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Abstract. The paper deals with the problem of a rigorous description of the evolu-

tion of states of large particle quantum systems in terms of correlation operators. A

nonperturbative solution to a Cauchy problem of a hierarchy of nonlinear evolution
equations for a sequence of marginal correlation operators is constructed. Moreover,

in the case where the initial states are specified by a one-particle density operator,

the mean field scaling asymptotic behavior of the constructed marginal correlation
operators is considered.

1. Introduction

In the article we develop an approach to describe an evolution of states of large par-
ticle quantum systems by means of marginal correlation operators. In particular, it is
related to a current important problem on entanglement of quantum states. The phys-
ical interpretation of marginal correlation operators is that they determine macroscopic
characteristics of fluctuations of mean values of observables on a microscopic level [1, 10].

As a result of the definition of the marginal correlation operators within the frame-
work of dynamics of correlations governed by a von Neumann hierarchy [9], we estab-
lish that a sequence of such operators is governed by a nonlinear quantum BBGKY
(Bogolyubov–Born–Green–Kirkwood–Yvon) hierarchy [1], and a nonperturbative solu-
tion of the Cauchy problem to this hierarchy of nonlinear evolution equations is repre-
sented in the form of series expansions over the number of particles of the subsystems
such that their generating operators are the corresponding-order cumulants of the groups
of nonlinear operators of the von Neumann hierarchy for a sequence of the correlation
operators.

We note that an equivalent approach to the description of the evolution of states
of large particle quantum systems, if compared with marginal correlation operators, is
given by marginal density operators governed by a quantum BBGKY hierarchy [2, 6].
Traditionally a solution of the quantum BBGKY hierarchy for marginal density operators
is constructed within the framework of the perturbation theory [3, 4, 12, 15].

A conventional approach to the mentioned problem is based on considering the as-
ymptotic behavior of a solution of the quantum BBGKY hierarchy for marginal density
operators represented in the form of series expansions of the perturbation theory in the
case where the initial states are specified by a one-particle density operator without cor-
relation operators [3, 4, 12, 15]. In the papers [7, 8, 11], new approaches to a description
of propagation of the initial correlations of large particle quantum systems in a mean
field scaling limit where developed. In paper [7] the process of propagation of the ini-
tial correlations was proved within the framework of the description of the evolution
by means of marginal observables [5], and in paper [11] it was established by another
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method in terms of a one-particle density operator governed by the generalized quantum
kinetic equation. We remark that initial states specified by correlations are typical for
the condensed states of many-particle systems in contrast to their gaseous state [1, 17].

Further in this paper we consider the problem of a rigorous description of the evolution
of states of large particle quantum systems within the framework of marginal correlation
operators for the initial states being specified by arbitrary correlation operators.

In Section 2, we formulate an approach to the description of quantum correlations
within the framework of dynamics of correlations governed by a von Neumann hierarchy.
In the next Section 3, we construct a nonperturbative solution to a Cauchy problem
of the hierarchy of nonlinear evolution equations for marginal correlation operators. In
Section 4, we establish the mean field asymptotic behavior of the constructed marginal
correlation operators in the case where the initial states are specified by a one-particle
density operator. Finally, in Section 5, we conclude with some advances of the developed
approach to the description of the process of propagation of correlations in large particle
quantum systems.

2. Preliminaries: dynamics of correlations

Let the space H be a one-particle Hilbert space, then the n-particle space Hn = H⊗n
is a tensor product of n Hilbert spaces H. We adopt the usual convention that H⊗0 = C.
The Fock space over the Hilbert space H is denoted by FH =

⊕∞
n=0Hn. A self adjoint

operator fn defined on the n-particle Hilbert space Hn = H⊗n will also be denoted by
the symbol fn(1, . . . , n).

Let L1(Hn) be the space of trace class operators fn ≡ fn(1, . . . , n) ∈ L1(Hn) that
satisfy the following symmetry condition: fn(1, . . . , n) = fn(i1, . . . , in) for arbitrary
(i1, . . . , in) ∈ (1, . . . , n), and equipped with the norm

‖fn‖L1(Hn) = Tr1,...,n|fn(1, . . . , n)|,

where Tr1,...,n are partial traces over 1, . . . , n particles. We denote by L1
0(Hn) the every-

where dense set of finite sequences of degenerate operators that have infinitely differen-
tiable kernels with compact supports [14].

On the space of trace class operators L1(Hn) there is defined a one-parameter map-
ping G∗n(t),

R1 3 t 7→ G∗n(t)fn
.
= e−itHnfne

itHn ,(1)

where the operator Hn is the Hamiltonian of a system of n particles obeying Maxwell–
Boltzmann statistics, and we use units such that h = 2π~ = 1 is a Planck constant and
m = 1 is the mass of particles. The inverse group to the group G∗n(t) is denoted by
(G∗n)−1(t) = G∗n(−t). On its domain of definition, the infinitesimal generator N ∗n of the
group of operators (1) is defined, in sense of the strong convergence of the space L1(Hn),
by

lim
t→0

1

t

(
G∗n(t)fn − fn

)
= −i (Hnfn − fnHn)

.
= N ∗nfn,(2)

which has the following structure: N ∗n =
∑n
j=1N ∗(j) + ε

∑n
j1<j2=1N ∗int(j1, j2), where

the operator N ∗(j) is a free motion generator of the von Neumann equation [6], the
operator N ∗int is defined by means of the operator of a two-body interaction potential Φ
by the formula N ∗int(j1, j2)fn

.
= −i (Φ(j1, j2)fn− fnΦ(j1, j2)), and the scaling parameter

is denoted by ε > 0.
On the space L1(FH) = ⊕∞n=0L

1(Hn) of sequences f = (f0, f1, . . . , fn, . . .) of trace
class operators fn ∈ L1(Hn) and f0 ∈ C, the following nonlinear one-parameter mapping
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is defined:

G(t; 1, . . . , s |f)
.
=

∑
P: (1,...,s)=

⋃
j Xj

A|P|(t, {X1}, . . . , {X|P|})
∏

Xj⊂Pf|Xj |(Xj), s≥1,(3)

where the symbol
∑

P: (1,...,s)=
⋃

j Xj
means the sum over all possible partitions P of the

set (1, . . . , s) into |P| nonempty mutually disjoint subsets Xj , the set ({X1}, . . . , {X|P|})
consists of elements that are subsets Xj ⊂ (1, . . . , s), i.e., |({X1}, . . . , {X|P|})| = |P|. The
generating operator A|P|(t) of expansion (3) is the |P|th-order cumulant of the groups of
operators (1) defined by the following expansion:

(4)

A|P|(t, {X1}, . . . , {X|P|})

=
∑

P′ : ({X1},...,{X|P|})=
⋃

k Zk

(−1)|P
′
|−1(|P

′
| − 1)!

∏
Zk⊂P′

G∗|θ(Zk)|(t, θ(Zk)),

where θ is the declusterization mapping: θ({X1}, . . . , {X|P|})
.
= (1, . . . , s).

Below are examples of the mapping expansions (3):

G(t; 1 | f) = A1(t, 1)f1(1),

G(t; 1, 2 | f) = A1(t, {1, 2})f2(1, 2) + A1+1(t, 1, 2)f1(1)f1(2),

G(t; 1, 2, 3 | f) = A1(t, {1, 2, 3})f3(1, 2, 3) + A1+1(t, 1, {2, 3})f1(1)f2(2, 3)

+A1+1(t, 2, {1, 3})f1(2)f2(1, 3) + A1+1(t, 3, {1, 2})f1(3)f2(1, 2)

+A3(t, 1, 2, 3)f1(1)f1(2)f1(3).

For fs ∈ L1(Hs), s ≥ 1, the mapping G(t; 1, . . . , s|f) is defined and, by to the inequal-
ity ∥∥A|P|(t, {X1}, . . . , {X|P|})fs

∥∥
L1(Hs)

≤ |P|! e|P|
∥∥fs∥∥L1(Hs)

,

the following estimate is true:∥∥G(t; 1, . . . , s | f)
∥∥
L1(Hs)

≤ s!e2scs,(5)

where c ≡ e3 max(1,maxP: (1,...,s)=
⋃

iXi
‖f|Xi|‖L1(H|Xi|)

). On the space L1(FH) one-

parameter mapping (3) is a bounded strongly continuous group of nonlinear operators.
The evolution of all possible states of a quantum system of non-fixed, i.e. arbitrary

but finite, number of identical particles obeying the Maxwell–Boltzmann statistics, can
be described by means of a sequence g(t) = (g0, g1(t), . . . , gs(t), . . .) ∈ L1(FH) of the
correlation operators gs(t) = gs(t, 1, . . . , s), s ≥ 1 governed by the Cauchy problem of
the von Neumann hierarchy [9],

∂

∂t
gs(t, 1, . . . , s) = N ∗s gs(t, 1, . . . , s) +(6)

ε
∑

P: (1,...,s)=X1
⋃
X2

∑
i1∈X1

∑
i2∈X2

N ∗int(i1, i2)g|X1|(t,X1)g|X2|(t,X2),

gs(t)
∣∣
t=0

= g0,εs , s ≥ 1,(7)

where ε > 0 is a scaling parameter, the symbol
∑

P: (1,...,s)=X1
⋃
X2

means the sum over

all possible partitions P of the set (1, . . . , s) into two nonempty mutually disjoint subsets
X1 and X2, and the operator N ∗s is defined on the subspace L1

0(Hs) by formula (2).
We remark that correlation operators are introduced by means of cluster expansions

of the density operators (the kernel of the density operator is known as a density matrix)
governed by the von Neumann equations, and it is to enable to describe the evolution of
states by an equivalent method in comparison with the density operators [6].
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A nonperturbative solution of the Cauchy problem of the von Neumann hierarchy
(6),(7) for correlation operators is defined by the group of nonlinear operators (3),

g(t, 1, . . . , s) = G(t; 1, . . . , s | g(0)), s ≥ 1,(8)

where g(0) = (g0, g
0,ε
1 , . . . , g0,εn , . . .) is a sequence of initial correlation operators (7) and

g0 ∈ C.
We note that in case of the absence of correlations between particles at the initial

time, i.e., if the initial states satisfy the chaos condition [2], the sequence of the initial
correlation operators has the form

g(0) = (0, g0,ε1 , 0, . . . , 0, . . .).

In this case, a solution (8) of the Cauchy problem of the von Neumann hierarchy (6), (7)
is represented by the following expansions:

gs(t, 1, . . . , s) = As(t, 1, . . . , s)
s∏
i=1

g0,ε1 (i), s ≥ 1,

where the operator As(t) is the sth-order cumulant of the groups of operators (1) deter-
mined by the expansion

As(t, 1, . . . , s) =
∑

P: (1,...,s)=
⋃

iXi

(−1)|P|−1(|P| − 1)!
∏
Xi⊂P

G∗|Xi|(t,Xi),(9)

and we use notations accepted in formula (3).

3. A nonperturbative solution of the hierarchy of evolution equations
for marginal correlation operators

It is known that the evolution of states of large particle quantum systems can be
described within the framework of marginal (s-particle) density operators as well as in
terms of marginal correlation operators. In this section, a solution of the Cauchy problem
to the fundamental evolution equations for marginal correlation operators is constructed.

We introduce marginal correlation operators that determine macroscopic characteris-
tics of fluctuations of mean values of observables [1]. The marginal correlation operators
are defined within the framework of a solution of the Cauchy problem of the von Neumann
hierarchy (6), (7) by the following series expansions:

Gs(t, 1, . . . , s)
.
=

∞∑
n=0

1

n!
Trs+1,...,s+n G(t; 1, . . . , s+ n | g(0)), s ≥ 1.(10)

According to estimate (5), series (10) exists and the following estimate holds:

∥∥Gs(t)∥∥L1(Hs)
≤ s!(2e2)scs

∞∑
n=0

(2e2)ncn.

The evolution of all possible states of large particle quantum systems obeying the
Maxwell–Boltzmann statistics can be described by means of a sequence G(t) = (I,
G1(t), G2(t), . . . , Gs(t), . . .) ∈ L1(FH) of marginal correlation operators governed by the
Cauchy problem of the following hierarchy of nonlinear evolution equations (the nonlinear
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quantum BBGKY hierarchy):

∂

∂t
Gs(t, 1, . . . , s) = N ∗sGs(t, 1, . . . , s) +(11)

ε
∑

P: (1,...,s)=X1
⋃
X2

∑
i1∈X1

∑
i2∈X2

N ∗int(i1, i2)G|X1|(t,X1)G|X2|(t,X2) +

εTrs+1

∑
i∈Y
N ∗int(i, s+ 1)

(
Gs+1(t, 1, . . . , s+ 1) +∑

P : (1, . . . , s+ 1) = X1
⋃
X2,

i ∈ X1; s+ 1 ∈ X2

G|X1|(t,X1)G|X2|(t,X2)
)
,

Gs(t)
∣∣
t=0

= G0,ε
s , s ≥ 1,(12)

where ε > 0 is a scaling parameter and we use the notations accepted in hierarchy (6).
A rigorous derivation of the hierarchy of evolution equations (11) for marginal correla-

tion operators consists in their derivation from the von Neumann hierarchy for correlation
operators (6) according to definition (10) [10].

IfG(0) = (I,G0,ε
1 (1), . . . , G0,ε

s (1, . . . , s), . . .) is a sequence of initial marginal correlation
operators (12), then a nonperturbative solution of the Cauchy problem (11), (12) is
represented by a sequence of the following self-adjoint operators:

(13)

Gs(t, 1, . . . , s)

=

∞∑
n=0

1

n!
Trs+1,...,s+n A1+n(t; {1, . . . , s}, s+ 1, . . . , s+ n | G(0)), s ≥ 1,

where the generating operator A1+n(t; {1, . . . , s}, s+ 1, . . . , s+ n | G(0)) of series expan-
sion (13) is the (1 + n)th-order cumulant of the groups of nonlinear operators (3) of the
von Neumann hierarchy for correlation operators,

(14)

A1+n(t; {1, . . . , s}, s+ 1, . . . , s+ n | G(0))

=
∑

P: ({1,...,s},s+1,...,s+n)=
⋃

kXk

(−1)|P|−1(|P| − 1)!G(t; θ(X1) |

. . .G(t; θ(X|P|) | G(0)) . . .), n ≥ 0,

and the composition of mappings (3) of the corresponding noninteracting groups of par-
ticles is denoted by G(t; θ(X1) | . . .G(t; θ(X|P|) | G(0)) . . .), for example,

G
(
t; 1 | G(t; 2 | f)

)
= A1(t, 1)A1(t, 2)f2(1, 2),

G
(
t; 1, 2 | G(t; 3 | f)

)
= A1(t, {1, 2})A1(t, 3)f3(1, 2, 3)

+A2(t, 1, 2)A1(t, 3)
(
f1(1)f2(2, 3) + f1(2)f2(1, 3)

)
.

Below we give examples of expansions (14). The first order cumulant of the groups of
nonlinear operators (3) is the same group of nonlinear operators, i.e.,

A1(t; {1, . . . , s} | G(0)) = G(t; 1, . . . , s | G(0)),
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in the case where s = 2, the second order cumulant of groups of nonlinear operators (3)
has the form

A1+1(t; {1, 2}, 3 | G(0)) = G(t; 1, 2, 3 | G(0))− G
(
t; 1, 2 | G(t; 3 | G(0))

)
= A1+1(t, {1, 2}, 3)G0,ε

3 (1, 2, 3)

+
(
A1+1(t, {1, 2}, 3)− A1+1(t, 2, 3)A1(t, 1)

)
G0,ε

1 (1)G0,ε
2 (2, 3)

+
(
A1+1(t, {1, 2}, 3)− A1+1(t, 1, 3)A1(t, 2)

)
G0,ε

1 (2)G0,ε
2 (1, 3)

+A1+1(t, {1, 2}, 3)G0,ε
1 (3)G0,ε

2 (1, 2) + A3(t, 1, 2, 3)G0,ε
1 (1)G0,ε

1 (2)G0,ε
1 (3),

where the operator

A3(t, 1, 2, 3) = A1+1(t, {1, 2}, 3)− A1+1(t, 2, 3)A1(t, 1)− A1+1(t, 1, 3)A1(t, 2)

is the third order cumulant (9) of the groups of operators (1).
In the case where the initial data is specified by a sequence of marginal correlation

operators

G(c) =
(
0, G0,ε

1 , 0, . . . , 0, . . .
)
,(15)

i.e., the initial states satisfy a chaos condition, according to definition (14), the marginal
correlation operators (13) are represented by the following series expansions:

Gs(t, 1, . . . , s) =

∞∑
n=0

1

n!
Trs+1,...,s+n As+n(t; 1, . . . , s+ n)

s+n∏
i=1

G0,ε
1 (i), s ≥ 1,(16)

where the generating operator As+n(t) of this series is the (s+ n)th-order cumulant (9)
of the groups of operators (1).

We remark that within the framework of marginal density operators defined by means
of the cluster expansions of the marginal correlation operators

F 0,ε
s (1, . . . , s) =

∑
P : (1, . . . , s) =

⋃
iXi

∏
Xi⊂P

G0,ε
|Xi|(Xi), s ≥ 1,

the initial states, similar to sequence (15), are specified by a sequence F (c) =
(
I, F 0,ε

1 (1), . . . ,∏n
i=1F

0,ε
1 (i), . . .

)
, and, in the case of sequence (16), the marginal density operators are

represented by the following series expansions (a nonperturbative solution of the quantum
BBGKY hierarchy [6]):

Fs(t, 1, . . . , s)

=

∞∑
n=0

1

n!
Trs+1,...,s+n A1+n(t; {1, . . . , s}, s+ 1, . . . , s+ n)

s+n∏
i=1

F 0,ε
1 (i), s ≥ 1,

where the generating operator A1+n(t) is the (1 + n)th-order cumulant of the groups of
operators (1).

One of the methods to derive the series expansion (13) for marginal correlation opera-
tors consists in applying the cluster expansions of groups of nonlinear operators (3) over
cumulants (14) to the definition of marginal correlation operators (10) and the sequence

of initial correlation operators, g(0) = (I, g0,ε1 (1), . . . , g0,εn (1, . . . , n), . . .), determined by
means of the marginal correlation operators

g0,εs (1, . . . , s)
.
=

∞∑
n=0

(−1)n
1

n!
Trs+1,...,s+n G

0,ε
s+n(1, . . . , s+ n), s ≥ 1.(17)
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Indeed, developing the generating operators of series (13) as the following cluster expan-
sions:

(18)

G(t; 1, . . . , s+ n | f)

=
∑

P: (1,...,s+n)=
⋃

kXk

A|X1|(t;X1 | . . .A|X|P||(t;X|P| | f) . . .), n ≥ 0,

according to definition (17), we derive expressions (13). Solutions of recursive relations
(18) are represented by expansions (14).

We remark that, on the space L1(FH), the generating operator (14) of series expansion
(13) can be represented as the (1+n)th-order reduced cumulant of the groups of nonlinear
operators (3) of the von Neumann hierarchy [10],

(19)

U1+n(t; {1, . . . , s}, s+ 1, . . . , s+ n | G(0))

=

n∑
k=0

(−1)k
n!

k!(n−k)!

∑
P: (θ({1,...,s}),s+1,...,s+n−k)=

⋃
iXi

A|P|
(
t, {X1}, . . . , {X|P|}

)
k∑

k1=0

k!

k1!(k − k1)!
. . .

k|P|−2∑
k|P|−1=0

k|P|−2!

k|P|−1!(k|P|−2 − k|P|−1)!
G0,ε
|X1|+k−k1(X1,

s+ n− k + 1, . . . , s+ n− k1) . . . G0,ε
|X|P||+k|P|−1

(X|P|,

s+ n− k|P|−1 + 1, . . . , s+ n), n ≥ 0.

For comparison with expressions (14) we give simplest examples of reduced cumulants
(19) of the groups of nonlinear operators (3),

U1(t; {1, . . . , s} | G(0)) = G(t; 1, . . . , s | G(0))

=
∑

P: (1,...,s)=
⋃

iXi

A|P|
(
t, {X1}, . . . , {X|P|}

) ∏
Xi⊂P

G0,ε
|Xi|(Xi),

U1+1(t; {1, . . . , s}, s+ 1 | G(0))

=
∑

P: (1,...,s+1)=
⋃

iXi

A|P|
(
t, {X1}, . . . , {X|P|}

) ∏
Xi⊂P

G0,ε
|Xi|(Xi)

−
∑

P: (1,...,s)=
⋃

iXi

A|P|
(
t, {X1}, . . . , {X|P|}

) |P|∑
j=1

G0,ε
|Xj |+1(Xj , s+1)

∏
Xi ⊂ P,
Xi 6= Xj

G0,ε
|Xi|(Xi).

We also remark that a nonperturbative solution of the nonlinear quantum BBGKY
hierarchy (13) or in the form of series expansions with generating operators (19) can be
transformed into a perturbation (iteration) series by applying analogs of the Duhamel
equation to cumulants (4) of the groups of operators (1).

The following statement is true.

Theorem 1. If maxn≥1
∥∥G0,ε

n

∥∥
L1(Hn)

< (2e3)−1, then, in the case of bounded interaction

potentials for t ∈ R, a solution of the Cauchy problem of the nonlinear quantum BBGKY
hierarchy (11), (12) is determined by a sequence of marginal correlation operators repre-
sented by the series expansions (13). If G0,ε

n ∈ L1
0(Hn) ⊂ L1(Hn), it is a strong solution

and, for arbitrary initial data G0,ε
n ∈ L1(Hn), it is a weak solution.

The proof of the existence theorem is similar to the case of the reduced representation
of a nonperturbative solution of the quantum BBGKY hierarchy of nonlinear evolution
equations [10].
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4. A mean field asymptotic behavior of marginal correlation operators

This section deals with a scaling asymptotic behavior of the constructed marginal
correlation operators in a mean field limit in the case where the initial states satisfy
condition (15).

If fs ∈ L1(Hs), then for an arbitrary finite time interval for an asymptotically per-
turbed first-order cumulant (9) of the groups of operators (1), i.e., for the strongly
continuous group (1), the following identity is valid [14]:

lim
ε→0

∥∥∥G∗s (t, 1, . . . , s)fs −
s∏
j=1

G∗1 (t, j)fs

∥∥∥
L1(Hs)

= 0.

As a result, for the (s + n)th-order cumulants of asymptotically perturbed groups of
operators (1), the following equalities are true:

lim
ε→0

∥∥∥ 1

εn
As+n(t, 1, . . . , s+ n)fs+n

∥∥∥
L1(Hs+n)

= 0, s ≥ 2.(20)

We assume the existence of a mean field limit of the initial marginal correlation oper-
ator (or a one-particle density operator) in the following sense:

lim
ε→0

∥∥εG0,ε
1 − g01

∥∥
L1(H)

= 0.(21)

Since the nth term of series expansion (16) for s-particle marginal correlation operators is
determined by the (s+n)th-order cumulants of asymptotically perturbed groups of oper-
ators (1), taking into account identity (20), we establish the property of the propagation
of the initial chaos (15), namely,

lim
ε→0

∥∥εsGs(t)∥∥L1(Hs)
= 0, s ≥ 2.(22)

If the initial marginal correlation operator satisfies identity (21), then, in the case
where s = 1, for series expansion (16) the following identity holds true:

lim
ε→0

∥∥εG1(t)− g1(t)
∥∥
L1(H)

= 0,

where, for an arbitrary finite time interval, the limit one-particle marginal correlation
operator g1(t, 1) is given by the norm convergent series on the space L1(H),

(23)

g1(t, 1)

=

∞∑
n=0

t∫
0

dt1 . . .

tn−1∫
0

dtn Tr2,...,n+1G∗1 (t− t1, 1)N ∗int(1, 2)

2∏
j1=1

G∗1 (t1 − t2, j1)

. . .

n∏
in=1

G∗1 (tn − tn, in)

n∑
kn=1

N ∗int(kn, n+ 1)

n+1∏
jn=1

G∗1 (tn, jn)

n+1∏
i=1

g01(i).

In series expansion (23), the operator N ∗int(j1, j2) is defined by formula (2) and the
group of operators G∗1 (t) is defined by (1). For a bounded interaction potential, se-
ries (23) is norm convergent on the space L1(H) under the condition that t < t0 ≡(
2 ‖Φ‖L(H2)‖g01‖L1(H)

)−1
.

As a result of the differentiation over the time variable of the operator represented
by the series expansion (23) in sense of the norm convergence on the space L1(H) we
conclude that the limit one-particle marginal correlation operator (23) is governed by
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the Cauchy problem of the Vlasov quantum kinetic equation

∂

∂t
g1(t, 1) = N ∗(1)g1(t, 1) + Tr2N ∗int(1, 2)g1(t, 1)g1(t, 2),(24)

g1(t)|t=0 = g01 ,(25)

and, consequently, for pure states we derive the Hartree equation [6], i.e., in the terms
of the kernel g1(t, q; q′) = ψ(t, q)ψ(t, q′) of operator (23) that describes a pure state, the
kinetic equation (24) reduces to the Hartree equation

i
∂

∂t
ψ(t, q) = −1

2
∆qψ(t, q) +

∫
dq′Φ(q − q′)|ψ(t, q′)|2ψ(t, q),

where the function Φ is a two-body interaction potential.
We note that in the case of pure states, the kinetic equation (24) can be reduced to a

Gross–Pitaevskii kinetic equation [4] or to a nonlinear Schrödinger equation [3].

5. Conclusion

The marginal correlation operators (13) give an equivalent approach to a description
of the evolution of states of large particle quantum systems in comparison with mar-
ginal density operators. The macroscopic characteristics of fluctuations of observables
are directly determined by marginal correlation operators (13) on the microscopic level
[1],[10], for example, the functional of the dispersion of the additive-type observables,
i.e., A(1) = (0, a1(1), . . . ,

∑n
i1=1 a1(i1), . . .), is represented by the formula

〈(A(1) − 〈A(1)〉)2〉(t) = Tr1 (a21(1)− 〈A(1)〉2(t))G1(t, 1) + Tr1,2 a1(1)a1(2)G2(t, 1, 2),

where 〈A(1)〉(t) = Tr1 a1(1)G1(t, 1) is a mean-value functional of the additive-type ob-
servable.

In the paper, we established that a nonperturbative solution of the Cauchy problem
of the quantum BBGKY hierarchy of nonlinear equations (11), (12) for a sequence of
marginal correlation operators is represented in the form of series expansion (13) over
particle subsystems the generating operators of which are corresponding-order cumulant
(14) of the groups of nonlinear operators (3). In the case where the initial states are
specified by a sequence of the marginal correlation operators that satisfy the chaos prop-
erty (15), the correlations generated by dynamics of large particle quantum systems (16)
are completely determined by the corresponding order cumulants (4) of the groups of
operators (1) of the von Neumann equations.

We also emphasize that natural Banach spaces to describe states of large particle
quantum systems, for instance, containing equilibrium states, are different from the ones
used in [6]. In paper [13] it was introduced a space of sequences of bounded translation
invariant operators, making it a better choice for a description of quantum correlations.

In the case where the initial states satisfy condition (15), a mean field asymptotic
behavior of the processes of the creation and the propagation of correlations were de-
scribed. The property called propagation of the initial chaos (22), which underlies the
mathematical derivation of effective evolution equations of complex systems [12, 16] was
directly proved.

This paper deals with a quantum system of non-fixed, i.e., an arbitrary but finite num-
ber of identical (spinless) particles obeying Maxwell–Boltzmann statistics. The obtained
results can be extended to large particle quantum systems of bosons and fermions like in
paper [9].
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