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ASYMPTOTIC PROPERTIES OF THE p-ADIC FRACTIONAL

INTEGRATION OPERATOR

ANATOLY N. KOCHUBEI AND DANIEL S. SOSKIN

To the blessed memory of M. L. Gorbachuk

Abstract. We study asymptotic properties of the p-adic version of a fractional

integration operator introduced in the paper by A. N. Kochubei, Radial solutions of
non-Archimedean pseudo-differential equations, Pacif. J. Math. 269 (2014), 355–

369.

1. Introduction

1.1. In analysis of complex-valued functions on the field Qp of p-adic numbers (or,
more generally, on a non-Archimedean local field), the basic operator is Vladimirov’s
fractional differentiation operator Dα, α > 0, defined via the Fourier transform or, for
wider classes of functions, as a hypersingular integral operator [1, 6]. Properties of this
p-adic pseudo-differential operator were studied by Vladimirov (see [6]) and found to be
more complicated than those of its classical counterparts. For example, as an operator
on L2(Qp), it has a point spectrum of infinite multiplicity. However, it was shown in [2]
to behave much simpler on radial functions x→ f(|x|p).

In particular, in [2] the first author introduced a right inverse Iα to the operator Dα on
radial functions, which can be seen as a p-adic analog of the Riemann-Liouville fractional
integral of real analysis (including the case α = 1 of the usual antiderivative). Just as
the Riemann-Liouville fractional integral is a source of many problems of analysis, that
must be true for the operator Iα.

In this paper we study asymptotic properties of the function Iαf for a given asymptotic
expansion of f ; for the asymptotic properties of Riemann-Liouville fractional integral see
[3, 4, 7].

1.2. Let us recall the main definitions and notation used below.
Let p be a prime number. The field of p-adic numbers is the completion Qp of the

field Q of rational numbers, with respect to the absolute value |x|p defined by setting
|0|p = 0,

|x|p = p−ν if x = pν
m

n
,

where ν,m, n ∈ Z, and m,n are prime to p. It is well known that Qp is a locally compact
topological field with the topology determined by the metric |x− y|p, and that there are
no absolute values on Q, which are not equivalent to the “Euclidean” one, or one of | · |p.
We will denote by dx the Haar measure on the additive group of Qp normalized by the
condition

∫
|x|p≤1 dx = 1.
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The absolute value |x|p, x ∈ Qp, has the following properties:

|x|p = 0 if and only if x = 0,

|xy|p = |x|p · |y|p,
|x+ y|p ≤ max(|x|p, |y|p).

The latter property called the ultrametric inequality (or the non-Archimedean property)
implies the total disconnectedness of Qp and unusual geometric properties. Note also the
following consequence of the ultrametric inequality:

|x+ y|p = max(|x|p, |y|p) if |x|p 6= |y|p.
We will often use the integration formulas (see [1, 5, 6])∫

|x|p≤pn

|x|α−1p dx =
1− p−1

1− p−α
pαn, here and below n ∈ Z, α > 0,

in particular, ∫
|x|p≤pn

dx = pn,

∫
|x|p=pn

dx = (1− 1

p
)pn,

∫
|x|p=1

|1− x|α−1p =
p− 2 + p−α

p(1− p−α)
.

See [1, 6] for further details of analysis of complex-valued functions on Qp.
From now on, we consider the case α > 1. The integral operator Iα introduced in [2]

has the form

(1) (Iαf(x)) =
1− p−α

1− pα−1

∫
|y|p≤|x|p

(
|x− y|α−1p − |y|α−1p

)
f(y) dy,

where f is a locally integrable function on Qp. See [2] for its connection to the Vladimirov
operator Dα and applications to non-Archimedean counterparts of ordinary differential
equations. Note that our results can be generalized easily to the case of general non-
Archimedean local fields.

2. Asymptotics at the origin

Let 0 < M0 < M1 < M2 < · · · , Mn → ∞. Then the sequence fn(x) = |x|Mn
p is an

asymptotic scale for x → 0 (see, for example, §16 of [4] for the main notions regarding
asymptotic expansions).

Theorem 1. Suppose that a function f admits an asymptotic series expansion

f ∼
∞∑
n=0

an|x|Mn
p , |x|p → 0, an ∈ C.

Then

(2) (Iαf(x)) ∼ 1− p−α

1− pα−1
∞∑
n=0

anbn|x|Mn+α
p , |x|p → 0,

where

bn =
p−α+1 − 1

(1− p−α)p
+ (1− p−1)

∞∑
k=1

(1− p−k(α−1))p−k(Mn+1).
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Proof. We have

f =

N∑
n=0

an|x|Mn
p +RN (x), RN (x) = o(|x|MN

p ), |x|p → 0.

Then Iαf = Iα(1) + Iα(2),

Iα(1) =
1− p−α

1− pα−1

∫
|y|p≤|x|p

(|x− y|α−1p − |y|α−1p )
( N∑
n=0

an|y|Mn
p

)
dy,

Iα(2) =
1− p−α

1− pα−1

∫
|y|p≤|x|p

(|x− y|α−1p − |y|α−1p )RN (y) dy.

After the change of variables y = sx we get

Iα(1) =
1− p−α

1− pα−1
|x|αp

∫
|s|p≤1

(|1− s|α−1p − |s|α−1p )
( N∑
n=0

an|x|Mn
p |s|Mn

p

)
ds

=
1− p−α

1− pα−1
|x|αp (A+B),

where

A =

∫
|s|p<1

(
1− |s|α−1p

) ( N∑
n=0

an|x|Mn
p |s|Mn

p

)
ds

=

N∑
n=0

an|x|Mn
p

∞∑
k=1

(
1− p−k(α−1)

)
p−kMn

∫
|s|p=p−k

ds

= (1− p−1)

N∑
n=0

an|x|Mn
p

∞∑
k=1

(
1− p−k(α−1)

)
p−k(Mn+1),

B =

N∑
n=0

an|x|Mn
p

∫
|s|p=1

(
|1− s|α−1p − 1

)
ds =

p−α+1 − 1

(1− p−α)p

N∑
n=0

an|x|Mn
p .

On the other hand, since |RN (x)| ≤ C|x|MN+1
p , we find that for some constant C1 > 0,∣∣∣Iα(2)∣∣∣ ≤ C1|x|α+MN+1

p

∫
|s|p≤1

(|1− s|α−1p − |s|α−1p )|s|MN+1
p ds = O(|x|α+MN+1

p ).

The above calculations result in the asymptotic relation (2). �

3. Asymptotics at infinity

For positive functions ϕ,ψ, we write ϕ(x) � ψ(x), |x|p →∞, if cψ(x) ≤ ϕ(x) ≤ dψ(x),
for large values of |x|p, x ∈ Qp, for some positive constants c, d.

Theorem 2. Suppose that a ≤ f(x) ≤ b (a, b > 0) for |x|p < 1, |f(x)| ≤ C|x|−Mp ,
M > 1, C > 0, for |x|p ≥ 1. Then

(3) (Iαf)(x) � |x|α−1p , |x|p →∞.
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Proof. Let us rewrite (1) with |x|p ≥ 1 in the form Iαf = Jα(1)f + Jα(2)f , where(
Jα(1)f

)
(x) =

1− p−α

1− pα−1

∫
|y|p<1

(
|x− y|α−1p − |y|α−1p

)
f(y) dy,

(
Jα(2)f

)
(x) =

1− p−α

1− pα−1

∫
1≤|y|p≤|x|p

(
|x− y|α−1p − |y|α−1p

)
f(y) dy.

Then (
Jα(1)f

)
(x) �

∫
|y|p<1

(
|x− y|α−1p − |y|α−1p

)
dy � |x|α−1p .

Next, if |x|p = pN , N ≥ 0, then∣∣∣(Jα(2)f) (x)
∣∣∣ ≤ C ∫

1≤|y|p≤|x|p

(
|x− y|α−1p − |y|α−1p

)
|y|−Mp dy

= C

{
N−1∑
j=0

∫
|y|p=pj

(
|x|α−1p − |y|α−1p

)
|y|−Mp dy

+

∫
|y|p=pN

(
|x− y|α−1p − pN(α−1)

)
p−MNdy

}

= C

{
(1− 1

p
)

N−1∑
j=0

pj
(
pN(α−1) − pj(α−1)

)
p−Mj

+ p−MN

∫
|y|p=pN

|x− y|α−1p dy − (1− 1

p
)pαN−MN

}
.

Calculating the integral as above and finding the sums of geometric progressions we see

that
∣∣∣(Jα(2)f) (x)

∣∣∣ ≤ const ·|x|α−1p , which proves (3). �

4. Logarithmic asymptotics

If a function f decays slower than it did under the assumptions of Theorem 2, then a
richer asymptotic behavior is possible. Let us consider the case where f(t) ≥ 0,

(4) f(x) ∼ |x|−βp
∞∑
n=0

an(log |x|p)γ−n, |x|p →∞,

where 0 ≤ β < 1, γ ≥ 0, an ∈ R.
First we need some auxiliary results.

Lemma 1. Let 0 ≤ f(x) = o
(
|x|−λp

)
, |x|p →∞, where 0 < λ < 1. Then

(5) G1(r)
def
=

∫
|y|p≤r

f(y) dy = o(r1−λ), r →∞.

Proof. Let n0 = [logp r]. Then pn0 ≤ r ≤ pn0+1. It is known (see Section 1) that

(6)

∫
|y|p≤pν

|y|−λp dy =
1− p−1

1− pλ−1
p(1−λ)ν , ν ∈ Z,
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so that

(7) G2(r)
def
=

∫
|y|p≤r

|y|−λp dy = O(r1−λ), r →∞.

By our assumption, for any n ∈ N, there exists such r0 = r0(n) that f(x) < 1
n |x|

−λ
p

for |x|p > r0. Then we can write

G1(r)

G2(r)
=
G1(r0(n)) + (G1(r)−G1(r0(n)))

G2(r0(n)) + (G2(r)−G2(r0(n)))
≤
G1(r0(n)) + 1

nG3(n, r)

G2(r0(n)) +G3(n, r)
,

where

G3(n, r) =

∫
r0≤|y|p≤r

|y|−λp dy.

It follows from (6) that G3(n, r)→∞, so that

0 ≤ lim sup
r→∞

G1(r)

G2(r)
≤ 1

n
,

where n is arbitrary. Therefore

lim
r→∞

G1(r)

G2(r)
= 0,

which gives, together with (7), the required asymptotic relation (5). �

Lemma 2. Let 0 ≤ β < 1, k ∈ N. For any ε > 0, such that β + ε < 1,

(8) Kr
def
=

∫
|t|p≤r−1

(|1− t|α−1p − |t|α−1p )|t|−βp | log |t|p|kdt = O
(
rβ+ε−1

)
, r →∞.

Proof. Assuming that r > 2, we have |t|p < 1
2 , so that |1 − t|α−1p − |t|α−1p =

1− |t|α−1p ≤ 1, and we find that

Kr ≤
∫

|t|p≤r−1

|t|−βp | log |t|p|kdt ≤
∫

|t|p≤r−1

|t|−β−εp dt,

if r is large enough, and the relation (8) follows from the integration formula (6). �

Now we are ready to consider the asymptotics of Iαf for a function f satisfying (4).
Below we use the notation (

γ

n

)
=
γ(γ − 1) · · · (γ − n+ 1)

n!

for any real positive number γ and n ∈ N.

Theorem 3. If a function f ≥ 0 satisfies the asymptotic relation (4), then

(9) (Iαf)(x) ∼ 1− p−α

1− pα−1
|x|α−βp

∞∑
n=0

Bn(log |x|p)γ−n, |x|p →∞,

where

Bn =

n∑
k=0

an−k

(
γ + k − n

k

)
Ω(k, α, β),

Ω(k, α, β) =

∫
|t|p≤1

(|1− t|α−1p − |t|α−1p )|t|−βp (log |t|p)kdt.
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Proof. Let us write (Iαf)(x) for |x|p ≥ 1 as the sum of two integrals I1 and I2, with the

integration over {y : |y|p < |x|1/2p } and {y : |x|1/2p ≤ |y|p ≤ |x|p} respectively.
Denote K(x, y) = |x− y|α−1p − |y|α−1p . Considering I1, for |y|p ≤ |x|p, we have

(10) |K(x, y)| ≤ |x|α−1p .

Indeed, if |x|p > 1, then |y|p < |x|p, K(x, y) = |x|α−1p − |y|α−1p , and we get (10). If

|x|p = 1, |y|p < 1, then 0 < K(x, y) = 1− |y|α−1p < |x|α−1p .
It follows from (10) that

0 ≤ I1 ≤ C|x|α−1p

∫
|y|p<|x|1/2p

f(y) dy,

and by (4) and Lemma 1, for any small ε > 0,

(11) I1 = o

(
|x|α−β+

β+ε−1
2

p

)
, |x|p →∞.

Considering I2 we write

f(t)= |t|−βp
N∑
n=0

an(log |t|p)γ−n+RN (t), RN (t)=O(|t|−βp (log |t|p)γ−N−1), |t|p →∞.

Denote

L(α, β, γ, x) =

∫
|x|1/2p ≤|y|p≤|x|p

(
|x− y|α−1p − |y|α−1p

)
|y|−βp (log |y|p)γ dy

= |x|α−βp (log |x|p)γ
∫

|x|−1/2
p ≤|t|p≤1

(
|1−t|α−1p −|t|α−1p

)
|t|−βp

(
1+

log |t|p
log |x|p

)γ
dt,

where on the domain of integration, ∣∣∣∣ log |t|p
log |x|p

∣∣∣∣ ≤ 1

2
,

and we may write, for a non-integer γ, the convergent binomial series(
1 +

log |t|p
log |x|p

)γ
=

∞∑
k=0

(
γ

k

)(
log |t|p
log |x|p

)k
.

Note that we can use the Taylor formula with the integral form of the remainder

(1 + s)γ =

N∑
k=0

(
γ

k

)
sk +

γ(γ − 1) · · · (γ −N)

N !

s∫
0

(1 + σ)γ−N−1(s− σ)N dσ,

where
s∫

0

(1 + σ)γ−N−1(s− σ)N dσ = sN+1

1∫
0

(1 + sτ)γ−N−1(1− τ)N dτ

= sN+1

1∫
0

(1 + s(1− τ))γ−N−1τN dτ.

If − 1
2 < s < 1

2 , 0 < τ < 1, then 1
2 ≤ 1 + s(1− τ) ≤ 3

2 . Therefore(
1 +

log |t|p
log |x|p

)γ
=

N∑
k=0

(
γ

k

)(
log |t|p
log |x|p

)k
+ SN (t, x),
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SN (t, x) = O

((
log |t|p
log |x|p

)N+1
)
, |x|p →∞,

and this asymptotics is uniform with respect to t, |t|p ∈ [|x|−1/2p , 1].
Substituting and using Lemma 2 we obtain the expansion

(12)
L(α, β, γ, x) = |x|α−βp

N∑
k=0

(
γ

k

)
Ω(k, α, β)(log |x|p)γ−k

+ o(|x|α−βp (log |x|p)γ−N ), |x|p →∞.

We have

I2 =
1− p−α

1− pα−1
N∑
n=0

anL(α, β, γ − n, x)

+
1− p−α

1− pα−1

∫
|x|1/2p ≤|y|p≤|x|p

(
|x− y|α−1p − |y|α−1p

)
RN (y) dy,

where ∫
|x|1/2p ≤|y|p≤|x|p

(
|x− y|α−1p − |y|α−1p

)
RN (y) dy

≤ CL(α, β, γ −N − 1, x) = O
(
|x|α−βp (log |x|p)γ−N−1

)
, |x|p →∞.

The last estimate is a consequence of (12).
Now the asymptotic relations (11) and (12) imply the required relation (9). �

In our final result, we give a modification of Theorem 3 for the case where β = 1.

Theorem 4. Suppose that f is nonnegative,

f(x) ∼ |x|−1p
∞∑
n=0

an(log |x|p)γ−n, |x|p →∞.

Then

(13) (Iαf)(x)∼ 1− p−α

1− pα−1
[
|x|α−1p

∫
|y|p≤|x|p

f(y)dy+

∞∑
n=0

B̃n(log |x|p)γ−n
]
, |x|p →∞,

where

B̃n =

n∑
k=0

an−k

(
γ + k − n

k

)
Ω̃(k, α),

Ω̃(k, α) =

∫
|t|p≤1

(
|1− t|α−1p − |t|α−1p − 1

)
|t|−1p (log |t|p)k dt.

Proof. Let us write Iαf = 1−p−α
1−pα−1 (J1 + J2 + J3), where

J1 =

∫
|y|p≤|x|1/2p

(
|x− y|α−1p − |y|α−1p − |x|α−1p

)
f(y) dy,

J2 =

∫
|x|1/2p ≤|y|p≤|x|p

(
|x− y|α−1p − |y|α−1p − |x|α−1p

)
f(y) dy,
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J3 = |x|α−1p

∫
|y|p≤|x|p

f(y) dy.

Choosing ε > 0, such that 1 + ε < α, we see that f(x) = o
(
|x|−1+εp

)
, |x|p → ∞. By

Lemma 1, ∫
|y|p≤|x|1/2p

f(y) dy = o
(
|x|

ε
2
p )
)
, |x|p →∞.

For the kernel of the above integral operator we get, considering various cases, the
estimate

||x− y|α−1p − |y|α−1p − |x|α−1p | ≤ 2|y|α−1p .

It follows from Lemma 1 that

(14) |J1| ≤ 2

∫
|y|p≤|x|1/2p

|y|α−1p f(y) dy = o
(
|x|

α−1+ε
2

p

)
, |x|p →∞.

By our assumption,

f(t)= |t|−1p
N∑
n=0

an(log |t|p)γ−n+RN (t), RN (t)=O
(
|t|−1p (log |t|p)γ−N−1

)
, |t|p →∞.

Let us consider the expression

L̃(α, γ, x) =

∫
|x|1/2p ≤|y|p≤|x|p

(
|x− y|α−1p − |y|α−1p − |x|α−1p

)
|y|−1p (log |y|p)γdy

= |x|α−1p

∫
|x|−1/2
p ≤|t|p≤1

(|1− t|α−1p − |t|α−1p − 1)|t|−1p (log |x|p + log |t|p)γ dt.

It follows from the first integration formula from Section 1 that∫
|t|p≤|x|−1/2

p

(|1− t|α−1p − |t|α−1p − 1)|t|−1p (log |t|p)k dt = o
(
|x|

1−α+ε
2

p

)
, |x|p →∞.

This implies (just as in the proof of Theorem 3) the expansion

L̃(α, γ, x) ∼ |x|α−1p

∞∑
k=0

(
γ

k

)
(log |x|p)γ−kΩ̃(k, α), |x|p →∞.

Taking into account (14), we come to (13). �
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