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STURM-LIOUVILLE OPERATORS WITH MATRIX
DISTRIBUTIONAL COEFFICIENTS

ALEXEI KONSTANTINOV AND OLEKSANDR KONSTANTINOV

ABSTRACT. The paper deals with the singular Sturm-Liouville expressions
Uy) =—(py") +ay
with the matrix-valued coefficients p, ¢ such that
q= Ql7 p717 pilQ» Qp717 QpilQ S L17
where the derivative of the function @ is understood in the sense of distributions.
Due to a suitable regularization, the corresponding operators are correctly defined
as quasi-differentials. Their resolvent convergence is investigated and all self-adjoint,

maximal dissipative, and maximal accumulative extensions are described in terms of
homogeneous boundary conditions of the canonical form.

1. INTRODUCTION

Many problems of mathematical physics lead to a study of Schréodinger-type operators
with strongly singular (in particular distributional) potentials, see the monographs [1, 2]
and the more recent papers [5, 6, 18, 19] and references therein. It should be noted that
the case of very general singular Sturm-Liouville operators defined in terms of appropriate
quasi-derivatives has been considered in [3] (see also the book [7] and earlier discussions
of quasi-derivatives in [23, 26]). Higher-order quasi-differential operators with matrix-
valued valued singular coefficients were studied in [8, 9, 21, 25].

The paper [22] started a new approach to a study of one-dimensional Schrédinger ope-
rators with distributional potential coefficients in connection with such areas as extension
theory, resolvent convergence, spectral theory and inverse spectral theory. An important
development was achieved in [11] (see also [12, 14]), where it was considered the case of
Sturm-Liouville operators generated by the differential expression

(1) Wy) =—y")' (1) +a()y(t), teJ

with singular distributional coefficients on a finite interval J := (a,b). Namely it was
assumed that

(2) q:Q/a 1/p7 Q/pa QQ/pGLl(ja(c)v

where the derivative of @ is understood in the sense of distributions. A more general
class of second order quasi-differential operators was recently studied in [19]. In [12, 13]
two-term singular differential operators

(3) I(y) =™y () + q(t)y(t), teT, m>2,

with distributional coefficient g were investigated. The case of matrix operators of the
form (3) was considered in [17]. Let us also mention [20] where the deficiency indices
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of matrix Sturm-Liouville operators with distributional coefficients on a half-line were
studied.

The purpose of the present paper is to extend the results of [11] to the matrix Sturm-
Liouville differential expressions. In Section 2 we give a regularization of the formal
differential expression (1) under a matrix analogue of assumptions (2). The question of
norm resolvent convergence of such singular matrix Sturm-Liouville operators is studied
in Section 3. In Section 4 we consider the case of the symmetric minimal operator and
describe all its self-adjoint, maximal dissipative, and maximal accumulative extensions.
In addition, we study in details the case of separated boundary conditions.

2. REGULARIZATION OF SINGULAR EXPRESSION

For a positive integer s, denote by M, = C*** the vector space of s x s matrices with
complex coefficients. Let J := (a,b) be a finite interval. Consider Lebesgue measurable
matrix functions p, Q on J into M, such that p is invertible almost everywhere. In what
follows we shall always assume that

(4) pila p71Q7 prl’ QpilQ € Ll(jaMs)'
This condition should be considered as a matrix (noncommutative) analogue of the as-
sumption (2). In particular (4) is valid under the (more restrictive) condition

/||p1 | (41 QM) %) dt < oo,

which was (locally) assumed in the above-mentioned paper [20]. Consider the block
Shin—Zett]l matrix

-1 -1
(5) A= ( —%ng —%pfl ) € L1(J, Mas)
and the corresponding quasi-derivatives
DOy =y, DMy =py' —Qy, DPly=(DMy) +Qp ' DMy +Qp~'Qy.

For ¢ = @' the Sturm-Liouville expression (1) is defined by
(6) [y := —DPly.

The quasi-differential expression (6) gives rise to the mazimal quasi-differential operator

)
in the Hilbert space Ls (J,C?®) =: Lo
Liax :y — Uy, Dom(Lpax) := {y € Ly ) y, DUy e AC([a,b],C?%), Dy € LQ}

The minimal quasi-differential operator is defined as a restriction of the operator L ax
onto the set

Dom(Lpin) := {y € Dom(Lax)

DWy(a) = DFy(b) = 0,k = 0,1}
Note that under the assumption
pilaq € Ll (jaMs) )

the operators Liax, Lmin introduced above coincide with the standard maximal and
minimal matrix Sturm-Liouville operators. The regularization of the formally adjoint
differential expression
Uy = —"y) () + ¢ (t)y(t)

can be defined in an analogous way (here A* = AT is the conjugate transposed matrix to
A). Let DI*} (k= 0,1,2) be the Shin-Zettl quasi-derivatives associated with I*. Denote
by Lt and L;;m the maximal and the minimal operators generated by this expression
on the space Ly. The following results are proved in [8] (see also [21]) in the case of
general quasi-differential matrix operators.
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Lemma 1. (Green’s formula). For any y € Dom(Lyax), 2 € Dom(L{, ) there holds

max

b
/ (D[2]y Z—y- D{2}z> dt = (DMy -z —y - DW2) 125

a

Lemma 2. For any (oo, a1), (8o, B1) € C?* there exists a function y € Dom(Lyayx) such
that

D¥y(a) = ap, DWy(b) = B, k=0,1.

Theorem 1. The operators Lyin, L:lm, Lnax, ngax are closed and densely defined on
Lo ([a,b],C#), and satisfy
L;kl’lln = L;;ax’ L;knax = L:’I_lln

In the case of Hermitian matrices p and Q the operator Ly, = L
the deficiency indices (2s,2s), and

* _ *
me - Lmaxa L

max

18 symmetric with

min

= Lmin~

3. CONVERGENCE OF RESOLVENTS

Let I.[y] = Dy c e [0,20], be quasi-differential expressions with the coefficients
De, Qe satisfying (4). These expressions generate the minimal operators L, , LS .. in

Ls. Consider the quasi-differential operators
Ley = Iy, Dom(Le) = {y € Dom (L, )| a(e)Ve(a) + B(e)Ve(b) = 0} .
Here a(e), B(g) € C?¥*2% are complex matrices and
Ye(a) == {y(@), Dy(@)} . 22(b) := {y(v), DVy(v) }

tin C Le C L§

L. Recall that L. is said to converge to Lg in the norm resolvent sense, L. £ Ly, if there
is a number p € p(Lg), such that u € p(L.) for all sufficiently small e, and

Clearly, L € € [0, 9]. Denote by p(L) the resolvent set of the operator

m max’

(7) I(Le =)™ = (Lo—p) " =0, e=0+.

It should be noted that if L. < Lo, then the condition (7) is fulfilled for all u € p(Lg)

(see [15]).

Theorem 2. Suppose p(Lg) is not empty and, for e — 0+, the following conditions hold:
(1) llp=" = po = 0,

() Ip=' Q- — py ' Qollr — 0,

(3) HQEps Qopo 1||1 — 0,

(4) Herg Qe — QOPQ QO”l — 0,

(5) a(e) = a(0), B(e) — B(0),

where || - ||1 is the norm in the space L1(J, Ms). Then L. £ .

Essentially, the proof of Theorem 2 repeats the arguments of [11] where the scalar
case s = 1 was considered. Nevertheless the result seems to be new even in the case of
one-dimensional Schrédinger operators with distributional matrix-valued potentials (pe
is the identity matrix in C®). Recall the following definition [16].
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Definition 1. Denote by M™(J) =: M™, m € N, the class of matrix-valued functions
R(-;¢€) :[0,e0] = L1 (T, C™*™)
parametrized by e such that the solution of the Cauchy problem
Z'(t;e) = R(t;e)Z(te), Z(ase) =1,
satisfies the limit condition
lim [|Z(52) — Il =0,
where || - || is the sup-norm.
We need the following result [16].
Theorem 3. Suppose that the vector boundary-value problem
(8) y(te) = Altey(tie) + f(tie), ted, el0.cl,
9) Uey(5e) =0,

where the matriz-valued functions A(-,e) € L1(J,C™*™), the vector-valued functions
f(,e) € Li(TJ,C™), and the linear continuous operators

U.:C(J;C™) - C™, mEeN,
satisfy the following conditions.
1)  The homogeneous limit boundary-value problem (8),(9) with e =0 and f(-;0) =0
has only a trivial solution;
2) A(se) — A(50) e M™
3) |JUs—Up|| =0, e6—=0+.

Then, for a small enough e, there exist Green matrices G(t, s;e) for problems (8), (9)
and

(10) IG(s58) =G5 0)[eo = 0, & = 0+,
where || - ||oo s the norm in the space Loo(JT X J, C™*™).
It follows from [24] that conditions (1)—(4) of Theorem 2 imply
A(e) — A(50) € M*,
where the block Shin—Zettl matrix A(-;€) is given by the formula

—1 —1
R OF p
11 A(e) = c s .
(11) (5¢) ( —Qep; 1Qe _Qapgl )
In particular A(-;0) = A (see (5)). The following two lemmas reduce Theorem 2 to
Theorem 3.

Lemma 3. The function y(t) is a solution of the boundary-value problem
(12) lE [y] (t> = f(t75) € L2> €€ [0750]7
(13) a(e)Ve(a) + B(e)Ve(b) = 0,

if and only if the vector-valued function w(t) = (y(t),DE]y(t)) is a solution of the
boundary-value problem

(14) w'(t) = A(te)w(t) + o(t; ),

(15) a(e)w(a) + B(e)w(b) =0,
where the matriz-valued function A(-;€) is given by (11) and ¢(-¢) := (0, —f(-; €)).
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Proof. Consider the system of equations
{ (DPly(t))" = p= " (1)Q-(t) DYy (t) + p2 " (1) DLy (1),
(DUly(t)) = —Q-(tp= (H)Q=(6) DOy (t) — Q-(t)p= (1) DWy(t) — f(t52).
Let y(-) be a solution of (12), then the definition of a quasi-derivative implies that y(-)

is a solution of this system. On the other hand, denoting w(t) = (DLO]y(t), Dy]y(t)) and
o(t;e) = (0,—f(t;¢)), we rewrite this system in the form of equation (14). Taking into
account that V- (a) = w(a), Y-(b) = w(b), one can see that the boundary conditions (13)
are equivalent to the boundary conditions (15). d

Lemma 4. Let a Green matrix
G(t,s,e) = (gij<t78’8))§,j:1 € Loo(J x J, (C23><23)

exist for the problem (14), (15) for small enough €. Then there exists a Green function
I(t, s;e) for the semi-homogeneous boundary-value problem (12), (13) and

[(t, s;e) = —g12(t, s;¢)  a.e.

Proof. According to the definition of a Green matrix, a unique solution of the problem
(14), (15) can be written in the form

b
we(t) = /G(t,s;e)gp(s;e)ds, teJ.

Due to Lemma 3, the latter equality can be rewritten in the form
b
DEy.(0) = [ malt,si2) (S (si2) d,

a
b

DUty (1) = / ga(t,5:€)(— f(s:)) ds,

a

where y.(+) is a unique solution of (12), (13). This implies the statement of Lemma 4. [

Proof of Theorem 2. Consider the matrices

Qs(t),,u = Qa(t) + /J/tla Pe(t),n = pE(t)
corresponding to the operators L. + pul. Clearly assumption (4) and conditions (1)—(4)

of Theorem 2 do not depend on p and we can assume without loss of generality that
0 € p(Lo). It follows that the homogeneous boundary-value problem

lo[yl(t) =0, a(0)Vo(a) + B(0)Yo(b) =0
has only a trivial solution. Due to Lemma 3 the homogeneous boundary-value problem
w'(t) = A(t;0)w(t), a(0)w(a)+ B(0)w(b) =0
also has only a trivial solution. By conditions (1)—(4) of Theorem 2 we have that A(-;¢)—
A(+;0) € M2, where A(+;€) is given by formula (11). Thus the statement of Theorem 2
implies that the problem (14), (15) satisfies conditions of Theorem 3. It follows that
Green matrices G(t, s;€) of the problems (14), (15) exist. Taking into account Lemma 4
and (10) we have that
122~ 151 < 122" — L5 s = I, 5€) = T 50l
< =)l 58) =T(,50)[c =0, e—0+.

Here || - || gs is the Hilbert-Schmidt norm. O
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Remark 1. Tt follows from the proof that (L. —u)™' — (Lo — p) ™! in a Hilbert-Schmidt
norm for all u € p(Lyg).

4. EXTENSIONS OF SYMMETRIC MINIMAL OPERATOR

In what follows we additionally suppose that the matrix functions p, @ and, conse-
quently, the distribution ¢ = @’ are Hermitian. By Theorem 1 the minimal operator L ,;,
is symmetric and one may consider a problem of describing (in terms of homogeneous
boundary conditions) all self-adjoint, maximal dissipative, and maximal accumulative
extensions of the operator Lyi,. Let us recall following definition.

Definition 2. Let L be a closed densely defined symmetric operator on a Hilbert space
H with equal (finite or infinite) deficient indices. A triplet (H,I'1,T'2), where H is an
auxiliary Hilbert space and T'y, I's are linear mappings of Dom(L*) onto H, is called a
boundary triplet of the symmetric operator L, if

(1) for any f,g € Dom (L*),
(L*f7 g)’H - (f’ L*g)’H = (F1f7 FQQ)H - (F2farlg)Ha
(2) for any f1, fo € H there is a vector f € Dom (L*) such that I'y f = f1, T'af = fo.

The definition of a boundary triplet implies that f € Dom (L) if and only if Ty f =
T'sf = 0. A boundary triplet exists for any symmetric operator with equal non-zero
deficient indices (see [10] and references therein). The following result is crucial for the
rest of the paper.

Lemma 5. A triplet (C?*,T'1,Ty), where 'y, Ty are the linear mappings
Ty = (DWy(a),~DUy()) . Toy = (y(a),u(0))
from Dom(Lyay) onto C?* is a boundary triplet for the operator Ly .

Proof. According to Theorem 1, L? . = Ly.x. Due to Lemma 1,

min

b
(Lmaxy, 2) = (¥, Lmaxz) = (y - Dz — D[l]y ?)

a

But
(T1y,Ta22) = DMy(a) - 2(a) — DMy (b) - =(b),
(P2y,T'12) = y(a) - DVz(a) — y(b) - DWz(D).
This means that condition 1) is fulfilled. Condition 2) is true due to Lemma 2. O

Let K be a linear operator on C2°. Denote by Ly the restriction of L.« onto the
set of functions y € Dom(Lpyax) satisfying the homogeneous boundary condition in the
canonical form

(16) (K—-I)Thy+i(K+1)Tyy=0.

Similarly, L denotes the restriction of Ly,ax onto the set of the functions y € Dom(Lpax)
satisfying the boundary condition

(17) (K—DNTwy—i(K+1)Tey=0.

Clearly, Lx and LX are the extensions of L for any K. Recall that a densely defined
linear operator T on a complex Hilbert space H is called dissipative (resp. accumulative)
if

S(Tx,x)y >0 (resp. <0), forall z¢c Dom(T)
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and it is called mazimal dissipative (resp. mazimal accumulative) if, in addition, T has
no non-trivial dissipative (resp. accumulative) extensions in H. Every symmetric ope-
rator is both dissipative and accumulative, and every self-adjoint operator is a maximal
dissipative and maximal accumulative one. Lemma 5 together with results of [10, Ch. 3]
leads to the following description of dissipative, accumulative, and self-adjoint extensions
of Lmin~

Theorem 4. Every Ly with K being a contracting operator in C**, is a mazximal dissi-
pative extension of L. Similarly every L™ with K being a contracting operator in C?*,
is a maximal accumulative extension of the operator Lyi,. Conversely, for any mazimal
dissipative (respectively, mazimal accumulative) extension L of the operator Ly, there
exists a contracting operator K such that L=Lg (respectively, L= L¥). The exten-
sions Ly and L¥ are self-adjoint if and only if K is a unitary operator on C?*. These
correspondences between operators { K} and the extensions {E} are all bijective.

Remark 2. Tt follows from Theorem 2 and Theorem 4 that the mapping K — Lk is
not only bijective but also continuous. More accurately, if contracting operators K,

converge to an operator K, then Ly, §> L. The converse is also true, because the set
of contracting operators in the space C2® is a compact set. This means that the mapping

K— (Lg—)N)"", Im\<0,
is a homeomorphism for any fixed A. Analogous result is true for L.

Now we pass to a description of separated boundary conditions. Denote by f, the
germ of a continuous function f at the point a.

Definition 3. The boundary conditions that define the operator L C L.« are called
separated if for arbitrary functions y € Dom(L) and any g, h € Dom(Lyax), such that

9a=Ya, =0, ha=0, hy=1up
we have g, h € Dom(L).

Theorem 5. Let K be a linear operator on C25. Boundary conditions (16), (17) defining
L and LE respectively are separated if and only if K is block diagonal, i.e.,

(18) K:(fga z?,,)»

where K., Ky are arbitrary s X s matrices.

Proof. We consider the operators Ly, the case of LX can be treated in a similar way.
The assumption y. = g. implies that

(19) y(e) = g(e), (DMy)(e) = (DWg)(e), ¢ € [a,b].
Let K have the form (18). Then (16) can be written in the form of a system,
(Ko = 1)DWy(a) +i(Ka + Dy(a) =0,
— (K — DUy (b) + i(Ky + Ty() = 0.

Clearly these conditions are separated. Conversely, suppose that boundary conditions
(16) are separated. The matrix K € C?*2 can be written in the form

K1 Ko
K = .
( Ko Koo )

We need to prove that Kj9 = K21 = 0. Let us rewrite (16) in the form of the system
(K11 = 1) DWy(a) — K12 DMy(b) + (K1 + Dy(a) + iK1ay(b) = 0,
Ko DMy(a) — (K — I) DMy (b) 4+ iKo1y(a) + i(Kag + I)y(b) = 0.
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The fact that the boundary conditions are separated implies that a function g such that
9o = Ya, g = 0 also satisfies this system. It follows from (19) that for any y € Dom(Lg)

Ky [DWy(a) + iy(a)| = DMy(a) — iy(a),
Ko |Dy(a) + iy(a)| = 0.
This means that for any y € Dom(Lg)

(20) DYy (a) +iy(a) € Ker(Kay).

For any z = (z1,22) € C?%, consider the vectors —i (K +I)z and (K —1I)z. Due
to Lemma 5 and the definition of the boundary triplet, there exists a function y, €
Dom(Lpayx) such that

(21) {Z (K +1)z =Ty,

(K—1)z=Tay..
Clearly y, satisfies (16) and y, € Dom(Lg). Rewrite (21) in the form of the system
—i(K11 + 1)z — iK1220 = DMy (a),
—iKo121 — i(Kag + I)z2 = —DWy,(b),
(K11 — Iz + Ki229 = y,(a),
Ko1z1 + (Kog — I)zo = y.(b).
The first and the third equations of the system above imply that for any z; € C*
DMy (a) + iy.(a) = —2iz.

Due to (20) we have that Ker(K3;) = C® and therefore K2; = 0. Similarly one can prove
that K12 =0. O

Remark 3. Tt follows from Lemma 5 and Theorem 1 of [4] that there is a one-to-one
correspondence between the generalized resolvents Ry of Ly, and the boundary-value
problems

llyl=Ay+h, (KA)—DT1y+i(KA)+1)Ty=0.
Here Im\ < 0, h € Lo, and K(\) is an operator-valued function on the space C2*

regular in the lower half-plane, such that ||K(\)|| < 1. This correspondence is given by
the identity

Ryh =9y, ImA<O.
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