1 of [4] that there is a one-to-one correspondence between the generalized resolvents R_{λ} of L_{\min} and the boundary-value problems

$$l[y] = \lambda y + h, \ (K(\lambda) - I) \Gamma_1 y + i (K(\lambda) + I) \Gamma_2 y = 0.$$

Here Im $\lambda < 0$, $h \in L_2$, and $K(\lambda)$ is an operator-valued function on the space \mathbb{C}^{2s} , regular in the lower half-plane, such that $||K(\lambda)|| \leq 1$. This correspondence is given by the identity

$$R_{\lambda}h = y, \quad \text{Im}\,\lambda < 0.$$

References

- S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable models in quantum mechanics, Texts and Monographs in Physics, Springer-Verlag, New York, 1988.
- S. Albeverio and P. Kurasov, Singular perturbations of differential operators, London Mathematical Society Lecture Note Series, vol. 271, Cambridge University Press, Cambridge, 2000.
- C. Bennewitz and W.N. Everitt, On second-order left-definite boundary value problems, Ordinary differential equations and operators (Dundee, 1982), Lecture Notes in Math., vol. 1032, Springer, Berlin, 1983, pp. 31–67.
- V.M. Bruk, A certain class of boundary value problems with a spectral parameter in the boundary condition, Mat. Sb. (N.S.) 100 (142) (1976), no. 2, 210–216.
- J. Eckhardt, F. Gesztesy, R. Nichols, A. Sakhnovich, and G. Teschl, *Inverse spectral problems for Schrödinger-type operators with distributional matrix-valued potentials*, Differential Integral Equations 28 (2015), no. 5-6, 505–522.
- J. Eckhardt, F. Gesztesy, R. Nichols, and G. Teschl, Supersymmetry and Schrödinger-type operators with distributional matrix-valued potentials, J. Spectr. Theory 4 (2014), no. 4, 715– 768.

- W.N. Everitt and L. Markus, Boundary value problems and symplectic algebra for ordinary differential and quasi-differential operators, Mathematical Surveys and Monographs, vol. 61, American Mathematical Society, Providence, RI, 1999.
- H. Frentzen, Equivalence, adjoints and symmetry of quasidifferential expressions with matrixvalued coefficients and polynomials in them, Proc. Roy. Soc. Edinburgh Sect. A 92 (1982), no. 1-2, 123–146.
- H. Frentzen, Quasi-differential operators in L^p spaces, Bull. London Math. Soc. **31** (1999), no. 3, 279–290.
- V.I. Gorbachuk and M.L. Gorbachuk, Boundary value problems for operator differential equations, Mathematics and its Applications, vol. 48, Springer Netherlands, 1991.
- A. Goriunov and V. Mikhailets, Regularization of singular Sturm-Liouville equations, Methods Funct. Anal. Topology 16 (2010), no. 2, 120–130.
- A. Goriunov, V. Mikhailets, and K. Pankrashkin, Formally self-adjoint quasi-differential operators and boundary-value problems, Electron. J. Differential Equations (2013), no. 101, 1–16.
- A.S. Goryunov and V.A. Mikhailets, Regularization of two-term differential equations with singular coefficients by quasiderivatives, Ukrainian Math. J. 63 (2012), no. 9, 1361–1378.
- 14. A.S. Horyunov, Convergence and approximation of the Sturm-Liouville operators with potentials-distributions, Ukrainian Math. J. 67 (2015), no. 5, 680–689.
- T. Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995.
- T.I. Kodlyuk, V.A. Mikhailets, and N.V. Reva, Limit theorems for one-dimensional boundaryvalue problems, Ukrainian Math. J. 65 (2013), no. 1, 77–90.
- 17. O.O. Konstantinov, Two-term differential equations with matrix distributional coefficients, Ukrainian Math. J. 67 (2015), no. 5, 711–722.
- A.S. Kostenko and M.M. Malamud, 1-D Schrödinger operators with local point interactions on a discrete set, J. Differential Equations 249 (2010), no. 2, 253–304.
- 19. K.A. Mirzoev, Sturm-Liouville operators, Trans. Moscow Math. Soc. (2014), 281–299.
- K.A. Mirzoev and T.A. Safonova, On the deficiency index of the vector-valued Sturm-Liouville operator, Math. Notes 99 (2016), no. 2, 290–303.
- M. Möller and A. Zettl, Semi-boundedness of ordinary differential operators, J. Differential Equations 115 (1995), no. 1, 24–49.
- A.M. Savchuk and A.A. Shkalikov, Sturm-Liouville operators with singular potentials, Math. Notes 66 (1999), no. 6, 741–753.
- D. Shin, Quasi-differential operators in Hilbert space, Mat. Sb. 13 (55) (1943), 39–70 (in Russian).
- J.D. Tamarkin, A lemma of the theory of linear differential systems, Bull. Amer. Math. Soc. 36 (1930), no. 2, 99–102.
- J. Weidmann, Spectral theory of ordinary differential operators, Lecture Notes in Mathematics, vol. 1258, Springer-Verlag, Berlin, 1987.
- A. Zettl, Formally self-adjoint quasi-differential operators, Rocky Mountain J. Math. 5 (1975), 453–474.

Taras Shevchenko National University of Kyiv, 64 Volodymyrs'ka, Kyiv, 01601, Ukraine $E\text{-}mail\ address:\ \texttt{konstant120yahoo.com}$

Livatek Ukraine LLC, 42 Holosiivskyi Ave., Kyiv, 03039, Ukraine $E\text{-}mail\ address:\ \texttt{iamkonst@ukr.net}$

Received 25/10/2016; Revised 23/11/2016