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Abstract. We study coactions of finite quantum groupoids on unital C∗-algebras
and obtain a Tannaka-Krein reconstruction theorem for them.

1. Introduction

Let us recall what Tannaka-Krein reconstruction is. In his paper [29] T. Tannaka
showed that a compact group G can be reconstructed if the set URep(G) of its unitary
finite dimensional representations is known. Then M.G. Krein [11] gave an abstract
description of URep(G). Later on, mainly due to works by A. Grothendieck, P. Deligne,
and N. Saavedra Rivano, these results referred to as ”Tannaka-Krein reconstruction for
compact groups” or ”Tannaka-Krein duality for compact groups” were formulated in
the language of symmetric monoidal tensor categories and extended to affine algebraic
groups.

A convenient formulation of the Tannaka-Krein duality was done by S. Doplicher and
J.E. Roberts who introduced the notion of a C∗-tensor category with conjugates (the
basic definitions and results concerning C∗-tensor categories can be found in the book
[18]). These authors proved that if such a category is symmetric, then it is equivalent
to the unitary representation category of a unique compact group. In the much wider
setting of compact quantum groups – see [18], the S.L. Woronowicz’s Tannaka-Krein re-
construction theorem [35] claims that any C∗-tensor category with conjugates and with
a unitary tensor functor to the category of finite dimensional Hilbert spaces (fiber func-
tor), is equivalent to the category of unitary finite dimensional representations of a unique
compact quantum group with the canonical fiber functor sending any representation to
the Hilbert space where it acts.

Consider now an action α of a compact group G on a unital C∗-algebra A by auto-
morphisms and ask if it is possible to reconstruct not only G, but the whole dynamical
system (G,A, α) from a given C∗-tensor category C with conjugates equipped with some
additional structure. One can show that the answer is positive, and this additional
structure is a module category over C [9] containing a generating element. Namely, in
the context of compact quantum groups, K. De Commer and M. Yamashita [6] showed
that there is a one-to-one correspondence between ergodic coactions of G and semisim-
ple irreducible module categories over URep(G) with simple generators. This abstract
result enabled them, as a spectacular application, to classify all ergodic coactions of the
concrete compact quantum group SUq(2) in terms of weighted graphs – see [7].

Later on, the above approach was extended by S. Neshveyev [16] to general coactions of
compact quantum groups, on the one hand, and general module categories over URep(G)
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containing generating elements, on the other hand. The main features of this construction
are explained in the survey [30].

The goal of the present paper is to obtain similar reconstruction results of Tannaka-
Krein type for coactions of weak Hopf C∗-algebras in the sense of [3] on C∗-algebras.
We use systematically the term ”a finite quantum groupoid” instead of ”a weak Hopf
C∗-algebra” because a groupoid C∗-algebra and an algebra of functions on a usual finite
groupoid carry this type of a structure. These objects are important at least for two
reasons. First, any fusion (i.e., semisimple finite rigid tensor) category [9] can be realized
as a representation category of a weak Hopf algebra by the result of T. Hayashi [10].
Second, as shown in [21], [22], weak Hopf C∗-algebras and their coideal C∗-subalgebras
play important role in the description of the Jones’s tower of II1-subfactors with finite
index and finite depth.

The above application to subfactors explains the interest in the construction of con-
crete examples of finite quantum groupoids and in the classification of their coideal subal-
gebras. Some particular constructions of finite quantum groupoids were proposed in [34]
and [20] (see also the survey [23] and references therein), but the general way to construct
them is the application of the T. Hayashi’s reconstruction theorem [10] to concrete ten-
sor categories. This approach was used in [14], where a series of concrete finite quantum
groupoids was constructed using Tambara-Yamagami categories [28]. These categories
belong to the much wider family of Z/2Z-extensions of pointed fusion categories classified
in [31].

The problem of the description of coideal C∗-subalgebras of a given finite quantum
groupoid is even harder, and until now only two concrete families of such subalgebras
constructed in [14] ”by hand” are known. But such coideal C∗-subalgebras are equipped
with coactions of a given finite quantum groupoid via its coproduct, so their description
can be viewed as an application of the general reconstruction result for coactions – see
Theorem 1.1 below. Concrete results of this type will be given in a subsequent work.

Let us describe the structure of the paper. In Section 2 we recall basic definitions
and results on finite quantum groupoids following [3] and [23]. We also translate the
representation theory of these objects treated in [4] and [19] into the language of unitary
corepresentations and C∗-tensor categories suitable for the construction of the categorical
duality. Finally, we translate into this language the reconstruction theorem proved in
[10] and [27].

In Section 3 we develop the theory parallel to the one of compact quantum group
coactions [2]. Doing this, we simplify significantly, in our particular case, some construc-
tions related to coactions of general measured quantum groupoids – see [8], [34]. Let
a be a coaction of a finite quantum groupoid G on a unital C∗-algebra A (called a G-
C∗-algebra). We get the canonical implementation of a and study the properties of the
spectral subspaces (isotypical components) of A. Note that the subalgebra of fixed points
of A with respect to a can be strictly smaller than the spectral subspace corresponding
to the trivial corepresentation of G (in the compact quantum group case they are equal).
This creates specific problems that we solve in Sections 4,5 and 6 devoted to the proof
of our main result which is parallel to [6], Theorem 6.4 and [16], Theorem 3.3:

Theorem 1.1. Let G be a regular coconnected finite quantum groupoid. Then the fol-
lowing two categories are equivalent:

(i) The category of unital G-C∗-algebras with unital G-equivariant ∗-homomorphisms
as morphisms.

(ii) The category of pairs (M,M), where M is a left module C∗-category over C∗-
tensor category UCorep(G) of unitary corepresentations of G and M is a generator in
M, with equivalence classes of unitary module functors respecting the prescribed genera-
tors as morphisms.
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This proof divides into three parts. First, given a unital G-C∗-algebra A, we show
in Section 4 that the category DA of finitely generated equivariant C∗-correspondences
whose morphisms are equivariant maps, is a strict left module category overUCorep(G).
The algebra A itself is a generator in DA. The idea of such a construction in the compact
quantum group case was proposed in [6].

Vice versa, it is shown in [16] that any pair (M,M) as above generates so-called
weak tensor functor. Using this functor, we construct in Section 5 an algebra whose
C∗-completion is a unital G-C∗-algebra. Finally, we show in Section 6 that the two
above mentioned constructions are mutually inverse which gives the equivalence of the
categories in question.

It was shown in [15] in the compact quantum group case that UCorep(G)-module
categories parameterized by unitary tensor (not weak tensor !) functors correspond to
Yetter-Drinfeld G-C∗-algebras. In a subsequent work we expect to get a similar result
for finite quantum groupoids and to apply it to the description of coideal C∗-subalgebras
of quotient type.

Our standard references are: [13] for general categories, [9] for tensor categories, [18]
for C∗- and C∗-tensor categories, [12] for Hilbert C∗-modules, and [23] for finite quantum
groupoids.

2. Finite quantum groupoids, their representations, comodules and

corepresentations

1. Finite quantum groupoids. A weak Hopf C∗-algebra G = (B,∆, S, ε) is a finite
dimensional C∗-algebra B with the comultiplication ∆ : B → B ⊗B, counit ε : B → C,
and antipode S : B → B such that (B,∆, ε) is a coalgebra and the following axioms hold
for all b, c, d ∈ B :

(1) ∆ is a (not necessarily unital) ∗-homomorphism :

∆(bc) = ∆(b)∆(c), ∆(b∗) = ∆(b)∗,

(2) The unit and counit satisfy the identities (we use the Sweedler leg notation
∆(c) = c1 ⊗ c2, (∆⊗ idB)∆(c) = c1 ⊗ c2 ⊗ c3 etc.):

ε(bc1)ε(c2d) = ε(bcd),

(∆(1)⊗ 1)(1⊗∆(1)) = (∆⊗ idB)∆(1),

(3) S is an anti-algebra and anti-coalgebra map such that

m(idB ⊗ S)∆(b) = (ε⊗ idB)(∆(1)(b⊗ 1)),

m(S ⊗ idB)∆(b) = (idB ⊗ ε)((1⊗ b)∆(1)),

where m denotes the multiplication.

The right hand sides of two last formulas are called target and source counital maps
εt and εs, respectively. Their images are unital C∗-subalgebras of B called target and
source counital subalgebras Bt and Bs, respectively.

The dual vector space B̂ has a natural structure of a weak Hopf C∗-algebra Ĝ =
(B̂, ∆̂, Ŝ, ε̂) given by dualizing the structure operations of B

< ϕψ, b > = < ϕ⊗ ψ, ∆(b) >,

< ∆̂(ϕ), b⊗ c > = < ϕ, bc >,

< Ŝ(ϕ), b > = < ϕ, S(b) >,

< φ∗, b > = < ϕ, S(b)∗ >,

for all b, c ∈ B and ϕ,ψ ∈ B̂. The unit of B̂ is ε and the counit is 1.
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The counital subalgebras commute elementwise, we have S ◦ εs = εt ◦ S and S(Bt) =
Bs. We say that B is connected if Bt ∩ Z(B) = C (where Z(B) is the center of B),
coconnected if Bt ∩Bs = C, and biconnected if both conditions are satisfied.

The antipode S is unique, invertible, and satisfies (S ◦ ∗)2 = idB . We will only
consider regular quantum groupoids, i.e., such that S2|Bt

= id. In this case, there exists
a canonical positive element H in the center of Bt such that S2 is an inner automorphism
implemented by G = HS(H)−1, i.e., S2(b) = GbG−1 for all b ∈ B. The element G
is called the canonical group-like element of B, it satisfies the relation ∆(G) = (G ⊗
G)∆(1) = ∆(1)(G⊗G).

There exists a unique positive functional h on B, called a normalized Haar measure
such that

(idB ⊗ h)∆ = (εt ⊗ h)∆, h ◦ S = h, h ◦ εt = ε, (idB ⊗ h)∆(1B) = 1B .

We will denote by Hh the GNS Hilbert space generated by B and h and by Λh : B → Hh

the corresponding GNS map.

2. Unitary representations. By definition, the objects of the category URep(G) of
unitary representations of G are left B-modules of finite rank such that the underlying
vector space is a Hilbert space H with a scalar product < ·, · > such that

< b · v, w >=< v, b∗ · w >, for all v, w ∈ H, b ∈ B,

and morphisms are B-linear maps. It is a semisimple linear category whose simple objects
are irreducible B-modules. It is also a tensor category: for objects H1, H2 ∈ URep(G),
define their tensor product as the Hilbert subspace ∆(1B) · (H1⊗H2) of the usual tensor
product together with the action of B given by ∆. Here we use the fact that ∆(1B) is
an orthogonal projection.

The tensor product of morphisms is the restriction of the usual tensor product of B-
module morphisms. Let us note that any H ∈ URep(G) is automatically a Bt-bimodule
via z ·v ·t := zS(t) ·v, ∀z, t ∈ Bt, v ∈ E, and that the above tensor product is in fact ⊗Bt

,
moreover the Bt-bimodule structure forH1⊗Bt

H2 is given by z ·ξ ·t = (z⊗S(t))·ξ, ∀z, t ∈
Bt, ξ ∈ H1 ⊗Bt

H2.
One deduces that the above tensor product is associative

(H1 ⊗Bt
H2)⊗Bt

H3 = H1 ⊗Bt
(H2 ⊗Bt

H3),

so the associativity isomorphisms are trivial. The unit object of URep(G) is Bt with the
action of B given by b · z := εt(bz), ∀b ∈ B, z ∈ Bt and the scalar product < z, t >=
h(t∗z). The left and right unit morphisms are

(1) lE(z ⊗Bt
v) = z · v and rE(v ⊗Bt

z) = S(z) · v, ∀z ∈ Bt, v ∈ E.

For any morphism f : H1 → H2, define f
∗ : H2 → H1 as the adjoint linear map:

< f(v), w >=< v, f∗(w) >, ∀v ∈ H1, w ∈ H2, it is easy to check that f∗ is B-linear. It
is clear that f∗∗ = f , that (f ⊗Bt

g)∗ = f∗ ⊗Bt
g∗, and that End(H) is a C∗-algebra,

for any object H. So URep(G) is a strict finite C∗-multitensor category (i.e., has all the
properties of a C∗-tensor category except for one: 1 is not necessarily simple).

In order to make URep(G) a rigid C∗-tensor category in the sense of [18], Defini-
tion 2.1.1, we have to define the conjugate for any H ∈ URep(G). Take the dual vec-

tor space Ĥ which is naturally identified (v 7→ v) with the conjugate Hilbert space
H :< v,w >=< w, v >, ∀v, w ∈ H. The action of B on H is defined by b · v =

G1/2S(b)∗G−1/2 · v, where G is the canonical group-like element of G. Then the rigidity
morphisms defined by

(2) RH(1B) = Σi(G
1/2 · ei ⊗Bt

·ei), RH(1B) = Σi(ei ⊗Bt
G−1/2 · ei),
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where {ei}i is any orthogonal basis in H, satisfy all the needed properties – see [5], 3.6.
Also, it is known that the B-module Bt is irreducible if and only if Bs ∩ Z(B) = C1B ,
i.e., if G is connected. So that, we have

Proposition 2.1. URep(G) is a strict rigid finite C∗-multitensor category. It is C∗-
tensor if and only if G is connected.

3. Unitary comodules.

Definition 2.2. A right unitary G-comodule is a pair (H, a), where H is a Hilbert space
with scalar product < ·, · >, a : H → H ⊗ B is a bounded linear map between Hilbert
spaces H and H ⊗Hh = H ⊗ Λh(B), and such that

(i) (a⊗ idB)a = (idH ⊗∆)a;
(ii) (idH ⊗ ε)a = idH ;
(iii) < v1, w > v2 =< v,w1 > S(w2)∗, ∀v, w ∈ H.
A morphism of unitary G-comodules H1 and H2 is a linear map T : H1 → H2 such

that aH2
◦ T = (T ⊗ idB)aH1

(i.e., a B-colinear map).
Right unitary G-comodules with finite dimensional underlying Hilbert spaces and

their morphisms form a category which we denote by UComod(G).
We say that two unitary G-comodules are equivalent (resp., unitarily equivalent) if

the space of morphisms between them contains an invertible (resp., unitary) operator.

In what follows, we will use the leg notation a(v) = v1 ⊗ v2, for all v ∈ H.

Example 2.3. Let us equip a right coideal I ⊂ B with the scalar product < v,w >:=
h(w∗v). Then the strong invariance of h gives

< v1, w > v2 = (h⊗ idB)((w
∗ ⊗ 1B)∆(v))

= (h⊗ S−1)(∆(w∗)(v ⊗ 1B)) =< v,w1 > S(w2)∗.

Remark 2.4. By (ii) any coaction a is injective.

If (H, a) is a right unitary G-comodule, then H is naturally a unitary left Ĝ-module
via

(3) b̂ · v := v1 < b̂, v2 >, ∀b̂ ∈ B̂, v ∈ H.

The unitarity follows from the calculation

< b̂ · v, w > =< v1 < b̂, v2 >,w >=< b̂,< v1, w > v2 >=

=< b̂,< v,w1 > S(w2)∗ >=< v,w1< b̂, S(w2)∗ > >=< v, (b̂)∗ · w >,

for all v, w ∈ H and b̂ ∈ B̂. In particular H is a B̂t-bimodule.
Due to the canonical identifications Bt

∼= B̂s and Bs
∼= B̂t given by the maps z 7→

ẑ = ε(·z) and t 7→ t̂ = ε(t·), H is also a Bs-bimodule via z · v · t = v1ε(zv2t), for all z, t ∈
Bs, v ∈ V . The maps α, β : Bs → B(H) defined by α(z)v := z · v and β(z)v := v · z, for
all z ∈ Bs, v ∈ H are a ∗-algebra homomorphism and antihomomorphism, respectively,
with commuting images. Indeed, for instance, for all v, w ∈ H, z ∈ Bs, one has

< α(z)v, w >:= < v1ε(zv2), w >= ε(< v1, w > zv2)

=ε(< v,w1 > zS(w2)∗) =< v,w1 > ε(S(w2)z∗)

= < v,w1ε(S(z∗)w2) >=< v, α(z∗)w1ε(w2) >=< v, α(z∗)w > .

So that, α(z)∗ = α(z∗), and similarly for the map β. We have the following useful
relations:

(4) a(α(x)β(y)v) = v1 ⊗ xv2y, ∀v ∈ H, x, y ∈ Bs.
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and

(5) α(x)β(y)v1 ⊗ v2 = v1 ⊗ S(x)v2S(y), ∀v ∈ H, x, y ∈ Bs.

The correspondence (3) is bijective as one has the inverse formula: if (bi)i is a basis

for B and (b̂i) is its dual basis in B̂, then set

(6) a(v) =
∑

i

(b̂i · v)⊗ bi, ∀v ∈ H.

Moreover, formulas (3) and (6) imply also a bijection of morphisms. Thus, we have two

functors, F1 : UComod(G) → URep(Ĝ) and G1 : URep(Ĝ) → UComod(G), which are
mutually inverse. So, these categories are isomorphic as linear categories, and we can
transport various additional structures from URep(Ĝ) to UComod(G).

For instance, let us define tensor product of two unitary G-comodules, (H1, aH1
) and

(H2, aH2
). As a vector space, it is

H1 ⊗B̂t
H2 := ∆̂(1̂)(H1 ⊗H2) = 1̂1 ·H1 ⊗ 1̂2 ·H2,

and is generated by the elements x⊗B̂t
y := ∆̂(1̂) · (x⊗ y), where x ∈ H1, y ∈ H2, so it

can be identified with H1 ⊗Bs
H2 (see [26], 2.2 or [24], Chapter 4).

Lemma 2.5. If (H1, a), (H2, b) ∈ UComod(G), then the projection P : H1 ⊗ H2 →

H1 ⊗B̂t
H2 defined by P (v) = ∆̂(1̂) · v, for all v ∈ H1 ⊗H2, satisfies

P (x⊗ y) = x1 ⊗ y1ε(x2y2), for all x ∈ H1, y ∈ H2.

The proof is the direct calculation using the axiom (2) of a weak Hopf algebra

1̂1 · x⊗ 1̂2 · y = (x1 ⊗ y1)ε(x211)ε(12y
2) = (x1 ⊗ y1)ε(x2y2).

Corollary 2.6. The linear map a⊗Bs
b given by

v ⊗Bs
w 7→ v1 ⊗Bs

w1 ⊗ v2w2, ∀v ∈ H1, w ∈ H2

is a coaction of G on H1 ⊗Bs
H2 (i.e., satisfies Definition 2.2, (i), (ii)).

Proof. ∀v ∈ H1, w ∈ H2, one has

((a⊗Bs
b)⊗ iB)(a⊗Bs

b)(v ⊗Bs
w)

= ((a⊗Bs
b)⊗ iB)(v

1 ⊗Bs
w1 ⊗ v2w2)

= (∆̂(1̂)⊗ 1B⊗B) · (∆̂(1̂).(a(v1)1 ⊗ b(w1)1)⊗ a(v1)2b(w2)2 ⊗ v2w2)

= (∆̂(1̂)⊗ 1B⊗B) · (a(v
1)1 ⊗ b(w1)1 ⊗ a(v1)2b(w2)2 ⊗ v2w2)

= (∆̂(1̂)⊗ 1B⊗B) · ((a⊗ iB)a(v))134(b⊗ iB)b(w))234)

= (∆̂(1̂)⊗ 1B⊗B) · ((iE ⊗∆)a(v))13(iF ⊗∆)b(v))23)

= (∆̂(1̂)⊗ 1B⊗B)(iE⊗F ⊗∆)((∆̂(1̂)⊗ 1B).(a(v))13b(v))23)

= (idH1⊗BsH2
⊗∆)(a⊗Bs

b)(v ⊗Bs
w).

Moreover, using Lemma 2.5, we have

(idH1⊗BsH2
⊗ ε)(a⊗Bs

b)(v ⊗Bs
w) = v1 ⊗ w1ε(v2w2) = P (v ⊗ w) = v ⊗Bs

w

�

The direct calculation shows that the tensor product coaction is unitary. Thus,
UComod(G) is a multitensor category whose associativity morphisms are trivial, the
unit object is (Bs,∆|Bs

). It is simple if and only if G is coconnected. The left and right
unit isomorphisms are

(7) lH : Bs ⊗Bs
H → H, z ⊗Bs

v 7→ z · v, rH : H ⊗Bs
Bs → H, v ⊗Bs

z 7→ v · z.
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One can check that these isomorphisms are unitary and their inverses are

(8) l−1
H (v) = 11 ⊗Bs

v1ε(12v
2) and r−1

H (v) = v1 ⊗Bs
εs(v

2).

Let us define the conjugate object for (H, a) ∈ UComod(G). The corresponding

Hilbert space is H. In what follows, we use the Sweedler arrows b̂ ⇀ b := b1 < b̂, b2 >,

b ↼ b̂ := b2 < b̂, b1 >, ∀b ∈ B, b̂ ∈ B̂.

Lemma 2.7. The conjugate object for (H, a) in UComod(G) is (H, ã), where

ã(v) = v1 ⊗ [Ĝ−1/2 ⇀ (v2)∗ ↼ Ĝ1/2],

and Ĝ is the canonical group-like element of the dual quantum groupoid Ĝ.

Proof. The unitarity of G1(H, ã) means that < b̂·v, w >H=< v, b̂∗·w >H , for all v, w ∈ H.

The left hand side equals to < v1, w >H< b̂, v2 >. And the right hand side equals to

< v, Ĝ1/2Ŝ(b̂∗)∗Ĝ−1/2 · w >H=< Ĝ1/2Ŝ(b̂∗)∗Ĝ−1/2 · w, v >H

=< w, Ĝ−1/2Ŝ(b̂∗)Ĝ1/2 · v >H=< w, v1 >H < Ĝ−1/2Ŝ(b̂∗)Ĝ1/2, v2 >

=< v1, w >H < Ĝ−1/2b̂Ĝ1/2, (v2)∗ >

=< v1, w >H< b̂, [Ĝ−1/2 ⇀ (v2)∗ ↼ Ĝ1/2] > .

Comparing the above expressions, we have the result. �

The rigidity morphisms are given by (2) with Bt replaced by Bs. For any morphism
f , f∗ is the conjugate linear map on the corresponding Hilbert spaces, the colinearity of
f implies that f∗ is colinear. So that, we have

Proposition 2.8. UComod(G) is a strict rigid finite C∗-multitensor category. It is
C∗-tensor if and only if G is coconnected.

4. Unitary corepresentations.

Definition 2.9. A right unitary corepresentation of G on a Hilbert space H is a
partial isometry V ∈ B(H)⊗B such that

(i) V12V13 = (idB(H) ⊗∆)(V ).
(ii) (idB(H) ⊗ ε)(V ) = idB(H).
If U and V are two right corepresentations on Hilbert spaces HU and HV , respectively,

a morphism between them is a bounded linear map T ∈ B(HU , HV ) such that (T ⊗
1B)U = V (T ⊗ 1B). The vector space of such morphisms is denoted by Mor(U, V ). We
will denote by UCorep(G) the category whose objects are right unitary corepresentations
(H,V ) on finite dimensional vector spaces with morphisms as above.

One says that U and V are equivalent (resp., unitarily equivalent) if Mor(U, V ) con-
tains an invertible (resp., unitary) operator.

Proposition 2.10. If (H, a) is a unitary G-comodule, let us define an operator V on
H ⊗Hh as follows:

V (x⊗ Λhy) := x1 ⊗ Λh(x
2y), for all x ∈ H, y ∈ B.

Then V is a unitary corepresentation of G on H, and one has

V ∗(x⊗ Λhy) := x1 ⊗ Λh(S(x
2)y), for all x ∈ H, y ∈ B.
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Proof. Let Ih be an implementation of ∆ (for example, Ih ∈ B(Hh⊗Hh) : Λh⊗h(y
′⊗y) 7→

Λh⊗h(∆(y)(y′ ⊗ 1B)), see [32], 3.2) for details), then one has for all x ∈ H, y, c ∈ B:

V12V13(x⊗ Λhy ⊗ Λhc) = (V ⊗ 1B)(x
1 ⊗ Λhy ⊗ Λh(x

2c))

= x1 ⊗ Λh(x
2y)⊗ Λh(x

3c)

= x1 ⊗ Λh⊗h(∆(x2)(y ⊗ c))

= x1 ⊗ Ih(x
2 ⊗ 1B)I

∗
h(Λh⊗h(y ⊗ c))

= (1B(H) ⊗ Ih)(x
1 ⊗ {(x2 ⊗ 1B)I

∗
hΛh⊗h(y ⊗ c)})

= (1B(H) ⊗ Ih)(V ⊗ 1B)(x⊗ I∗h(Λh⊗hy ⊗ c))

= (1B(H) ⊗ Ih)(V ⊗ 1B)(1B(H) ⊗ Ih)
∗(x⊗ Λh⊗h(y ⊗ c))

= (1B(H) ⊗∆)(V )(x⊗ Λhy ⊗ Λhc).

Next, we have, for any decomposition V =
∑
i∈I

vi ⊗ bi (vi ∈ B(H), bi ∈ B)

(idB(H) ⊗ ε)(V )(ξ) = (idB(H) ⊗ ε)(
∑

i∈I

vi(ξ)⊗ bi)

=
∑

i∈I

ε(bi)vi(ξ) = (idB(H) ⊗ ε)a(ξ) = ξ, ∀ξ ∈ H.

In order to show that V is a partial isometry, consider the separability element es =
(idB⊗S)∆(1B) of the algebra Bs and the idempotents eβ,id = (β⊗idB)(es) ∈ β(Bs)⊗Bs

and eα,S = (α ⊗ S)(es) ∈ α(Bs) ⊗ Bs. As α and β are ∗-maps, these idempotents are
orthogonal projections on H⊗Hh. It is straightforward to check, using (4) and (5), that:

• for all x, y ∈ Bs, one has

V (α(x)β(y)⊗ 1B) = (1B(H) ⊗ x)V (1B(H) ⊗ y),(9)

(α(x)β(y)⊗ 1B)V = (1B(H) ⊗ S(x))V (1B(H) ⊗ S(y)).(10)

• V eβ,id = V , eα,SV = V .

Moreover, V is invertible in B(eβ,id(H⊗Hh), eα,S(H⊗Hh)). Indeed, consider an operator
W acting on H ⊗Hh defined by

W (v ⊗ Λh(b) := v1 ⊗ Λh(S(v
2)b), ∀v ∈ H, b ∈ B.

Then we have

WV (v ⊗ Λh(b) :=W (v1 ⊗ Λh(v
2b))

=v1 ⊗ Λh(S(v
2)v3b) = v1 ⊗ Λh(εs(v

2)b).

On the other hand,

eβ,id(v ⊗ Λh(b)) = (v · 11)⊗ Λh(S(12)b) = v1 ⊗ Λh(S(12)

× ε(v211)b) = v1 ⊗ Λh(11)ε(v
2S(12))b) = v1 ⊗ Λh(εs(v

2)b).

And similarly VW = eα,S , so that W is the inverse of V . Finally, we compute, for all
v, w ∈ H, b, c ∈ B:

< V (v ⊗ Λh(b)), V (w ⊗ Λh(c)) > =< v1 ⊗ Λh(v
2b), w1 ⊗ Λh(w

2c) >

=< v1, w1 > h(c∗(w2)∗v2b)

=< v,w1 > h(c∗(w3)∗[S(w2)]∗b)

=< v,w1 > h(c∗[εs(w
2)]∗b).
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On the other hand,

< v ⊗ Λh(b), eβ,id(w ⊗ Λh(c)) >=< v ⊗ Λh(b), (w · 11)⊗ Λh(S(12)c) >

=< v,w · 11 > h(c∗[S(12)]
∗b) =< v,w1 > ε(w211)h(c

2[S(12)]
∗b).

These expressions are equal because εs(x) := 11ε(x12) = S(12)ε(xS(11)) = S(12)ε(x11)),
for all x ∈ B. We used above the equality ε(xS(z)) = ε(xz), for all z ∈ Bt which can be
obtained by applying ε⊗ε to both sides of the equality ∆(1B)(S(z)⊗1B) = ∆(1B)(1B⊗z).
As eβ,id is an orthogonal projection, this means that V is bounded and V ∗V = eβ,id.

Similar reasoning shows that V ∗ equals to the above mentioned W . �

We also have a converse statement.

Proposition 2.11. Any unitary corepresentation V of G on a Hilbert space H generates
a unitary comodule (H, a), where a(v) = V (v ⊗ Λh(1B)) ∀v ∈ H.

Proof. The first two conditions of Definition 2.2 follow from the first two conditions of
Definition 2.9. The relation between V and the coaction a : v 7→ v1 ⊗ v2 is given by
V (v ⊗ Λh(b)) = v1 ⊗ Λh(v

2b). We have seen already that the operator W acting on
H ⊗Hh and defined by

W (v ⊗ Λh(b)) = v1 ⊗ Λh(S(v
2)b), ∀v ∈ H, b ∈ B,

satisfies the relations VW = ea,S and WV = eb,id. As V is a partial isometry with
initial and final Hilbert subspaces ea,S(H⊗Hh) and eb,id(H⊗Hh), respectively, we have
W = V ∗. Then for all v, w ∈ H and c ∈ B, the equality

< V (v ⊗ Λh(1B)), w ⊗ Λh(c) >=< v ⊗ Λh(1B), V
∗(w ⊗ Λh(c)) >,

can be rewritten as

< v1, w > h(c∗v2) =< v,w1 > h(c∗[S(w2)]∗),

which implies the unitarity of the G-comodule in question. �

Let (H1, a) and (H2, b) be two unitary G-comodules, and let T be in B(H1, H2) inter-
twining a and b, then one has, for all x ∈ H1, b ∈ B

VH2
(T ⊗ 1)(x⊗ Λh(b)) = (Tx)1 ⊗ Λh((Tx)

2b)

= (1H2
⊗ π′(b))((Tx)1 ⊗ Λh((Tx)

2)

= (1H2
⊗ π′(b))(idF ⊗ Λh)(b(Tx))

= (1H2
⊗ π′(b))(idF ⊗ Λh)((T ⊗ 1)a(x))

= (1H2
⊗ π′(b))(T ⊗ 1)(idH1

⊗ Λh)(a(x))

= (T ⊗ 1)(1H1
⊗ π′(b))(idH1

⊗ Λh)(a(x))

= (T ⊗ 1)VH1
(x⊗ Λh(b)).

Hence, T ∈Mor(VH1
, VH2

).

Corollary 2.12. The correspondence F2 defined by F2(H, a) = (V,H) and F2(T ) = T
for all objects (H, a) and morphisms T of UComod(G), is a functor from UComod(G)
to UCorep(G) viewed as semisimple linear categories. The correspondence G2 between
unitary corepresentations of G and G-comodules given by Proposition 2.11 clearly extends
to morphisms and defines a functor inverse to F2, so UComod(G) and UCorep(G) are
isomorphic as linear categories. Then we can equip UCorep(G) with tensor product and
duality by transporting these structures from Comod(G).

If (U,HU ), (V,HV ) ∈ UCorep(G), let us define their tensor product.
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Lemma 2.13. One has (P ⊗ idB)U13V23 = U13V23(P ⊗ idB) = U13V23, where U13V23 ∈
B(HU ⊗HV )⊗B and P was defined in Lemma 2.5.

Proof. There exist finite families {bk} and {b′k} in Bs such that Σkb
′
kbk = Σkbkb

′
k = 1B ,

and for all x ∈ HU and all y ∈ HV one has

P (x⊗ y) = ∆̂(1̂) · (x⊗ y) = Σkβ(bk)x⊗ α′(b′k)y,

where α′ is the ∗-representation of Bs corresponding to (V,H2). Using four times (10),
one has

(P ⊗ idB)U13V23 = Σk(β(bk)⊗ α′(b′k)⊗ idB)U13V23

= Σk(β(bk)⊗ idHV
⊗ idB)U13(idHU

⊗ α′(b′k)⊗ idB)V23

= Σk(β(bk)⊗ idHV
⊗ idB)U13(idHU

⊗ idHV
⊗ S(b′k)V23

= Σk(β(bk)β(b
′
k)⊗ idHV

⊗ idB)U13V23

= Σk(β(b
′
kbk)⊗ idHV

⊗ idB)U13V23 = U13V23

= ΣkU13(idHU
⊗ idHV

⊗ bkb
′
k)V23

= ΣkU13(β(bk)⊗ idHV
⊗ 1B)V23(idHU

⊗ α′(b′k)⊗ idB)

= ΣkU13V23(β(bk)⊗ α′(b′k)⊗ idB) = U13V23(P ⊗ idB).

�

Lemma 2.13 justifies the following:

Definition 2.14. If (U,HU ), (V,HV ) ∈ UCorep(G), their tensor product is the bounded
linear map:

U ⊙ V = U13V23 = (P ⊗ idB)U13V23(P ⊗ idB)

viewed as an element of B(HU ⊗Bs
HV )⊗B.

Proposition 2.15. U ⊙ V ∈ UCorep(G), it acts on HU ⊗Bs
HV and:

G2(U,H1)⊗Bs
G2(V,H2) = G2(U ⊙ V,H1 ⊗Bs

H2).

Proof. If (U,HU ), (V,HV ) ∈ UCorep(G), let U =
∑
i

ui ⊗ bi, V =
∑
j

uj ⊗ bj be de-

compositions of U and V . Then U ⊙ V =
∑
i,j

ui ⊗ vj ⊗ bibj , and let us define θU⊙V ∈

B(HU ⊗Bs
HV , HU ⊗Bs

HV ⊗B) by

θU⊙V (x⊗Bs
y) =

∑

i,j

ui ⊗ vj(P (x⊗ y))⊗ bibj .

Then, using Lemma 2.13, one has

θU⊙V (x⊗Bs
y) =

∑

i,j

ui ⊗ vj(x⊗ y)⊗ bibj

=
∑

i,j

P (ui(x)⊗ vj(y))⊗ bibj = (aU ⊗ aV )(x⊗Bs
y),

and the result follows. �

The unit object 1 of UCorep(G) with respect to ⊙ acts on Bs and is defined by
z ⊗ b 7→ 11 ⊗ 12zb, for all z ∈ Bs, b ∈ B. It is simple if and only if G is coconnected.
The conjugate object for (V,H) ∈ UCorep(G) is the unitary corepresentation acting on
H via V (x⊗ Λh(y)) = x1 ⊗ Λh((x

2)∗y), where ã(x) is described in Lemma 2.7, and the
rigidity morphisms are the same as in UCorep(G). For any morphism f , again f∗ is the
conjugate bounded linear map on the corresponding Hilbert spaces. So that, we have
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Proposition 2.16. UCorep(G) is a strict rigid finite C∗-multitensor category. It is
C∗-tensor if and only if G is coconnected.

The simple objects of this category are exactly irreducible corepresentations of G. Let
us denote by Ω the set of equivalence classes of irreducibles and choose a representative
Ux in any class x ∈ Ω. The regular corepresentation of G is decomposed as follows:

(11) W = ⊕x∈Ωdim(x)Ux,

where dim(x) is the dimension of the Hilbert space on which Ux acts.

Definition 2.17. Let (U,HU ) ∈ UCorep(G) and {mi,j}
n
i,j=1 be the matrix units of

B(HU ) with respect to some orthonormal basis {ei}
n
i=1 in HU . Then

U = Σn
i,j=1mi,j ⊗ Ui,j ,

where Ui,j (i, j = 1, . . . , n) are called the matrix coefficients of U with respect to {ei}.
Put BU := Span(Ui,j)

n
i,j=1; in particular, we denote BUx by Bx.

Remark 2.18. Let us summarize some properties of matrix coefficients of Ux (x ∈ Ω)
which can be proved in a standard way.

(i) B⊕p

k=1
Uk

= span{BU1
, . . . , BUp

} for any finite direct sum of unitary corepresenta-

tions. In particular, (11) implies that B = ⊕x∈ΩBx.
(ii) Decomposition U⊙V = ⊕zdzU

z with multiplicities dz implies that BUBV ⊂ ⊕zBz,
where z parameterizes the irreducibles of the above decomposition.

(iii) The definition of a unitary corepresentation written in terms of Ux
i,j:

∆(Ux
i,j) = Σ

dim(x)
k=1 Ux

i,k ⊗ Ux
k,j , ε(Ux

i,j) = δi,j , Ux
i,j = S(Ux

j,i)
∗,

for all i, j = 1, . . . , dim(x), gives: Bx⊗Bx = ∆(1B)(Bx⊗Bx), ∆(Bx) ⊂ ∆(1B)(Bx⊗Bx)
and BU = S(BU )

∗. We also have BU = (BU )
∗.

Example 2.19. In the case of the trivial corepresentation ofG associated with (∆|Bs
, Bs),

we will use the notation Bε instead of BU . Let {bi}
dimBs

i=1 be an orthonormal basis in
Bs with respect to the scalar product < z, t >= ε(t∗z) ∀z, t ∈ Bs. Then one can write

∆(1B) = ΣdimBs

i=1 b∗i ⊗S(bi) (see [23], 2.3.3), which implies: ∆(b∗j ) = ΣdimBs

i=1 (b∗i ⊗S(bi)b
∗
j ),

so Uε
i,j = S(bi)b

∗
j , for all i, j = 1, . . . , dimBs. This means that Bε is the unital C

∗-algebra
BtBs.

5. Fiber functor and reconstruction theorem. Let Q and R be two unital
C∗-algebras. By definition, a (Q,R)-correspondence is a right Hilbert R-module E (see
[12]) with a unital ∗-homomorphism ϕ : Q → L(E), where L(E) is the C∗-algebra of all
bounded R-linear adjointable operators on E . If Q = R, we call it an R-correspondence.
R-correspondences form a C∗-multitensor category Corr(R) with interior tensor product
⊗R and adjointable R-bilinear maps as morphisms.

There exists another definition of a (Q,R)-correspondence, due to Alain Connes, this
is a triple (H,α, β) where H is a Hilbert space equipped with unital ∗-homomorphism
α : Q → B(H) and ∗-anti-homomorphism β : R → B(H) whose images commute in
B(H). Then H is a (Q,R)-bimodule via q ·v ·r := α(q)β(r)v, for all q ∈ Q, r ∈ R, v ∈ H.

In this paper, we are especially interested in the particular case, when Q = R is a
finite dimensional C∗-algebra equipped with a faithful tracial state φ. Below we treat
this particular case in detail.

Lemma 2.20. Both definitions of an R-correspondence are equivalent.
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Proof. (i) If (H,α, β) ∈ Corr(R), define, for any η ∈ H, an operator Π(η) : Hφ → H
by Π(η)Λφ(r) := β(r)η, for all r ∈ R, where Hφ is the GNS Hilbert space generated by
(R,φ). Then define an R-valued scalar product:

< ξ, η >R:= Π(ξ)∗Π(η), for all ξ, η ∈ H.

It is clear that < ξ, η >R is in fact in πφ(R). Finally, Π(β(b)η) = Π(η)πε(b),
so < ξ, β(b)η >R=< ξ, η >R πφ(b), for all ξ, η ∈ H, b ∈ R. Moreover, together with
the unital ∗-representation α we have on H the structure of an R-correspondence in the
sense of the first definition.

(ii) Vice versa, if H is an R-correspondence in this last sense, then one can define
a usual scalar product < ξ, η >= φ(< η, ξ >R), for all η, ξ ∈ H, and there are clearly
a unital ∗-homomorphism α : R → B(H) and a unital ∗-anti-homomorphism β : R →
B(H) whose images commute in B(H). Thus, (H,α, β) is an R-correspondence in the
sense of A. Connes. �

A morphism between (H,α, β) and (K,α′, β′) is a map T ∈ B(H,K) intertwin-
ing α and α′ and also β and β′, then Corr(R) is a semisimple linear category. If
(H,α, β), (K,α′, β′) ∈ Corr(R), we define their tensor product

(H,α, β)⊗R (K,α′, β′) = ((β ⊗ α′)(e)(H ⊗K), α⊗ 1K , 1H ⊗ β′),

where e is the symmetric separability idempotent for R, so eβ,α′ = (β ⊗ α′)(e) is an
orthogonal projection. For the sake of simplicity we shall denote H1⊗RH2 := eβ,α′(H⊗
K), and v ⊗R w = eβ,α′(v ⊗ w), for all v ∈ H,w ∈ K. The unit object is R with the
GNS scalar product defined by φ. The unit isomorphisms are as follows:

lH(z ⊗R v) := z · v and rH(v ⊗R z) := v · z, ∀z ∈ R, v ∈ H.

They are isometric, for example

||lH(z ⊗R v)||
2 := ||z · v||2H = φ(1R)||z · v)||

2 = ||1R ⊗ (z · v)||2 = ||z ⊗R v||
2.

The conjugate of a morphism T : H1 → H2 is just the adjoint operator T ∗ : H2 → H1,
so Corr(R) is a C∗-multitensor category. We denote by Corrf (R) its full subcategory
with finite dimensional underlying Hilbert spaces. The unit object is simple if and only
if R is a full matrix algebra.

For all objects of the three above categories: URep(G), UComod(G), and UCorep(G),
the underlying Hilbert spaces are Bs-correspondences, so each of these categories has a
forgetful C∗-tensor functor with values in Corrf (Bs).

In order to reformulate in suitable terms the reconstruction theorem of Tannaka-Krein
type for finite quantum groupoids proved initially in [10], [27], recall the construction of
the canonical Hayashi functor H.

Let C be a rigid finite C∗-tensor category and Ω = Irr(C) be an exhaustive set of
representatives of equivalence classes of its simple objects. Let R be the C∗-algebra
R = C

Ω =
⊕
x∈Ω

Cpx, where px = p∗x are mutually orthogonal idempotents: pxpy = δx,ypx,

for all x, y ∈ Ω. Then H is a functor from C to Corrf (R) defined by

H(x) = Hx =
⊕

y,z∈Ω

C(z, y ⊗ x), for every x ∈ Ω,

where C(x, y) is the vector space of morphisms x→ y. The R-bimodule structure on Hx

is given by

py ·Hx · pz = C(z, y ⊗ x), for all x, y, z ∈ Ω.

If y ∈ Ω and f ∈ C(x, y), then H(f) : Hx → Hy is defined by

H(f)(g) = (idz ⊗ f) ◦ g, for any z, t ∈ Ω and g ∈ pz ·Hx · pt.
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The inverse natural isomorphisms J−1
x,y : Hx ⊗Hy → Hx ⊗

R
Hy are

J−1
x,y(v ⊗ w) = az,x,y ◦ (v ⊗ idy) ◦ w ∈ pz ·H(x⊗ y) · pt,

for all v ∈ pz · Hx · pt, w ∈ pt · Hy · ps, z, s, t ∈ Ω. Here az,x,y are the associativity
isomorphisms of C.

We define the scalar product on Hx as follows. If x, y, z ∈ Ω and f, g ∈ C(z, y ⊗ x),
then g∗ ∈ C(y ⊗ x, z) and g∗ ◦ f ∈ End(z) = C, so one can put < f, g >x= g∗ ◦ f .
The subspaces C(z, y ⊗ x) are declared to be orthogonal, so Hx ∈ Corrf (R). Dually,

Hx ∈ Corrf (R) via z1 · v · z2 = z∗2 · v · z∗1 , for all z1, z2 ∈ R, v ∈ Hx. Now one can check
that H : C → Corrf (R) is a unitary tensor functor in the sense of [18] 2.1.3.

Theorem 2.21. Let C be a rigid finite C∗-tensor category and Ω = Irr(C). Let R be the
C∗-algebra C

Ω and H : C → Corrf (R) be the Hayashi functor. Then the vector space

(12) B =
⊕

x∈Ω

Hx ⊗Hx

has a regular biconnected finite quantum groupoid structure G such that C ∼= UCorep(G)
as C∗-tensor categories.

Proof. A rigid finite C∗-tensor category C is semisimple and spherical, so [26], Theo-
rems 1.1 and 1.2 claims that B has a structure of a selfdual regular biconnected semisim-
ple weak Hopf algebra. The algebra of the dual quantum groupoid Ĝ is (see [27], [14])

(13) B̂ =
⊕

x∈Ω

B(Hx),

the duality is given, for all x, y ∈ Ω, A ∈ B(Hy), v, w ∈ Hx by

< A,w ⊗ v >= δx,y < Av,w >x .

B̂ is clearly a C∗-algebra with the obvious matrix product and involution, its coproduct
is given (see [14] Theorem 1.3.4) by

∆̂(b̂) =
∑

i∈I

(s(ri)⊗ t(pi))Jb̂J
−1, for any b̂ ∈ B̂,

where
∑
i∈I

(ri ⊗ pi) is the symmetric separability element of R hence
∑
i∈I

(s(ri) ⊗ t(pi)) =

∆̂(1̂) is an orthogonal projection in B̂ ⊗ B̂; moreover J =
⊕

x,y∈Ω

Hx,y is a unitary as a

direct sum of unitaries. Then one can easily deduce that ∆̂(b̂∗) = ∆̂(b̂)∗, so both Ĝ and
G are finite quantum groupoids.

The explicit structure of G is given in [26], Theorems 1.1 and 1.2. If v, w ∈ Hx, g, h ∈
Hy and {exj } is an orthogonal basis in Hx (∀x, y ∈ Ω), then

(14) ∆(w ⊗ v) =
⊕

j

(w ⊗ exj )x ⊗ (exj ⊗ v)x,

(15) ε(w ⊗ v) =< v,w >x,

(16) (w ⊗ v)x · (g ⊗ h)y = (J−1
x,y(w ⊗ g)⊗ J−1

x,y(v ⊗ h))x⊗y ∈ Hx⊗y ⊗Hx⊗y,

(17) 1B =
⊕

x∈Ω

(ρx ⊗ ρ−1
x )1,
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where ρx is the unit constraint attached to x, so ρ−1
x ∈ px · H1 · px and ρx = ρ−1

x . In
order to define the antipode, consider the natural isomorphisms Φx : Hx → Hx∗ and
Ψx : Hx → Hx∗ given by

Φx = ρy(idy ⊗ evx) ◦ ay,x,x∗ ◦ (v ⊗ idx∗),Ψx = (v ⊗ idx∗) ◦ a−1
y,x,x∗ ◦ (idy ⊗ coevx) ◦ ρ

−1
y .

Here evx and coevx (x ∈ Ω) are the rigidity morphisms. Then we define

(18) S(w ⊗ v) = [Φx(v)⊗Ψx(w)]x∗ .

Any Hx is a right B-comodule via

ax(v) = Σ
j
exj ⊗ exj ⊗ v, where v ∈ Hx,

one checks that it is unitary which gives the equivalence C ∼= UCorep(G). �

3. Coactions of finite quantum groupoids on unital C*-algebras

1. Canonical implementation of a coaction.

Definition 3.1. A right coaction of a finite quantum groupoid G on a unital ∗-algebra
A, is a ∗-homomorphism a : A→ A⊗B such that

1) (a⊗ i)a = (idA ⊗∆)a.
2) (idA ⊗ ε)a = idA.
3) a(1A) ∈ A⊗Bt.
One also says that (A, a) is a G-∗-algebra.

Remark 3.2. If A is a C∗-algebra, then a is automatically continuous, even an isometry
by 2.4 and [25] 1.5.7.

Proposition 3.3. Any right coaction of G on a unital ∗-algebra A is simplifiable: the
set a(A)(1A ⊗ B) = {a(a)(1A ⊗ b) | a ∈ A, b ∈ B} generates a(1A)(A ⊗ B) as a vector
space.

Proof. Using Sweedler notations (which makes sense here as B is finite dimensional), one
has

a(1A)(a⊗ 1B) = (idA ⊗ ε⊗ idB)(a⊗ idB)[a(1A)(a⊗ 1B)]

= (idA ⊗ ε⊗ idB)[(idA ⊗∆)a(1A))a(a)⊗ 1dB)]

= (idA ⊗ ε⊗ idB)[(1A
1 ⊗∆(1A

2)(a1 ⊗ a2 ⊗ 1B)]

= (idA ⊗ ε⊗ idB)[(1A
1 ⊗∆(1B)(1A

2 ⊗ 1B)(a
1 ⊗ a2 ⊗ 1B)]

= (idA ⊗ ε⊗ idB)[(1A ⊗∆(1B))(1A
1a1 ⊗ 1A

2a2 ⊗ 1B)]

= (idA ⊗ ε⊗ idB)[(1A ⊗∆(1B))(a
1 ⊗ a2 ⊗ 1B)]

= (idA ⊗ εt)a(a).

Definition 2.1.1 (3) of [23] gives that

a(1A)(a⊗ 1B) = (idA ⊗m)(idA ⊗ idB ⊗ S)(idA ⊗∆)a(a)

= (idA ⊗m)(idA ⊗ idB ⊗ S)(a⊗ idB)a(a)

= (idA ⊗m)(a(a1)⊗ S(a2)).

Finally, the trivial equality: (idA ⊗m)(x⊗ y ⊗ z) = (x⊗ y)(1A ⊗ z) implies

a(1A)(a⊗ 1B) = a(a1)(1⊗ S(a2)).

So a(1A)(a⊗ 1B) belongs to the vector space generated by a(A)(1A ⊗B). �
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Let us introduce the unital ∗-homomorphism α : Bs → A : α(x) := x · 1A. Equalities
(4) and (5) show that, for all x ∈ Bs and a ∈ A

a(α(x)a) = (1A ⊗ x)a(a),(19)

(α(x)⊗ 1B)a(a) = (1A ⊗ S(x))a(a).(20)

It is helpful to note that

(21) a(1A) = (α⊗ idB)∆(1B).

Indeed
α(11)⊗ 12 :=11 · 1A ⊗ 12 = (idA ⊗ ε)[(1A ⊗ 11)a(1A)]⊗ 12

=11A ⊗ (ε⊗ idB)∆(12A) = a(1A).

Lemma 3.4. (cf. [34] 3.1.5, 3.1.6). If (A, a) is a G-∗-algebra A, then
(i) The set Aa = {a ∈ A|a(a) = a(1A)(a ⊗ 1B)} is a unital ∗-subalgebra of A (it is a

unital C∗-subalgebra of A when A is a C∗-algebra) commuting pointwise with α(Bs).
(ii) The map T a := (idA ⊗ h)a (where h is the normalized Haar measure of G) is a

conditional expectation from A to Aa; it is faithful when A is a C∗-algebra.

Proof. (i) For all a ∈ Aa and x ∈ Bs, one has

a(aα(x)) = a(1A)(a⊗ 1B)(1A ⊗ x)a(1A) = a(α(x)a),

so Aa commutes pointwise with α(Bs), then it is stable with respect to the multiplication
and the ∗-operation in A; moreover if A is a C∗-algebra, it is clearly norm closed in A,
so this is a unital C∗-subalgebra of A.

(ii) Since h|Bt
= ε|Bt

(see [23], 7.3.2), one has T a(1A) := (idA ⊗ h)a(1A) = 1A, from
where, for all a ∈ Aa:

T a(a) = (idA ⊗ h)(a(1A)(a⊗ 1B)) = (idA ⊗ h)(a(1A))a = a.

Now, if Et = (idB ⊗h)∆ is the target Haar conditional expectation of G, one has, for all
a ∈ A

a(T a(a)) = a((idA ⊗ h)a(a)) = (idA ⊗ idB ⊗ h)((a⊗ idB)a(a))

= (idA ⊗ idB ⊗ h)(idA ⊗∆)a(a) = (idA ⊗ Et)a(a)

= (idA ⊗ Et)(a(1A)a(a))

= (idA ⊗ Et)(a(1A)(a
1 ⊗ a2)) = a(1A)(a

1 ⊗ Et(a
2))

= a(1A)(1A ⊗ Et(a
2))(a1 ⊗ 1B) = a(1A)(β(S(Et(a

2)))⊗ 1B)(a
1 ⊗ 1B)

= a(1A)(β(S(Et(a
2)))a1 ⊗ 1B).

Using the fact proved above that (idA ⊗ h)(a(1A)) = 1A, this implies that

(idA ⊗ h)a(T a(a)) = (idA ⊗ h)a(1A)(β(S(Et(a
2)))a1 ⊗ 1B)

= β(S(Et(a2)))a
1.

But since h ◦ Et = h, one has also

(idA ⊗ h)a(T a(a)) = (idA ⊗ h)a(1A)(a1 ⊗ Et(a2))

= (idA ⊗ h)(a(1A)(a1 ⊗ a2))

= (idA ⊗ h)(a(1A)a(a)) = T a(a).

One deduces that T a(a) = β(S(Et(a2)))a
1 and

a(T a(a)) = a(1A)(β(S(Et(a2)))a1 ⊗ 1B) = a(1A)(T
a(a)⊗ 1B).
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This implies that T a(A) = Aa, moreover, T a ◦ T a = T a. Finally, for all c, d ∈ Aa and
a ∈ A, one has

T a(cad) = (idA ⊗ h)a(cad) = (idA ⊗ h)(a(c)a(a)a(d))

= (idA ⊗ h)((1B ⊗ c)a(a)(1B ⊗ d)) = cT a(a)d.

When A is a C∗-algebra, T a is faithful because a and h are faithful. �

Definition 3.5. Let (A, a) be a unital G-∗-algebra, then unital ∗-subalgebra

Aa = {a ∈ A/a(a) = a(1A)(a⊗ 1B)}

is called the subalgebra of invariants (or fixed points) of (A, a).

Proposition 3.6. Let (A, a) be a unital G-C∗-algebra and φ be an element in A∗, then
the following assertions are equivalent:

i) for any a ∈ A one has: (φ⊗ iB)a(a) ∈ Bs;
ii) φ ◦ T a = φ;
iii) there exists a linear form ω on Aa such that φ = ω ◦ T a;
iv) for any x, y ∈ A, one has

(φ⊗ idB)(a(x)(y ⊗ 1B)) = (φ⊗ S)((x⊗ 1B)a(y)).

Proof. Clearly, ii) and iii) are equivalent. If ii) is true and if Es = (h⊗ iB)∆ is the source
Haar conditional expectation of G, then i) is true because, for all ω′ ∈ B∗ and a ∈ A,
one has

ω′((φ ◦ iB)a(a)) = (φ ◦ ω′)a(a) = (φ ◦ ω′)(T a ⊗ iB)a(a)

= (φ ◦ ω′)((idA ⊗ h)a⊗ idB)a(a)

= (φ ◦ ω′)(idA ⊗ h⊗ idB)(a⊗ idB)a(a)

= (φ ◦ ω′)(idA ⊗ h⊗ idB)(idA ⊗∆)a(a)

= (φ ◦ ω′)(idA ⊗ (h⊗ idB)∆)a(a)

= (φ ◦ ω′)(idA ⊗ Es)a(a)

= ω′(Es((φ ◦ idB)a(a))).

If i) is true, one has

φ(a) = φ((idA ⊗ ε)a(a)) = ε((φ⊗ idB)a(a)) = ε(Es(φ⊗ idB)a(a))

= (φ⊗ ε)(idA ⊗ Es)a(a) = (φ⊗ ε)(idA ⊗ (h⊗ idB)∆)a(a)

= (φ⊗ ε)(idA ⊗ h⊗ idB)(idA ⊗∆)a(a)

= (φ⊗ ε)(idA ⊗ h⊗ idB)(a⊗ idB)a(a)

= (φ⊗ ε)(T a ⊗ idB)a(a) = (φ ◦ T a)(idA ⊗ ε)a(a) = (φ ◦ T a)(a),

which is ii), so the three first assertions are equivalent.
Further, if iv) is true, then we have, applying it to x ∈ A and y = 1B

(φ⊗ idB)a(x) = (φ⊗ S)((x⊗ 1B)a(1A)),

which implies i). Suppose now that i) is true (and so ii) and iii) as well). First, for all
a ∈ A, z ∈ Bt, the equality (20) gives

a1S(z)⊗ a2 = a1 ⊗ a2z.
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Next, the equality y1 ⊗ εt(y
2) = (11Ay)⊗ 12A (which can be proven directly), the equality

εt(b) = b1S(b2), ∀b ∈ B and assertion i) give

(φ⊗ idB)(a(x)(y ⊗ 1B)) = φ(x1y)x2 = φ(x111Ay)x
212A = φ(x1y1)x2εt(y

2)

= φ(x1y1)x2y2S(y3) = φ((xy1)1)(xy1)2S(y3)

= φ((xy1)1)εs((xy
1)2)S(y3).

Now, using the definition of εs and the equality εt(bz) = εt(bS(z)) which is true for
all b ∈ B, z ∈ Bt, we have

(φ⊗ idB)(a(x)(y ⊗ 1B)) = φ((xy1)1)ε((xy1)2(1B)2)(1B)1S(y
3)

= φ((xy1)1)ε((xy1)2S((1B)2))(1B)1S(y
3)

= (φ⊗ ε)(a(xy1)(1A ⊗ S((1B)2)))(1B)1S(y
3)

= φ((i⊗ ε)(a(xy1)(1A ⊗ S((1B)2))))(1B)1S(y
3)

= φ((xy1) · S((1B)2))(1B)1S(y
3),

which equals, due to the relation (ac) · t = a(c · t), ∀a, c ∈ A, to

φ(x(y1 · S((1B)2)))(1B)1S(y
3) = φ(x(i⊗ ε)(α(y1)(1⊗ S((1B)2))))(1B)1S(y

3)

= φ(xy1ε(y2S((1B)2)))(1B)1S(y
3)

= (φ⊗ ε⊗ S)(xy1 ⊗ y2S((1B)2 ⊗ y3S((1B)1)

= (φ⊗ ε⊗ S)((x⊗ 1⊗ 1)(α⊗ i)α(y)(1⊗ ς(S ⊗ S)(∆(1B))))

= (φ⊗ ε⊗ S)((x⊗ 1⊗ 1)(i⊗∆)α(y)(i⊗∆)(1⊗ 1B))

= (φ⊗ S)((x⊗ 1)(i⊗ (i⊗ ε)∆)α(y))

= (φ⊗ S)((x⊗ 1)α(y)).

�

Corollary 3.7. Let a(1A) = 11A ⊗ 12A be a decomposition of a(1A) in Sweedler leg no-
tations, and let φ be a positive faithful form on A satisfying the conditions of Proposi-
tion 3.6, then 11A is in the centralizer of φ.

Proof. Due to i), one has for all x ∈ A: (φ⊗ i)a(x) ∈ Bt, so (φ⊗S)a(x) = (φ⊗S−1)a(x),
hence by iv) applied twice:

(φ⊗ i)(a(1A)(x⊗ 1B)) = (φ⊗ S)a(x) = (φ⊗ S−1)a(x)

= (φ⊗ i)((x⊗ 1B)a(1A)),

which gives the result. �

Definition 3.8. A linear form on A satisfying the conditions of Proposition 3.6 is called
an invariant form with respect to a.

Example 3.9. The Haar measure h is an invariant faithful form on B with respect to
the coaction ∆ of G on B.

Definition 3.10. If Aa = C1A, we say that the coaction a is ergodic.

Example 3.11. Let I ⊂ B be a unital right coideal C∗-subalgebra with the coaction
a = ∆|I . Then I

a = I ∩ Bt, so this coaction is ergodic if and only if I ∩ Bt = C1B , i.e.,
if and only if I is connected.

Remark 3.12. Lemma 3.6 iii) shows that the set of a-invariant faithful states on A is
not empty. Moreover, if a is ergodic, then the linear form hA on A defined by T a(x) =
hA(x)1A(∀x ∈ A) is the unique a-invariant faithful state.
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Definition 3.13. Let H be a Hilbert space and a be a coaction of G on a unital C∗-
subalgebra A of B(H), then an implementation of a is a unitary corepresentation V of
G on H such that, for all a ∈ A, one has

a(a) = V (a⊗ 1B)V
∗.

Let us construct a canonical implementation for any coaction.

Proposition 3.14. Let a be a coaction of G on A and φ a faithful a-invariant state on
A, then the operator V defined on Hφ ⊗Hh by

V (a⊗ b) := a(a)(1A ⊗ b), for all a ∈ A, b ∈ B,

is a unitary corepresentation of G implementing a.

Proof. For the proof that V is a corepresentation of G, see the proof of Proposition 2.10.
Then Proposition 3.6 and Corollary 3.7 imply

< V (a⊗ b), V (a⊗ b) > = (φ⊗ h)((1A ⊗ b∗)a(a∗a)(1A ⊗ b))

= h[b∗(φ⊗ idb)(a(a
∗a)(1A ⊗ 1B))b)]

= h[b∗(φ⊗ S)[(a∗a⊗ 1B)a(1A)]b]

= (φ⊗ h)[(a∗a11A ⊗ b∗S(12A)b]

=< Jφσ
φ
i/2(1

1
A)

∗Jφa⊗ S(12A)b, a⊗ b >

=< (Jφ(1
1
A)

∗Jφ ⊗ S(12A))(a⊗ b), a⊗ b >,

for all a ∈ A, b ∈ B, from where

V ∗V = (jφ ⊗ S)a(1A).

Here jφ(x) := Jφx
∗Jφ is the Tomita involution associated with φ. Then V is a partial

isometry, by Proposition 3.3 its image is a(1A)(Hφ ⊗ Hh), so V V
∗ = a(1A). Put β :=

jφ ◦ α, then by Tomita’s theory β is a faithful anti-representation of Bs whose image
commutes in B(Hφ) with Im α.

Now, for any x, a ∈ A and b ∈ B, one has: a(x)V (a ⊗ b) = a(x)a(a)(1A ⊗ b) =
a(xa)(1A⊗ b) = V (ax⊗ b) = V (x⊗1)(a⊗ b). Hence, a(x)V = V (x⊗1), and one deduces
that:

a(x) = a(x)a(1) = a(x)V V ∗ = V (x⊗ 1)V ∗.

�

Example 3.15. If I is a right coideal *-subalgebra of B and ∆|I is a coaction of G
on it, the above formula gives the unitary corepresentation of G which is a canonical
implementation of ∆. In particular, if I = B (resp., I = Bs), we have the regular (resp.,
the trivial) unitary corepresentation of G.

2. Spectral subspaces of A. For any (U,HU ) ∈ UCorep(G), HU is a G-comodule
via δU : v 7→ U(v ⊗ 1B). In terms of the matrix coefficients Ui,j (i, j = 1, ..., n) with
respect to some orthonormal basis {ei}

n
i=1 in HU , this means that δU (ej) = Σn

i=1ei⊗Ui,j .

Definition 3.16. Let A be a unital G-C∗-algebra A. We call the spectral subspace of
A corresponding to (U,HU ) the linear span AU of the images of all G-comodule maps
HU → A.

For instance, if U is the trivial corepresentation which is associated with (∆|Bs
, Bs), so

HU = Bs, we will use the notation Aε instead of AU , and we have α(Bs) ⊂ Aε. Indeed,
α : Bs → A is a G-comodule map: a(α(x)) = (1A ⊗ x)a(1A) = (1A ⊗ x)(α ⊗ idB)∆(1B)
–see (21).
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Proposition 3.17. (cf. [2], Proposition 13). One can characterize the spectral subspaces
as follows:

AU := {a ∈ A|a(a) ∈ a(1A)(A⊗BU )}.

Proof. (i) Let R : HU → A be a G-comodule map. Then

a(a) = a(R(v)) = a(1A)(R⊗ id)δU (v) ∈ a(1A)(R⊗ id)(HU ⊗BU ),

where a = R(v), v ∈ HU , and

a(1A)(R⊗ id)(HU ⊗BU ) ⊂ a(1A)(A⊗BU ).

(ii) Vice versa, let a ∈ A be such that a(a) ∈ a(1A)(A ⊗ BU ) ⊂ A ⊗ BU , so a(a) =
Σi,j(ai,j ⊗ Ui,j). Then, on the one hand,

(a⊗ idB)a(a) = Σi,j(a(ai,j)⊗ Ui,j),

and, on the other hand, using Remark 2.18 (iii),

(a⊗ idB)a(a) = Σi,j(ai,j ⊗∆(Ui,j)) = Σi,j,k(ai,j ⊗ Ui,k ⊗ Uk,j),

from where a(ak,j) = Σi(ai,j ⊗ Ui,k), for all k, j = 1, . . . , dim(HU ). But a(1A)
2 = a(1A),

so in fact a(ak,j) = a(1A)(Σiai,j ⊗ Ui,k). We have a = Σjaj,j because the images of
both sides of this equality under a coincide and a is injective. So it suffices to show that
any aj,j is the image of some vector from HU under some G-comodule map to A. But

the map defined by ek 7→ ak,j , for all j, k = 1, . . . , dim(HU ) (where {ek}
dim(HU )
k=1 is the

above orthonormal basis in HU ), is clearly a G-comodule map and aj,j is the image of
the vector ej . �

Corollary 3.18. (i) All AU are closed.
(ii) A = ⊕x∈ΩAUx .
(iii) AUxAUy ⊂ ⊕zAUz , where z runs over the set of all irreducible direct summands

of Ux ⊙ Uy.
(iv) a(AU ) ⊂ a(1A)(AU ⊗BU ) and AU = (AU )

∗.
(v) Aε is a unital C∗-algebra.

Proof. (i) a is continuous and dim(BU ) <∞, so all AU are closed.
(ii) Follows from Remark 2.18 (i).
(iii) Follows from Remark 2.18 (ii).
(iv) Remark 2.18 (iii) implies:

a(a1)⊗ a2 = a1 ⊗∆(a2) ∈ A⊗BU ⊗BU ,

so a(a1) ∈ A ⊗ BU . As a(1A) is an idempotent, we have a(a1) ∈ a(1A)(A ⊗ BU ) which
means that a1 ∈ AU . Then the second statement follows.

(v) Follows from Example 2.19. �

Example 3.19. Let (ε,Bs) be the trivial corepresentation of G, so Bε = BsBt is a
unital C∗-algebra (see Example 2.19). The definition of Aε shows that it is a unital
C∗-subalgebra of A. It contains a unital C∗-subalgebra α(Bs)A

a invariant with respect
to a. Indeed, if z ∈ Bs, a ∈ Aa, we have, using (21)

a(α(z)a) = (1A ⊗ z)α(1A)(a⊗ 1B) ∈ α(1A)(α(Bs)A
a ⊗BsBt).

We will show that for coconnected finite quantum groupoids Aε = α(Bs)A
a.
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4. From coactions to module categories over UCorep(G)

1. Equivariant C∗-correspondences. The next definition is parallel to the defini-
tions given in [1] and [6].

Definition 4.1. Given a G − C∗-algebra (A, a), we call a right Hilbert A-module E
A-equivariant if it is equipped with a map aE : E 7→ E ⊗B such that

1) (aE ⊗ idB)aE = (idE ⊗∆)aE ; (idE ⊗ ε)aE = idH ;
2) aE(ξ · a) = aE(ξ) · a(a), for all a ∈ A, ξ ∈ E ;
3) < aE(ξ), aE(η) >A⊗B= a(< ξ, η >A), for all ξ, η ∈ E , where the exterior product

E ⊗B [12], Chapter 4, is considered as a right Hilbert A⊗B-module.
Let DA be the category of finitely generated A-equivariant Hilbert A-modules and

morphisms: equivariant A-linear maps. These maps are automatically adjointable – see
[12], Chapter 1, so DA is a C∗-category.

Remark 4.2. Condition 1) implies that E is canonically a Bs-bimodule, given by x.ξ.y =
ξ1ε(xξ2y) ∀x, y ∈ Bs, ∀ξ ∈ E. So E ⊗B is a Bs ⊗B-bimodule, where B is a B-bimodule
via right and left multiplication. Then one proves using (21) and (5) that aE(ξ) ·a(1A) =
aE(ξ), for all ξ ∈ E, and that the vector space (E⊗B)·a(1A) is generated by aE(E)(1A⊗B)
– see the proof of Proposition 3.3.

Lemma 4.3. Any E ∈ DA satisfies the following conditions:
(i) (z · ζ) · a = z · (ζ · a), for all z ∈ Bs, a ∈ A.
(ii) < z · ζ, η >A=< ζ, z∗ · η >A, for all z ∈ Bs, ζ, η ∈ E.

Proof. (i) We have

z · (ζ · a) = (ζ · a)1ε(z(ζ · a)2) = (idE ⊗ ε)[((z · ζ)1 ⊗ (z · ζ)2) · a(a)] = (z · ζ) · a.

(ii) The needed equality is equivalent to

aE(z · ζ, η >A) = aE(< ζ, z∗ · η >A),

which is the same as

< aE(z · ζ), aE(η) >A⊗B=< aE(ζ), aE(z
∗ · η) >A⊗B

or
< ζ1, η1 >A< zζ2, η2 >B=< ζ1, η1 >A< ζ2, z∗η2 >B .

As we see, the A-valued scalar products coincide and both B-valued scalar products are
equal to (ζ2)∗z∗η2 which finishes the proof. �

This lemma shows that any E ∈ DA is automatically a (Bs, A)-correspondence (see
the definition in Section 2); we call such an object an equivariant (Bs, A)-correspondence
and denote it by Bs

EA.

Example 4.4. A G − C∗-algebra (A, a) itself with the A-valued scalar product <
a, b >A= a∗b (∀a, b ∈ A), is an equivariant (Bs, A)-correspondence.

Theorem 4.5. If (V,HV ) is a unitary corepresentation of G, then HV is an equivariant
Bs-correspondence (Bs is equipped with the coaction ∆|Bs

of G).

Proof. Proposition 2.11 shows that (HV , aV ) is a unitary G-comodule (where aV (η) =
V (η⊗Λh(1B)), ∀η ∈ HV ) so HV is a Bs-correspondence in the sense of A. Connes. Then
the Hilbert Bs-module structure on HV is described in the proof of Lemma 2.20.

Applying the relations (4) and (5), one has

aV (η) ·∆(1B) = aV (η) · (11 ⊗ 12) = aV (η) · (1B ⊗ S(11)12) = aV (η),

which implies, for all η ∈ HV , t ∈ Bs

aV (η · t) = aV (η) · (∆(1B)(1⊗ t)) = aV (η) ·∆(t).
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Now, consider V as an element of B(HV ⊗ Hh), where Hh is the GNS Hilbert space
constructed by (B, h), the canonical multiplicative isometry Ih of G (see [34], Proposi-
tion 2.2.4) and its normalized fixed vector e (see [32], [33] 2.3 and 2.4)). Applying [33],
Lemma 2.1.1, one has, for all b′ ∈ B′ (the commutant of B in B(Hh)), ξ, η ∈ H, and
x, x′ ∈ Bs

< ∆(< ξ, η >α)(Λεx⊗ e),Λεx
′ ⊗ b′e >

=< ∆(1B)(1B⊗ < ξ, η >Bs
)(Λεx⊗ e),Λεx

′ ⊗ b′e >

= (h⊗ ωe)((x
′∗ ⊗ b′∗)∆(1B)(1B⊗ < ξ, η >Bs

)(x⊗ 1B))

= (h⊗ ωe)(∆(1B)(1B⊗ < ξ, η >α)(xx
′∗ ⊗ b′∗))

= ωe((h⊗ idB)(∆(1B)(xx
′∗ ⊗ 1B) < ξ, η >Bs

b′∗))

= ωe(S(xx
′∗) < ξ, η >Bs

b′∗).

On the other hand, taking two decompositions: V (ξ⊗ e) =
∑
j∈J

(ξj ⊗ bje) and V (η⊗ e) =
∑
i∈I

(ηi ⊗ bie), one computes

<< aV (ξ), aV (η) >Bs⊗B (Λεx⊗ e),Λεx
′ ⊗ b′e >

=
∑

i∈I,j∈J

<< ξj ⊗ bj , ηi ⊗ bi > (Λεx⊗ e),Λεx
′ ⊗ b′e >

=
∑

i∈I,j∈J

< (R(ξj)
∗R(ηi)⊗ b∗j bi)(Λεx⊗ e),Λεx

′ ⊗ b′e >

=
∑

i∈I,j∈J

< (R(ξj)
∗R(ηi)Λεx,Λεx

′ >< b∗j bie, b
′e >

=
∑

i∈I,j∈J

< R(ηi)Λεx,R(ξj)Λεx
′ >< bie, bjb

′e >

=
∑

i∈I,j∈J

< β(x)ηi), β(x
′)ξj >< bie, b

′bje >

=<
∑

i∈I

(β(x)⊗ 1B)(ηi ⊗ bie),
∑

j∈J

(β(x′)⊗ b′)(ξj ⊗ bje) >

=< (β(x)⊗ 1B)(V (η ⊗ e), (β(x′)⊗ b′)V (ξ ⊗ e) >

=< V (η ⊗ S(x)e), V (ξ ⊗ S(x′)b′e) >

=< eβ,i(η ⊗ S(x)e), eβ,i(ξ ⊗ S(x′)b′e) >

=<< ξ, η >Bs
S(x)e, S(x′)b′e >=<< ξ, η >Bs

S(xx′∗)e, b′e >

= ωe(S(xx
′∗) < ξ, η >Bs

b′∗) = ωe(S(xx
′∗) < ξ, η >Bs

b′∗).

Thus, < aV (ξ), aV (η) >Bs⊗B= ∆(< ξ, η >Bs
). �

Proposition 4.6. Given an equivariant Bs-correspondence Bs
EBs

, define on E the scalar
product inherited from its Bs-scalar product: < ξ, η >= ε(< η, ξ >Bs

), for all ξ, η ∈ E.
Then V ∈ B(E ⊗Hh) defined by

V (η ⊗ Λh(b)) = (idE ⊗ Λh)(aE(η) · (1⊗ b)), for all η ∈ E , b ∈ B,

is a unitary corepresentation of G.

Proof. As E satisfies the condition 1) of Definition 4.1, it has a Bs-bimodule structure
defined by the maps α, β : Bs → L(E). In particular, β(n)ξ = ξ · n, for all n ∈ Bs and
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ξ ∈ E . Definition 4.1 2) shows that the right Bs-module structure given by β is the same
as the initial Bs-bimodule structure on E . With the new scalar product on E , one has

< β(n)ξ, ξ > = ε(< ξ, β(n)ξ >Bs
) = ε(< ξ, ξ · n >Bs

)

= ε(< ξ, ξ >Bs
n) = ε(n < ξ, ξ >Bs

))

= ε(< ξ · n∗, ξ >Bs
))

= ε(< β(n∗)ξ, ξ >Bs
)) =< ξ, β(n∗)ξ > .

Hence, β is a unital ∗-anti-representation of Bs on E , and eβ,i is an orthogonal projection.
Moreover, as E satisfies the condition 1) of Definition 4.1, then V defined above satisfies
the conditions (i) and (ii) of Definition 2.9 - see the proof of Proposition 2.10. On the
other hand

< V ∗V (η ⊗ e),(η ⊗ e) >=< V (η ⊗ e), V (η ⊗ e) >

=<
∑

i∈I

ηi ⊗ bie,
∑

i∈I

ηi ⊗ bie >

= (ε⊗ h)(< aE(η), aE(η) >Bs⊗B)

= (ε⊗ h)(atriv(< η, η >Bs
)) = h(< η, η >Bs

)

=<< η, η >Bs
e, e >=< eβ,i(η ⊗ e), η ⊗ e > .

As e is separating for B, this implies that V is a partial isometry whose initial support
is eβ,i. �

Theorem 4.5 and Proposition 4.6 allow to define two functors : F3 : UCorep(G) →
DBs

and G3 : DBs
→ UCorep(G) on the level of objects, and the morphisms in both

cases are just B-comodule maps. These functors are inverse to one another. Indeed,
since the B-comodule structure is the same in both cases, the only thing to explain is the
relation between the usual scalar product in HV and the corresponding Bs-valued scalar
product, but this explanation was done in the proof of Lemma 2.20. Thus, we have

Theorem 4.7. The categories UCorep(G) and DBs
are isomorphic.

In particular, the unit object 1 ∈ DBs
is (Bs,∆|Bs

) with the Bs-valued scalar product
< b, c >= b∗c, for all b, c ∈ Bs, and the tensor product is the interior tensor product of
Bs-correspondences.

2. Module categories over UCorep(G) associated with equivariant C∗-corres-

pondences.

Definition 4.8. [6]. Let C be a C∗-multitensor category with unit object 1. A C∗-
category M is called a left C-module C∗-category if there is a bilinear ∗-functor ⊠ :
C ×M → M with natural unitary transformations (X ⊗ Y )⊠M → X ⊠ (Y ⊠M) and
1 ⊠M → M (X,Y ∈ C,M ∈ M) making M a left module category over C – see [9],
Chapter 7. If C is strict, we say that M is strict (resp., indecomposable) if these natural
transformations are identities (resp., if, for all non-zero M,N ∈ M, there is X ∈ C such
that M(X ⊠M,N) 6= 0).

We say that an object M ∈ M generates M if any object of M is isomorphic to a
subobject of X ⊠ M for some X ∈ C. M is said to be semisimple if the underlying
C∗-category is semisimple.

We will always consider C∗-categories closed with respect to subobjects, i.e., such that
for any object M and any projection p ∈ End(M), there are an object N and isometry
v ∈ M(N,M) satisfying p = vv∗ (if necessary, one can complete given C∗-category with
respect to subobjects).
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One naturally defines a morphism F : M1 → M2 between two C-module C∗-categories
as a morphism of the underlying C∗-categories equipped with a unitary natural equiva-
lence F (X ⊠M) → X ⊠ F (M), ∀ X ∈ C, M ∈ M satisfying some coherence conditions
(see [6], 2.17).

Lemma 4.9. DA is a strict left module category over UCorep(G) defined by interior
tensor product of C∗correspondences over Bs.

Proof. Given HV ∈ DBs
and Bs

EA ∈ DA, equip the vector space HV ⊗Bs
E with A-valued

scalar product – see [12], Proposition 4.5

(22) < v ⊗Bs
ζ, w ⊗Bs

η >A=< ζ,< v,w >Bs
·η >A, ∀v, w ∈ HV , ζ, η ∈ E ,

which gives it the Bs−A-correspondence structure, and also with the algebraic structure
of tensor product of the corresponding B-comodules. One can check that we obtain a new
object HV ⊗Bs

E ∈ DA, and that this construction is natural both in V and E . Thus, we
have defined a functor ⊠ : UCorep(G)×DA → DA having the needed properties. Indeed,
the first of them is true because HU⊙V = HU ⊗Bs

HV and because of the associativity
of ⊗Bs

, and the second one can be proved by direct computation.
Finally, ⊠ sends adjoint morphisms to adjoint, so it is a ∗-functor. �

Let us show that A viewed as an object of DA (see Example 4.4) is a generator for
DA. More precisely, if V ∈ UCorep(G), then HV ⊗Bs

A ∈ DA and the corresponding

right coaction of B on HV ⊗Bs
A defines a left action of B̂ on it: b̂ · v := v1 < b̂, v2 >,

for all v ∈ HV ⊗Bs
A, b̂ ∈ B̂. If p ∈ L(HV ⊗Bs

A) is a B̂-invariant orthogonal projection,
then one can check that HV,p = p(HV ⊗Bs

A) is a subobject of HV ⊗Bs
A in DA.

Lemma 4.10. (cf. [17], Lemma 3.2). For any E ∈ DA, there is V ∈ UCorep(G) and a

B̂-invariant projection p ∈ L(HV ⊗Bs
A) such that E is isomorphic to HV,p.

Proof. For any fixed ζ ∈ B̂ · E = E , the finite dimensional vector space B̂ · ζ is a B̂-
module, so there is a finite dimensional B̂-submodule E0 of E such that E0 · A = E .
In particular, there are unital ∗-representations of Bs

∼= B̂t and Bt
∼= B̂s on E0, so

it is a Bs-bimodule. Constructing on this space a Bs-valued scalar product like in the
proof of Lemma 2.20, we turn E0 into an equivariant Bs correspondence, and Proposition
4.6 allows to construct V ∈ UCorep(G) such that the left B̂-modules HV and E0 are
isomorphic. Fix an isomorphism T0 : HV → E0 and define T : HV ⊗Bs

A → E by
T (v⊗Bs

a) = (T0v) ·a. This is a surjective morphism of A-modules. Since HV ⊗Bs
A is a

finitely generated Hilbert A-module, it makes sense to consider the polar decomposition
T ∗ = u|T ∗|. Then |T ∗| is an invertible endomorphism of the A-module E , and u : E →
HV ⊗Bs

A is an A-module mapping such that u∗u = ι. Property (iii) in Definition 4.1
and non-degeneracy ensure that T ∗, |T ∗|, u = T ∗|T ∗|−1, and u∗ are morphisms of A-
equivariant Hilbert modules. In particular, u : E → HV,p is an isomorphism such that
p = uu∗. �

Remark 4.11. EndDA
(A) = Aa. In particular, a coaction a is ergodic if and only if the

generator A of the module category DA is simple.
Indeed, if T ∈ EndDA

(A), then a(T (1A)) = (T ⊗ idB)a(1A) ∈ A⊗Bt. So T (1A) ∈ Aa

because (idA ⊗ h)a(T (1A)) = (idA ⊗ ε)a(T (1A)) = T (1A).
Vice versa, arbitrary a ∈ Aa generates an equivariant endomorphism of A via T :

1A 7→ a.

We can summarize the above considerations as follows:

Theorem 4.12. Given a regular coconnected finite quantum groupoid G, consider two
categories:
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(i) The category G−Alg of unital G−C∗-algebras together with unital G-equivariant
∗-homomorphisms as morphisms.

(ii) The category UCorep(G)−Mod of pairs (M,M), where M is a left UCorep(G)-
module C∗-category and M is its generator, with equivalence classes of unitary Rep(G)-
module functors respecting the generators as morphisms.

Let us associate with any G−C∗-algebra (A, a) the C∗-category DA of finitely generated
A-equivariant (Bs, A)-correspondences with its generator A, and with any morphism f :
A0 → A1 in G − Alg the morphism E 7→ E ⊗A0

A1 from DA0
to DA1

. This defines a
functor T : G−Alg → UCorep(G)−Mod.

The only thing to check is that T is well defined on the level of morphisms. This is
straightforward because A1 is a left A0-module via morphism f . This construction was
discussed in [6], Chapter 7 as ”extension of scalars”.

5. From module categories over UCorep(G) to coactions

In Sections 5 and 6 we use the approach proposed in [16] with certain modifications
reflecting the difference between CQG and finite quantum groupoids and the fact that
we are considering left module categories and right coactions instead of right module
categories and left coactions as in [16].

Definition 5.1. Let R be a C∗-algebra and let (C,⊗,1) be a strict C∗-tensor category,
a weak tensor functor from C to Corr(R) is a linear functor F : C → Corr(R) together
with natural R-bilinear isometries J = JU,V : F (U)⊗R F (V ) → F (U ⊗ V ) satisfying the
following conditions:

(i) F (1) = R;
(ii) F (T )∗ = F (T ∗) for any morphism T in C;
(iii) J : R⊗R F (U) → F (1⊗U) = F (U) maps r⊗X into Xr, and J : F (U)⊗R R→

F (U ⊗ 1) = F (U) maps X ⊗ r into rX, for all X ∈ F (U);
(iv) J(id⊗ J) = J(J ⊗ id);
(v) for all U, V ∈ C and every vector Y ∈ F (U), the right R-linear map SY =

SY,U : F (U) → F (U ⊗ V ) mapping X ∈ F (U) into J(X ⊗ Y ) is adjointable, and
J(id⊗ S∗

Y ) = S∗
Y ◦ J .

Remark 5.2. (i) Any unitary tensor functor F : C → Corr(R) is a weak tensor functor
– if the conditions (i)–(iv) are satisfied and the maps J are surjective, then the condition
(v) is also satisfied.

(ii) If we consider F as a functor into the category of vector spaces, then SY is a
natural transformation from F to F (· ⊗ V ), and we have

(23) S∗
Y F (T ⊗ id) = F (T ) ◦ S∗

Y , for all morphisms in C.

We will also need the following modification of [16], Proposition 3.1:

Proposition 5.3. Let M be a strict left module C∗-category over a strict C∗-tensor
category C, M be an object in M, and denote by R the unital C∗-algebra End(M). Then
the map F (U) = M(M,U ⊠M) ∀U ∈ C defines a weak tensor functor F : C → Corr(R),
where X = F (U) is a right R-module via the composition of morphisms, a left R-module
via rX = (id⊗ r)X, the R-valued inner product is given by < X,Y >= X∗Y , the action
of F on morphisms is defined by F (T )X = (T ⊗ id)X, and JX,Y (X ⊗ Y ) = (id⊗ Y )X,
for all X ∈ F (U), Y ∈ F (V ), X, Y ∈ C.

Let us note that SY (X) = (id⊗Y )X and S∗
Y (Z) = (id⊗Y ∗)Z, where Z ∈ F (U ⊗V ).

Now we will describe step by step the reconstruction procedure. Let M be a strict
left UCorep(G)-module C∗-category with generator M .
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Let Ω be an exhaustive set of representatives of the equivalence classes of irreducible
objects in UCorep(G). Consider the following vector space:

(24) A =
⊕

x∈Ω

AUx :=
⊕

x∈Ω

(F (Ux)⊗Hx),

and also a much larger vector space:

(25) Ã =
⊕

U∈‖UCorep(G)‖

AU :=
⊕

U∈‖UCorep(G)‖

(F (U)⊗HU ),

where F (U) =
⊕
i

F (Ui) corresponds to the decomposition U =
⊕
Ui into irreducibles,

and ‖UCorep(G)‖ is an exhaustive set of representatives of the equivalence classes of

objects in UCorep(G) (these classes constitute a countable set). Ã is a unital associative
algebra with the product

(X ⊗ ξ)(Y ⊗ η) = (id⊗ Y )X ⊗ (ξ ⊗Bs
η), ∀(X ⊗ ξ) ∈ AU , (Y ⊗ η) ∈ AV ,

and the unit

1Ã = idM ⊗ 1B .

Note that (id ⊗ Y )X = JX,Y (X ⊗ Y ) ∈ F (U ⊙ V ). Then, for any U ∈ UCorep(G),
choose isometries wi : Hi → HU defining the decomposition of U into irreducibles, and
define the projection p : Ã→ A by

(26) p(X ⊗ ξ) = Σi(F (w
∗
i )X ⊗ w∗

i ξ), ∀(X ⊗ ξ) ∈ AU ,

which does not depend on the choice of wi. Indeed, for any other choice of isometries vj
there exists a unitary matrix uij such that wi = Σi,juijvj . Note also that if w : HU → HV

is an isometry between U, V ∈ Corep(G), then

(27) p(F (w)X ⊗ wξ) = p(X ⊗ ξ), ∀(X ⊗ ξ) ∈ AU .

Lemma 5.4. A is a unital associative algebra with the product x · y := p(xy), for all
x, y ∈ A.

Proof. It suffices to check that p(p(a)p(b)) = p(a)p(b), for all a, b ∈ Ã. Let a = (X ⊗
ξ) ∈ AU , b = (Y ⊗ η) ∈ AV , where U, V ∈ UCorep(G). Choose isometries ui and vj
corresponding to the decompositions U =

⊕
Ui and V =

⊕
Uj into irreducibles, and

let wi,j,k be isometries corresponding to the decomposition of Ui ⊙ Vj into irreducibles.
Then

(28)

p(a)p(b) :=Σi(F (u
∗
i )X ⊗ u∗i ξ))Σj(F (v

∗
j )Y ⊗ v∗i η)

=Σi,j((id⊗ F (v∗j )Y )F (u∗i )X ⊗ u∗i ξ ⊗ v∗j η)

=Σi,j,k(F (w
∗
i,j,k)(id⊗ F (v∗j )Y )F (u∗i )X ⊗ w∗

i,j,k(u
∗
i ξ ⊗ v∗j η)).

On the other hand, if we apply p to (28), we get the same result. �

In particular, the vector subspace Aε = R⊗Hε (where R = End(M) and Hε = Bs) is
a unital C∗-subalgebra of A and any F (U) is an R-correspondence (see Proposition 5.3).

Lemma 5.5. If X is in F (U), then X• = S∗
XF (RU )(1B) is the unique element from

F (U) satisfying

< X•, Y >= F (R∗
U )J(Y ⊗X), for all Y ∈ F (U),

where RU and RU come from (2). We also have

< X,Y >= F (R
∗

U )J(Y ⊗X•), ∀Y ∈ F (U).
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Proof. We compute

< X•, Y >=< S∗
XF (RU )(1B), Y > =< F (RU )(1B), SX(Y ) >

= F (R∗
U )J(Y ⊗X).

The uniqueness follows from the faithfulness of the inner product. As for the last state-
ment, we compute:

F (R
∗

U )J(Y ⊗X•) = F (R
∗

U )J(Y ⊗ S∗
XF (RU )(1B))

= F (R
∗

U )S
∗
XJ(Y ⊗ F (RU )(1B))

= S∗
XF (R

∗

U ⊗ id)F (id⊗RU )Y,

where we have used (23). The latest expression equals to S∗
XY , where S∗

X : R → F (U)
is given by r → J(X ⊗ r) = r ·X, so S∗

XY =< X,Y >. �

Similarly, for any ξ ∈ HU define ξ• ∈ HU by

ξ• = (ξ ⊗ idU )RU (1B) = Ĝ1/2 · ξ (see (2)), so < η, ξ• >= R
∗

U (ξ ⊗ η) ∀η ∈ HU ,

and consider the map • : Ã→ Ã

(X ⊗ ξ)• := X• ⊗ ξ•.

Lemma 5.6. A is a unital ∗-algebra with the above product and the involution x∗ :=
p(x•), for all x ∈ A.

Proof. First, we prove that p(p(a)•) = p(a•), for all a ∈ Ã. Take a = (X ⊗ ξ) ∈ AU

and choose isometries ui corresponding to the decompositions of U =
⊕
Ui and into

irreducibles. Then for the standard duality morphisms we have RU = Σi(wi⊗wi)Ri and
RU = Σi(wi ⊗ wi)Ri, where Ri := RUi

, Ri := RUi
. Then

F (R∗
U )(Y ⊗X) = ΣiF (R

∗
i )J(F (w

∗
i )Y ⊗ F (w∗

i )X)

= Σi < (F (w∗
i )X)•, F (w∗

i )Y >,

so X• = ΣiF (wi)(F (w
∗
i )X)•. Similarly, ξ• = Σiwi(w

∗
i ξ)

•, therefore, applying p to a•

and using (27), we have

p(a•) = Σip(F (wi)(F (w
∗
i )X)• ⊗ wi(w∗

i ξ)
•)

= Σip((F (w
∗
i )X)• ⊗ (w∗

i ξ)
•).

On the other hand, the last expression equals to p(p(a)•).
Next, in order to prove that (p(a)p(b))∗ = p(b)∗p(a)∗, it suffices to prove that p((a ·

b)•) = p(b• · a•), for all a, b ∈ Ã. Take a = (X ⊗ ξ) ∈ AU and b = (Y ⊗ η) ∈ AV . The
unitary σ : HV ⊗HU → HU⊙V mapping θ⊗ ζ into ζ ⊗ θ defines an equivalence between

V ⊙ U and U ⊙ V , and we have

RU⊙V = (σ ⊗ id⊗ id)(id⊗RU ⊗ id)RV and RU⊙V = (id⊗ id⊗ σ)(id⊗RV ⊗ id)RU .

Then we compute using Lemma 5.5, relations SJ(X⊗Y ) = SY SX and (23)

J(X ⊗ Y )• = S∗
J(X⊗Y )F (RU⊙V )(1B)

= S∗
XS

∗
Y F (σ ⊗ id⊗ id)F (id⊗RU ⊗ id)F (RV )(1B)

= F (σ)S∗
XF (id⊗RU )S

∗
Y F (RV )(1B) = F (σ)S∗

XF (id⊗RU )(Y
•)

= F (σ)S∗
XJ(Y

• ⊗ F (RU )(1B)) = F (σ)J(Y • ⊗ S∗
XF (RU )(1B))

= F (σ)J(Y • ⊗X•).

Similarly, (ξ ⊗ η)• = σ(η• ⊗ ξ•), from where

(a · b)• = (F (σ)⊗ σ)(J(Y • ⊗X•)⊗ (η• ⊗ ξ•)) = (F (σ)⊗ σ)(b• · a•).
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Applying now p, we get p((a · b)•) = p(b• · a•).

In order to show that ∗∗ = id on A, we will show that p(a••) = p(a), for all a ∈ Ã.

Take a = (X ⊗ ξ) ∈ AU and consider the unitary u : HU → H
U

: ξ 7→ ξ. Then

RU = (u⊗ id)RU , hence, applying twice Lemma 5.5, we have

< X••, Y > = F (R∗
U
)J(Y ⊗X•) = F (R

∗

U )F (u
∗ ⊗ id)J(Y ⊗X•)

= F (R
∗

U )J(F (u
∗)Y ⊗X•) =< X,F (u∗)Y >, for any Y ∈ F (U).

So X•• = F (u)X. We also have ξ•• = ξ = uξ, from where a•• = (F (u) ⊗ u)a, and
applying p to both sides of this equality we get p(a••) = p(a). �

Now define a linear map a : A→ A⊗B by a(X ⊗ ξ) = X ⊗ (−⊗ idB)U
x(ξ ⊗ 1B) or,

in other words, by

(29) a(X ⊗ ξi) = X ⊗ Σj(ξj ⊗ Ux
j,i),

where X ∈ F (Ux), {ξj} is any orthonormal basis in Hx and Ux
i,j are matrix coefficients

of Ux with respect to this basis (see Definition 2.17).

Lemma 5.7. (i) The map a is a right coaction of G on A.
(ii) A admits a unique C∗-completion A such that a extends to a continuous coaction

of G on it.

Proof. (i) Clearly, (A, a) is a right B-comodule. In order to show that a is an algebra

homomorphism, remark that Ã is a right B-comodule via extension ã of a which is defined
as in (29), but with arbitrary U ∈ UCorep(G). It follows from (29) that p : Ã → A is a
comodule map, and from the formula U ⊙ V = U13V23 that ã is a homomorphism, hence
a is also a homomorphism.

In order to check that a is ∗-preserving, it suffices to show that ã(a)•⊗∗ = ã(a•), for
all a = (X ⊗ ξ) ∈ AU , U ∈ UCorep(G). This is equivalent to

U(ξ ⊗ 1B)
•⊗∗ = U(Ĝ1/2 · ξ ⊗ 1B), ∀ξ ∈ HU ,

which follows from Lemma 2.7 and a few relations that are easy to check: (b̂ · v1)⊗ v2 =

v1 ⊗ (v2 ↼ b̂), (b̂ · v)1 ⊗ (b̂ · v)2 = v1 ⊗ (b̂ ⇀ v2), (b̂ ⇀ b)∗ = Ŝ(b̂)∗ ⇀ b∗, and

(b ↼ b̂)∗ = b∗ ↼ Ŝ(b̂)∗, for all v ∈ HU , b ∈ B, and b̂ ∈ B̂.
Finally, a(1A) = id1 ⊗ (. ⊗ idB)U

ε(1B ⊗ 1B) = id1 ⊗ (− ⊗ idB)∆(1B), so a(1A) ∈
id1 ⊗Bs ⊗Bt.

(ii) By Lemma 3.4, the set Aa of all fixed points is a unital ∗-subalgebra of A com-
muting with α(Bs). Moreover, the conditional expectation T a := (idA ⊗ h)a (where h is
the normalized Haar measure of G) from A onto Aa gives rise to a Aa-valued (pre)inner
product for A defined by

< a, b >T= Tα(a∗b), for all a, b ∈ A.

Note that if a = (X ⊗ ξ) ∈ AU , then T a(p(a)) = Σi(F (w
∗
i )X × w∗

i ξ), where wi are
isometries corresponding to the decomposition of U into irreducibles such that Σi(wiw

∗
i )

is the projection onto the component of ε. This implies the mutual orthogonality of the
spaces AUx ∀x ∈ Ω, but 1A ∈ Aε hence T a(AUx) = 0 for all x 6= ε. The component
Aε = End(M)⊗Bs is a unital C

∗-algebra and using (29), by restriction a is a coaction of G
on the C∗-algebra Aε and T a(Aε) ⊂ Aε, which implies that Aa = T a(A) = T a(Aε) ⊂ Aε

and by Lemma 3.4, Aa is a unital C∗-subalgebra of Aε. Therefore A is a right pre-Hilbert
Aa-module.

The map Tα is completely positive, the C∗-algebra Aa is unital, and the number of the
components AUx is finite, so the multiplication on the left gives a faithful ∗-representation
A→ L(A). One can extend a to the C∗-completion A of A using the reasoning from the
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proof of [6], Proposition 4.4. The map V on A⊗B defined by X(a⊗ b) = a(a)(1A ⊗ b),
extends (due to the invariance of h) to a partial isometry on the right Hilbert Aa-module
A ⊗Hh. The direct calculation shows that the formula a : a 7→ V (a ⊗ 1B)V

∗ gives the
needed extension of the coaction. �

6. Equivalence of categories

Definition 6.1. Let (A, a) be a unitalG-C∗-algebra and Aε be its spectral C
∗-subalgebra

corresponding to the trivial corepresentation ε. The spectral functor associated with
(A, a) is a functor F : UCorep(G) → Corr(Aε) defined as follows: for any U ∈
UCorep(G), put F (U) = {X ∈ HU ⊗Bs

A|U13X12 = (idA ⊗ a)(X)} = {X = Σi(ξi ⊗Bs

ai)|a(ai) = Σj(aj⊗Uij), ∀ i}, where {ξi} is an orthonormal basis inHU . Then F (ε) = Aε,
all F (U) are Aε-bimodules, and Aε-valued inner product of X = Σi(ξi ⊗Bs

ai), Y =
Σi(ξi ⊗Bs

bi) ∈ F (U) defined by < X,Y >:= Σi(a
∗
i bi), does not depend on the choice of

{ξi}. Putting also F (T ) := T ⊗ id for morphisms, we have a unitary functor respecting
tensor products: if X = Σi(ξi ⊗Bs

ai) ∈ F (U), Y = Σj(ηj ⊗Bs
bj) ∈ F (V ), U, V ∈

UCorep(G), then the maps JU,V : X ⊗ Y 7→ Y23X13 are Aε-bilinear isometries between
F (U)⊗Aε

F (V ) and F (U ⊙ V ).

Remark 6.2. 1) The spectral functor (F, J) associated with a G-C∗-algebra (A, a) is a
weak unitary tensor functor. Indeed, properties (i) - (iv) are immediate, and (v) follows
by observing that the adjoint of the map

SY : F (U) → F (U ⊙ V ) : X → Y23X13,

is given by S∗
Y (Z) = Y ∗

23Z. Namely, if Y = Σi(ηj⊗Bs
aj) and Z = Σi,j(ξi⊗Bs

ηj⊗Bs
zi,j)

for some orthonormal bases {ξi} ∈ HU and {ηj} ∈ HV , then

(30) S∗
Y Z = Σi,j(ξi ⊗Bs

a∗jzi,j) ∈ F (U).

2) The spectral subspaces AU can be recovered from F (U) using the canonical surjective
maps

F (U)⊗HU → AU ,

which are isomorphisms for irreducible U .

Theorem 6.3. Fix a regular coconnected finite quantum groupoid G and a C∗-algebra C.
By associating to a G-C∗-algebra (A, a) its spectral functor, we get a bijection between
isomorphism classes of triples (A, a, ψ), where ψ : C → A is an embedding such that
Aε = ψ(C), and natural unitary monoidal isomorphism classes of weak tensor functors
UCorep(G) → Corr(C).

Proof. IsomorphicG-C∗-algebras produce naturally unitarily monoidally isomorphic weak
unitary tensor functors, and vice versa. It remains to show that up to some isomorphisms
these constructions are mutually inverse.

Let (A, a) be a G-C∗-algebra with its spectral C∗-subalgebra Aε corresponding to the
trivial corepresentation of G, and let F be the associated spectral functor. As F is a
weak unitary tensor functor, Lemmas 5.6 and 5.7 allow to construct a unital G-∗-algebra
(AF , aF ). One can check that linear maps sending p(X ⊗ ξ) to (ξ ⊗ id)X ∈ AU , for any
(X⊗ξ) ∈ F (U)⊗HU (U ∈ UCorep(G)), define a unital G-equivariant homomorphism of
algebras. In order to show that it is ∗-preserving, fix irreducibles Ux and an orthonormal
basis {ξi} in Hx ∀x ∈ Ĝ. For an element X = Σi(ξi⊗Bs

ai) ∈ F (Ux), we compute, using
Lemma 5.5 and identity (30)

X• = S∗
XF (RUx)(1B) = S∗

X(Σj(Ĝ−1/2ξj ⊗ ξj ⊗ 1B)) = Σj(Ĝ−1/2ξj ⊗ a∗j ).
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Then the image of the element (X ⊗ ξ)∗ = p(X• ⊗ ξ•) = p(X• ⊗ Ĝ1/2ξ) ∈ AF equals to

Σj(Ĝ1/2ξ, Ĝ−1/2ξj)a
∗
j = (Σj(ξj , ξ)aj)

∗,

which shows that the homomorphism is ∗-preserving. Passing to the C∗-completion, we
have the first part of the proof.

Conversely, let us start with a unitary weak tensor functor F , construct a unital G-
C∗-algebra (AF , aF ), and consider the spectral functor F ′ associated with it. For any
irreducible Ux ∈ UCorep(G), x ∈ Ω, fix an orthonormal basis {ξi} ∈ Hx, then the space
F ′(Ux) consists of vectors of the form Σi(ξi ⊗ X ⊗ ξi), where X = F (Ux). The map
X 7→ Σi(ξi ⊗X ⊗ ξi) from F (Ux) to F ′(Ux) is clearly Aε-bilinear, let us check that it is
isometric. Taking X ′ = Σi(ξi ⊗X ⊗ ξi), Y

′ = Σi(ξi ⊗ Y ⊗ ξi) in F
′(Ux), we compute

< X ′, Y ′ > = Σi(X ⊗ ξi)
∗(Y ⊗ ξi)

= p(Σi(X
• ⊗ Ĝ1/2ξi)(Y ⊗ ξi) = p(J(X• ⊗ Y )⊗RUx(1B)).

Lemma 5.5 and the fact that the morphism RUx : Bs → Ux ⊙ Ux is an isometry imply
that the last expression equals to < X,Y >, so the isomorphisms F (Ux) ∼= F ′(Ux) are
unitary and extend uniquely to a natural unitary isomorphism of functors F and F ′.
Finally, one can check directly that this isomorphism is monoidal. �

Proposition 6.4. Let G be a regular coconnected finite quantum groupoid and M be a
strict right UCorep(G)-module C∗-category with generatorM . If (A, a) is a unital G-C∗-
algebra constructed by this data in Lemma 5.7, then the category DA (see Definition 4.1)
is unitarily equivalent, as a UCorep(G)-module C∗-category, to M, via an equivalence
sending A to M .

Proof. As we have seen, (F, J) is a weak tensor functor. Note that there are canonical
isomorphisms of vector spaces

F (U) ∼= DA(A,U ⊗Bs
A)

that map Σi(ξi ⊗Bs
ai) ∈ F (U) into the morphism a 7→ Σi(ξi ⊗Bs

aia). Therefore, the
spectral functor is naturally unitarily monoidally isomorphic to the weak tensor functor
F ′ : UCorep(G) → Corr(R) defined by DA as in Proposition 5.3, where R = End(A). If
ψ : F ′ → F is such an isomorphism, then ψ : A = F ′(Uε) → F (Uε) = A is the identity
map since it is a bimodule map such that ψ ◦ J = J ′(ψ ⊗ ψ).

Let us now define a functor of linear categories E : D̃A → M̃, where D̃A ⊂ DA and
M̃ ⊂ M are full subcategories consisting of objects U⊗Bs

A and U⊠M , respectively. We
put E(U ⊗Bs

A) = U ⊠M on objects and E(T ) = ψ(T ) on morphisms T ∈ DA(A,U ⊗Bs

A). More generally, if T ∈ DA(U ⊗Bs
A, V ⊗Bs

A), where U, V ∈ UCorep(G), then
(idU ⊗ T )(RU ⊗ idA) ∈ DA(A,U ⊙ V ⊗Bs

A) is Frobenius reciprocity isomorphism with

inverse sending S ∈ DA(A,U ⊙ V ⊗Bs
A) to (R

∗

U ⊗ id ⊗ id)(idU ⊗ S). We can define
similar isomorphisms in M and then define linear isomorphisms

E : DA(U ⊗Bs
A, V ⊗Bs

A) → M(U ⊗Bs
M,V ⊗Bs

M)

by E(T ) = (R
∗

U ⊗ id⊗ id)[idU ⊗ ψ((idU ⊗ T )(RU ⊗ idA))].
Let us note that the naturality of ψ implies that if T : U⊗Bs

A→ V ⊗Bs
A, S : V →W ,

where U, V,W ∈ UCorep(G), then

(31) E(idW ⊗ T ) = idW ⊗ E(T ) and E((S ⊗ id)T ) = (S ⊗ id)E(T ).

Consider now morphisms Q : U ⊗Bs
A → V ⊗Bs

A and T : V ⊗Bs
A → W ⊗Bs

A,
and define the morphisms P = (idU ⊗ Q)(RU ⊗ idA) : A → (U ⊙ V ) ⊗Bs

A and S =
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(idV ⊗ T )(RV ⊗ idA) : A→ (V ⊙W )⊗Bs
A, which give

TQ =(R
∗

V ⊗ idW ⊗ idA)(idV ⊗ S)(R
∗

U ⊗ idV ⊗ idA)(idU ⊗ P )

=(R
∗

V ⊗ idW ⊗ idA)(R
∗

U ⊗ idV ⊗ idV ⊗ idW ⊗ idA)(idU ⊗ idU ⊗ S)(idU ⊗ P )

=(R
∗

U ⊗R
∗

V ⊗ idW ⊗ idA)(idU ⊗ J ′(P ⊗ S)),

where J ′(P ⊗ S) = (idU ⊗ idV ⊗ S)P : A→ U ⊗ V ⊗ V ⊗W ⊗A. A similar calculation
gives

E(T )E(Q) = (R
∗

U ⊗R
∗

V ⊗ idW ⊗ idM )(idU ⊗ J(ψ(P )⊗ ψ(S))),

from where, using (31) and monoidality of ψ, we get E(TQ) = E(T )E(Q), which means
that ψJ ′(P ⊗ S) = J(ψ(P )⊗ ψ(S)). Therefore, E is a functor, and since it is surjective

on objects and fully faithful, it is an equivalence of linear categories D̃A and M̃ .
Next, let us show that E is unitary, i.e., E(T ∗) = E(T )∗ on morphisms. First, let

T : A→ U ⊗Bs
A. Since ψ is unitary and ψ|A = idA, we have for any S : A→ U ⊗Bs

A:

E(T )∗E(S) = ψ(T )∗ψ(S) =< ψ(T ), ψ(S) >=< T, S >

= T ∗S = E(T ∗S) = E(T ∗)E(S).

As S is arbitrary, this implies that E(T ∗) = E(T )∗, and using (31), we also have E((T ⊗

id)∗) = E(T ⊗ id)∗. But any morphism in D̃A is a composition of two morphisms:
one of the above form T ⊗ idV and another of the form idM ⊗ S for some morphism
S in UCorep(G). As a consequence of (31), we have E(idM ⊗ S)∗ = (idM ⊗ S)∗ =
E((idM ⊗ S)∗), it follows that E is unitary.

Further, if we define J = JU⊗A,V : V ⊗Bs
E(U ⊗Bs

A) → E((V ⊙ U) ⊗Bs
A) to be

the identity maps, the relations (31) show that we get a natural isomorphism of bilinear
functors · ⊗E(·) and E(· ⊗ ·). Therefore, (E, J) is a unitary equivalence of UCorep(G)-

C∗-module categories D̃A and M̃.
Finally, since DA and M are completions of these categories with respect to subob-

jects, the equivalence between D̃A and M̃ extends uniquely, up to a natural unitary
isomorphism, to a unitary equivalence between the UCorep(G)-C∗-module categories
DA and M. �

Now we are ready to prove Theorem 1.1.

Proof. Due to the previous proposition, it remains to show that two unitalG-C∗-algebras,
(A1, a1) and (A2, a2), are isomorphic if and only if the pairs (DA1

, A1) and (DA2
, A2) are

unitarily equivalent.
First, given such equivalent pairs, we have the isomorphism of the corresponding

spectral subalgebras (A1)ε = End(M1) and (A2)ε = End(M2). Identifying the above
algebras via this isomorphism, we have a natural unitary monoidal isomorphism of the
weak tensor functors constructed in Proposition 5.3 which implies a natural unitary
monoidal isomorphism of the corresponding spectral functors. Now theorem 6.3 gives
the needed isomorphism of unital G-C∗-algebras. Conversely, isomorphic unital G-C∗-
algebras clearly produce unitarily equivalent classes of pairs of the form (M,M). �

Note that: (i) one can precise the definition of the equivalence of module functors
between pairs (M,M) as in [6], Theorem 6.4; (ii) under the above equivalence, the
unital C∗-algebra Aε is isomorphic to EndM(M)⊗Bs.

Corollary 6.5. Let M be a strict left module C∗-category over a strict rigid finite
C∗-tensor category C, M be a generator in M, and denote by R the unital C∗-algebra
End(M). Then there exist a regular biconnected finite quantum groupoid G (even with
commutative base) and a unital G-C∗-algebra (A, a) such that C is equivalent to
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UCorep(G) as C∗-tensor categories and M is equivalent to DA as left UCorep(G)-
module C∗-categories via an equivalence that maps M to A.

Indeed, the existence of G is guaranteed by Theorem 2.21, and the second statement
– by Proposition 6.4.

Corollary 6.6. If G is regular and coconnected, then Aε = Aaα(Bs).
Indeed, we have seen that Aε = EndM(M)⊗Bs and that Aa = EndM(M).

Example 6.7. The C∗-algebraB with coproduct ∆ viewed asG-C∗-algebra, corresponds
to the UCorep(G)-module C∗-category Corrf (Bs) with generator M = Bs: for any
element U ∈ UCorep(G) and N ∈ Corrf (Bs), one defines U ⊠ N := F (U) ⊗Bs

N ,
where the functor F : UCorep(G) → Corrf (Bs) (F (U) = HU ) is the forgetful functor.

Indeed, if one identifies M(Bs, HU ) with HU , we get an isomorphism of the algebra Ã

constructed from the pair (M,M) onto B̃ =
⊕
U

(HU ⊗ HU ) and then an isomorphism

A ∼= B =
⊕

x∈Ĝ

(Hx ⊗ Hx) such that p : Ã → A turns into the map B̃ → B sending

ξ ⊗ η ∈ HU ⊗HU into the matrix coefficient Uξ,η.
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