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STURM-LIOUVILLE OPERATORS WITH MATRIX

DISTRIBUTIONAL COEFFICIENTS

ALEXEI KONSTANTINOV AND OLEKSANDR KONSTANTINOV

Abstract. The paper deals with the singular Sturm-Liouville expressions

l(y) = −(py′)′ + qy

with the matrix-valued coefficients p, q such that

q = Q′, p−1, p−1Q, Qp−1, Qp−1Q ∈ L1,

where the derivative of the function Q is understood in the sense of distributions.

Due to a suitable regularization, the corresponding operators are correctly defined
as quasi-differentials. Their resolvent convergence is investigated and all self-adjoint,
maximal dissipative, and maximal accumulative extensions are described in terms of
homogeneous boundary conditions of the canonical form.

1. Introduction

Many problems of mathematical physics lead to a study of Schrödinger-type operators
with strongly singular (in particular distributional) potentials, see the monographs [1, 2]
and the more recent papers [5, 6, 18, 19] and references therein. It should be noted that
the case of very general singular Sturm-Liouville operators defined in terms of appropriate
quasi-derivatives has been considered in [3] (see also the book [7] and earlier discussions
of quasi-derivatives in [23, 26]). Higher-order quasi-differential operators with matrix-
valued valued singular coefficients were studied in [8, 9, 21, 25].

The paper [22] started a new approach to a study of one-dimensional Schrödinger ope-
rators with distributional potential coefficients in connection with such areas as extension
theory, resolvent convergence, spectral theory and inverse spectral theory. An important
development was achieved in [11] (see also [12, 14]), where it was considered the case of
Sturm-Liouville operators generated by the differential expression

(1) l(y) = −(py′)′(t) + q(t)y(t), t ∈ J

with singular distributional coefficients on a finite interval J := (a, b). Namely it was
assumed that

(2) q = Q′, 1/p, Q/p, Q2/p ∈ L1(J ,C),

where the derivative of Q is understood in the sense of distributions. A more general
class of second order quasi-differential operators was recently studied in [19]. In [12, 13]
two-term singular differential operators

(3) l(y) = imy(m)(t) + q(t)y(t), t ∈ J , m ≥ 2,

with distributional coefficient q were investigated. The case of matrix operators of the
form (3) was considered in [17]. Let us also mention [20] where the deficiency indices
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of matrix Sturm-Liouville operators with distributional coefficients on a half-line were
studied.

The purpose of the present paper is to extend the results of [11] to the matrix Sturm-
Liouville differential expressions. In Section 2 we give a regularization of the formal
differential expression (1) under a matrix analogue of assumptions (2). The question of
norm resolvent convergence of such singular matrix Sturm-Liouville operators is studied
in Section 3. In Section 4 we consider the case of the symmetric minimal operator and
describe all its self-adjoint, maximal dissipative, and maximal accumulative extensions.
In addition, we study in details the case of separated boundary conditions.

2. Regularization of singular expression

For a positive integer s, denote by Ms ≡ C
s×s the vector space of s× s matrices with

complex coefficients. Let J := (a, b) be a finite interval. Consider Lebesgue measurable
matrix functions p, Q on J into Ms such that p is invertible almost everywhere. In what
follows we shall always assume that

(4) p−1, p−1Q, Qp−1, Qp−1Q ∈ L1(J ,Ms).

This condition should be considered as a matrix (noncommutative) analogue of the as-
sumption (2). In particular (4) is valid under the (more restrictive) condition

∫

J

‖ p−1(t) ‖ (1 + ‖ Q(t) ‖
2
) dt < ∞,

which was (locally) assumed in the above-mentioned paper [20]. Consider the block
Shin–Zettl matrix

(5) A :=

(
p−1Q p−1

−Qp−1Q −Qp−1

)
∈ L1(J ,M2s)

and the corresponding quasi-derivatives

D[0]y = y, D[1]y = py′ −Qy, D[2]y = (D[1]y)′ +Qp−1D[1]y +Qp−1Qy.

For q = Q′ the Sturm-Liouville expression (1) is defined by

(6) l[y] := −D[2]y.

The quasi-differential expression (6) gives rise to the maximal quasi-differential operator
in the Hilbert space L2 (J ,Cs) =: L2

Lmax : y → l[y], Dom(Lmax) :=
{
y ∈ L2

∣∣∣ y, D[1]y ∈ AC([a, b],Cs), D[2]y ∈ L2

}
.

The minimal quasi-differential operator is defined as a restriction of the operator Lmax

onto the set

Dom(Lmin) :=
{
y ∈ Dom(Lmax)

∣∣∣ D[k]y(a) = D[k]y(b) = 0, k = 0, 1
}
.

Note that under the assumption

p−1, q ∈ L1 (J ,Ms) ,

the operators Lmax, Lmin introduced above coincide with the standard maximal and
minimal matrix Sturm-Liouville operators. The regularization of the formally adjoint
differential expression

l+y := −(p∗y′)′(t) + q∗(t)y(t)

can be defined in an analogous way (here A∗ = AT is the conjugate transposed matrix to
A). Let D{k} (k = 0, 1, 2) be the Shin–Zettl quasi-derivatives associated with l+. Denote
by L+

max and L+
min the maximal and the minimal operators generated by this expression

on the space L2. The following results are proved in [8] (see also [21]) in the case of
general quasi-differential matrix operators.
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Lemma 1. (Green’s formula). For any y ∈ Dom(Lmax), z ∈ Dom(L+
max) there holds

b∫

a

(
D[2]y · z − y ·D{2}z

)
dt = (D[1]y · z − y ·D{1}z)

∣∣t=b
t=a .

Lemma 2. For any (α0, α1), (β0, β1) ∈ C
2s there exists a function y ∈ Dom(Lmax) such

that

D[k]y(a) = αk, D[k]y(b) = βk, k = 0, 1.

Theorem 1. The operators Lmin, L
+
min, Lmax, L

+
max are closed and densely defined on

L2 ([a, b],C
s), and satisfy

L∗
min = L+

max, L∗
max = L+

min.

In the case of Hermitian matrices p and Q the operator Lmin = L+
min is symmetric with

the deficiency indices (2s, 2s), and

L∗
min = Lmax, L∗

max = Lmin.

3. Convergence of resolvents

Let lε[y] = −D
[2]
ε y, ε ∈ [0, ε0], be quasi-differential expressions with the coefficients

pε, Qε satisfying (4). These expressions generate the minimal operators Lε
min, L

ε
max in

L2. Consider the quasi-differential operators

Lεy = lε[y], Dom(Lε) = {y ∈ Dom(Lε
max)|α(ε)Yε(a) + β(ε)Yε(b) = 0} .

Here α(ε), β(ε) ∈ C
2s×2s are complex matrices and

Yε(a) :=
{
y(a), D[1]

ε y(a)
}
, Yε(b) :=

{
y(b), D[1]

ε y(b)
}
.

Clearly, Lε
min ⊂ Lε ⊂ Lε

max, ε ∈ [0, ε0]. Denote by ρ(L) the resolvent set of the operator

L. Recall that Lε is said to converge to L0 in the norm resolvent sense, Lε
R
⇒ L0, if there

is a number µ ∈ ρ(L0), such that µ ∈ ρ(Lε) for all sufficiently small ε, and

(7) ‖(Lε − µ)−1 − (L0 − µ)−1‖ → 0, ε → 0 + .

It should be noted that if Lε
R
⇒ L0, then the condition (7) is fulfilled for all µ ∈ ρ(L0)

(see [15]).

Theorem 2. Suppose ρ(L0) is not empty and, for ε → 0+, the following conditions hold:

(1) ‖p−1
ε − p−1

0 ‖1 → 0,

(2) ‖p−1
ε Qε − p−1

0 Q0‖1 → 0,

(3) ‖Qεp
−1
ε −Q0p

−1
0 ‖1 → 0,

(4) ‖Qεp
−1
ε Qε −Q0p

−1
0 Q0‖1 → 0,

(5) α(ε) → α(0), β(ε) → β(0),

where ‖ · ‖1 is the norm in the space L1(J ,Ms). Then Lε
R
⇒ L0.

Essentially, the proof of Theorem 2 repeats the arguments of [11] where the scalar
case s = 1 was considered. Nevertheless the result seems to be new even in the case of
one-dimensional Schrödinger operators with distributional matrix-valued potentials (pε
is the identity matrix in C

s). Recall the following definition [16].
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Definition 1. Denote by Mm(J ) =: Mm, m ∈ N, the class of matrix-valued functions

R(·; ε) : [0, ε0] → L1(J ,Cm×m)

parametrized by ε such that the solution of the Cauchy problem

Z ′(t; ε) = R(t; ε)Z(t; ε), Z(a; ε) = I,

satisfies the limit condition

lim
ε→0+

‖Z(·; ε)− I‖∞ = 0,

where ‖ · ‖∞ is the sup-norm.

We need the following result [16].

Theorem 3. Suppose that the vector boundary-value problem

(8) y′(t; ε) = A(t; ε)y(t; ε) + f(t; ε), t ∈ J , ε ∈ [0, ε0],

(9) Uεy(·; ε) = 0,

where the matrix-valued functions A(·, ε) ∈ L1(J ,Cm×m), the vector-valued functions
f(·, ε) ∈ L1(J ,Cm), and the linear continuous operators

Uε : C(J ;Cm) → C
m, m ∈ N,

satisfy the following conditions.

1) The homogeneous limit boundary-value problem (8), (9) with ε = 0 and f(·; 0) ≡ 0

has only a trivial solution;

2) A(·; ε)−A(·; 0) ∈ Mm;

3) ‖Uε − U0‖ → 0, ε → 0 + .

Then, for a small enough ε, there exist Green matrices G(t, s; ε) for problems (8), (9)
and

(10) ‖G(·, ·; ε)−G(·, ·; 0)‖∞ → 0, ε → 0+,

where ‖ · ‖∞ is the norm in the space L∞(J × J , Cm×m).

It follows from [24] that conditions (1)–(4) of Theorem 2 imply

A(·; ε)−A(·; 0) ∈ M2s,

where the block Shin–Zettl matrix A(·; ε) is given by the formula

(11) A(·; ε) :=

(
p−1
ε Qε p−1

ε

−Qεp
−1
ε Qε −Qεp

−1
ε

)
.

In particular A(·; 0) = A (see (5)). The following two lemmas reduce Theorem 2 to
Theorem 3.

Lemma 3. The function y(t) is a solution of the boundary-value problem

(12) lε[y](t) = f(t; ε) ∈ L2, ε ∈ [0, ε0],

(13) α(ε)Yε(a) + β(ε)Yε(b) = 0,

if and only if the vector-valued function w(t) = (y(t), D
[1]
ε y(t)) is a solution of the

boundary-value problem

(14) w′(t) = A(t; ε)w(t) + ϕ(t; ε),

(15) α(ε)w(a) + β(ε)w(b) = 0,

where the matrix-valued function A(·; ε) is given by (11) and ϕ(·; ε) := (0,−f(·; ε)).
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Proof. Consider the system of equations
{
(D[0]

ε y(t))′ = p−1
ε (t)Qε(t)D

[0]
ε y(t) + p−1

ε (t)D[1]
ε y(t),

(D[1]
ε y(t))′ = −Qε(t)p

−1
ε (t)Qε(t)D

[0]
ε y(t)−Qε(t)p

−1
ε (t)D[1]

ε y(t)− f(t; ε).

Let y(·) be a solution of (12), then the definition of a quasi-derivative implies that y(·)

is a solution of this system. On the other hand, denoting w(t) = (D
[0]
ε y(t), D

[1]
ε y(t)) and

ϕ(t; ε) = (0,−f(t; ε)), we rewrite this system in the form of equation (14). Taking into
account that Yε(a) = w(a), Yε(b) = w(b), one can see that the boundary conditions (13)
are equivalent to the boundary conditions (15). �

Lemma 4. Let a Green matrix

G(t, s, ε) = (gij(t, s, ε))
2
i,j=1 ∈ L∞(J × J , C2s×2s)

exist for the problem (14), (15) for small enough ε. Then there exists a Green function
Γ(t, s; ε) for the semi-homogeneous boundary-value problem (12), (13) and

Γ(t, s; ε) = −g12(t, s; ε) a.e.

Proof. According to the definition of a Green matrix, a unique solution of the problem
(14), (15) can be written in the form

wε(t) =

b∫

a

G(t, s; ε)ϕ(s; ε)ds, t ∈ J .

Due to Lemma 3, the latter equality can be rewritten in the form




D[0]
ε yε(t) =

b∫

a

g12(t, s; ε)(−f(s; ε)) ds,

D[1]
ε yε(t) =

b∫

a

g22(t, s; ε)(−f(s; ε)) ds,

where yε(·) is a unique solution of (12), (13). This implies the statement of Lemma 4. �

Proof of Theorem 2. Consider the matrices

Qε(t),µ = Qε(t) + µtI, pε(t),µ = pε(t)

corresponding to the operators Lε + µI. Clearly assumption (4) and conditions (1)–(4)
of Theorem 2 do not depend on µ and we can assume without loss of generality that
0 ∈ ρ(L0). It follows that the homogeneous boundary-value problem

l0[y](t) = 0, α(0)Y0(a) + β(0)Y0(b) = 0

has only a trivial solution. Due to Lemma 3 the homogeneous boundary-value problem

w′(t) = A(t; 0)w(t), α(0)w(a) + β(0)w(b) = 0

also has only a trivial solution. By conditions (1)–(4) of Theorem 2 we have that A(·; ε)−
A(·; 0) ∈ M2s, where A(·; ε) is given by formula (11). Thus the statement of Theorem 2
implies that the problem (14), (15) satisfies conditions of Theorem 3. It follows that
Green matrices G(t, s; ε) of the problems (14), (15) exist. Taking into account Lemma 4
and (10) we have that

‖L−1
ε − L−1

0 ‖ ≤ ‖L−1
ε − L−1

0 ‖HS = ‖Γ(·, ·; ε)− Γ(·, ·; 0)‖2

≤ (b− a)‖Γ(·, ·; ε)− Γ(·, ·; 0)‖∞ → 0, ε → 0 + .

Here ‖ · ‖HS is the Hilbert-Schmidt norm. �
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Remark 1. It follows from the proof that (Lε −µ)−1 → (L0 −µ)−1 in a Hilbert-Schmidt
norm for all µ ∈ ρ(L0).

4. Extensions of symmetric minimal operator

In what follows we additionally suppose that the matrix functions p, Q and, conse-
quently, the distribution q = Q′ are Hermitian. By Theorem 1 the minimal operator Lmin

is symmetric and one may consider a problem of describing (in terms of homogeneous
boundary conditions) all self-adjoint, maximal dissipative, and maximal accumulative
extensions of the operator Lmin. Let us recall following definition.

Definition 2. Let L be a closed densely defined symmetric operator on a Hilbert space
H with equal (finite or infinite) deficient indices. A triplet (H,Γ1,Γ2), where H is an
auxiliary Hilbert space and Γ1, Γ2 are linear mappings of Dom(L∗) onto H, is called a
boundary triplet of the symmetric operator L, if

(1) for any f, g ∈ Dom(L∗),

(L∗f, g)H − (f, L∗g)H = (Γ1f,Γ2g)H − (Γ2f,Γ1g)H ,

(2) for any f1, f2 ∈ H there is a vector f ∈ Dom(L∗) such that Γ1f = f1, Γ2f = f2.

The definition of a boundary triplet implies that f ∈ Dom(L) if and only if Γ1f =
Γ2f = 0. A boundary triplet exists for any symmetric operator with equal non-zero
deficient indices (see [10] and references therein). The following result is crucial for the
rest of the paper.

Lemma 5. A triplet (C2s,Γ1,Γ2), where Γ1,Γ2 are the linear mappings

Γ1y :=
(
D[1]y(a),−D[1]y(b)

)
, Γ2y := (y(a), y(b)) ,

from Dom(Lmax) onto C
2s is a boundary triplet for the operator Lmin.

Proof. According to Theorem 1, L∗
min = Lmax. Due to Lemma 1,

(Lmaxy, z)− (y, Lmaxz) =
(
y ·D[1]z −D[1]y · z

)∣∣∣
b

a
.

But

(Γ1y,Γ2z) = D[1]y(a) · z(a)−D[1]y(b) · z(b),

(Γ2y,Γ1z) = y(a) ·D[1]z(a)− y(b) ·D[1]z(b).

This means that condition 1) is fulfilled. Condition 2) is true due to Lemma 2. �

Let K be a linear operator on C
2s. Denote by LK the restriction of Lmax onto the

set of functions y ∈ Dom(Lmax) satisfying the homogeneous boundary condition in the
canonical form

(16) (K − I) Γ1y + i (K + I) Γ2y = 0.

Similarly, LK denotes the restriction of Lmax onto the set of the functions y ∈ Dom(Lmax)
satisfying the boundary condition

(17) (K − I) Γ1y − i (K + I) Γ2y = 0.

Clearly, LK and LK are the extensions of L for any K. Recall that a densely defined
linear operator T on a complex Hilbert space H is called dissipative (resp. accumulative)
if

ℑ (Tx, x)H ≥ 0 (resp. ≤ 0), for all x ∈ Dom(T )
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and it is called maximal dissipative (resp. maximal accumulative) if, in addition, T has
no non-trivial dissipative (resp. accumulative) extensions in H. Every symmetric ope-
rator is both dissipative and accumulative, and every self-adjoint operator is a maximal
dissipative and maximal accumulative one. Lemma 5 together with results of [10, Ch. 3]
leads to the following description of dissipative, accumulative, and self-adjoint extensions
of Lmin.

Theorem 4. Every LK with K being a contracting operator in C
2s, is a maximal dissi-

pative extension of Lmin. Similarly every LK with K being a contracting operator in C
2s,

is a maximal accumulative extension of the operator Lmin. Conversely, for any maximal

dissipative (respectively, maximal accumulative) extension L̃ of the operator Lmin there

exists a contracting operator K such that L̃ = LK (respectively, L̃ = LK). The exten-
sions LK and LK are self-adjoint if and only if K is a unitary operator on C

2s. These

correspondences between operators {K} and the extensions {L̃} are all bijective.

Remark 2. It follows from Theorem 2 and Theorem 4 that the mapping K → LK is
not only bijective but also continuous. More accurately, if contracting operators Kn

converge to an operator K, then LKn

R
⇒ LK . The converse is also true, because the set

of contracting operators in the space C2s is a compact set. This means that the mapping

K → (LK − λ)
−1

, Imλ < 0,

is a homeomorphism for any fixed λ. Analogous result is true for LK .

Now we pass to a description of separated boundary conditions. Denote by fa the
germ of a continuous function f at the point a.

Definition 3. The boundary conditions that define the operator L ⊂ Lmax are called
separated if for arbitrary functions y ∈ Dom(L) and any g, h ∈ Dom(Lmax), such that

ga = ya, gb = 0, ha = 0, hb = yb

we have g, h ∈ Dom(L).

Theorem 5. Let K be a linear operator on C
2s. Boundary conditions (16), (17) defining

LK and LK respectively are separated if and only if K is block diagonal, i.e.,

(18) K =

(
Ka 0
0 Kb

)
,

where Ka,Kb are arbitrary s× s matrices.

Proof. We consider the operators LK , the case of LK can be treated in a similar way.
The assumption yc = gc implies that

(19) y(c) = g(c), (D[1]y)(c) = (D[1]g)(c), c ∈ [a, b].

Let K have the form (18). Then (16) can be written in the form of a system,
{

(Ka − I)D[1]y(a) + i(Ka + I)y(a) = 0,

−(Kb − I)D[1]y(b) + i(Kb + I)y(b) = 0.

Clearly these conditions are separated. Conversely, suppose that boundary conditions
(16) are separated. The matrix K ∈ C

2s×2s can be written in the form

K =

(
K11 K12

K21 K22

)
.

We need to prove that K12 = K21 = 0. Let us rewrite (16) in the form of the system
{
(K11 − I)D[1]y(a)−K12D

[1]y(b) + i(K11 + I)y(a) + iK12y(b) = 0,

K21D
[1]y(a)− (K22 − I)D[1]y(b) + iK21y(a) + i(K22 + I)y(b) = 0.
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The fact that the boundary conditions are separated implies that a function g such that
ga = ya, gb = 0 also satisfies this system. It follows from (19) that for any y ∈ Dom(LK)





K11

[
D[1]y(a) + iy(a)

]
= D[1]y(a)− iy(a),

K21

[
D[1]y(a) + iy(a)

]
= 0.

This means that for any y ∈ Dom(LK)

(20) D[1]y(a) + iy(a) ∈ Ker(K21).

For any z = (z1, z2) ∈ C
2s, consider the vectors −i (K + I) z and (K − I) z. Due

to Lemma 5 and the definition of the boundary triplet, there exists a function yz ∈
Dom(Lmax) such that

(21)

{
−i (K + I) z = Γ1yz,

(K − I) z = Γ2yz.

Clearly yz satisfies (16) and yz ∈ Dom(LK). Rewrite (21) in the form of the system




−i(K11 + I)z1 − iK12z2 = D[1]yz(a),

−iK21z1 − i(K22 + I)z2 = −D[1]yz(b),

(K11 − I)z1 +K12z2 = yz(a),

K21z1 + (K22 − I)z2 = yz(b).

The first and the third equations of the system above imply that for any z1 ∈ C
s

D[1]yz(a) + iyz(a) = −2iz1.

Due to (20) we have that Ker(K21) = C
s and therefore K21 = 0. Similarly one can prove

that K12 = 0. �

Remark 3. It follows from Lemma 5 and Theorem 1 of [4] that there is a one-to-one
correspondence between the generalized resolvents Rλ of Lmin and the boundary-value
problems

l[y] = λy + h, (K(λ)− I) Γ1y + i (K(λ) + I) Γ2y = 0.

Here Imλ < 0, h ∈ L2, and K(λ) is an operator-valued function on the space C
2s,

regular in the lower half-plane, such that ||K(λ)|| ≤ 1. This correspondence is given by
the identity

Rλh = y, Imλ < 0.
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