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FIXED POINTS OF COMPLEX SYSTEMS WITH ATTRACTIVE

INTERACTION

V. KOSHMANENKO AND N. KHARCHENKO

The paper is dedicated to memory of prominent Ukrainian mathematician Myroslav Gorbachuk

Abstract. We study the behavior of complex dynamical systems describing an at-

tractive interaction between two opponents. We use the stochastic interpretation and

describe states of systems in terms of probability distributions (measures) and their
densities. For the time evolution we derive specific non-linear difference equations

which generalize the well-known Lotka-Volterra equations. Our results state the ex-

istence of fixed points (equilibrium states) for various kinds of attractive interactions.
Besides, we present an explicit description of the limiting distributions and illustrate

abstract results by several examples.

1. Introduction

Let A denote a complex system consisting of a big set of agents A = {ai}ni=1, n ≥ ∞,
which live on a common resource space Ω. States of the agents a are described by
stochastic distributions (probability measures) µ on Ω. Values µ(A), A ⊆ Ω, characterize
the probabilities for the agent a to be in A. In particular models µ(A) may have various
meanings: a probability of occupation, a power of population, etc. Let M(Ω) denote
the set of all measures corresponding to A. We assume that the system A is interactive
and each agent a changes its state under a certain positive or negative interaction with
other agents. Let > denote some law of interaction between agents. We call > a conflict
interaction since it perturbs the free evolution of agents. The triple {Ω, M(Ω),>} is
called [16, 19] a dynamical system of conflict.

Here we consider a discrete time evolution of states which is written in a symbolic
form as follows:

(1.1) µN
>−→ µN+1, N = 0, 1, . . . ,

where µ0 = µ stands for an initial state. We are interested in studying the behavior of
the trajectories µN , N →∞, under a certain law of conflict interaction > considered as
a transformation in space of measures.

We will study trajectories (1.1) produced by the difference equation of the form

µN+1 =
1

zN
[µN + θN · µN + τN ],

where θN = θ(µN ) and θ is a real-valued multiplicative functional onM(Ω), and τN is a
sequence of positive measures on Ω. Here zN denotes the normalizing denominator. We
suppose that θN is responsible for the independent time evolution of each agent, and τN

describes the conflict interaction.
In this paper we continue to develop mathematical tools for studying complex dynam-

ical systems that describe the phenomenon of conflict interaction between opponents
which are associated with agents a.
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In the previous works (see [2, 5, 14, 15, 16, 18]) for a description of opponent states
we mainly used discrete probability measures (stochastic vectors p, r ∈ Rn+, n > 1 ). In
these cases the evolution equations are rather simple but non-linear, and present some
generalization of the vector form of the Lotka-Volterra difference equations

pN+1
i = pNi (1 + θN ± rNi ), rN+1

i = rNi (1 + θN ± pNi ), N = 0, 1, . . . ,

where pNi , r
N
i , i = 1, 2, . . . , n, stands for coordinates of the stochastic vectors pN , rN ∈

Rn+ that describe states of the opponents at time t = N , and θN = (pN , rN ) is the
inner product in Rn+. The signs ± correspond to attractive or repulsive interactions,
respectively. In both cases the theorem of conflict was proved (see also [5, 15, 16] and
[19]). This theorem establishes existence of fixed points (equilibrium states) for any
trajectory of the system.

There were discovered two difficulties. The first problem was concerned with a com-
plete description of the limiting states for systems with attractive interaction. And the
second one was that we were not able to go to arbitrary not necessarily discrete mea-
sures. For the case of repulsive interaction we reached a certain success [17, 18] using
the improved system of evolution equations in terms of the probability measures

(1.2) µN+1 = µN (1 + θN )− τN ,

where θN has the meaning similar to the above, and τN fixes the local confrontation
between the opponents at time t = N . The existence of compromise ω-limit states for the
repulsive conflict interaction between opponents with any couple of starting probability
measures µ, ν ∈M(Ω) was proved in [18].

In this paper we establish a similar result in the case of an attractive interaction, i.e.,
for a positive sign in front of the measure τN in (1.2). Moreover, we give an explicit
description of limiting states µ∞ and present particular examples.

The influence of the publications [4, 7, 8, 9, 10, 12, 13, 20, 21, 22, 23] has affected on
our constructions.

2. Complex systems with attractive internal interaction

At first we consider an abstract case of a complex dynamical system with an internal
attractive interaction between couples of agents. We start with some preparations.

Let Ω be a metric space and R be a σ-algebra of the Borel subsets of Ω. Denote by
M+(Ω) the family of all σ-additive finite positive measures on Ω. And the subset of
positive probability measures on Ω is denoted by M+

1 (Ω).
To construct a dynamical system, we define the conflict transformation > as follows.

For a pair of probability measures µ, ν ∈M+
1 (Ω) we put into correspondence a new pair

of probability measures µ1, ν1 according to the rule

µ1(A) ≡ (µ> ν)(A) = 1
z [µ(A) + θ · µ(A) + τ(A)], ∀A ∈ R,

ν1(A) ≡ (ν > µ)(A) = 1
z [ν(A) + θ · ν(A) + τ(A)],

where θ = θ(µ, ν) is an arbitrary positive form of µ, ν and τ(A) is a positive measure
fromM+(Ω). It is easy to check that the normalizing denominator z = 1 + θ+T , where
T := τ(Ω). Due to the construction µ1, ν1 ∈M+

1 (Ω).
Since we consider pairs of probability measures µ, ν fromM+

1 (Ω)×M+
1 (Ω) one may de-

note the conflict dynamical system with attraction as the triple {Ω,M+
1 (Ω)×M+

1 (Ω),>}.
The iteration of the above defined transformation > determines the trajectory in terms
of couples of measures,

(2.1) {µN , νN} >−→ {µN+1, νN+1}, N = 0, 1, . . . ,
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where µ0 = µ, ν0 = ν and

(2.2)
µN+1(A) = 1

zN
[µN (A) + θN · µN (A) + τN (A)],

νN+1(A) = 1
zN

[νN (A) + θN · νN (A) + τN (A)].

Here θN = θ(µN , νN ), τN ∈M+(Ω), and

zN = 1 + θN + T N , T N = τN (Ω).

Now we are able to present the main result of this section.

Theorem 2.1. Let a conflict dynamical system {Ω,M+
1 (Ω)×M+

1 (Ω),>} be defined by
the system of equations (2.2) where θ is a bounded positive quadratic form on M+

1 (Ω)
and τN is a sequence of positive measures on Ω which satisfy the following conditions:

(2.3)
τN (A)

τN (Ω)
=
τ(A)

τ(Ω)
, A ∈ R, N = 0, 1, . . . ,

(2.4) τN (Ω) ≤ τN+1(Ω), N = 0, 1, . . .

Then each trajectory (2.1) converges to a fixed point {µ∞, ν∞} such that

(2.5) µ∞(A) = ν∞(A) =
τ(A)

τ(Ω)
.

Proof. In fact we have to prove the existence of the limits

µ∞(A) = lim
N→∞

µN (A), ν∞(A) = lim
N→∞

νN (A), A ∈ R,

such that

µ∞(A) = ν∞(A) =
τ(A)

T
, A ∈ R.

Denote τnorm(A) := τ(A)
T and d0(A) := µ(A) − τnorm(A). Using equations (2.2) and

(2.3) we get

d1(A) = µ1(A)− τnorm(A) = µ1(A)− τ(A)

T

=
1

z

[
µ(A)(1 + θ) + τ(A)− τ(A)(1 + θ + T )

T

]
=

1 + θ

z

(
µ(A)− τ(A)

T

)
=

1 + θ

1 + θ + T
(µ(A)− τnorm(A)) .

Denote k0 := 1+θ
1+θ+T . Thus we can write

d1(A) = k0d
0(A),

and, by induction,

dN+1(A) = µN+1(A)− τ(A)

T
= kN · · · k0 · d0(A),

where obviously kN = 1+θN

1+θN+T N < 1.
We can also write

kN =
1

1 + T N

1+θN

.

Recall that by the assumptions of the theorem, 0 < T N , T N ≤ T N+1 and θN 6→ ∞.

Hence we have T N

1+θN
6→ 0. So kN 6→ 1 and therefore

∞∏
N=0

kN = 0.



FIXED POINTS OF COMPLEX SYSTEMS WITH ATTRACTIVE INTERACTION 167

Due to the above equality the limit lim
N→∞

dN (A) exists and, moreover,

lim
N→∞

dN (A) = lim
N→∞

∞∏
N=0

kNd
N (A) = 0.

Hence

lim
N→∞

µN (A) =
τ(A)

T
= τnorm(A).

In a similar way one can show that lim
N→∞

νN (A) = ν∞(A) = τ(A)
T = τnorm(A). �

Remark. We note that by (2.5) the limit fixed point is the same for all starting couples
µ0, ν0, i.e., it does not depend an the initial states.

3. Examples

In this section we construct examples of conflict dynamical systems with internal
attraction which illustrate the results of Theorem 2.1.

Recall that Ω is a metric space and R is a σ-algebra of Borel subsets of Ω, M+(Ω)
is family of all σ-additive finite positive measures on Ω. A subset of positive probability
measures on Ω is denoted by M+

1 (Ω).
Here we construct several examples of conflict dynamical system with attraction

{Ω,M+
1 (Ω)×M+

1 (Ω),>}, where the transformation > is given by the equations (2.2)

µN+1(A) = 1
zN

[µN (A) + θN · µN (A) + τN (A)],
νN+1(A) = 1

zN
[νN (A) + θN · νN (A) + τN (A)],

where θN = θ(µN , νN ) is an arbitrary positive form of µN , νN and τN will be defined in
different ways.

Example 3.1. Consider a simplest case where the measures τN do not depend on
N , i.e., τN = τ in (2.2). This is a trivial case and obviously all trajectories of the
conflict dynamical system {Ω,M+

1 (Ω)×M+
1 (Ω),>} converge to the same limiting state

{ τ
τ(Ω) ,

τ
τ(Ω)}.

Example 3.2. Let µ, ν be arbitrary probability measures fromM+
1 (Ω). Assume µ 6= ν.

Consider a signed measure ω := µ − ν ∈ M(Ω). Here M(Ω) denotes the family of all
σ-additive finite signed measures on Ω. According to measure theory [3] each signed
measure ω determines the Hahn decomposition of Ω onto two parts

(3.1) Ω = Ω+ ∪ Ω−, Ω+ ∩ Ω− = ∅, Ω+,Ω− ∈ R

with the properties

∀A+ ⊆ Ω+, ω(A+) ≥ 0, ∀A− ⊆ Ω−, ω(A−) ≤ 0 (A+, A− ∈ R).

In other terms,

µ(A+) ≥ ν(A+), A+ ⊆ Ω+, µ(A−) ≤ ν(A−), A− ⊆ Ω−.

See more details in [3].
Now we define the measures τN as follows:

(3.2) τN (A) := µN (A−) + νN (A+), A ∈ R, A− = A ∩ Ω−, A+ = A ∩ Ω+.

And

zN = 1 + θN + T N , T N = τN (Ω).

In this example we assume that 0 ≤ θN ≤ 1. Then it is easy to see that 0 < zN ≤ 1 and
0 ≤ T N ≤ 1 for any N = 0, 1, . . .
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Let us show that the Hahn decomposition (3.1) of Ω does not depend on N , i.e., it
is the same for any pair {µN , νN}, N = 0, 1, . . . Indeed, let A+ ⊆ Ω+ be fixed. Then
ω(A+) = µ(A+)− ν(A+) ≥ 0. And for N = 1 we have

ω1(A+) = µ1(A+)− ν1(A+) =
1

z
(1 + θ)ω(A+) ≥ 0,

since z > 0, θ > 0, and ω(A+) ≥ 0. In the same way we find that ωN (A+) ≥ 0 for any
N = 1, 2, . . . Similarly, one can check that ωN (A−) ≤ 0 for any subset A− ⊂ Ω−. Thus,

(3.3)
µN (A+) ≥ νN (A+), A+ ⊆ Ω+,
µN (A−) ≤ νN (A−), A− ⊆ Ω−, N = 0, 1, . . .

Proposition 3.1. The conflict dynamical system {Ω,M+
1 (Ω)×M+

1 (Ω),>} determined
by the system of equations (2.2) with measures τN defined by (3.2) has two subsets of
invariant states:

(1) The subset of couples {µ, ν} such that µ, ν are mutually singular,

Γ⊥ = {{µ, ν} ∈ M+
1 (Ω)×M+

1 (Ω) | µ ⊥ ν}.

(2) The subset of couples {µ, ν} such that µ, ν are identical,

Γ= = {{µ, ν} ∈ M+
1 (Ω)×M+

1 (Ω) | µ = ν}.

Proof. If the measures µ, ν are mutually singular, µ ⊥ ν, then due to the Hahn decompo-
sition, µ(Ω+) = 1, and µ(A−) = 0, ∀A− ⊆ Ω−. And ν(Ω−) = 1, ν(A+) = 0, ∀A+ ⊆ Ω+.
Therefore

τ(A) = µ(A−) + ν(A+) = 0, ∀A ∈ R, and T 0 ≡ T = τ(Ω) = 0.

From equations (2.2) due to (3.3) we have µN+1(A) = µN (A), νN+1(A) = νN (A),
∀A ∈ R, for any N = 0, 1, . . . It proves the invariance property of the set Γ⊥ with
respect to mapping (2.2).

If the measures µ, ν are identical, µ = ν, then it is obvious that for any A ∈ R,
τ(A) = µ(A) = ν(A), T = τ(Ω) = 1. And from equations (2.2) and (3.3) we have
µN+1(A) = µN (A), νN+1(A) = νN (A) for any N = 0, 1, . . . �

Now we can describe all limit states of this dynamical system.

Theorem 3.1. Let a triple {Ω,M+
1 (Ω) ×M+

1 (Ω),>} be a conflict dynamical system
given by equations (2.2) with τN defined by (3.2). Then every trajectory (2.1) starting
with a couple of mutually non-singular measures, {µ, ν} /∈ Γ⊥, converges to a fixed point
{µ∞, ν∞} ∈ Γ=.

Moreover, the limiting measures µ∞, ν∞ admit a description in terms of the Hahn
decomposition of the starting measures,

µ∞(A) = ν∞(A) =
µ(A−) + ν(A+)

µ(Ω−) + ν(Ω+)
.

Proof. Let us prove that the measures τN defined by (3.2) satisfy conditions (2.4), (2.3)
of Theorem 2.1.

Let A ∈ R. Then by (3.1) we can write A = A+ ∪ A−, where A+ = A ∩ Ω+,
A− = A ∩ Ω−. By definition,

τN+1(A) = µN+1(A−) + νN+1(A+)

=
1

zN
[
(µN (A−) + νN (A+))(1 + θN ) + τN (A−) + τN (A+)

]
=

1

zN
[
τN (A)(1 + θN ) + τN (A)

]
.
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Thus

τN+1(A) =
2 + θN

1 + θN + T N
τN (A).

So, τN+1(A) > τN (A) since, by construction, 0 < T N = τ(Ω) < 1 for all N , and
moreover, T N+1 > T N because

T N+1 = τN+1(Ω) =
2 + θN

1 + θN + T N
T N ,

which proves inequality (2.4). And we also get

τN+1(A)

T N+1
=
τN (A)

T N
, N = 0, 1, . . . ,

which proves the equality (2.3).
Thus conditions (2.3) and (2.4) in Theorem 2.1 hold. So by Theorem 2.1 for any

couple of measures {µ, ν} /∈ Γ⊥ the trajectory (2.1) converges to a fixed point {µ∞, ν∞},

µ∞(A) = ν∞(A) =
τ(A)

τ(Ω)
=
µ(A−) + ν(A+)

µ(Ω−) + ν(Ω+)
.

Obviously the limit couple µ∞, ν∞ belongs to Γ=. �

Example 3.3. Let us define the sequence of measures τN as follows:

τN (A) = αµN (A) + βνN (A), A ∈ R, N = 0, 1, . . . ,

where α, β ∈ R, α, β ≥ 0 and α2 + β2 6= 0.
Then

T N = τN (Ω) = αµN (Ω) + βνN (Ω) = α+ β, N = 0, 1, . . .

Thus, T N = T which means that condition (2.4) in Theorem 2.1 holds.
Let us prove that the measures τN satisfy condition (2.3) too. In fact, we have to

show that τN (A) = τ(A), since T N = T = α+ β. By definition we have

τ1(A) = αµ1(A) + βν1(A) =
1

z
((αµ(A) + βν(A))(1 + θ) + (α+ β)τ(A))

=
1

1 + θ + T
(τ(A)(1 + θ + α+ β)) = τ(A).

Therefore, by induction, τ(A) = τN (A) for any N = 0, 1, . . . Now applying Theorem 2.1
we can state that for any couple of measures µ, ν ∈M+

1 (Ω) the trajectory (2.1) converges
to the fixed point {µ∞, ν∞},

µ∞(A) = ν∞(A) =
τ(A)

τ(Ω)
=
αµ(A) + βν(A)

α+ β
, A ∈ R.

Example 3.4. Starting with a couple of measures µ, ν ∈ M+
1 (Ω), fix two non-empty

sets M⊂ suppµ, N ⊂ suppν such that M∩N = ∅. Further,

τ0(A) = τ(A) = µ(M∩A) + ν(N ∩A),

and using (2.2) define the sequence of measures τN , N ≥ 1 as follows:

τN (A) = µN (M∩A) + νN (N ∩A).

Let us show that this sequence satisfies conditions (2.3) and (2.4). Indeed, by definition,

τ1(A) = µ1(M∩A) + ν1(N ∩A)

=
1

z
(µ(M∩A)(1 + θ) + τ(M∩A) + ν(N ∩A)(1 + θ) + τ(N ∩A))

=
1

z
((µ(M∩A) + ν(N ∩A))(1 + θ) + τ(M∩A) + τ(N ∩A)) .
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However,

τ(M∩A) = µ(M∩ (M∩A)) + ν(N ∩ (M∩A)) = µ(M∩A),

since N ∩M = ∅ and ν(N ∩ (M∩A)) = 0. Similarly we get

τ(N ∩A) = ν(N ∩A),

since µ(M∩ (N ∩A)) = 0. Hence,

τ1(A) =
1

z
(2 + θ)τ(A) =

2 + θ

1 + θ + T
τ(A).

Because of

T 1 = τ1(Ω) =
2 + θ

1 + θ + T
T ,

we obtain the equality

τ1(A)

T 1
=
τ(A)

T
and the inequality τ1(Ω) ≡ T 1 ≥ τ(Ω) ≡ T too. By the induction conditions, (2.3) and
(2.4) hold for all N . Due to Theorem 2.1 the sequence of measures µN , νN converges to
a fixed point {µ∞, ν∞},

µ∞(A) = ν∞(A) =
µ(M∩A) + ν(N ∩A)

µ(M∩ Ω) + ν(N ∩ Ω)
.

4. The case of exponential growth of θN

This section was inspired by the Myroslav Gorbachuk’s particular interest to various
problems that are concerned with exponential operator semigroups [11]. It is well known
that the corresponding functionals after their extension to the complex plane have an
exponential growth with respect to time. This property will be used here. Namely,
in this section we will investigate the behavior of trajectories of the conflict dynamical
system with attractive interaction in the situation where the values of the global evolution
indicator θN have exponential growth as N → ∞. As above, > denotes the conflict
transformation. We are interesting in convergence of the trajectories

{µN , νN} >−→ {µN+1, νN+1}, N = 0, 1, . . . ,

where the measures µN+1, νN+1 are defined by the recurrent law as in (2.2),

µN+1 =
1

zN
[µN (1 + θN ) + τN ], νN+1 =

1

zN
[νN (1 + θN ) + τN ],

starting with an arbitrary couple of different measures µ0 = µ, ν0 = ν from M+
1 (Ω).

We recall that θN = θ(µN , νN ) denotes the multiplicative indicator of global evolution.
It shows the changes of some essential characteristic for agents of the complex system
A. Usually θN is presented by values of a non-negative real-valued functional which
characterizes the power or the rate of growth of µN (A) or νN (A) at time N . There are
various ways for definition of θ (see [1, 6]).

In this section we assume that values of the global evolution indicator approach infinity,
θN −→∞ as N −→∞.

Below we will assume that additive factors of the attractive interaction τN are pre-
sented by some sequence of positive measures depending on µN , νN in such a way that
the conditions of Theorem 2.1 are satisfied.
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We say that θN = θ(µN , νN ) has exponential growth with N → ∞ if θN tends to

infinity so quickly that 1+θN

1+θN+T N → 1 and the following series converges to some non-
zero finite value:

(4.1) c :=

∞∏
N=0

kN > 0,

where

kN :=
1 + θN

1 + θN + T N
≡ 1− T N

1 + θN + T N
.

Theorem 4.1. Let the global evolution indicator θN = θ(µN , νN ) have an exponential
growth and satisfy condition (4.1), and the sequence τN be defined by (3.2). Then, for
each couple of measures µ, ν from M+

1 (Ω), trajectory (2.1) of the conflict dynamical
system (2.2) converges to a fixed point {µ∞, ν∞},

µ∞(A) = lim
N→∞

µN (A), ν∞(A) = lim
N→∞

νN (A), A ∈ R,

where

(4.2)
µ∞(A) = cµ(A) + (1− c) τ(A)

T ,

ν∞(A) = cν(A) + (1− c) τ(A)
T .

Proof. Above it has been proved that τN satisfy condition (2.3) of Theorem 2.1, that is,

τN (A)

τN (Ω)
≡ τN (A)

T N
=
τ(A)

T
, A ∈ R, N = 0, 1, . . .

Using this fact and denoting

d0 := µ(A)− τ(A)/T
due to (2.2) we have

d1 = µ1(A)− τ(A)

T
=

1 + θ

1 + θ + T

(
µ(A)− τ(A)

T

)
= k0 · d0,

where we recall that k0 = 1+θ
1+θ+T . By induction one can write

dN+1 = µN+1(A)− τ(A)

T
= kN · · · k0 · d0, kN =

1 + θN

1 + θN + T N
.

Passing to infinity we get

d∞ = lim
N→∞

dN = µ∞(A)− τ(A)

T
=

∞∏
N=0

kN · d0.

Thus, due to (4.1),

µ∞(A)− τ(A)

T
= c(µ(A)− τ(A)

T
),

and, therefore,

µ∞(A) = cµ(A) + (1− c)τ(A)

T
,

which proves the first equation in (4.2). In the similar way one can prove the second
equation, i.e., that

ν∞(A) = cν(A) + (1− c)τ(A)

T
.

�
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We remark that now the limit measures µ∞, ν∞ are distinct. But if the global evolution

indicator θN does not have the exponential growth with N → ∞ then
∞∏
N=0

kN = c = 0

and also limN→∞ dN = 0. In such a case, µ∞(A)− τ(A)
T = 0 and µ∞(A) = τ(A)

T = ν∞(A).
This result is the same as in Theorem 2.1.

5. Conflict dynamical systems in terms of densities

Put Ω = [0, 1] and letR be the Borel σ-algebra of subsets of [0, 1]. Consider a couple of
probability measures µ, ν ∈ M+

1 ([0, 1]), and assume that µ, ν are absolutely continuous
with respect to the Lebesgue measure λ. Let ρ(x), σ(x) ≥ 0 be densities defined as
Radon-Nikodym derivatives of µ, ν with respect to λ. Thus we have

µ(A) =

∫
A

ρ(x) dλ(x), ν(A) =

∫
A

σ(x) dλ(x), A ∈ R.

Besides we will assume that the densities ρ(x), σ(x) are continuous, ρ, σ ∈ C([0, 1]).
Under these assumptions we can construct the conflict dynamical system with attractive
interaction directly in terms of point-wise evolutions of the densities

(5.1)

{
ρN+1(x) = 1

zN
[ρN (x)(1 + θN ) + τN (x)],

σN+1(x) = 1
zN

[σN (x)(1 + θN ) + τN (x)], x ∈ [0, 1], N = 0, 1, . . . ,

where ρ0 = ρ, σ0 = σ. Here θN is a bounded sequence of real-valued functionals, τN (x)
are positive continuous functions, τN ∈ C([0, 1]), and

zN = 1 + θN + T N ,
where

T N =

∫
[0,1]

τN (x) dλ(x).

We denote the conflict dynamical system with attraction in terms of densities by
{Ω, C+

1 ([0, 1])×C+
1 ([0, 1]),>}, where C+

1 ([0, 1])×C+
1 ([0, 1]) stands for the set of couples

of positive continuous functions σ(x), ρ(x) which are normed by 1,∫
[0,1]

ρ(x) dλ(x) =

∫
[0,1]

σ(x) dλ(x) = 1.

The system of difference equations (5.1) defines the conflict transformation > which
generates the trajectories

(5.2) {ρN , σN} >−→ {ρN+1, σN+1}, N = 0, 1, . . . ,

where all pairs of functions belong to C+
1 ([0, 1])× C+

1 ([0, 1]).

Theorem 5.1. Let the conflict dynamical system {Ω, C+
1 ([0, 1])×C+

1 ([0, 1]),>} be defined
by system (5.1), where θN is a bounded sequence of real-valued positive functionals on
C+

1 ([0, 1]) and τN is a sequence of positive continuous functions on [0, 1] that satisfy the
following conditions (τ0 ≡ τ , T 0 ≡ T ):

(5.3)
τN (x)

T N
=
τ(x)

T
, N = 0, 1, . . . ,

(5.4) T N ≤ T N+1, N = 0, 1, . . .

Then each trajectory (5.2) converges to a fixed point {ρ∞, σ∞},

ρ∞(x) = lim
N→∞

ρN (x), σ∞(x) = lim
N→∞

σN (x),
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such that

(5.5) ρ∞(x) = σ∞(x) =
τ(x)

T
, x ∈ [0, 1].

Proof. Denote d(x) := ρ(x)− τ(x)
T . It follows from equations (5.1) and assumption (5.3)

that

d1(x) := ρ1(x)− τ(x)

T
=

1 + θ

1 + θ + T

(
ρ(x)− τ(x)

T

)
,

where 1+θ
1+θ+T < 1, since τ(x) ≥ 0 and T > 0. By induction,

dN+1(x) := ρN+1(x)− τ(x)

T
=

1 + θN

1 + θN + T N

(
ρN (x)− τ(x)

T

)
.

Denoting

kN =
1 + θN

1 + θN + T N
,

we can write

dN+1(x) = kN · · · k1k0d(x),

where it is obvious that kN < 1. Rewriting kN in the form

kN =
1

1 + T N

1+θN

we observe that
∏∞
N=0 kN = 0, since θN is bounded, T N is non-decreasing, T N

1+θN
6→ 0,

and kN 6→ 1.
This proves existence of the zero limits lim

N→∞
dN (x) for all points x ∈ [0, 1]

lim
N→∞

dN (x) = lim
N→∞

kN · . . . · k1 · k0d(x) =

∞∏
N=0

kNd(x) = 0.

Therefore,

lim
N→∞

ρN (x) =
τ(x)

T
.

In a similar way we prove that

lim
N→∞

σN (x) =
τ(x)

T
.

�

The next example illustrates Theorem 5.1.

Example 5.1. Let µ, ν ∈ M+
1 ([0, 1]) and assume that µ, ν are absolutely continuous

with respect to the Lebesgue measure λ. Let ρ(x), σ(x) ≥ 0 be densities defined as the
Radon-Nikodym derivatives of µ, ν with respect to λ.

In terms of given densities, the Hahn decomposition corresponding to the charge ω =
µ− ν may be defined as follows:

[0, 1] = [0, 1]+ ∪ [0, 1]−,

where

[0, 1]+ = {x ∈ [0, 1]|ρ(x) > σ(x)}, [0, 1]− = {x ∈ [0, 1]|ρ(x) ≤ σ(x)}.
Now we can define a more specific conflict dynamical system {[0, 1], C+

1 ([0, 1]) ×
C+

1 ([0, 1]),>}, with the transformation > given by equations (5.1), where

θN =

∫
[0,1]

√
ρN (x)σN (x) dλ(x),
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(5.6) τN (x) = min
{
σN (x), ρN (x)

}
=

{
σN (x), x ∈ [0, 1]+,

ρN (x), x ∈ [0, 1]−,

and

(5.7) zN = 1 + θN + T N , T N =

∫
[0,1]

τN (x) dλ(x).

We observe that the Hahn decompositions corresponding to ωN = µN − νN does not
depend on N ,

[0, 1]N+ = {x ∈ [0, 1]|ρN (x) > σN (x)} = [0, 1]+,

[0, 1]N− = {x ∈ [0, 1]|ρN (x) ≤ σN (x)} = [0, 1]−, N = 0, 1, . . .

Indeed, by (5.1)

ρ1(x)− σ1(x) = (ρ(x)− σ(x))(θ + 1)
1

z
, x ∈ [0, 1].

Therefore, if ρ(x) > σ(x) then ρ1(x) > σ1(x) and, by induction, ρN (x) > σN (x) for any
N = 1, 2, ... It proves that [0, 1]N+ = [0, 1]+. In a similar way we get [0, 1]N− = [0, 1]−.

Now we prove that condition (5.3) of Theorem 5.1 holds for τN (x) given by (5.6). Indeed
using (5.6) we get

τ1(x) =

{
1
z (σ(x)(θ + 1) + τ(x)), x ∈ [0, 1]+,
1
z (ρ(x)(θ + 1) + τ(x)), x ∈ [0, 1]−.

Hence

τ1(x) =
1

z
(τ(x)(θ + 1) + τ(x)) =

2 + θ

z
τ(x).

Then, by (5.7),

T 1 =

∫
[0,1]

τ1(x)dλ(x) =

∫
[0,1]

2 + θ

z
τ(x)dλ(x) =

2 + θ

z
· T .

Therefore,

τ1(x)

T 1
=

2+θ
z τ(x)

2+θ
z · T

=
τ(x)

T
.

By induction,

T N+1 =
2 + θ

1 + θ + T N
· T N

and

τN+1(x)

T N+1
=
τN (x)

T N
=
τ(x)

T
,

which proves (5.3). And since T N ≤ 1, we have T N ≤ T N+1 which proves (5.4).

So, by Theorem 5.1, ρ∞(x) = τ(x)
T , σ∞(x) = τ(x)

T = min{ρ(x), σ(x)}/T .
Finally we illustrate the results of Theorem 5.1 by computer simulation. We present

two particular examples. Below, with thick lines Figures 1 and 2 exhibit the limit densi-
ties ρ∞(x), σ∞(x) for trajectories of conflict dynamical system with two sets of different
starting densities ρ(x), σ(x):
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0 0.2 0.4 0.6 0.8 1

0

1

2

3

p(x)

r(x)

limit

ρ∞(x)
ρ(x)
σ(x)

Figure 1. ρ(x) = 1
2.95 (3 + cos 9x+ cos 17x+ cos 24x), σ(x) = 1

1.95 (2 + cos 10x).

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

p(x)

r(x)

limit

ρ∞(x)
ρ(x)
σ(x)

Figure 2. ρ(x) = 1
2.95 (3 + cos 9x + cos 17x + cos 24x), σ(x) =

1
0.466 (e−

(x−0.5)2

0.04 + e−
(x−0.25)2

0.004 ).
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