ASYMPTOTIC PROPERTIES OF THE p-ADIC FRACTIONAL INTEGRATION OPERATOR

ANATOLY N. KOCHUBEI AND DANIEL S. SOSKIN

To the blessed memory of M. L. Gorbachuk

Abstract

We study asymptotic properties of the p-adic version of a fractional integration operator introduced in the paper by A. N. Kochubei, Radial solutions of non-Archimedean pseudo-differential equations, Pacif. J. Math. 269 (2014), 355369.

1. Introduction

1.1. In analysis of complex-valued functions on the field \mathbb{Q}_{p} of p-adic numbers (or, more generally, on a non-Archimedean local field), the basic operator is Vladimirov's fractional differentiation operator $D^{\alpha}, \alpha>0$, defined via the Fourier transform or, for wider classes of functions, as a hypersingular integral operator $[1,6]$. Properties of this p-adic pseudo-differential operator were studied by Vladimirov (see [6]) and found to be more complicated than those of its classical counterparts. For example, as an operator on $L^{2}\left(\mathbb{Q}_{p}\right)$, it has a point spectrum of infinite multiplicity. However, it was shown in [2] to behave much simpler on radial functions $x \rightarrow f\left(|x|_{p}\right)$.

In particular, in [2] the first author introduced a right inverse I^{α} to the operator D^{α} on radial functions, which can be seen as a p-adic analog of the Riemann-Liouville fractional integral of real analysis (including the case $\alpha=1$ of the usual antiderivative). Just as the Riemann-Liouville fractional integral is a source of many problems of analysis, that must be true for the operator I^{α}.

In this paper we study asymptotic properties of the function $I^{\alpha} f$ for a given asymptotic expansion of f; for the asymptotic properties of Riemann-Liouville fractional integral see $[3,4,7]$.
1.2. Let us recall the main definitions and notation used below.

Let p be a prime number. The field of p-adic numbers is the completion \mathbb{Q}_{p} of the field \mathbb{Q} of rational numbers, with respect to the absolute value $|x|_{p}$ defined by setting $|0|_{p}=0$,

$$
|x|_{p}=p^{-\nu} \quad \text { if } \quad x=p^{\nu} \frac{m}{n}
$$

where $\nu, m, n \in \mathbb{Z}$, and m, n are prime to p. It is well known that \mathbb{Q}_{p} is a locally compact topological field with the topology determined by the metric $|x-y|_{p}$, and that there are no absolute values on \mathbb{Q}, which are not equivalent to the "Euclidean" one, or one of $|\cdot|_{p}$. We will denote by $d x$ the Haar measure on the additive group of \mathbb{Q}_{p} normalized by the condition $\int_{|x|_{p} \leq 1} d x=1$.

[^0]The absolute value $|x|_{p}, x \in \mathbb{Q}_{p}$, has the following properties:

$$
\begin{gathered}
|x|_{p}=0 \quad \text { if and only if } \quad x=0, \\
|x y|_{p}=|x|_{p} \cdot|y|_{p}, \\
|x+y|_{p} \leq \max \left(|x|_{p},|y|_{p}\right) .
\end{gathered}
$$

The latter property called the ultrametric inequality (or the non-Archimedean property) implies the total disconnectedness of \mathbb{Q}_{p} and unusual geometric properties. Note also the following consequence of the ultrametric inequality:

$$
|x+y|_{p}=\max \left(|x|_{p},|y|_{p}\right) \quad \text { if } \quad|x|_{p} \neq|y|_{p} .
$$

We will often use the integration formulas (see $[1,5,6]$)

$$
\int_{|x|_{p} \leq p^{n}}|x|_{p}^{\alpha-1} d x=\frac{1-p^{-1}}{1-p^{-\alpha}} p^{\alpha n}, \quad \text { here and below } \quad n \in \mathbb{Z}, \quad \alpha>0,
$$

in particular,

$$
\begin{gathered}
\int_{|x|_{p} \leq p^{n}} d x=p^{n} \\
\int_{|x|_{p}=p^{n}} d x=\left(1-\frac{1}{p}\right) p^{n} \\
\int_{|x|_{p}=1}|1-x|_{p}^{\alpha-1}=\frac{p-2+p^{-\alpha}}{p\left(1-p^{-\alpha}\right)}
\end{gathered}
$$

See $[1,6]$ for further details of analysis of complex-valued functions on \mathbb{Q}_{p}.
From now on, we consider the case $\alpha>1$. The integral operator I^{α} introduced in [2] has the form

$$
\begin{equation*}
\left(I^{\alpha} f(x)\right)=\frac{1-p^{-\alpha}}{1-p^{\alpha-1}} \int_{|y|_{p} \leq|x|_{p}}\left(|x-y|_{p}^{\alpha-1}-|y|_{p}^{\alpha-1}\right) f(y) d y, \tag{1}
\end{equation*}
$$

where f is a locally integrable function on \mathbb{Q}_{p}. See [2] for its connection to the Vladimirov operator D^{α} and applications to non-Archimedean counterparts of ordinary differential equations. Note that our results can be generalized easily to the case of general nonArchimedean local fields.

2. Asymptotics at the origin

Let $0<M_{0}<M_{1}<M_{2}<\cdots, M_{n} \rightarrow \infty$. Then the sequence $f_{n}(x)=|x|_{p}^{M_{n}}$ is an asymptotic scale for $x \rightarrow 0$ (see, for example, $\S 16$ of [4] for the main notions regarding asymptotic expansions).

Theorem 1. Suppose that a function f admits an asymptotic series expansion

$$
f \sim \sum_{n=0}^{\infty} a_{n}|x|_{p}^{M_{n}}, \quad|x|_{p} \rightarrow 0, \quad a_{n} \in \mathbb{C} .
$$

Then

$$
\begin{equation*}
\left(I^{\alpha} f(x)\right) \sim \frac{1-p^{-\alpha}}{1-p^{\alpha-1}} \sum_{n=0}^{\infty} a_{n} b_{n}|x|_{p}^{M_{n}+\alpha}, \quad|x|_{p} \rightarrow 0, \tag{2}
\end{equation*}
$$

where

$$
b_{n}=\frac{p^{-\alpha+1}-1}{\left(1-p^{-\alpha}\right) p}+\left(1-p^{-1}\right) \sum_{k=1}^{\infty}\left(1-p^{-k(\alpha-1)}\right) p^{-k\left(M_{n}+1\right)} .
$$

Proof. We have

$$
f=\sum_{n=0}^{N} a_{n}|x|_{p}^{M_{n}}+R_{N}(x), \quad R_{N}(x)=o\left(|x|_{p}^{M_{N}}\right), \quad|x|_{p} \rightarrow 0
$$

Then $I^{\alpha} f=I_{(1)}^{\alpha}+I_{(2)}^{\alpha}$,

$$
\begin{gathered}
I_{(1)}^{\alpha}=\frac{1-p^{-\alpha}}{1-p^{\alpha-1}} \int_{|y|_{p} \leq|x|_{p}}\left(|x-y|_{p}^{\alpha-1}-|y|_{p}^{\alpha-1}\right)\left(\sum_{n=0}^{N} a_{n}|y|_{p}^{M_{n}}\right) d y \\
I_{(2)}^{\alpha}=\frac{1-p^{-\alpha}}{1-p^{\alpha-1}} \int_{|y|_{p} \leq|x|_{p}}\left(|x-y|_{p}^{\alpha-1}-|y|_{p}^{\alpha-1}\right) R_{N}(y) d y
\end{gathered}
$$

After the change of variables $y=s x$ we get

$$
\begin{aligned}
I_{(1)}^{\alpha} & =\frac{1-p^{-\alpha}}{1-p^{\alpha-1}}|x|_{p}^{\alpha} \int_{|s|_{p} \leq 1}\left(|1-s|_{p}^{\alpha-1}-|s|_{p}^{\alpha-1}\right)\left(\sum_{n=0}^{N} a_{n}|x|_{p}^{M_{n}}|s|_{p}^{M_{n}}\right) d s \\
& =\frac{1-p^{-\alpha}}{1-p^{\alpha-1}}|x|_{p}^{\alpha}(A+B)
\end{aligned}
$$

where

$$
\begin{aligned}
& A=\int_{|s|_{p}<1}\left(1-|s|_{p}^{\alpha-1}\right)\left(\sum_{n=0}^{N} a_{n}|x|_{p}^{M_{n}}|s|_{p}^{M_{n}}\right) d s \\
& =\sum_{n=0}^{N} a_{n}|x|_{p}^{M_{n}} \sum_{k=1}^{\infty}\left(1-p^{-k(\alpha-1)}\right) p^{-k M_{n}} \int_{|s|_{p}=p^{-k}} d s \\
& =\left(1-p^{-1}\right) \sum_{n=0}^{N} a_{n}|x|_{p}^{M_{n}} \sum_{k=1}^{\infty}\left(1-p^{-k(\alpha-1)}\right) p^{-k\left(M_{n}+1\right)}, \\
& B=\sum_{n=0}^{N} a_{n}|x|_{p}^{M_{n}} \int_{|s|_{p}=1}\left(|1-s|_{p}^{\alpha-1}-1\right) d s=\frac{p^{-\alpha+1}-1}{\left(1-p^{-\alpha}\right) p} \sum_{n=0}^{N} a_{n}|x|_{p}^{M_{n}} .
\end{aligned}
$$

On the other hand, since $\left|R_{N}(x)\right| \leq C|x|_{p}^{M_{N+1}}$, we find that for some constant $C_{1}>0$,

$$
\left|I_{(2)}^{\alpha}\right| \leq C_{1}|x|_{p}^{\alpha+M_{N+1}} \int_{|s|_{p} \leq 1}\left(|1-s|_{p}^{\alpha-1}-|s|_{p}^{\alpha-1}\right)|s|_{p}^{M_{N+1}} d s=O\left(|x|_{p}^{\alpha+M_{N+1}}\right)
$$

The above calculations result in the asymptotic relation (2).

3. Asymptotics at infinity

For positive functions φ, ψ, we write $\varphi(x) \asymp \psi(x),|x|_{p} \rightarrow \infty$, if $c \psi(x) \leq \varphi(x) \leq d \psi(x)$, for large values of $|x|_{p}, x \in \mathbb{Q}_{p}$, for some positive constants c, d.

Theorem 2. Suppose that $a \leq f(x) \leq b(a, b>0)$ for $|x|_{p}<1,|f(x)| \leq C|x|_{p}^{-M}$, $M>1, C>0$, for $|x|_{p} \geq 1$. Then

$$
\begin{equation*}
\left(I^{\alpha} f\right)(x) \asymp|x|_{p}^{\alpha-1}, \quad|x|_{p} \rightarrow \infty \tag{3}
\end{equation*}
$$

Proof. Let us rewrite (1) with $|x|_{p} \geq 1$ in the form $I^{\alpha} f=J_{(1)}^{\alpha} f+J_{(2)}^{\alpha} f$, where

$$
\begin{gathered}
\left(J_{(1)}^{\alpha} f\right)(x)=\frac{1-p^{-\alpha}}{1-p^{\alpha-1}} \int_{|y|_{p}<1}\left(|x-y|_{p}^{\alpha-1}-|y|_{p}^{\alpha-1}\right) f(y) d y \\
\left(J_{(2)}^{\alpha} f\right)(x)=\frac{1-p^{-\alpha}}{1-p^{\alpha-1}} \int_{1 \leq|y|_{p} \leq|x|_{p}}\left(|x-y|_{p}^{\alpha-1}-|y|_{p}^{\alpha-1}\right) f(y) d y
\end{gathered}
$$

Then

$$
\left(J_{(1)}^{\alpha} f\right)(x) \asymp \int_{|y|_{p}<1}\left(|x-y|_{p}^{\alpha-1}-|y|_{p}^{\alpha-1}\right) d y \asymp|x|_{p}^{\alpha-1} .
$$

Next, if $|x|_{p}=p^{N}, N \geq 0$, then

$$
\begin{aligned}
& \left|\left(J_{(2)}^{\alpha} f\right)(x)\right| \leq C \int_{1 \leq|y|_{p} \leq|x|_{p}}\left(|x-y|_{p}^{\alpha-1}-|y|_{p}^{\alpha-1}\right)|y|_{p}^{-M} d y \\
& \quad=C\left\{\sum_{j=0}^{N-1} \int_{|y|_{p}=p^{j}}\left(|x|_{p}^{\alpha-1}-|y|_{p}^{\alpha-1}\right)|y|_{p}^{-M} d y\right. \\
& \left.\quad+\int_{|y|_{p}=p^{N}}\left(|x-y|_{p}^{\alpha-1}-p^{N(\alpha-1)}\right) p^{-M N} d y\right\} \\
& =C\left\{\left(1-\frac{1}{p}\right) \sum_{j=0}^{N-1} p^{j}\left(p^{N(\alpha-1)}-p^{j(\alpha-1)}\right) p^{-M j}\right. \\
& \left.\quad+p^{-M N} \int_{|y|_{p=p^{N}}}|x-y|_{p}^{\alpha-1} d y-\left(1-\frac{1}{p}\right) p^{\alpha N-M N}\right\}
\end{aligned}
$$

Calculating the integral as above and finding the sums of geometric progressions we see that $\left|\left(J_{(2)}^{\alpha} f\right)(x)\right| \leq$ const $\cdot|x|_{p}^{\alpha-1}$, which proves (3).

4. Logarithmic asymptotics

If a function f decays slower than it did under the assumptions of Theorem 2 , then a richer asymptotic behavior is possible. Let us consider the case where $f(t) \geq 0$,

$$
\begin{equation*}
f(x) \sim|x|_{p}^{-\beta} \sum_{n=0}^{\infty} a_{n}\left(\log |x|_{p}\right)^{\gamma-n}, \quad|x|_{p} \rightarrow \infty \tag{4}
\end{equation*}
$$

where $0 \leq \beta<1, \gamma \geq 0, a_{n} \in \mathbb{R}$.
First we need some auxiliary results.
Lemma 1. Let $0 \leq f(x)=o\left(|x|_{p}^{-\lambda}\right),|x|_{p} \rightarrow \infty$, where $0<\lambda<1$. Then

$$
\begin{equation*}
G_{1}(r) \stackrel{\text { def }}{=} \int_{|y|_{p} \leq r} f(y) d y=o\left(r^{1-\lambda}\right), \quad r \rightarrow \infty \tag{5}
\end{equation*}
$$

Proof. Let $n_{0}=\left[\log _{p} r\right]$. Then $p^{n_{0}} \leq r \leq p^{n_{0}+1}$. It is known (see Section 1) that

$$
\begin{equation*}
\int_{|y|_{p} \leq p^{\nu}}|y|_{p}^{-\lambda} d y=\frac{1-p^{-1}}{1-p^{\lambda-1}} p^{(1-\lambda) \nu}, \quad \nu \in \mathbb{Z} \tag{6}
\end{equation*}
$$

so that

$$
\begin{equation*}
G_{2}(r) \stackrel{\text { def }}{=} \int_{|y|_{p} \leq r}|y|_{p}^{-\lambda} d y=O\left(r^{1-\lambda}\right), \quad r \rightarrow \infty \tag{7}
\end{equation*}
$$

By our assumption, for any $n \in \mathbb{N}$, there exists such $r_{0}=r_{0}(n)$ that $f(x)<\frac{1}{n}|x|_{p}^{-\lambda}$ for $|x|_{p}>r_{0}$. Then we can write

$$
\frac{G_{1}(r)}{G_{2}(r)}=\frac{G_{1}\left(r_{0}(n)\right)+\left(G_{1}(r)-G_{1}\left(r_{0}(n)\right)\right)}{G_{2}\left(r_{0}(n)\right)+\left(G_{2}(r)-G_{2}\left(r_{0}(n)\right)\right)} \leq \frac{G_{1}\left(r_{0}(n)\right)+\frac{1}{n} G_{3}(n, r)}{G_{2}\left(r_{0}(n)\right)+G_{3}(n, r)}
$$

where

$$
G_{3}(n, r)=\int_{r_{0} \leq|y|_{p} \leq r}|y|_{p}^{-\lambda} d y
$$

It follows from (6) that $G_{3}(n, r) \rightarrow \infty$, so that

$$
0 \leq \limsup _{r \rightarrow \infty} \frac{G_{1}(r)}{G_{2}(r)} \leq \frac{1}{n}
$$

where n is arbitrary. Therefore

$$
\lim _{r \rightarrow \infty} \frac{G_{1}(r)}{G_{2}(r)}=0
$$

which gives, together with (7), the required asymptotic relation (5).
Lemma 2. Let $0 \leq \beta<1, k \in \mathbb{N}$. For any $\varepsilon>0$, such that $\beta+\varepsilon<1$,

$$
\begin{equation*}
\left.\left.K_{r} \stackrel{\text { def }}{=} \int_{|t|_{p} \leq r^{-1}}\left(|1-t|_{p}^{\alpha-1}-|t|_{p}^{\alpha-1}\right)|t|_{p}^{-\beta}|\log | t\right|_{p}\right|^{k} d t=O\left(r^{\beta+\varepsilon-1}\right), \quad r \rightarrow \infty \tag{8}
\end{equation*}
$$

Proof. Assuming that $r>2$, we have $|t|_{p}<\frac{1}{2}$, so that $|1-t|_{p}^{\alpha-1}-|t|_{p}^{\alpha-1}=$ $1-|t|_{p}^{\alpha-1} \leq 1$, and we find that

$$
K_{r} \leq\left.\left.\int_{|t|_{p} \leq r^{-1}}|t|_{p}^{-\beta}|\log | t\right|_{p}\right|^{k} d t \leq \int_{|t|_{p} \leq r^{-1}}|t|_{p}^{-\beta-\varepsilon} d t
$$

if r is large enough, and the relation (8) follows from the integration formula (6).

Now we are ready to consider the asymptotics of $I^{\alpha} f$ for a function f satisfying (4). Below we use the notation

$$
\binom{\gamma}{n}=\frac{\gamma(\gamma-1) \cdots(\gamma-n+1)}{n!}
$$

for any real positive number γ and $n \in \mathbb{N}$.
Theorem 3. If a function $f \geq 0$ satisfies the asymptotic relation (4), then

$$
\begin{equation*}
\left(I^{\alpha} f\right)(x) \sim \frac{1-p^{-\alpha}}{1-p^{\alpha-1}}|x|_{p}^{\alpha-\beta} \sum_{n=0}^{\infty} B_{n}\left(\log |x|_{p}\right)^{\gamma-n}, \quad|x|_{p} \rightarrow \infty \tag{9}
\end{equation*}
$$

where

$$
\begin{gathered}
B_{n}=\sum_{k=0}^{n} a_{n-k}\binom{\gamma+k-n}{k} \Omega(k, \alpha, \beta) \\
\Omega(k, \alpha, \beta)=\int_{|t|_{p} \leq 1}\left(|1-t|_{p}^{\alpha-1}-|t|_{p}^{\alpha-1}\right)|t|_{p}^{-\beta}\left(\log |t|_{p}\right)^{k} d t
\end{gathered}
$$

Proof. Let us write $\left(I^{\alpha} f\right)(x)$ for $|x|_{p} \geq 1$ as the sum of two integrals I_{1} and I_{2}, with the integration over $\left\{y:|y|_{p}<|x|_{p}^{1 / 2}\right\}$ and $\left\{y:|x|_{p}^{1 / 2} \leq|y|_{p} \leq|x|_{p}\right\}$ respectively.

Denote $\mathcal{K}(x, y)=|x-y|_{p}^{\alpha-1}-|y|_{p}^{\alpha-1}$. Considering I_{1}, for $|y|_{p} \leq|x|_{p}$, we have

$$
\begin{equation*}
|\mathcal{K}(x, y)| \leq|x|_{p}^{\alpha-1} \tag{10}
\end{equation*}
$$

Indeed, if $|x|_{p}>1$, then $|y|_{p}<|x|_{p}, \mathcal{K}(x, y)=|x|_{p}^{\alpha-1}-|y|_{p}^{\alpha-1}$, and we get (10). If $|x|_{p}=1,|y|_{p}<1$, then $0<\mathcal{K}(x, y)=1-|y|_{p}^{\alpha-1}<|x|_{p}^{\alpha-1}$.

It follows from (10) that

$$
0 \leq I_{1} \leq C|x|_{p}^{\alpha-1} \int_{|y|_{p}<|x|_{p}^{1 / 2}} f(y) d y
$$

and by (4) and Lemma 1, for any small $\varepsilon>0$,

$$
\begin{equation*}
I_{1}=o\left(|x|_{p}^{\alpha-\beta+\frac{\beta+\varepsilon-1}{2}}\right), \quad|x|_{p} \rightarrow \infty \tag{11}
\end{equation*}
$$

Considering I_{2} we write

$$
f(t)=|t|_{p}^{-\beta} \sum_{n=0}^{N} a_{n}\left(\log |t|_{p}\right)^{\gamma-n}+R_{N}(t), \quad R_{N}(t)=O\left(|t|_{p}^{-\beta}\left(\log |t|_{p}\right)^{\gamma-N-1}\right), \quad|t|_{p} \rightarrow \infty
$$

Denote

$$
\begin{aligned}
& L(\alpha, \beta, \gamma, x)=\int_{|x|_{p}^{1 / 2} \leq|y|_{p} \leq|x|_{p}}\left(|x-y|_{p}^{\alpha-1}-|y|_{p}^{\alpha-1}\right)|y|_{p}^{-\beta}\left(\log |y|_{p}\right)^{\gamma} d y \\
& =|x|_{p}^{\alpha-\beta}\left(\log |x|_{p}\right)^{\gamma} \int_{|x|_{p}^{-1 / 2} \leq|t|_{p} \leq 1}\left(|1-t|_{p}^{\alpha-1}-|t|_{p}^{\alpha-1}\right)|t|_{p}^{-\beta}\left(1+\frac{\log |t|_{p}}{\log |x|_{p}}\right)^{\gamma} d t
\end{aligned}
$$

where on the domain of integration,

$$
\left|\frac{\log |t|_{p}}{\log |x|_{p}}\right| \leq \frac{1}{2}
$$

and we may write, for a non-integer γ, the convergent binomial series

$$
\left(1+\frac{\log |t|_{p}}{\log |x|_{p}}\right)^{\gamma}=\sum_{k=0}^{\infty}\binom{\gamma}{k}\left(\frac{\log |t|_{p}}{\log |x|_{p}}\right)^{k}
$$

Note that we can use the Taylor formula with the integral form of the remainder

$$
(1+s)^{\gamma}=\sum_{k=0}^{N}\binom{\gamma}{k} s^{k}+\frac{\gamma(\gamma-1) \cdots(\gamma-N)}{N!} \int_{0}^{s}(1+\sigma)^{\gamma-N-1}(s-\sigma)^{N} d \sigma
$$

where

$$
\begin{aligned}
\int_{0}^{s}(1+\sigma)^{\gamma-N-1}(s-\sigma)^{N} d \sigma & =s^{N+1} \int_{0}^{1}(1+s \tau)^{\gamma-N-1}(1-\tau)^{N} d \tau \\
& =s^{N+1} \int_{0}^{1}(1+s(1-\tau))^{\gamma-N-1} \tau^{N} d \tau
\end{aligned}
$$

If $-\frac{1}{2}<s<\frac{1}{2}, 0<\tau<1$, then $\frac{1}{2} \leq 1+s(1-\tau) \leq \frac{3}{2}$. Therefore

$$
\left(1+\frac{\log |t|_{p}}{\log |x|_{p}}\right)^{\gamma}=\sum_{k=0}^{N}\binom{\gamma}{k}\left(\frac{\log |t|_{p}}{\log |x|_{p}}\right)^{k}+S_{N}(t, x)
$$

$$
S_{N}(t, x)=O\left(\left(\frac{\log |t|_{p}}{\log |x|_{p}}\right)^{N+1}\right), \quad|x|_{p} \rightarrow \infty
$$

and this asymptotics is uniform with respect to $t,|t|_{p} \in\left[|x|_{p}^{-1 / 2}, 1\right]$.
Substituting and using Lemma 2 we obtain the expansion

$$
\begin{align*}
L(\alpha, \beta, \gamma, x)= & |x|_{p}^{\alpha-\beta} \sum_{k=0}^{N}\binom{\gamma}{k} \Omega(k, \alpha, \beta)\left(\log |x|_{p}\right)^{\gamma-k} \tag{12}\\
& +o\left(|x|_{p}^{\alpha-\beta}\left(\log |x|_{p}\right)^{\gamma-N}\right), \quad|x|_{p} \rightarrow \infty
\end{align*}
$$

We have

$$
\begin{aligned}
I_{2} & =\frac{1-p^{-\alpha}}{1-p^{\alpha-1}} \sum_{n=0}^{N} a_{n} L(\alpha, \beta, \gamma-n, x) \\
& +\frac{1-p^{-\alpha}}{1-p^{\alpha-1}} \int_{|x|_{p}^{1 / 2} \leq|y|_{p} \leq|x|_{p}}\left(|x-y|_{p}^{\alpha-1}-|y|_{p}^{\alpha-1}\right) R_{N}(y) d y
\end{aligned}
$$

where

$$
\begin{aligned}
\int_{\leq|y|_{p} \leq|x|_{p}} & \left(|x-y|_{p}^{\alpha-1}-|y|_{p}^{\alpha-1}\right) R_{N}(y) d y \\
& \leq C L(\alpha, \beta, \gamma-N-1, x)=O\left(|x|_{p}^{\alpha-\beta}\left(\log |x|_{p}\right)^{\gamma-N-1}\right), \quad|x|_{p} \rightarrow \infty
\end{aligned}
$$

The last estimate is a consequence of (12).
Now the asymptotic relations (11) and (12) imply the required relation (9).
In our final result, we give a modification of Theorem 3 for the case where $\beta=1$.
Theorem 4. Suppose that f is nonnegative,

$$
f(x) \sim|x|_{p}^{-1} \sum_{n=0}^{\infty} a_{n}\left(\log |x|_{p}\right)^{\gamma-n}, \quad|x|_{p} \rightarrow \infty
$$

Then

$$
\begin{equation*}
\left(I^{\alpha} f\right)(x) \sim \frac{1-p^{-\alpha}}{1-p^{\alpha-1}}\left[|x|_{p}^{\alpha-1} \int_{|y|_{p} \leq|x|_{p}} f(y) d y+\sum_{n=0}^{\infty} \widetilde{B}_{n}\left(\log |x|_{p}\right)^{\gamma-n}\right], \quad|x|_{p} \rightarrow \infty \tag{13}
\end{equation*}
$$

where

$$
\begin{gathered}
\widetilde{B}_{n}=\sum_{k=0}^{n} a_{n-k}\binom{\gamma+k-n}{k} \widetilde{\Omega}(k, \alpha) \\
\widetilde{\Omega}(k, \alpha)=\int_{|t|_{p} \leq 1}\left(|1-t|_{p}^{\alpha-1}-|t|_{p}^{\alpha-1}-1\right)|t|_{p}^{-1}\left(\log |t|_{p}\right)^{k} d t
\end{gathered}
$$

Proof. Let us write $I^{\alpha} f=\frac{1-p^{-\alpha}}{1-p^{\alpha-1}}\left(J_{1}+J_{2}+J_{3}\right)$, where

$$
\begin{gathered}
J_{1}=\int_{|y|_{p} \leq|x|_{p}^{1 / 2}}\left(|x-y|_{p}^{\alpha-1}-|y|_{p}^{\alpha-1}-|x|_{p}^{\alpha-1}\right) f(y) d y \\
J_{2}=\int_{|x|_{p}^{1 / 2} \leq|y|_{p} \leq|x|_{p}}\left(|x-y|_{p}^{\alpha-1}-|y|_{p}^{\alpha-1}-|x|_{p}^{\alpha-1}\right) f(y) d y
\end{gathered}
$$

$$
J_{3}=|x|_{p}^{\alpha-1} \int_{|y|_{p} \leq|x|_{p}} f(y) d y
$$

Choosing $\varepsilon>0$, such that $1+\varepsilon<\alpha$, we see that $f(x)=o\left(|x|_{p}^{-1+\varepsilon}\right),|x|_{p} \rightarrow \infty$. By Lemma 1,

$$
\left.\int_{|y|_{p} \leq|x|_{p}^{1 / 2}} f(y) d y=o\left(|x|_{p}^{\frac{\varepsilon}{2}}\right)\right), \quad|x|_{p} \rightarrow \infty
$$

For the kernel of the above integral operator we get, considering various cases, the estimate

$$
\left||x-y|_{p}^{\alpha-1}-|y|_{p}^{\alpha-1}-|x|_{p}^{\alpha-1}\right| \leq 2|y|_{p}^{\alpha-1} .
$$

It follows from Lemma 1 that

$$
\begin{equation*}
\left|J_{1}\right| \leq 2 \int_{|y|_{p} \leq|x|_{p}^{1 / 2}}|y|_{p}^{\alpha-1} f(y) d y=o\left(|x|_{p}^{\frac{\alpha-1+\varepsilon}{2}}\right), \quad|x|_{p} \rightarrow \infty \tag{14}
\end{equation*}
$$

By our assumption,

$$
f(t)=|t|_{p}^{-1} \sum_{n=0}^{N} a_{n}\left(\log |t|_{p}\right)^{\gamma-n}+R_{N}(t), \quad R_{N}(t)=O\left(|t|_{p}^{-1}\left(\log |t|_{p}\right)^{\gamma-N-1}\right), \quad|t|_{p} \rightarrow \infty
$$

Let us consider the expression

$$
\begin{aligned}
\widetilde{L}(\alpha, \gamma, x) & =\int_{|x|_{p}^{1 / 2} \leq|y|_{p} \leq|x|_{p}}\left(|x-y|_{p}^{\alpha-1}-|y|_{p}^{\alpha-1}-|x|_{p}^{\alpha-1}\right)|y|_{p}^{-1}\left(\log |y|_{p}\right)^{\gamma} d y \\
& =|x|_{p}^{\alpha-1} \int_{|x|_{p}^{-1 / 2}<|t|_{p}<1}\left(|1-t|_{p}^{\alpha-1}-|t|_{p}^{\alpha-1}-1\right)|t|_{p}^{-1}\left(\log |x|_{p}+\log |t|_{p}\right)^{\gamma} d t
\end{aligned}
$$

It follows from the first integration formula from Section 1 that

$$
\int_{|t|_{p} \leq|x|_{p}^{-1 / 2}}\left(|1-t|_{p}^{\alpha-1}-|t|_{p}^{\alpha-1}-1\right)|t|_{p}^{-1}\left(\log |t|_{p}\right)^{k} d t=o\left(|x|^{\frac{1-\alpha+\varepsilon}{2}}\right), \quad|x|_{p} \rightarrow \infty
$$

This implies (just as in the proof of Theorem 3) the expansion

$$
\widetilde{L}(\alpha, \gamma, x) \sim|x|_{p}^{\alpha-1} \sum_{k=0}^{\infty}\binom{\gamma}{k}\left(\log |x|_{p}\right)^{\gamma-k} \widetilde{\Omega}(k, \alpha), \quad|x|_{p} \rightarrow \infty
$$

Taking into account (14), we come to (13).
Acknowledgments. The work of the first author was supported in part by Grant 23/1618 "Statistical dynamics, generalized Fokker-Planck equations, and their applications in the theory of complex systems" of the Ministry of Education and Science of Ukraine.

References

1. A.N. Kochubei, Pseudo-differential equations and stochastics over non-Archimedean fields, Marcel Dekker, New York, 2001.
2. A.N. Kochubei, Radial solutions of non-Archimedean pseudodifferential equations, Pacific J. Math. 269 (2014), no. 2, 355-369.
3. E.J. Riekstiṇs, Asymptotic representation of certain types of convolution integral, Latvian Mathematical Yearbook, vol. 8, 1970, pp. 223-239 (Russian).
4. S.G. Samko, A.A. Kilbas, and O.I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach, Yverdon, 1993.
5. V.S. Vladimirov, Tables of integrals of complex-valued functions of p-adic arguments, Sovrem. Probl. Mat. 2 (2003), 3-88 (Russian). English version, arXiv:math-ph/9911027.

ASYMPTOTIC PROPERTIES OF THE p-ADIC FRACTIONAL INTEGRATION OPERATOR 163

6. V.S. Vladimirov, I.V. Volovich, and E.I. Zelenov, p-adic analysis and mathematical physics, Series on Soviet and East European Mathematics, vol. 1, World Scientific, River Edge, NJ, 1994.
7. R. Wong, Asymptotic expansions of fractional integrals involving logarithms, SIAM J. Math. Anal. 9 (1978), no. 5, 835-842.

Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs'ka, Kyiv, 01601, Ukraine

E-mail address: kochubei@imath.kiev.ua
Faculty of Mathematics and Mechanics, Taras Shevchenko Kyiv National University, 64 Volodymyrs'ka, Kyiv, 01033, Ukraine

E-mail address: dssoskin@gmail.com

[^0]: 2010 Mathematics Subject Classification. Primary 11S80; Secondary 26A33.
 Key words and phrases. p-Adic numbers, Vladimirov's p-adic fractional differentiation operator, p adic fractional integration operator, asymptotic expansion.

