TRANSFORMATIONS OF NEVANLINNA OPERATOR-FUNCTIONS AND THEIR FIXED POINTS

YU. M. ARLINSKII
To Eduard R. Tsekanovskǐ on the occasion of his 80th birthday

Abstract

We give a new characterization of the class $\mathbf{N}_{\mathfrak{M}}^{0}[-1,1]$ of the operatorvalued in the Hilbert space \mathfrak{M} Nevanlinna functions that admit representations as compressed resolvents (m-functions) of selfadjoint contractions. We consider the automorphism $\boldsymbol{\Gamma}: M(\lambda) \mapsto M_{\Gamma}(\lambda):=\left(\left(\lambda^{2}-1\right) M(\lambda)\right)^{-1}$ of the class $\mathbf{N}_{\mathfrak{M}}^{0}[-1,1]$ and construct a realization of $M_{\Gamma}(\lambda)$ as a compressed resolvent. The unique fixed point of $\boldsymbol{\Gamma}$ is the m-function of the block-operator Jacobi matrix related to the Chebyshev polynomials of the first kind. We study a transformation $\widehat{\Gamma}: \mathcal{M}(\lambda) \mapsto \mathcal{M}_{\widehat{\Gamma}}(\lambda):=$ $-\left(\mathcal{M}(\lambda)+\lambda I_{\mathfrak{M}}\right)^{-1}$ that maps the set of all Nevanlinna operator-valued functions into its subset. The unique fixed point \mathcal{M}_{0} of $\widehat{\Gamma}$ admits a realization as the compressed resolvent of the "free" discrete Schrödinger operator $\widehat{\mathbf{J}}_{0}$ in the Hilbert space $\mathbf{H}_{0}=$ $\ell^{2}\left(\mathbb{N}_{0}\right) \otimes \mathfrak{M}$. We prove that \mathcal{M}_{0} is the uniform limit on compact sets of the open upper/lower half-plane in the operator norm topology of the iterations $\left\{\mathcal{M}_{n+1}(\lambda)=\right.$ $\left.-\left(\mathcal{M}_{n}(\lambda)+\lambda I_{\mathfrak{M}}\right)^{-1}\right\}$ of $\widehat{\boldsymbol{\Gamma}}$. We show that the pair $\left\{\mathbf{H}_{0}, \widehat{\mathbf{J}}_{0}\right\}$ is the inductive limit of the sequence of realizations $\left\{\widehat{\mathfrak{H}}_{n}, \widehat{A}_{n}\right\}$ of $\left\{\mathcal{M}_{n}\right\}$. In the scalar case $(\mathfrak{M}=\mathbb{C})$, applying the algorithm of I. S. Kac, a realization of iterates $\left\{\mathcal{M}_{n}(\lambda)\right\}$ as m-functions of canonical (Hamiltonian) systems is constructed.

1. Introduction and preliminaries

Notations. We use the symbols $\operatorname{dom} T, \operatorname{ran} T, \operatorname{ker} T$ for the domain, the range, and the null-subspace of a linear operator T. The closures of $\operatorname{dom} T, \operatorname{ran} T$ are denoted by $\overline{\operatorname{dom}} T, \overline{\operatorname{ran}} T$, respectively. The identity operator in a Hilbert space \mathfrak{H} is denoted by I and sometimes by $I_{\mathfrak{H}}$. If \mathfrak{L} is a subspace, i.e., a closed linear subset of \mathfrak{H}, the orthogonal projection in \mathfrak{H} onto \mathfrak{L} is denoted by $P_{\mathfrak{L}}$. The notation $T \upharpoonright \mathfrak{L}$ means the restriction of a linear operator T on the set $\mathfrak{L} \subset \operatorname{dom} T$. The resolvent set of T is denoted by $\rho(T)$. The linear space of bounded operators acting between Hilbert spaces \mathfrak{H} and \mathfrak{K} is denoted by $\mathbf{B}(\mathfrak{H}, \mathfrak{K})$ and the Banach algebra $\mathbf{B}(\mathfrak{H}, \mathfrak{H})$ by $\mathbf{B}(\mathfrak{H})$. Throughout this paper we consider separable Hilbert spaces over the field \mathbb{C} of complex numbers. $\mathbb{C}_{+} / \mathbb{C}$ - denotes the open upper/lower half-plane of $\mathbb{C}, \mathbb{R}_{+}:=[0,+\infty), \mathbb{N}$ is the set of natural numbers, $\mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$.

Definition 1.1. A B(M)-valued function M is called a Nevanlinna function (R-function [15], [20], Herglotz function [12], Herglotz-Nevanlinna function [1], [3]) if it is holomorphic outside the real axis, symmetric $M(\lambda)^{*}=M(\bar{\lambda})$, and satisfies the inequality $\operatorname{Im} \lambda \operatorname{Im} M(\lambda) \geq 0$ for all $\lambda \in \mathbb{C} \backslash \mathbb{R}$.

This class is often denoted by $\mathcal{R}[\mathfrak{M}]$. A more general is the notion of Nevanlinna family, cf. [9].

[^0]Definition 1.2. A family of linear relations $\mathcal{M}(\lambda), \lambda \in \mathbb{C} \backslash \mathbb{R}$, in a Hilbert space \mathfrak{M} is called a Nevanlinna family if:
(1) $\mathcal{M}(\lambda)$ is maximal dissipative for every $\lambda \in \mathbb{C}_{+}$(resp. accumulative for every $\left.\lambda \in \mathbb{C}_{-}\right)$;
(2) $\mathcal{M}(\lambda)^{*}=\mathcal{M}(\bar{\lambda}), \lambda \in \mathbb{C} \backslash \mathbb{R}$;
(3) for some, and hence for all, $\mu \in \mathbb{C}_{+}\left(\mathbb{C}_{-}\right)$the operator family $\left(\mathcal{M}(\lambda)+\mu I_{\mathfrak{M}}\right)^{-1}(\in$ $\mathbf{B}(\mathfrak{M}))$ is holomorphic on $\mathbb{C}_{+}\left(\mathbb{C}_{-}\right)$.
The class of all Nevanlinna families in a Hilbert space \mathfrak{M} is denoted by $\widetilde{R}(\mathfrak{M})$. Each Nevanlinna family $\mathcal{M} \in \widetilde{R}(\mathfrak{M})$ admits the following decomposition to the operator part $M_{s}(\lambda), \lambda \in \mathbb{C} \backslash \mathbb{R}$, and constant multi-valued part M_{∞} :

$$
\mathcal{M}(\lambda)=M_{s}(\lambda) \oplus M_{\infty}, \quad M_{\infty}=\{0\} \times \operatorname{mul} \mathcal{M}(\lambda)
$$

Here $M_{s}(\lambda)$ is a Nevanlinna family of densely defined operators in $\mathfrak{M} \ominus \operatorname{mul} \mathcal{M}(\lambda)$.
A Nevanlinna $\mathbf{B}(\mathfrak{M})$-valued function admits the integral representation, see [15], [20],

$$
\begin{equation*}
M(\lambda)=A+B \lambda+\int_{\mathbb{R}}\left(\frac{1}{t-\lambda}-\frac{t}{t^{2}+1}\right) d \Sigma(t), \quad \int_{\mathbb{R}} \frac{d \Sigma(t)}{t^{2}+1} \in \mathbf{B}(\mathfrak{M}) \tag{1.1}
\end{equation*}
$$

where $A=A^{*} \in \mathbf{B}(\mathfrak{M}), 0 \leq B=B^{*} \in \mathbf{B}(\mathfrak{M})$, the $\mathbf{B}(\mathfrak{M})$-valued function $\Sigma(\cdot)$ is nondecreasing and $\Sigma(t)=\Sigma(t-0)$. The integral is uniformly convergent in the strong topology; cf. [8], [15]. The following condition is equivalent to the definition of a $\mathbf{B}(\mathfrak{M})$ valued Nevanlinna function $M(\lambda)$ holomorphic on $\mathbb{C} \backslash \mathbb{R}$: the function of two variables

$$
K(\lambda, \mu)=\frac{M(\lambda)-M(\mu)^{*}}{\lambda-\bar{\mu}}
$$

is a nonnegative kernel, i.e., $\sum_{k, l=1}^{n}\left(K\left(\lambda_{k}, \lambda_{l}\right) f_{l}, f_{k}\right) \geq 0$ for an arbitrary set of points $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\} \subset \mathbb{C}_{+} /\left(\subset \mathbb{C}_{-}\right)$and an arbitrary set of vectors $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\} \subset \mathfrak{M}$.

It follows from (1.1) that

$$
\begin{gathered}
B=s-\lim _{y \uparrow \infty} \frac{M(i y)}{y}=s-\lim _{y \uparrow \infty} \frac{\operatorname{Im} M(i y)}{y} \\
\operatorname{Im} M(i y)=B y+\int_{\mathbb{R}} \frac{y}{t^{2}+y^{2}} d \Sigma(t)
\end{gathered}
$$

and this implies that $\lim _{y \rightarrow \infty} y \operatorname{Im} M(i y)$ exists in the strong resolvent sense as a selfadjoint relation; see e.g. [5]. This limit is a bounded selfadjoint operator if and only if $B=0$ and $\int_{\mathbb{R}} d \Sigma(t) \in \mathbf{B}(\mathfrak{M})$, in which case $s-\lim _{y \rightarrow \infty} y \operatorname{Im} M(i y)=\int_{\mathbb{R}} d \Sigma(t)$. In this case one can rewrite the integral representation (1.1) in the form

$$
\begin{equation*}
M(\lambda)=E+\int_{\mathbb{R}} \frac{1}{t-\lambda} d \Sigma(t), \quad \int_{\mathbb{R}} d \Sigma(t) \in \mathbf{B}(\mathfrak{M}) \tag{1.2}
\end{equation*}
$$

and $E=\lim _{y \rightarrow \infty} M(i y)$ in $\mathbf{B}(\mathfrak{M})$.
The class of $\mathbf{B}(\mathfrak{M})$-valued Nevanlinna functions M with the integral representation (1.2) with $E=0$ is denoted by $\mathcal{R}_{0}[\mathfrak{M}]$. In this paper we will consider the following subclasses of the class $\mathcal{R}_{0}[\mathfrak{M}]$.

Definition 1.3. A function N from the class $\mathcal{R}_{0}[\mathfrak{M}]$ is said to belong to the class
(1) $\mathcal{N}[\mathfrak{M}]$ if $s-\lim _{y \rightarrow \infty}$ iy $N(i y)=-I_{\mathfrak{M}}$,
(2) $\mathbf{N}_{\mathfrak{M}}^{0}$ if $N \in \mathcal{N}[\mathfrak{M}]$ and N is holomorphic at infinity,
(3) $\mathbf{N}_{\mathfrak{M}}^{0}[-1,1]$ if $N \in \mathbf{N}_{\mathfrak{M}}^{0}$ and is holomorphic outside the interval $[-1,1]$.

Thus, we have inclusions

$$
\mathbf{N}_{\mathfrak{M}}^{0}[-1,1] \subset \mathbf{N}_{\mathfrak{M}}^{0} \subset \mathcal{N}[\mathfrak{M}] \subset \mathcal{R}_{0}[\mathfrak{M}] \subset \mathcal{R}[\mathfrak{M}] \subset \widetilde{R}(\mathfrak{M})
$$

A selfadjoint operator T in the Hilbert space \mathfrak{H} is called \mathfrak{M}-simple, where \mathfrak{M} is a subspace of \mathfrak{H}, if $\left.\overline{\operatorname{span}}\{T-\lambda I)^{-1} \mathfrak{M}, \lambda \in \mathbb{C}_{+} \cup \mathbb{C}_{-}\right\}=\mathfrak{H}$. If T is bounded then the latter condition is equivalent to $\overline{\operatorname{span}}\left\{T^{n} \mathfrak{M}, n \in \mathbb{N}_{0}\right\}=\mathfrak{H}$.

The next theorem follows from [8, Theorem 4.8] and the Naimark's dilation theorem [8, Theorem 1, Appendix I], see [2] and [3] for the case $M \in \mathbf{N}_{\mathfrak{M}}^{0}$.
Theorem 1.4. 1) If $M \in \mathcal{N}[\mathfrak{M}]$, then there exist a Hilbert space \mathfrak{H} containing \mathfrak{M} as a subspace and a selfadjoint operator T in \mathfrak{H} such that T is \mathfrak{M}-simple and

$$
\begin{equation*}
M(\lambda)=P_{\mathfrak{M}}(T-\lambda I)^{-1} \upharpoonright \mathfrak{M} \tag{1.3}
\end{equation*}
$$

for λ in the domain of M. If $M \in \mathbf{N}_{\mathfrak{M}}^{0}$, then T is bounded and if $M \in \mathbf{N}_{\mathfrak{M}}^{0}[-1,1]$, then T is a selfadjoint contraction.
2) If T_{1} and T_{2} are selfadjoint operators in the Hilbert spaces \mathfrak{H}_{1} and \mathfrak{H}_{2}, respectively, \mathfrak{M} is a subspace in \mathfrak{H}_{1} and \mathfrak{H}_{2}, T_{1} and T_{2} are \mathfrak{M}-simple, and

$$
M(\lambda)=P_{\mathfrak{M}}\left(T_{1}-\lambda I_{\mathfrak{H}_{1}}\right)^{-1} \upharpoonright \mathfrak{M}=P_{\mathfrak{M}}\left(T_{2}-\lambda I_{\mathfrak{H}_{2}}\right)^{-1} \upharpoonright \mathfrak{M}, \quad \lambda \in \mathbb{C} \backslash \mathbb{R}
$$

then there exists a unitary operator U mapping \mathfrak{H}_{1} onto \mathfrak{H}_{2} such that

$$
U \upharpoonright \mathfrak{M}=I_{\mathfrak{M}} \quad \text { and } \quad U T_{1}=T_{2} U
$$

The right hand side in (1.3) is often called compressed resolvent/ \mathfrak{M}-resolvent/the Weyl function/m-function, [6], [11]. A representation $M \in \mathbf{N}_{\mathfrak{M}}^{0}$ in the form (1.3) will be called a realization of M.

We show in Section 2, that $M(\lambda) \in \mathbf{N}_{\mathfrak{M}}^{0}[-1,1] \Longleftrightarrow\left(\lambda^{2}-1\right)^{-1} M(\lambda)^{-1} \in \mathbf{N}_{\mathfrak{M}}^{0}[-1,1]$. It follows that the transformation

$$
\begin{equation*}
\mathbf{N}_{\mathfrak{M}}^{0}[-1,1] \ni M(\lambda) \stackrel{\Gamma}{\mapsto} M_{\Gamma}(\lambda):=\frac{M(\lambda)^{-1}}{\lambda^{2}-1} \in \mathbf{N}_{\mathfrak{M}}^{0}[-1,1] \tag{1.4}
\end{equation*}
$$

maps the class $\mathbf{N}_{\mathfrak{M}}^{0}[-1,1]$ onto itself and $\boldsymbol{\Gamma}^{-1}=\boldsymbol{\Gamma}$. In Theorem 2.6 we construct a realization of $\left(\lambda^{2}-1\right)^{-1} M(\lambda)^{-1}$ as a compressed resolvent by means of the contraction T that realizes M. The mapping $\boldsymbol{\Gamma}$ has the unique fixed point $M_{0}(\lambda)=-\frac{I_{\mathfrak{M}}}{\sqrt{\lambda^{2}-1}}$ that is compressed resolvent $P_{\mathfrak{M}_{0}}\left(\mathbf{J}_{0}-\lambda I\right)^{-1} \upharpoonright \mathfrak{M}_{0}$ of the block-operator Jacobi matrix

$$
\mathbf{J}_{0}=\left[\begin{array}{cccccccc}
0 & \frac{1}{\sqrt{2}} I_{\mathfrak{M}} & 0 & 0 & 0 & . & . & . \tag{1.5}\\
\frac{1}{\sqrt{2}} I_{\mathfrak{M}} & 0 & \frac{1}{2} I_{\mathfrak{M}} & 0 & 0 & . & . & . \\
0 & \frac{1}{2} I_{\mathfrak{M}} & 0 & \frac{1}{2} I_{\mathfrak{M}} & 0 & . & . & . \\
0 & 0 & \frac{1}{2} I_{\mathfrak{M}} & 0 & \frac{1}{2} I_{\mathfrak{M}} & 0 & . & . \\
\vdots & \vdots
\end{array}\right]
$$

acting in the Hilbert space $\ell^{2}\left(\mathbb{N}_{0}\right) \otimes \mathfrak{M}$, and $\mathfrak{M}_{0}=\mathfrak{M} \oplus\{0\} \oplus \cdots$, see Proposition 2.7.
A selfadjoint linear relation \widetilde{A} in the orthogonal sum $\mathfrak{M} \oplus \mathcal{K}$ is called minimal with respect to \mathfrak{M} (see [9, page 5366]) if

$$
\mathfrak{M} \oplus \mathcal{K}=\overline{\operatorname{span}}\left\{\mathfrak{M}+(\widetilde{A}-\lambda I)^{-1} \mathfrak{M}: \lambda \in \rho(\widetilde{A})\right\}
$$

One of the statements obtained in [9] in the context of the Weyl family of a boundary relation is the following:

Theorem 1.5. Let \mathcal{M} be a Nevanlinna family in the Hilbert space \mathfrak{M}. Then there exists unique up to unitary equivalence a selfadjoint linear relation \widetilde{A} in the Hilbert space $\mathfrak{M} \oplus \mathcal{K}$ such that \widetilde{A} is minimal with respect to \mathfrak{M} and the equality

$$
\begin{equation*}
\mathcal{M}(\lambda)=-\left(P_{\mathfrak{M}}(\widetilde{A}-\lambda I)^{-1} \upharpoonright \mathfrak{M}\right)^{-1}-\lambda I_{\mathfrak{M}}, \quad \lambda \in \mathbb{C} \backslash \mathbb{R} \tag{1.6}
\end{equation*}
$$

holds.
The equivalent form of (1.6) is

$$
P_{\mathfrak{M}}(\widetilde{A}-\lambda I)^{-1} \upharpoonright \mathfrak{M}=-\left(\mathcal{M}(\lambda)+\lambda I_{\mathfrak{M}}\right)^{-1}, \quad \lambda \in \mathbb{C} \backslash \mathbb{R}
$$

The compressed resolvent $P_{\mathfrak{M}}(\widetilde{A}-\lambda I)^{-1} \upharpoonright \mathfrak{M}$ belongs to the class $\mathcal{R}_{0}[\mathfrak{M}]$ and even to its more narrow subclass, see Corollary 2.4.

In Section 3 we consider the following mapping defined on the whole class $\widetilde{R}(\mathfrak{M})$ of Nevanlinna families:

$$
\begin{equation*}
\mathcal{M}(\lambda) \stackrel{\widehat{\boldsymbol{\Gamma}}}{\mapsto} \mathcal{M}_{\widehat{\boldsymbol{\Gamma}}}(\lambda):=-\left(\mathcal{M}(\lambda)+\lambda I_{\mathfrak{M}}\right)^{-1}, \quad \lambda \in \mathbb{C} \backslash \mathbb{R} \tag{1.7}
\end{equation*}
$$

We prove (Theorem 3.1) that the mapping $\widehat{\boldsymbol{\Gamma}}$ and each its degree $\widehat{\boldsymbol{\Gamma}}^{k}$ has the unique fixed point

$$
\mathcal{M}_{0}(\lambda)=\frac{-\lambda+\sqrt{\lambda^{2}-4}}{2} I_{\mathfrak{M}}
$$

and the sequence of iterations

$$
\mathcal{M}_{1}(\lambda)=-\left(\mathcal{M}(\lambda)+\lambda I_{\mathfrak{M}}\right)^{-1}, \quad \mathcal{M}_{n+1}(\lambda)=-\left(\mathcal{M}_{n}(\lambda)+\lambda I_{\mathfrak{M}}\right)^{-1}, \quad n \in \mathbb{N},
$$

starting with an arbitrary Nevanlinna family \mathcal{M}, converges to \mathcal{M}_{0} in the operator norm topology uniformly on compact sets lying in the open left/right half-plane of the complex plane. The function $\mathcal{M}_{0}(\lambda)$ can be realized by the free discrete Schrödinger operator given by the block-operator Jacobi matrix

$$
\widehat{\mathbf{J}}_{\mathbf{0}}=\left[\begin{array}{cccccccc}
0 & I_{\mathfrak{M}} & 0 & 0 & 0 & . & . & . \tag{1.8}\\
I_{\mathfrak{M}} & 0 & I_{\mathfrak{M}} & 0 & 0 & . & . & . \\
0 & I_{\mathfrak{M}} & 0 & I_{\mathfrak{M}} & 0 & . & . & . \\
\vdots & \vdots
\end{array}\right]
$$

acting in the Hilbert space $\ell^{2}\left(\mathbb{N}_{0}\right) \otimes \mathfrak{M}$. Besides we construct a sequence $\left\{\widehat{\mathfrak{H}}_{n}, \widehat{A}_{n}\right\}$ of realizations of functions $\mathcal{M}_{n}\left(\mathcal{M}_{n}(\lambda)=P_{\mathfrak{M}}\left(\widehat{A}_{n-1}-\lambda I\right)^{-1} \upharpoonright \mathfrak{M}, \lambda \in \mathbb{C} \backslash \mathbb{R}\right)$ and show that the Hilbert space $\ell^{2}\left(\mathbb{N}_{0}\right) \otimes \mathfrak{M}$ and the block-operator Jacobi matrix $\widehat{\mathbf{J}}_{0}$ are the inductive limits of $\left\{\widehat{\mathfrak{H}}_{n}\right\}$ and $\left\{\widehat{A}_{n}\right\}$, respectively. Observe that when $\mathfrak{M}=\mathbb{C}$, the Jacobi matrices \mathbf{J}_{0} and $\frac{1}{2} \widehat{\mathbf{J}}_{0}$ are connected with Chebyshev polynomials of the first and second kinds, respectively [6].

Let $\mathcal{H}(t)=\left[\begin{array}{ll}h_{11}(t) & h_{12}(t) \\ h_{21}(t) & h_{22}(t)\end{array}\right]$ be symmetric and nonnegative 2×2 matrix-function with scalar real-valued entries on \mathbb{R}_{+}. Assume that $\mathcal{H}(t)$ is locally integrable on \mathbb{R}_{+}and is trace-normed, i.e., $\operatorname{tr} \mathcal{H}(t)=1$ a.e. on \mathbb{R}_{+}. Let $\mathcal{J}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. The system of differential equations

$$
\mathcal{J} \frac{d \vec{x}}{d t}=\lambda \mathcal{H}(t) \vec{x}(t), \quad \vec{x}(t)=\left[\begin{array}{l}
x_{1}(t) \tag{1.9}\\
x_{2}(t)
\end{array}\right], \quad t \in \mathbb{R}_{+}, \quad \lambda \in \mathbb{C},
$$

is called the canonical system with the Hamiltonian \mathcal{H} or the Hamiltonian system.

The m-function $m_{\mathcal{H}}$ of the canonical system (1.9) can be defined as follows:

$$
m_{\mathcal{H}}(\lambda)=\frac{x_{2}(0, \lambda)}{x_{1}(0, \lambda)}, \quad \lambda \in \mathbb{C} \backslash \mathbb{R}
$$

where $\vec{x}(t, \lambda)$ is the solution of (1.9), satisfying

$$
x_{1}(0, \lambda) \neq 0 \quad \text { and } \quad \int_{\mathbb{R}_{+}} \vec{x}(t, \lambda)^{*} \mathcal{H}(t) \vec{x}(t, \lambda) d t<\infty
$$

The m-function of a canonical system is a Nevanlinna function. As has been proved by L. de Branges [7], see also [22], for each Nevanlinna function m there exists a unique trace-normed canonical system such that its m-function $m_{\mathcal{H}}$ coincides with m. In the last Section 4, applying the algorithm suggested by I.S. Kac in [14], we construct a sequence of Hamiltonians $\left\{\mathcal{H}_{n}\right\}$ such that the m-functions of the corresponding canonical systems coincides with the sequence of the iterates $\left\{m_{n}\right\}$ of the mapping $\widehat{\boldsymbol{\Gamma}}$

$$
m_{1}(\lambda)=-\frac{1}{m(\lambda)+\lambda}, \ldots, m_{n+1}(\lambda)=-\frac{1}{m_{n}(\lambda)+\lambda}, \ldots, \quad \lambda \in \mathbb{C} \backslash \mathbb{R}
$$

where $m(\lambda)$ is a non-rational Nevanlinna function form the class $\mathbf{N}_{\mathbb{C}}^{0}$. This sequence $\left\{m_{n}\right\}$ converges locally uniformly on $\mathbb{C}_{+} / \mathbb{C}_{-}$to the function $m_{0}(\lambda)=\frac{-\lambda+\sqrt{\lambda^{2}-4}}{2}$ that is the m-function of the canonical system with the Hamiltonian

$$
\mathcal{H}_{0}(t)=\left[\begin{array}{cc}
\cos ^{2}(j+1) \frac{\pi}{2} & 0 \\
0 & \sin ^{2}(j+1) \frac{\pi}{2}
\end{array}\right], \quad t \in[j, j+1) \quad \forall j \in \mathbb{N}_{0}
$$

For the constructed Hamiltonian \mathcal{H}_{n} the property $\mathcal{H}_{n} \upharpoonright[0, n+1)=\mathcal{H}_{0} \upharpoonright[0, n+1)$ is valid for each $n \in \mathbb{N}$. Moreover, our construction shows that for the Hamiltonian \mathcal{H} such that the m-function $m_{\mathcal{H}}$ of the corresponding canonical system belongs to the class $\mathbf{N}_{\mathbb{C}}^{0}$, the Hamiltonian $\mathcal{H}_{\widehat{\boldsymbol{\Gamma}}}$ of the canonical system having $\widehat{\boldsymbol{\Gamma}}(m)$ as its m-function, is of the form

$$
\mathcal{H}_{\widehat{\boldsymbol{\Gamma}}}(t)=\left\{\begin{array}{l}
\mathcal{H}_{0}(t), t \in[0,2) \\
{\left[\begin{array}{lr}
1 & 0 \\
0 & 1
\end{array}\right]-\mathcal{H}(t-1), t \in[2,+\infty)}
\end{array}\right.
$$

2. Characterizations of subclasses

2.1. The subclass $\mathcal{R}_{0}[\mathfrak{M}]$. The next proposition is well known, cf.[8].

Proposition 2.1. Let $M(\lambda)$ be a $\mathbf{B}(\mathfrak{M})$-valued Nevanlinna function. Then the following statements are equivalent:
(i) $M \in R_{0}[\mathfrak{M}]$;
(ii) the function $y\|M(i y)\|$ is bounded on $[1, \infty)$,
(iii) there exists a strong limit $s-\lim _{y \rightarrow+\infty} i y M(i y)=-C$, where C is a bounded selfadjoint nonnegative operator in \mathfrak{M};
(iv) M admits a representation

$$
\begin{equation*}
M(\lambda)=K^{*}(T-\lambda I)^{-1} K, \quad \lambda \in \mathbb{C} \backslash \mathbb{R} \tag{2.1}
\end{equation*}
$$

where T is a selfadjoint operator in a Hilbert space \mathcal{K} and $K \in \mathbf{B}(\mathfrak{M}, \mathcal{K})$; here \mathcal{K}, T, and K can be selected such that T is $\overline{\text { ran }} K$-simple, i.e.,

$$
\overline{\operatorname{span}}\left\{(T-\lambda)^{-1} \operatorname{ran} K: \lambda \in \mathbb{C} \backslash \mathbb{R}\right\}=\mathcal{K}
$$

Proposition 2.2. ([9],Lemma 2.14, Example 6.6). Let \mathcal{K} and \mathfrak{M} be Hilbert spaces, let $K \in \mathbf{B}(\mathfrak{M}, \mathcal{K})$ and let D and T be selfadjoint operators in \mathfrak{M} and \mathcal{K}, respectively. Consider a selfadjoint operator \widetilde{A} in the Hilbert space $\mathfrak{M} \oplus \mathcal{K}$ given by the block-operator matrix

$$
\widetilde{A}=\left[\begin{array}{cc}
D & K^{*} \\
K & T
\end{array}\right], \quad \operatorname{dom} \widetilde{A}=\operatorname{dom} D \oplus \operatorname{dom} T
$$

Then \widetilde{A} is \mathfrak{M}-minimal if and only if T is $\overline{\text { ran }} K$-simple.
Proof. Our proof is based on the Schur-Frobenius formula for the resolvent $(\widetilde{A}-\lambda I)^{-1}$

$$
\begin{gather*}
(\widetilde{A}-\lambda I)^{-1}=\left[\begin{array}{cc}
-V(\lambda)^{-1} & V(\lambda)^{-1} K^{*}(T-\lambda I)^{-1} \\
(T-\lambda I)^{-1} K V(\lambda)^{-1} & (T-\lambda I)^{-1}\left(I_{\mathcal{K}}-K V(\lambda)^{-1} K^{*}(T-\lambda I)^{-1}\right)
\end{array}\right] \tag{2.2}\\
V(\lambda):=\lambda I_{\mathfrak{M}}-D+K^{*}(T-\lambda I)^{-1} K, \\
\lambda \in \rho(T) \cap \rho(\widetilde{A})
\end{gather*}
$$

Actually, (2.2) implies the equivalences

$$
\begin{aligned}
\overline{\operatorname{span}}\left\{\mathfrak{M}+(\widetilde{A}-\lambda I)^{-1} \mathfrak{M}: \lambda \in \mathbb{C} \backslash \mathbb{R}\right\} & =\mathfrak{M} \oplus \mathcal{K} \\
\Longleftrightarrow \mathcal{K} \bigcap_{\lambda \in \mathbb{C} \backslash \mathbb{R}} \operatorname{ker}\left(P_{\mathfrak{M}}(\widetilde{A}-\lambda I)^{-1}\right)= & \{0\} \Longleftrightarrow \bigcap_{\lambda \in \mathbb{C} \backslash \mathbb{R}} \operatorname{ker}\left(K^{*}(T-\lambda I)^{-1}\right)=\{0\} \\
& \Longleftrightarrow \overline{\operatorname{span}}\left\{(T-\lambda)^{-1} \operatorname{ran} K: \lambda \in \mathbb{C} \backslash \mathbb{R}\right\}=\mathcal{K} .
\end{aligned}
$$

In the sequel we will use the following consequence of (2.2):
(2.3) $P_{\mathfrak{M}}(\tilde{A}-\lambda I)^{-1} \upharpoonright \mathfrak{M}=-\left(-D+K^{*}\left(T-\lambda I_{\mathfrak{M}}\right)^{-1} K+\lambda I_{\mathfrak{M}}\right)^{-1}, \quad \lambda \in \rho(T) \cap \rho(\widetilde{A})$.

Proposition 2.3. (cf. [9], the proof of Theorem 3.9). For a $\mathbf{B}(\mathfrak{M})$-valued Nevanlinna function M the following statements are equivalent:
(i) the limit value $C:=-s-\lim _{y \rightarrow+\infty} i y M(i y)$ satisfies $0 \leq C \leq I_{\mathfrak{M}}$;
(ii) M admits a representation

$$
\begin{equation*}
M(\lambda)=P_{\mathfrak{M}}(\widetilde{A}-\lambda I)^{-1} \upharpoonright \mathfrak{M}, \quad \lambda \in \mathbb{C} \backslash \mathbb{R} \tag{2.4}
\end{equation*}
$$

where \widetilde{A} is a selfadjoint linear relation in a Hilbert space $\mathfrak{H} \supset \mathfrak{M}$ and $P_{\mathfrak{M}}$ is the orthogonal projection from \mathfrak{H} onto \mathfrak{M};
(iii) M admits a representation (2.1) with a contraction $K \in \mathbf{B}(\mathfrak{M}, \widetilde{\mathfrak{H}})$;
(iv) the following inequality holds

$$
\frac{\operatorname{Im} M(\lambda)}{\operatorname{Im} \lambda}-M(\lambda) M(\lambda)^{*} \geq 0, \quad \lambda \in \mathbb{C} \backslash \mathbb{R}
$$

In (ii) \mathfrak{H} and \widetilde{A} can be selected such that \widetilde{A} is minimal w.r.t. \mathfrak{M}. Moreover, \widetilde{A} in (2.4) can be taken to be a selfadjoint operator if and only if $C=I_{\mathfrak{M}}$. The operator K in (iii) is an isometry if and only if $C=I_{\mathfrak{M}}$.
Proof. The equivalence (i) \Longleftrightarrow (iii) follows from Proposition 2.1.
(i) \Longrightarrow (iv). Since (2.1) holds, we get $C=K^{*} K$ and the inequality $0 \leq C \leq I_{\mathfrak{M}}$ implies $\|K\| \leq 1$ and, therefore holds the inequality.

$$
\frac{\operatorname{Im} M(\lambda)}{\operatorname{Im} \lambda}-M(\lambda) M(\lambda)^{*} \geq 0, \quad \lambda \in \mathbb{C} \backslash \mathbb{R}
$$

$(\mathrm{iv}) \Longrightarrow(\mathrm{ii})$. Consider $-M(\lambda)^{-1}$. Then

$$
\frac{\operatorname{Im}\left(-M(\lambda)^{-1} h-\lambda h, h\right)}{\operatorname{Im} \lambda}=\frac{\operatorname{Im}\left(-M(\lambda)^{-1} h, h\right)}{\operatorname{Im} \lambda}-\|h\|^{2} \geq 0, \quad h \in \mathfrak{M}
$$

Hence $\mathcal{M}(\lambda):=-M(\lambda)^{-1}-\lambda I_{\mathfrak{M}}$ is a Nevanlinna family. Due to Theorem 1.5 and (1.6) we have

$$
-\left(\mathcal{M}(\lambda)+\lambda I_{\mathfrak{M}}\right)^{-1}=P_{\mathfrak{M}}\left(\widetilde{A}-\lambda I_{\mathfrak{H}}\right)^{-1} \upharpoonright \mathfrak{M}, \quad \lambda \in \mathbb{C} \backslash \mathbb{R},
$$

where \widetilde{A} is a selfadjoint linear relation in some Hilbert space $\mathfrak{H}=\mathfrak{M} \oplus \mathcal{K}$.
(ii) \Longrightarrow (i). Let \widehat{A}_{0} be the operator part of \widetilde{A} acting in a subspace \mathfrak{H}_{0} of \mathfrak{H}. Decompose \widetilde{A} as $H=\operatorname{Gr} \widehat{A}_{0} \oplus\left\{0, \mathfrak{H} \ominus \mathfrak{H}_{0}\right\}$. Then

$$
P_{\mathfrak{M}}(\widetilde{A}-\lambda I)^{-1} \upharpoonright \mathfrak{M}=P_{\mathfrak{M}}\left(\widehat{A}_{0}-\lambda I\right)^{-1} P_{\mathfrak{H}_{0}} \upharpoonright \mathfrak{M}=P_{\mathfrak{M}} P_{\mathfrak{H}_{0}}\left(\widehat{A}_{0}-\lambda I\right)^{-1} P_{\mathfrak{H}_{0}} \upharpoonright \mathfrak{M} .
$$

Set $K=P_{\mathfrak{H}_{0}} \upharpoonright \mathfrak{M}: \mathfrak{M} \rightarrow \mathfrak{H}_{0}$. Then $K^{*}=P_{\mathfrak{M}} P_{\mathfrak{H}_{0}},\|K\| \leq 1$,

$$
M(\lambda)=K^{*}\left(\widehat{A}_{0}-\lambda I\right)^{-1} K, \quad \lambda \in \mathbb{C} \backslash \mathbb{R}
$$

and

$$
s-\lim _{x \rightarrow+\infty} i y M(i y)=-K^{*} K, \quad C=K^{*} K \in\left[0, I_{\mathfrak{M}}\right] .
$$

(iii) $\Longrightarrow\left(\right.$ ii). Since $\|K\| \leq 1, \mathcal{M}(\lambda)=-M^{-1}(\lambda)-\lambda I_{\mathfrak{M}}$ is a Nevanlinna family. By Theorem 1.5 there is a Hilbert space \mathcal{K} and a selfadjoint linear relation \widetilde{A} in $\mathfrak{M} \oplus \mathcal{K}$ minimal w.r.t. \mathfrak{M} such that $\mathcal{M}(\lambda)=-\left(P_{\mathfrak{M}}(\widetilde{A}-\lambda I)^{-1} \upharpoonright \mathfrak{M}\right)^{-1}-\lambda I_{\mathfrak{M}}, \lambda \in \mathbb{C} \backslash \mathbb{R}$.

Corollary 2.4. There is a one-to-one correspondence between all Nevanlinna families \mathcal{M} in \mathfrak{M} and all $\mathbf{B}(\mathfrak{M})$-valued Nevanlinna functions M satisfying the condition (ii) in Proposition 2.1 with $C \in\left[0, I_{\mathfrak{M}}\right]$. This correspondence is given by the relations

$$
M(\lambda)=-\left(\mathcal{M}(\lambda)+\lambda I_{\mathfrak{M}}\right)^{-1}, \quad \mathcal{M}(\lambda)=-M(\lambda)^{-1}-\lambda I_{\mathfrak{M}}, \quad \lambda \in \mathbb{C} \backslash \mathbb{R}
$$

Remark 2.5. For the case $\mathfrak{M}=\mathbb{C}$ the statement of Corollary 2.4 can be found in $[6$, Chapter VII, § 1, Lemma 1.7].

In $[10]$ (see also [4]) it is established that an $\mathbf{B}(\mathfrak{M})$-valued function $M(\lambda), \lambda \in \mathcal{D} \subset$ $\mathbb{C}_{+} / \mathbb{C}_{-}$admits the representation (2.4) iff the kernel

$$
K(\lambda, \mu)=\frac{M(\lambda)-M(\mu)^{*}}{\lambda-\bar{\mu}}-M(\mu)^{*} M(\lambda)
$$

is nonnegative on \mathcal{D}.
2.2. The subclass $\mathbf{N}_{\mathfrak{M}}^{0}[-1,1]$. Notice, that if $M \in \mathbf{N}_{\mathfrak{M}}^{0}[-1,1]$, then

$$
\left\{\begin{array}{l}
(M(x) g, g)>0 \forall g \in \mathfrak{M} \backslash\{0\}, x<-1 \\
(M(x) g, g)<0 \forall g \in \mathfrak{M} \backslash\{0\}, x>1
\end{array} .\right.
$$

Therefore, see [16, Appendix]

$$
(1+\lambda) M(\lambda), \quad(1-\lambda) M(\lambda) \in \mathcal{R}[\mathfrak{M}] .
$$

Theorem 2.6. 1) $A \mathbf{B}(\mathfrak{M})$-valued Nevanlinna function M belongs to $\mathbf{N}_{\mathfrak{M}}^{0}[-1,1]$ if and only if the function

$$
\mathrm{L}(\lambda, \xi)=\frac{\left(1-\lambda^{2}\right) M(\lambda)-\left(1-\bar{\xi}^{2}\right) M(\xi)^{*}-(\lambda-\bar{\xi}) I_{\mathfrak{M}}}{\lambda-\bar{\xi}}
$$

with $\lambda, \xi \in \mathbb{C} \backslash[-1,1], \lambda \neq \bar{\xi}$ is a nonnegative kernel.
2) If $M \in \mathbf{N}_{\mathfrak{M}}^{0}[-1,1]$, then the function

$$
\frac{M(\lambda)^{-1}}{\lambda^{2}-1}, \quad \lambda \in \mathbb{C} \backslash[-1,1]
$$

belongs to $\mathbf{N}_{\mathfrak{M}}^{0}[-1,1]$ as well.
3) If a selfadjoint contraction T in the Hilbert space \mathfrak{H}, containing \mathfrak{M} as a subspace, realizes M, i.e., $M(\lambda)=P_{\mathfrak{M}}(T-\lambda I)^{-1} \upharpoonright \mathfrak{M}$, for all $\lambda \in \mathbb{C} \backslash[-1,1]$, then

$$
\frac{M(\lambda)^{-1}}{\lambda^{2}-1}=P_{\mathfrak{M}}(\mathbf{T}-\lambda I)^{-1} \upharpoonright \mathfrak{M}, \quad \lambda \in \mathbb{C} \backslash[-1,1]
$$

where a selfadjoint contraction \mathbf{T} is given by

$$
\mathbf{T}:=\left[\begin{array}{cc}
-P_{\mathfrak{M}} T \upharpoonright \mathfrak{M} & P_{\mathfrak{M}} D_{T} \tag{2.5}\\
D_{T} \upharpoonright \mathfrak{M} & T
\end{array}\right]: \begin{gathered}
\mathfrak{M} \\
\underset{\mathfrak{D}_{T}}{\oplus}
\end{gathered} \rightarrow \begin{gathered}
\mathfrak{M} \\
\mathfrak{D}_{T}
\end{gathered}
$$

and $D_{T}:=\left(I-T^{2}\right)^{1 / 2}$, $\mathfrak{D}_{T}:=\overline{\operatorname{ran}} D_{T}$. Moreover, if T is \mathfrak{M}-simple, then \mathbf{T} is \mathfrak{M}-simple as well and the operator $\mathbf{T} \upharpoonright \mathfrak{D}_{\mathbf{T}}$ is unitarily equivalent to the operator $P_{\mathfrak{M}^{\perp}} T \upharpoonright \mathfrak{M}^{\perp}$.

Proof. The statement in 1) follows from [2, Theorem 6.1]. Observe that if $M(\lambda)=$ $P_{\mathfrak{M}}(T-\lambda I)^{-1} \mid \mathfrak{M} \forall \lambda \in \mathbb{C} \backslash[-1,1]$, where T is a selfadjoint contraction, then

$$
\begin{align*}
\mathrm{L}(\lambda, \xi) & =\frac{\left(1-\lambda^{2}\right) M(\lambda)-\left(1-\bar{\xi}^{2}\right) M(\xi)^{*}-(\lambda-\bar{\xi}) I_{\mathfrak{M}}}{\lambda-\bar{\xi}} \tag{2.6}\\
& =P_{\mathfrak{M}}(T-\lambda I)^{-1}\left(I-T^{2}\right)(T-\bar{\xi} I)^{-1} \upharpoonright \mathfrak{M}, \quad \lambda, \xi \in \mathbb{C} \backslash[-1,1], \quad \lambda \neq \bar{\xi}
\end{align*}
$$

2) Let $\lambda \in \mathbb{C} \backslash[-1,1]$, then

$$
|((T-\lambda I) h, h)| \geq d(\lambda)\|h\|^{2} \quad \forall h \in \mathfrak{H}
$$

where $d(\lambda)=\operatorname{dist}(\lambda,[-1,1])$. Set $h=(T-\lambda I)^{-1} f, f \in \mathfrak{M}$. Then

$$
\begin{aligned}
\|M(\lambda) f|\|\mid f\| & \geq|(f, M(\lambda) f)|=\left|\left(f,(T-\lambda I)^{-1} f\right)\right| \\
& =|(h,(T-\lambda I) h)| \geq d(\lambda)\|h\|^{2} \geq c(\lambda)\|f\|^{2}, \quad c(\lambda)>0
\end{aligned}
$$

Hence, $\|M(\lambda) f\| \geq c(\lambda)\|f\|$ and since $M(\bar{\lambda})=M(\lambda)^{*}$, we get $\left\|M(\lambda)^{*} f\right\| \geq c(\bar{\lambda})\|f\|$. It follows that $M(\lambda)^{-1} \in \mathbf{B}(\mathfrak{M})$ for all $\lambda \in \mathbb{C} \backslash[-1,1]$.

Set

$$
L(\lambda):=\left(1-\lambda^{2}\right) M(\lambda)-\lambda I_{\mathfrak{M}}, \quad \lambda \in \mathbb{C} \backslash[-1,1]
$$

Then from (2.6) we get

$$
\begin{aligned}
L(\lambda)-L(\lambda)^{*} & =\left(1-\lambda^{2}\right) M(\lambda)-\left(1-\bar{\lambda}^{2}\right)\left(M(\lambda)^{*}-(\lambda-\bar{\lambda}) I_{\mathfrak{M}}\right. \\
& =(\lambda-\bar{\lambda}) P_{\mathfrak{M}}(T-\lambda I)^{-1}\left(I-T^{2}\right)(T-\bar{\lambda} I)^{-1} \upharpoonright \mathfrak{M} .
\end{aligned}
$$

It follows that $L(\lambda)$ and the functions

$$
\left(1-\lambda^{2}\right) M(\lambda)=L(\lambda)+\lambda I_{\mathfrak{M}}, \quad \lambda \in \mathbb{C} \backslash[-1,1]
$$

and

$$
-\left(\left(1-\lambda^{2}\right) M(\lambda)\right)^{-1}=\frac{M(\lambda)^{-1}}{\lambda^{2}-1}, \quad \lambda \in \mathbb{C} \backslash[-1,1]
$$

are Nevanlinna functions. Then from the equality $M(\lambda)=-\lambda^{-1}+o\left(\lambda^{-1}\right), \lambda \rightarrow \infty$, we get that also

$$
\frac{M(\lambda)^{-1}}{\lambda^{2}-1}=-\lambda^{-1}+o\left(\lambda^{-1}\right), \quad \lambda \rightarrow \infty
$$

i.e.,

$$
\frac{M(\lambda)^{-1}}{\lambda^{2}-1} \in \mathbf{N}_{\mathfrak{M}}^{0}[-1,1]
$$

3) Observe that the subspace \mathfrak{D}_{T} is contained in the Hilbert space \mathfrak{H}. Let $\mathbf{H}:=\mathfrak{M} \oplus \mathfrak{D}_{T}$ and let \mathbf{T} be given by (2.5). Since T is a selfadjoint contraction in \mathfrak{H}, we get for an arbitrary $\varphi \in \mathfrak{M}$ and $f \in \mathfrak{D}_{T}$ the equalities

$$
\left(\left[\begin{array}{l}
\varphi \\
f
\end{array}\right],\left[\begin{array}{l}
\varphi \\
f
\end{array}\right]\right) \pm\left(\left[\begin{array}{l}
\varphi \\
f
\end{array}\right], \mathbf{T}\left[\begin{array}{l}
\varphi \\
f
\end{array}\right]\right)=\left\|(I \mp T)^{1 / 2} \varphi \pm(I \pm T)^{1 / 2} f\right\|^{2}
$$

Therefore \mathbf{T} is a selfadjoint contraction in the Hilbert space \mathbf{H}.
Applying (2.3) we obtain

$$
\begin{aligned}
P_{\mathfrak{M}}(\mathbf{T}-\lambda I)^{-1} \upharpoonright \mathfrak{M} & =-\left(\lambda I+P_{\mathfrak{M}} T \upharpoonright \mathfrak{M}+P_{\mathfrak{M}} D_{T}(T-\lambda I)^{-1} D_{T} \upharpoonright \mathfrak{M}\right)^{-1} \\
& =-\left(\lambda I+P_{\mathfrak{M}}\left(T(T-\lambda I)+I-T^{2}\right)(T-\lambda I)^{-1} \upharpoonright \mathfrak{M}\right)^{-1} \\
& =-\left(\lambda I+P_{\mathfrak{M}}(I-\lambda T)(T-\lambda I)^{-1} \upharpoonright \mathfrak{M}\right)^{-1} \\
& =-\left(\left(1-\lambda^{2}\right) P_{\mathfrak{M}}(T-\lambda I)^{-1} \upharpoonright \mathfrak{M}\right)^{-1}=\frac{M^{-1}(\lambda)}{\lambda^{2}-1}, \quad \lambda \in \mathbb{C} \backslash[-1,1] .
\end{aligned}
$$

Suppose that T is \mathfrak{M}-simple, i.e.,

$$
\overline{\operatorname{span}}\left\{T^{n} \mathfrak{M}, n \in \mathbb{N}_{0}\right\}=\mathfrak{M} \oplus \mathcal{K} \Longleftrightarrow \bigcap_{n=0}^{\infty} \operatorname{ker}\left(P_{\mathfrak{M}} T^{n}\right)=\{0\}
$$

Hence, since

$$
\mathfrak{D}_{T} \ominus\left\{\overline{\operatorname{span}}\left\{T^{n} D_{T} \mathfrak{M}, n \in \mathbb{N}_{0}\right\}\right\}=\bigcap_{n=0}^{\infty} \operatorname{ker}\left(P_{\mathfrak{M}} T^{n} D_{T}\right)
$$

we get $\overline{\operatorname{span}}\left\{T^{n} D_{T} \mathfrak{M}, n \in \mathbb{N}_{0}\right\}=\mathfrak{D}_{T}$. This means that the operator \mathbf{T} is \mathfrak{M}-simple.
Let

$$
\mathbb{T}=\left[\begin{array}{cc}
-P_{\mathfrak{M}} \mathbf{T} \upharpoonright \mathfrak{M} & P_{\mathfrak{M}} D_{\mathbf{T}} \upharpoonright \mathfrak{D}_{\mathbf{T}} \\
D_{\mathbf{T}} \upharpoonright \mathfrak{M} & \mathbf{T} \upharpoonright \mathfrak{D}_{\mathbf{T}}
\end{array}\right]=\left[\begin{array}{cc}
P_{\mathfrak{M}} T \upharpoonright \mathfrak{M} & P_{\mathfrak{M}} D_{\mathbf{T}} \\
D_{\mathbf{T}} \upharpoonright \mathfrak{M} & \mathbf{T} \upharpoonright \mathfrak{D}_{\mathbf{T}}
\end{array}\right]: \begin{array}{ll}
\mathfrak{M} & \mathfrak{M} \\
\mathfrak{D}_{\mathbf{T}} & \rightarrow \\
\mathfrak{D}_{\mathbf{T}}
\end{array}
$$

As has been proved above because the selfadjoint contraction \mathbf{T} realizes the function $Q(\lambda):=\left(\lambda^{2}-1\right)^{-1} M(\lambda)^{-1}$, i.e.,

$$
P_{\mathfrak{M}}(\mathbf{T}-\lambda I)^{-1} \upharpoonright \mathfrak{M}=Q(\lambda)=\frac{M(\lambda)^{-1}}{\lambda^{2}-1}, \quad \lambda \in \mathbb{C} \backslash[-1,1]
$$

the selfadjoint contraction \mathbb{T} realizes the function $\left(\lambda^{2}-1\right)^{-1} Q(\lambda)^{-1}=M(\lambda)$. In addition, if T is \mathfrak{M}-simple, then \mathbf{T} and therefore \mathbb{T} are \mathfrak{M}-simple. Since

$$
P_{\mathfrak{M}}(\mathbb{T}-\lambda I)^{-1} \upharpoonright \mathfrak{M}=P_{\mathfrak{M}}(T-\lambda I)^{-1} \upharpoonright \mathfrak{M}=M(\lambda), \quad|\lambda|>1,
$$

the operators \mathbb{T} and T are unitarily equivalent and, moreover, see Theorem 1.4, there exists a unitary operator \mathbb{U} of the form

$$
\mathbb{U}=\left[\begin{array}{cc}
I_{\mathfrak{M}} & 0 \\
0 & U
\end{array}\right]: \begin{aligned}
& \mathfrak{M} \\
& \underset{\mathfrak{D}_{\mathbf{T}}}{\oplus}
\end{aligned} \rightarrow \stackrel{\substack{\mathfrak{M} \\
\mathcal{K}}}{\stackrel{\oplus}{\oplus}}
$$

where $\mathcal{K}:=\mathfrak{H} \ominus \mathfrak{M}$ and U is a unitary operator from \mathfrak{D}_{T} onto \mathcal{K} such that

$$
\begin{aligned}
T \mathbb{U}=\mathbb{U T} & \Longleftrightarrow\left[\begin{array}{cc}
P_{\mathfrak{M}} T \upharpoonright \mathfrak{M} & P_{\mathfrak{M}} T \upharpoonright \mathcal{K} \\
P_{\mathcal{K}} T \upharpoonright \mathfrak{M} & P_{\mathcal{K}} T \upharpoonright \mathcal{K}
\end{array}\right]\left[\begin{array}{cc}
I_{\mathfrak{M}} & 0 \\
0 & U
\end{array}\right]=\left[\begin{array}{cc}
I_{\mathfrak{M}} & 0 \\
0 & U
\end{array}\right]\left[\begin{array}{cc}
P_{\mathfrak{M}} T \upharpoonright \mathfrak{M} & P_{\mathfrak{M}} D_{\mathbf{T}} \upharpoonright \mathfrak{D}_{\mathbf{T}} \\
D_{\mathbf{T}} \upharpoonright \mathfrak{M} & \mathbf{T}
\end{array}\right] \\
& \Longleftrightarrow\left\{\begin{array}{l}
\left(P_{\mathfrak{M}} T \upharpoonright \mathcal{K}\right) U=P_{\mathfrak{M}} D_{\mathbf{T}} \backslash \mathfrak{D}_{\mathbf{T}} \\
P_{\mathcal{K}} T \upharpoonright \mathfrak{M}=U D_{\mathbf{T}} \upharpoonright \mathfrak{M} \\
\left(P_{\mathcal{K}} T \upharpoonright \mathcal{K}\right) U=U \mathbf{T} \backslash \mathfrak{D}_{\mathbf{T}} \mid \mathfrak{D}_{\mathbf{T}}
\end{array} .\right.
\end{aligned}
$$

In particular $P_{\mathcal{K}} T \upharpoonright \mathcal{K}$ and $\mathbf{T} \upharpoonright \mathfrak{D}_{\mathbf{T}}$ are unitarily equivalent.

Observe that for a bounded selfadjoint T the equality $M(\lambda)=P_{\mathfrak{M}}(T-\lambda I)^{-1} \upharpoonright \mathfrak{M}$ yields the following relation for $\lambda \in \mathbb{C} \backslash \mathbb{R}$:

$$
\frac{1-|\lambda|^{2}}{\operatorname{Im} \lambda} \operatorname{Im} M(\lambda)-2 \operatorname{Re}(\lambda M(\lambda))-I_{\mathfrak{M}}=P_{\mathfrak{M}}(T-\lambda I)^{-1}\left(I-T^{2}\right)(T-\bar{\lambda} I)^{-1} \upharpoonright \mathfrak{M}
$$

Hence for $M(\lambda) \in \mathbf{N}_{\mathfrak{M}}^{0}[-1,1]$ we get

$$
\frac{1-|\lambda|^{2}}{\operatorname{Im} \lambda} \operatorname{Im} M(\lambda)-2 \operatorname{Re}(\lambda M(\lambda))-I_{\mathfrak{M}}=\frac{\operatorname{Im}\left(\left(1-\lambda^{2}\right) M(\lambda)-\lambda\right)}{\operatorname{Im} \lambda} \geq 0, \quad \operatorname{Im} \lambda \neq 0
$$

2.3. The fixed point of the mapping Γ.

Proposition 2.7. Let \mathfrak{M} be a Hilbert space. Then the mapping $\boldsymbol{\Gamma}$ (1.4) has a unique fixed point

$$
\begin{equation*}
M_{0}(\lambda)=-\frac{I_{\mathfrak{M}}}{\sqrt{\lambda^{2}-1}} \quad\left(\operatorname{Im} \sqrt{\lambda^{2}-1}>0 \quad \text { for } \quad \operatorname{Im} \lambda>0\right) \tag{2.7}
\end{equation*}
$$

Define the weight $\rho_{0}(t)$ and the weighted Hilbert space \mathfrak{H}_{0} as follows

$$
\begin{align*}
\rho_{0}(t) & =\frac{1}{\pi} \frac{1}{\sqrt{1-t^{2}}}, \quad t \in(-1,1), \\
\mathfrak{H}_{0} & :=L_{2}\left([-1,1], \mathfrak{M}, \rho_{0}(t)\right)=L_{2}\left([-1,1], \rho_{0}(t)\right) \bigotimes \mathfrak{M} \tag{2.8}\\
& =\left\{f(t): \int_{-1}^{1} \frac{\|f(t)\|_{\mathfrak{M}}^{2}}{\sqrt{1-t^{2}}} d t<\infty\right\} .
\end{align*}
$$

Then \mathfrak{H}_{0} is the Hilbert space with the inner product

$$
(f(t), g(t))_{\mathfrak{H}_{0}}=\frac{1}{\pi} \int_{-1}^{1}(f(t), g(t))_{\mathfrak{M}} \rho_{0}(t) d t=\frac{1}{\pi} \int_{-1}^{1} \frac{(f(t), g(t))_{\mathfrak{M}}}{\sqrt{1-t^{2}}} d t
$$

Identify \mathfrak{M} with a subspace of \mathfrak{H}_{0} of constant vector-functions $\{f(t) \equiv f, f \in \mathfrak{M}\}$. Define in \mathfrak{H}_{0} the multiplication operator

$$
\begin{equation*}
\left(T_{0} f\right)(t)=t f(t), \quad f \in \mathfrak{H}_{0} \tag{2.9}
\end{equation*}
$$

Then

$$
M_{0}(\lambda)=P_{\mathfrak{M}}\left(T_{0}-\lambda I\right)^{-1} \upharpoonright \mathfrak{M}
$$

Let $\mathbf{H}_{0}=\bigoplus_{j=0}^{\infty} \mathfrak{M}=\ell^{2}\left(\mathbb{N}_{0}\right) \otimes \mathfrak{M}$ and let $\mathbf{J}_{\mathbf{0}}$ be the operator in \mathbf{H}_{0} given by the blockoperator Jacobi matrix of the form (1.5). Set $\mathfrak{M}_{0}:=\mathfrak{M} \bigoplus\{0\} \bigoplus\{0\} \bigoplus \cdots$. Then

$$
M_{0}(\lambda)=P_{\mathfrak{M}_{0}}\left(\mathbf{J}_{0}-\lambda I\right)^{-1} \upharpoonright \mathfrak{M}_{0}
$$

Proof. Let $M_{0}(\lambda)$ be a fixed point of the mapping $\boldsymbol{\Gamma}$, i.e.,

$$
M_{0}(\lambda)=\frac{M_{0}(\lambda)^{-1}}{\lambda^{2}-1} \Longleftrightarrow M_{0}(\lambda)^{2}=\frac{1}{\lambda^{2}-1} I_{\mathfrak{M}}, \quad \lambda \in \mathbb{C} \backslash[-1,1]
$$

Since $M_{0}(\lambda)$ is Nevanlinna function, we get (2.7).
For each $h \in \mathfrak{M}$ calculations give the equality, see [6, pages 545-546], [18],

$$
-\frac{h}{\sqrt{\lambda^{2}-1}}=\frac{1}{\pi} \int_{-1}^{1} \frac{h}{t-\lambda} \frac{1}{\sqrt{1-t^{2}}} d t, \quad \lambda \in \mathbb{C} \backslash[-1,1]
$$

Therefore, if T_{0} is the operator of the form (2.9), then

$$
M_{0}(\lambda)=P_{\mathfrak{M}}\left(T_{0}-\lambda I\right)^{-1} \upharpoonright \mathfrak{M}, \quad \lambda \in \mathbb{C} \backslash[-1,1] .
$$

As it is well known the Chebyshev polynomials of the first kind

$$
\widehat{T}_{0}(t)=1, \widehat{T}_{n}(t):=\sqrt{2} \cos (n \arccos t), \quad n \geq 1
$$

form an orthonormal basis of the space $L_{2}\left([-1,1], \rho_{0}(t)\right)$, where $\rho_{0}(t)$ is given by (2.8). This polynomials satisfy the recurrence relations

$$
\begin{aligned}
& t \widehat{T}_{0}(t)=\frac{1}{\sqrt{2}} \widehat{T}_{1}(t), \quad t \widehat{T}_{1}(t)=\frac{1}{\sqrt{2}} \widehat{T}_{0}(t)+\frac{1}{2} \widehat{T}_{2}(t) \\
& t \widehat{T}_{n}(t)=\frac{1}{2} \widehat{T}_{n-1}(t)+\frac{1}{2} \widehat{T}_{n+1}(t), \quad n \geq 2
\end{aligned}
$$

Hence the matrix of the operator \mathfrak{T}_{0} of multiplication on the independent variable in the Hilbert space $L_{2}\left([-1,1], \rho_{0}(t)\right)$ w.r.t. the basis $\left\{\widehat{T}_{n}(t)\right\}_{n=0}^{\infty}$ (the Jacobi matrix) takes the form (1.5) when $\mathfrak{M}=\mathbb{C}$. Besides $m_{0}(\lambda):=\left(\left(\mathbf{J}_{0}-\lambda I\right)^{-1} \delta_{0}, \delta_{0}\right)=-\frac{1}{\sqrt{\lambda^{2}-1}}$, where $\delta_{0}=\left[\begin{array}{llll}1 & 0 & 0 & \cdots\end{array}\right]^{T}[6]$. Since $T_{0}=\mathfrak{T}_{0} \otimes I_{\mathfrak{M}}$ we get that T_{0} is unitarily equivalent to $\mathbf{J}_{\mathbf{0}}=J_{0} \otimes I_{\mathfrak{M}}$ and $M_{0}(\lambda)=P_{\mathfrak{M}_{0}}\left(\mathbf{J}_{0}-\lambda I\right)^{-1} \upharpoonright \mathfrak{M}_{0}$.

Observe that \mathfrak{M}-valued holomorphic in $\mathbb{C} \backslash[-1,1]$ function

$$
M_{1}(\lambda):=2\left(-\lambda I_{\mathfrak{M}}-M_{0}^{-1}(\lambda)\right)=2\left(-\lambda+\sqrt{\lambda^{2}-1}\right) I_{\mathfrak{M}}
$$

belongs to the class $\mathbf{N}_{\mathfrak{M}}^{0}[-1,1]$.

3. The fixed point of the mapping $\widehat{\boldsymbol{\Gamma}}$

Now we will study the mapping $\widehat{\boldsymbol{\Gamma}}(1.7)$. Let \mathcal{M} be a Nevanlinna family in the Hilbert space \mathfrak{M}. Then since

$$
\left|\operatorname{Im}\left(\left(\mathcal{M}(\lambda)+\lambda I_{\mathfrak{M}}\right) f, f\right)\right| \geq|\operatorname{Im} \lambda|\|f\|^{2}, \quad \operatorname{Im} \lambda \neq 0, \quad f \in \operatorname{dom} \mathcal{M}(\lambda)
$$

the estimate

$$
\begin{equation*}
\left\|\left(\mathcal{M}(\lambda)+\lambda I_{\mathfrak{M}}\right)^{-1}\right\| \leq \frac{1}{|\operatorname{Im} \lambda|}, \operatorname{Im} \lambda \neq 0 \tag{3.1}
\end{equation*}
$$

holds true. It follows that $\mathcal{M}_{1}(\lambda)=-\left(\mathcal{M}(\lambda)+\lambda I_{\mathfrak{M}}\right)^{-1}$ is $\mathbf{B}(\mathfrak{M})$-valued Nevanlinna function from the class $\mathcal{R}_{0}[\mathfrak{M}]$ and, moreover, $\mathcal{M}_{1}(\lambda)=K^{*}(\widetilde{T}-\lambda I)^{-1} K, \operatorname{Im} \lambda \neq 0$, where \widetilde{T} is a selfadjoint operator in a Hilbert space $\widetilde{\mathfrak{H}}$ and $K \in \mathbf{B}(\mathfrak{M}, \widetilde{\mathfrak{H}})$ is a contraction, see Corollary 2.4 and Proposition 2.1. For $\mathcal{M}_{2}(\lambda)=-\left(\mathcal{M}_{1}(\lambda)+\lambda I_{\mathfrak{M}}\right)^{-1}$ one has

$$
\lim _{y \rightarrow \pm \infty}\left\|i y \mathcal{M}_{2}(i y)+I_{\mathfrak{M}}\right\|=0
$$

i.e., $\mathcal{M}_{2}(\lambda) \in \mathcal{N}[\mathfrak{M}]$. Thus, see Corollary 2.4,

$$
\begin{aligned}
& \operatorname{ran} \widehat{\boldsymbol{\Gamma}}=\widehat{\boldsymbol{\Gamma}}(\widetilde{R}[\mathfrak{M}])=\left\{M(\lambda) \in \mathcal{R}_{0}[\mathfrak{M}]: s-\lim _{y \rightarrow+\infty}(-i y M(i y)) \in\left[0, I_{\mathfrak{M}}\right]\right\} \\
& \operatorname{ran} \widehat{\boldsymbol{\Gamma}}^{k} \subset \mathcal{N}[\mathfrak{M}], \quad k \geq 2
\end{aligned}
$$

Theorem 3.1. Let \mathfrak{M} be a Hilbert space. Then
(1) the function

$$
\begin{equation*}
\mathcal{M}_{0}(\lambda)=\frac{-\lambda+\sqrt{\lambda^{2}-4}}{2} I_{\mathfrak{M}}, \quad \operatorname{Im} \lambda \neq 0, \quad \mathcal{M}_{0}(\infty)=0 \tag{3.2}
\end{equation*}
$$

is a unique fixed point of the mapping $\widehat{\boldsymbol{\Gamma}}$ (1.7);
(2) if $\widehat{\boldsymbol{\Gamma}}(\mathcal{M})=\mathcal{M}_{0}$, then $\mathcal{M}(\lambda)=\mathcal{M}_{0}(\lambda)$ for all $\lambda \in \mathbb{C} \backslash \mathbb{R}$;
(3) for every sequence of iterations of the form
$\mathcal{M}_{1}(\lambda)=-\left(\mathcal{M}(\lambda)+\lambda I_{\mathfrak{M}}\right)^{-1}, \quad \mathcal{M}_{n+1}(\lambda)=-\left(\mathcal{M}_{n}(\lambda)+\lambda I_{\mathfrak{M}}\right)^{-1}, \quad n=1,2 \ldots$,
where $\mathcal{M}(\lambda)$ is an arbitrary Nevanlinna function, the relation

$$
\lim _{n \rightarrow \infty}\left\|\mathcal{M}_{n}(\lambda)-\mathcal{M}_{0}(\lambda)\right\|=0
$$

holds uniformly on each compact subsets of the open upper/lower half-plane of the complex plane \mathbb{C};
(4) the function $\mathcal{M}_{0}(\lambda)$ is a unique fixed point for each degree of $\widehat{\boldsymbol{\Gamma}}$.

Proof. (1) Since

$$
\mathcal{M}(\lambda)=-\left(\mathcal{M}(\lambda)+\lambda I_{\mathfrak{M}}\right)^{-1} \Longleftrightarrow \mathcal{M}^{2}(\lambda)+\lambda \mathcal{M}(\lambda)+I_{\mathfrak{M}}=0,
$$

and \mathcal{M} is a Nevanlinna family, we get that \mathcal{M}_{0} given by (3.2) is a unique solution.
(2) Suppose $\widehat{\boldsymbol{\Gamma}}(\mathcal{M})=\mathcal{M}_{0}$, i.e.,

$$
-\left(\mathcal{M}(\lambda)+\lambda I_{\mathfrak{M}}\right)^{-1}=\frac{-\lambda+\sqrt{\lambda^{2}-4}}{2} I_{\mathfrak{M}}, \quad \lambda \in \mathbb{C} \backslash \mathbb{R} .
$$

Then

$$
\mathcal{M}(\lambda)=\left(-\frac{2}{-\lambda+\sqrt{\lambda^{2}-4}}-\lambda\right) I_{\mathfrak{M}}=\frac{-\lambda+\sqrt{\lambda^{2}-4}}{2} I_{\mathfrak{M}}=\mathcal{M}_{0}(\lambda) .
$$

(3) Let \mathcal{F} and \mathcal{G} be two $\mathbf{B}(\mathfrak{M})$-valued Nevanlinna functions. Set

$$
\widehat{F}(\lambda)=-\left(\mathcal{F}(\lambda)+\lambda I_{\mathfrak{M}}\right)^{-1}, \quad \widehat{G}(\lambda)=-\left(\mathcal{G}(\lambda)+\lambda I_{\mathfrak{M}}\right)^{-1}, \quad \lambda \in \mathbb{C} \backslash \mathbb{R}
$$

Then \widehat{F} and \widehat{G} are $\mathbf{B}(\mathfrak{M})$-valued and

$$
\widehat{F}(\lambda)-\widehat{G}(\lambda)=\left(\mathcal{F}(\lambda)+\lambda I_{\mathfrak{M}}\right)^{-1}(\mathcal{F}(\lambda)-\mathcal{G}(\lambda))\left(\mathcal{G}(\lambda)+\lambda I_{\mathfrak{M}}\right)^{-1}
$$

From (3.1) we get

$$
\|(\widehat{F}(\lambda)-\widehat{G}(\lambda))\| \leq \frac{1}{|\operatorname{Im} \lambda|^{2}}\|\mathcal{F}(\lambda)-\mathcal{G}(\lambda)\| .
$$

Hence for the sequence of iterations $\left\{\mathcal{M}_{n}(\lambda)\right\}$ one has

$$
\left\|\left(\mathcal{M}_{n}(\lambda)-\mathcal{M}_{m}(\lambda)\right)\right\| \leq \frac{1}{\left(|\operatorname{Im} \lambda|^{2}\right)^{m-1}}\left\|\mathcal{M}_{n-m+1}(\lambda)-\mathcal{M}_{1}(\lambda)\right\|, \quad n>m
$$

It follows that if $|\operatorname{Im} \lambda|>1$, then

$$
\left\|\left(\mathcal{M}_{n}(\lambda)-\mathcal{M}_{m}(\lambda)\right)\right\| \leq \frac{\left(|\operatorname{Im} \lambda|^{2}\right)^{-m+1}}{1-(|\operatorname{Im} \lambda|)^{-2}}\left\|\mathcal{M}_{2}(\lambda)-\mathcal{M}_{1}(\lambda)\right\|, \quad n>m
$$

Therefore, the sequence of linear operators $\left\{\mathcal{M}_{n}(\lambda)\right\}_{n=1}^{\infty}$ convergence in the operator norm topology, and the limit satisfies the equality $\mathcal{M}(\lambda)=-(\mathcal{M}(\lambda)+\lambda I)^{-1}$, i.e., is the fixed point of the mapping $\widehat{\boldsymbol{\Gamma}}$. In addition due to the inequality
$\left\|\left(\mathcal{M}_{n}(\lambda)-\mathcal{M}_{m}(\lambda)\right)\right\| \leq \frac{1}{R^{m-1}}\left\|\mathcal{M}_{n-m+1}(\lambda)-\mathcal{M}_{1}(\lambda)\right\|, \quad n>m, \quad|\operatorname{Im} \lambda| \geq R, \quad R>1$ we get that the convergence is uniform on λ on the domain $\{\lambda:|\operatorname{Im} \lambda| \geq R\}, R>1$.

Note that from

$$
\left\|\mathcal{M}_{n}(\lambda)\right\|=\left\|\left(\mathcal{M}_{n-1}(\lambda)+\lambda I_{\mathfrak{M}}\right)^{-1}\right\| \leq \frac{1}{|\operatorname{Im} \lambda|}, \quad \operatorname{Im} \lambda \neq 0
$$

it follows that the sequence of operator-valued functions $\left\{\mathcal{M}_{n}(\lambda)\right\}_{n=1}^{\infty}$ is uniformly bounded on λ on each domain $|\operatorname{Im} \lambda|>r, r>0$. Thus, the sequence $\left\{\mathcal{M}_{n}\right\}_{n=1}^{\infty}$ is locally
uniformly bounded in the upper and lower open half-planes and, in addition, $\left\{\mathcal{M}_{n}\right\}$ uniformly converges in the operator-norm topology on the domains $\{\lambda:|\operatorname{Im} \lambda| \geq R\}, R>1$. By the Vitali-Porter theorem [19] the relation

$$
\lim _{n \rightarrow \infty}\left\|\mathcal{M}_{n}(\lambda)-\mathcal{M}_{0}(\lambda)\right\|=0
$$

holds uniformly on λ on each compact subset of the open upper/lower half-plane of the complex plane \mathbb{C}.
(4) The function \mathcal{M}_{0} is a fixed point for each degree of $\widehat{\boldsymbol{\Gamma}}$. Suppose that the mapping $\widehat{\boldsymbol{\Gamma}}^{l_{0}}, l_{0} \geq 2$ has one more fixed point $\mathcal{L}_{0}(\lambda)$. Then arguing as above, we get

$$
\left\|\mathcal{M}_{0}(\lambda)-\mathcal{L}_{0}(\lambda)\right\| \leq|\operatorname{Im} \lambda|^{-2 l_{0}}| | \mathcal{M}_{0}(\lambda)-\mathcal{L}_{0}(\lambda) \| \quad \forall \lambda \in \mathbb{C} \backslash \mathbb{R}
$$

It follows that $\mathcal{L}_{0}(\lambda) \equiv \mathcal{M}_{0}(\lambda)$.
The scalar case $(\mathfrak{M}=\mathbb{C})$ of the next Proposition can be found in [6, pages 544 545], [18].

Proposition 3.2. Let \mathfrak{M} be a Hilbert space.
(1) Consider the weighted Hilbert space

$$
\mathfrak{L}_{0}:=L_{2}\left([-2,2], \frac{1}{2 \pi} \sqrt{4-t^{2}}\right) \otimes \mathfrak{M}
$$

and the operator

$$
\left(\mathcal{T}_{0} f\right)(t)=t f(t), \quad f(t) \in \mathfrak{L}
$$

Identify \mathfrak{M} with a subspace of \mathfrak{L}_{0} of constant vector-functions $\{f(t) \equiv f, f \in \mathfrak{M}\}$. Then

$$
\mathcal{M}_{0}(\lambda)=P_{\mathfrak{M}}\left(\mathcal{T}_{0}-\lambda I\right)^{-1} \upharpoonright \mathfrak{M}, \quad \lambda \in \mathbb{C} \backslash[-2,2],
$$

where $\mathcal{M}_{0}(\lambda)$ is given by (3.2).
(2) Let $\mathbf{H}_{0}=\bigoplus_{j=0}^{\infty} \mathfrak{M}=\ell^{2}\left(\mathbb{N}_{0}\right) \otimes \mathfrak{M}$ and let $\widehat{\mathbf{J}}_{\mathbf{0}}$ be the operator in \mathbf{H}_{0} given by the block-operator Jacobi matrix of the form (1.8).

Set $\mathfrak{M}_{0}:=\mathfrak{M} \bigoplus\{0\} \bigoplus\{0\} \bigoplus \cdots$. Then

$$
\mathcal{M}_{0}(\lambda)=P_{\mathfrak{M}_{0}}\left(\widehat{\mathbf{J}}_{0}-\lambda I\right)^{-1} \upharpoonright \mathfrak{M}_{0}, \quad \lambda \in \mathbb{C} \backslash[-2,2] .
$$

In the next statement we show that one can construct a sequence $\left\{\widehat{\mathfrak{H}}_{n}, \widehat{A}_{n}\right\}$ of realizations for the iterates $\left\{\mathcal{M}_{n+1}=\widehat{\boldsymbol{\Gamma}}\left(\mathcal{M}_{n}\right)\right\}_{n=1}^{\infty}$ that inductively converges to $\left\{\mathbf{H}_{\mathbf{0}}, \widehat{\mathbf{J}}_{0}\right\}$.

Theorem 3.3. Let $\mathcal{M}(\lambda)$ be an arbitrary Nevanlinna family in \mathfrak{M}. Define the iterations of the mapping $\widehat{\boldsymbol{\Gamma}}$ (1.7):

$$
\mathcal{M}_{1}(\lambda)=-\left(\mathcal{M}(\lambda)+\lambda I_{\mathfrak{M}}\right)^{-1}, \mathcal{M}_{n+1}(\lambda)=-\left(\mathcal{M}_{n}(\lambda)+\lambda I_{\mathfrak{M}}\right)^{-1}, \quad n=1,2 \ldots
$$

$$
\lambda \in \mathbb{C} \backslash \mathbb{R}
$$

Let $\mathcal{M}_{1}(\lambda)=K^{*}(\widehat{T}-\lambda I)^{-1} K, \operatorname{Im} \lambda \neq 0$ be a realization of $\mathcal{M}_{1}(\lambda)$, where \widehat{T} is a selfadjoint operator in the Hilbert space $\widehat{\mathfrak{H}}$ and $K \in \mathbf{B}(\mathfrak{M}, \widehat{\mathfrak{H}})$ is a contraction. Further, set
(3.3) $\quad \widehat{\mathfrak{H}}_{1}=\mathfrak{M} \oplus \widehat{\mathfrak{H}}, \widehat{\mathfrak{H}}_{2}=\mathfrak{M} \oplus \widehat{\mathfrak{H}}_{1}=\mathfrak{M} \oplus \mathfrak{M} \oplus \widehat{\mathfrak{H}}$,

$$
\widehat{\mathfrak{H}}_{n+1}=\mathfrak{M} \oplus \mathfrak{H}_{n}=\underbrace{\mathfrak{M} \oplus \mathfrak{M} \oplus \cdots \oplus \mathfrak{M}}_{n+1} \oplus \widehat{\mathfrak{H}}, \ldots
$$

and define the following linear operators for each $n \in \mathbb{N}$:

$$
\begin{aligned}
& \mathfrak{M} \ni x \mapsto \mathbb{I}_{\mathfrak{M}}^{(n)} x=[x, \underbrace{0,0, \ldots, 0}_{n}]^{T} \in \widehat{\mathfrak{H}}_{n}, \\
& \widehat{\mathfrak{H}}_{n} \ni\left[\begin{array}{l}
x \\
h
\end{array}\right] \mapsto P_{\mathfrak{M}}^{(0, n)}\left[\begin{array}{l}
x \\
h
\end{array}\right]=x \in \mathfrak{M}\left(\perp \widehat{\mathfrak{H}}_{n}\right) \quad \forall x \in \mathfrak{M}, \quad \forall h \in \widehat{\mathfrak{H}}_{n} .
\end{aligned}
$$

Define selfadjoint operators in the Hilbert spaces $\widehat{\mathfrak{H}}_{n}$ for $n \in \mathbb{N}$:

$$
\begin{align*}
& \operatorname{dom} \widehat{T} \rightarrow \widehat{\mathfrak{H}}_{1}, \tag{3.4}\\
& \widehat{A}_{2}=\left[\begin{array}{cc}
0 & P_{\mathfrak{M}}^{(0,1)} \\
\mathbb{I}_{\mathfrak{M}}^{(1)} & \widehat{A}_{1}
\end{array}\right]: \underset{\widehat{\mathfrak{H}}_{1}}{\stackrel{\mathfrak{M}}{\underset{\mathfrak{H}}{1}}} \rightarrow \stackrel{\mathfrak{M}}{\widehat{\mathfrak{H}}_{1}}, \quad \operatorname{dom} \widehat{A}_{2}=\mathfrak{M} \oplus \operatorname{dom} \widehat{A}_{1}, \\
& \widehat{A}_{n+1}=\left[\begin{array}{cc}
0 & P_{\mathfrak{M}}^{(0, n)} \\
\mathbb{I}_{\mathfrak{M}}^{(n)} & {\underset{A}{A}}_{n}
\end{array}\right]: \underset{\widehat{\mathfrak{H}}_{n}}{\stackrel{\mathfrak{M}}{\oplus}} \rightarrow \underset{\widehat{\mathfrak{H}}_{n}}{\stackrel{\mathcal{M}}{\oplus}}, \quad \operatorname{dom} \widehat{A}_{n+1}=\mathfrak{M} \oplus \operatorname{dom} \widehat{A}_{n} .
\end{align*}
$$

Then \widehat{A}_{n} is a realization of \mathcal{M}_{n+1} for each n, i.e.,

$$
\begin{equation*}
\mathcal{M}_{n+1}(\lambda)=P_{\mathfrak{M}}\left(\widehat{A}_{n}-\lambda I\right)^{-1} \upharpoonright \mathfrak{M}, \quad n=1,2 \ldots, \quad \lambda \in \mathbb{C} \backslash \mathbb{R} \tag{3.5}
\end{equation*}
$$

If \widehat{T} is $\overline{\text { ran }} K$-simple, i.e., $\overline{\operatorname{span}}\left\{(\widehat{T}-\lambda)^{-1} \operatorname{ran} K: \lambda \in \mathbb{C} \backslash \mathbb{R}\right\}=\mathcal{K}$, then \widehat{A}_{n} is \mathfrak{M}-minimal for each $n \in \mathbb{N}$. Moreover, the Hilbert space \mathbf{H}_{0} and the block-operator Jacobi matrix (1.8) are the inductive limits $\mathbf{H}_{0}=\lim _{\rightarrow} \widehat{\mathfrak{H}}_{n}$ and $\widehat{\mathbf{J}}_{0}=\lim _{\rightarrow} \widehat{A}_{n}$, of the chains $\left\{\widehat{\mathfrak{H}}_{n}\right\}$ and $\left\{\widehat{A}_{n}\right\}$, respectively.
Proof. Relations in (3.5) follow by induction from (2.3).
Note that the operator \widehat{A}_{n} can be represented by the block-operator matrix

$$
\widehat{A}_{n}=\left[\begin{array}{ccccccccc}
0 & I_{\mathfrak{M}} & 0 & 0 & 0 & . & . & . & 0 \tag{3.6}\\
I_{\mathfrak{M}} & 0 & I_{\mathfrak{M}} & 0 & 0 & . & . & . & 0 \\
0 & I_{\mathfrak{M}} & 0 & I_{\mathfrak{M}} & 0 & . & . & . & 0 \\
0 & 0 & I_{\mathfrak{M}} & 0 & I_{\mathfrak{M}} & 0 & . & . & 0 \\
\vdots & \vdots \\
0 & 0 & . & . & . & 0 & 0 & I_{\mathfrak{M}} & 0 \\
0 & 0 & . & . & . & 0 & I_{\mathfrak{M}} & 0 & K^{*} \\
0 & 0 & . & . & . & 0 & 0 & K & \widehat{T}
\end{array}\right]: n\left\{\begin{array} { l }
{ \mathfrak { M } } \\
{ \oplus } \\
{ \mathfrak { M } } \\
{ \oplus } \\
{ \vdots } \\
{ \oplus }
\end{array} \quad n \left\{\begin{array}{l}
\mathfrak{M} \\
\oplus \\
\mathfrak{M} \\
\oplus \\
\vdots \\
\oplus \\
\oplus \\
\underset{\mathfrak{H}}{ } \\
\mathfrak{M} \\
\oplus
\end{array}\right.\right.
$$

Besides, if \widehat{T} is bounded, then all operators $\left\{\widehat{A}_{n}\right\}_{n \geq 1}$ are bounded and each $\mathcal{M}_{n}(\lambda)$ belongs to the class $\mathbf{N}_{\mathfrak{M}}^{0}$ for $n \geq 2$.

Define the linear operators $\gamma_{k}^{l}: \widehat{\mathfrak{H}}_{k} \rightarrow \widehat{\mathfrak{H}}_{l}, l \geq k, \gamma_{k}: \widehat{\mathfrak{H}}_{k} \rightarrow \mathbf{H}_{\mathbf{0}}, k \in \mathbb{N}$ as follows

$$
\begin{align*}
& \gamma_{k}^{l}\left[f_{1}, f_{2}, \ldots, f_{k}, \varphi\right]=[f_{1}, f_{2}, \ldots, f_{k}, \underbrace{0,0, \ldots, 0}_{l-k}, \varphi], \tag{3.7}\\
& \gamma_{k}\left[f_{1}, f_{2}, \ldots, f_{k}, \varphi\right]=\left[f_{1}, f_{2}, \ldots, f_{k}, 0,0, \ldots\right], \\
& \left\{f_{i}\right\}_{i=1}^{k} \subset \mathfrak{M}, \quad \varphi \in \widehat{\mathfrak{H}} .
\end{align*}
$$

Then
(1) γ_{k}^{k} is the identity on $\widetilde{\mathfrak{H}}_{k}$ for each $k \in \mathbb{N}$,
(2) $\gamma_{k}^{m}=\gamma_{l}^{m} \circ \gamma_{k}^{l}$ if $k \leq l \leq m$,
(3) $\gamma_{k}=\gamma_{l} \circ \gamma_{k}^{l}, l \geq k, k \in \mathbb{N}$,
(4) $\mathbf{H}_{0}=\overline{\operatorname{span}}\left\{\gamma_{k} \widehat{\mathfrak{H}}_{k}, k \geq 1\right\}$.

Note that the operators $\left\{\gamma_{k}^{l}\right\}$ are isometries and the operators $\left\{\gamma_{k}\right\}$ are partial isometries and $\operatorname{ker} \gamma_{k}=\widetilde{\mathfrak{H}}$ for all k. The family $\left\{\widehat{\mathfrak{H}}_{k}, \gamma_{k}^{l}, \gamma_{k}\right\}$ forms the inductive isometric chain [17] and the Hilbert space \mathbf{H}_{0} is the inductive limit of the Hilbert spaces $\left\{\widehat{\mathfrak{H}}_{n}\right\}$ (3.3): $\mathbf{H}_{0}=\lim _{\rightarrow} \widehat{\mathfrak{H}}_{n}$.

Define following [17] on $\mathcal{D}_{\infty}:=\bigcup_{n=1}^{\infty} \gamma_{n} \operatorname{dom} \widehat{A}_{n}$ a linear operator in \mathbf{H}_{0} :

$$
\widehat{A}_{\infty} h:=\lim _{m \rightarrow \infty} \gamma_{m} \widehat{A}_{m} \gamma_{k}^{m} h_{k}, \quad h=\gamma_{k} h_{k}, \quad h_{k} \in \widehat{\mathfrak{H}}_{k} \ominus \widehat{\mathfrak{H}}
$$

where $\left\{\widehat{A}_{n}\right\}$ are defined in (3.4). Due to (3.7) and (3.6) the operator \widehat{A}_{∞} exists, densely defined and its closure is bounded selfadjoint operator in \mathbf{H}_{0} given by the block-operator matrix $\widehat{\mathbf{J}}_{\mathbf{0}}$ of the form (1.8).

Note that the operator $\widehat{\mathbf{J}}_{\mathbf{0}}$ is called the free discrete Schrödinger operator [18]. Observe also that the function

$$
M_{1}(\lambda)=\frac{1}{2} \mathcal{M}_{0}\left(\frac{\lambda}{2}\right)=2\left(-\lambda+\sqrt{\lambda^{2}-1}\right) I_{\mathfrak{M}}, \quad \lambda \in \mathbb{C} \backslash[-1,1]
$$

where $\mathcal{M}_{0}(\lambda)$ is given by (3.2), belongs to the class $\mathbf{N}_{\mathfrak{M}}^{0}[-1,1]$. Besides, for all $\lambda \in$ $\mathbb{C} \backslash[-1,1]$ the equality $M_{1}(\lambda)=P_{\mathfrak{M}}\left(\mathcal{T}_{1}-\lambda I\right)^{-1} \upharpoonright \mathfrak{M}$ holds, where \mathcal{T}_{1} is the multiplication operator $\left(\mathcal{T}_{1} f\right)(t)=t f(t)$ in the weighted Hilbert space

$$
L_{2}\left([-1,1], \frac{2}{\pi} \sqrt{1-t^{2}}\right) \otimes \mathfrak{M}
$$

If $\mathfrak{M}=\mathbb{C}$, then the matrix of the corresponding operator \mathcal{T}_{1} in the orthonormal basis of the Chebyshev polynomials of the second kind

$$
U_{n}(t)=\frac{\sin [(n+1) \arccos t]}{\sqrt{1-t^{2}}}, \quad n=0,1, \ldots
$$

is of the form $\frac{1}{2} \widehat{\mathbf{J}}_{0}[6]$.

4. Canonical systems and the mapping $\widehat{\boldsymbol{\Gamma}}$

Let $m \in \mathbf{N}_{\mathbb{C}}^{0}$. Then, see [6, Chapter VII, § 1, Theorem 1.11], [11], [18], the function m is the compressed resolvent $\left(m(\lambda)=\left((J-\lambda I)^{-1} \delta_{0}, \delta_{0}\right)\right)$ of a unique finite or semi-infinite Jacobi matrix $J=J\left(\left\{a_{k}\right\},\left\{b_{k}\right\}\right)$ with real diagonal entries $\left\{a_{k}\right\}$ and positive off-diagonal entries $\left\{b_{k}\right\}$ and in the semi-infinite case one has $\left\{a_{k}\right\},\left\{b_{k}\right\} \in \ell^{\infty}\left(\mathbb{N}_{0}\right)$. Observe that the entries of J can be found using the continued fraction (J-fraction) expansion of $m(\lambda)$ [11], [21]

$$
m(\lambda)=\frac{-1}{\lambda-a_{0}}+\frac{-b_{0}^{2}}{\lambda-a_{1}}+\frac{-b_{1}^{2}}{\lambda-a_{2}}+\ldots+\frac{-b_{n-1}^{2}}{\lambda-a_{n}}+\ldots
$$

On the other hand the algorithm of I. S. Kac [14] enables to construct for given $J\left(\left\{a_{k}\right\},\left\{b_{k}\right\}\right)$ the Hamiltonian $\mathcal{H}(t)$ such that the m-function of $J\left(\left\{a_{k}\right\},\left\{b_{k}\right\}\right)$ is the m-function of the corresponding canonical system of the form (1.9).

Below we give the algorithm of Kac. Let J be a semi-infinite Jacobi matrix

$$
J=J\left(\left\{a_{k}\right\},\left\{b_{k}\right\}\right)=\left[\begin{array}{cccccccc}
a_{0} & b_{0} & 0 & 0 & 0 & . & . & . \tag{4.1}\\
b_{0} & a_{1} & b_{1} & 0 & 0 & . & . & . \\
0 & b_{1} & a_{2} & b_{2} & 0 & . & . & . \\
\vdots & \vdots
\end{array}\right] .
$$

The condition $\left\{a_{k}\right\},\left\{b_{k}\right\} \in \ell^{\infty}\left(\mathbb{N}_{0}\right)$ is necessary and sufficient for the boundedness of the corresponding selfadjoint operator in the Hilbert space $\ell^{2}\left(\mathbb{N}_{0}\right)$.

Put

$$
\begin{equation*}
l_{-1}=1, \quad l_{0}=1, \quad \theta_{-1}=0, \quad \theta_{0}=\frac{\pi}{2} . \tag{4.2}
\end{equation*}
$$

Then calculate

$$
\begin{equation*}
\theta_{1}=\arctan a_{0}+\pi, \quad l_{1}=\frac{1}{l_{0} b_{0}^{2} \sin ^{2}\left(\theta_{1}-\theta_{0}\right)} \tag{4.3}
\end{equation*}
$$

Find θ_{2} from the system

$$
\left\{\begin{array}{l}
\cot \left(\theta_{2}-\theta_{1}\right)=-a_{1} l_{1}-\cot \left(\theta_{1}-\theta_{0}\right) \tag{4.4}\\
\theta_{2} \in\left(\theta_{1}, \theta_{1}+\pi\right)
\end{array}\right.
$$

Find successively l_{j} and $\theta_{j+1}, j=2,3, \ldots$

$$
\begin{align*}
& l_{j}=\frac{1}{l_{j-1} b_{j-1}^{2} \sin ^{2}\left(\theta_{j}-\theta_{j-1}\right)}, \tag{4.5}\\
& \left\{\begin{array}{l}
\cot \left(\theta_{j+1}-\theta_{j}\right)=-a_{j} l_{j}-\cot \left(\theta_{j}-\theta_{j-1}\right) \\
\theta_{j+1} \in\left(\theta_{j}, \theta_{j}+\pi\right)
\end{array}\right.
\end{align*}
$$

Define intervals $\left[t_{j}, t_{j+1}\right)$ as follows

$$
\begin{align*}
& t_{-1}=-1, \quad t_{0}=t_{-1}+l_{-1}=0, \quad t_{1}=t_{0}+l_{0}=1 \tag{4.6}\\
& \qquad t_{j+1}=t_{j}+l_{j}=1+\sum_{k=1}^{j} l_{k}, \quad j \in \mathbb{N} .
\end{align*}
$$

Then necessarily, [14], we get that $\lim _{j \rightarrow \infty} t_{j}=+\infty$. Finally define the right continuous increasing step-function

$$
\theta(t):=\left\{\begin{array}{l}
\theta_{0}=\frac{\pi}{2}, t \in\left(t_{0}, t_{1}\right)=(0,1) \tag{4.7}\\
\theta_{j}, t \in\left[t_{j}, t_{j+1}\right), j \in \mathbb{N}
\end{array}\right.
$$

and the Hamiltonian $\mathcal{H}(t)$ on \mathbb{R}_{+}

$$
\begin{align*}
\mathcal{H}(t):=\left[\begin{array}{c}
\cos \theta(t) \\
\sin \theta(t)
\end{array}\right]\left[\begin{array}{ll}
\cos \theta(t) & \sin \theta(t)
\end{array}\right] & =\left[\begin{array}{cc}
\cos ^{2} \theta(t) & \cos \theta(t) \sin \theta(t) \\
\cos \theta(t) \sin \theta(t) & \sin ^{2} \theta(t)
\end{array}\right] \tag{4.8}\\
& =\frac{1}{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{cc}
\cos 2 \theta(t) & \sin 2 \theta(t) \\
\sin 2 \theta(t) & -\cos 2 \theta(t)
\end{array}\right] .
\end{align*}
$$

Then the Nevanlinna function $m(\lambda)=\left((J-\lambda I)^{-1} \delta_{0}, \delta_{0}\right)$ coincides with m-function of the corresponding canonical system of the form (1.9). Observe that the algorithm shows that

$$
\mathcal{H}(t)=\left[\begin{array}{ll}
0 & 0 \tag{4.9}\\
0 & 1
\end{array}\right], \quad t \in[0,1)
$$

Using (4.2)-(4.8) for the Jacobi matrix \widehat{J}_{0}

$$
\widehat{J}_{0}=\left[\begin{array}{cccccccc}
0 & 1 & 0 & 0 & 0 & . & . & . \\
1 & 0 & 1 & 0 & 0 & . & . & . \\
0 & 1 & 0 & 1 & 0 & . & . & . \\
\vdots & \vdots
\end{array}\right]
$$

we get

$$
\begin{gather*}
l_{j}^{0}=1, \quad \theta_{j}^{0}=(j+1) \frac{\pi}{2} \quad \forall j \in \mathbb{N}_{0}, \\
\theta^{0}(t)=(j+1) \frac{\pi}{2}, \quad t \in[j, j+1) \quad \forall j \in \mathbb{N}_{0}, \\
(4.10) \quad \mathcal{H}_{0}(t)=\left[\begin{array}{cc}
\cos ^{2}(j+1) \frac{\pi}{2} & 0 \\
0 & \sin ^{2}(j+1) \frac{\pi}{2}
\end{array}\right] \tag{4.10}\\
\\
=\frac{1}{2}\left[\begin{array}{cc}
1-(-1)^{j} & 0 \\
0 & 1+(-1)^{j}
\end{array}\right], \quad t \in[j, j+1) \quad \forall j \in \mathbb{N}_{0} .
\end{gather*}
$$

Proposition 4.1. Let the scalar non-rational Nevanlinna function m belong to the class $\mathbf{N}_{\mathbb{C}}^{0}$. Define the functions

$$
m_{1}(\lambda)=-\frac{1}{m(\lambda)+\lambda}, \ldots, m_{n+1}(\lambda)=-\frac{1}{m_{n}(\lambda)+\lambda}, \ldots, \quad \lambda \in \mathbb{C} \backslash \mathbb{R}
$$

Let J be the Jacobi matrix with the m-function m, i.e., $m(\lambda)=\left((J-\lambda I)^{-1} \delta_{0}, \delta_{0}\right), \forall \lambda \in$ $\mathbb{C} \backslash \mathbb{R}$. Assume that $\mathcal{H}(t)$ is the Hamiltonian such that the m-function of the corresponding canonical system coincides with m. Then the Hamiltonian $\mathcal{H}_{n}(t)$ of the canonical system whose m-function coincides with m_{n}, takes the form

$$
\begin{align*}
& \mathcal{H}_{n}(t)= \begin{cases}\mathcal{H}_{0}(t), t \in[0, n+1), \\
(-1)^{n} \mathcal{H}(t-n)+\frac{1}{2}\left[\begin{array}{cc}
1-(-1)^{n} & 0 \\
0 & 1-(-1)^{n}
\end{array}\right], & t \in[n+1, \infty)\end{cases} \tag{4.11}\\
& =\left\{\begin{array}{l}
\mathcal{H}_{0}(t), t \in[0, n+1), \\
{\left[\begin{array}{cc}
\cos ^{2}\left(\theta_{j}+n \frac{\pi}{2}\right) & \frac{(-1)^{n}}{2} \sin 2 \theta_{j} \\
\frac{(-1)^{n}}{2} \sin 2 \theta_{j} & \sin ^{2}\left(\theta_{j}+n \frac{\pi}{2}\right)
\end{array}\right],}
\end{array}\right.
\end{align*}
$$

where $\left\{t_{j}, \theta_{j}\right\}_{j \geq 1}$ are parameters of the Hamiltonian $\mathcal{H}(t)$.
Proof. Set

$$
J_{1}=\left[\begin{array}{c|cccc}
0 & 1 & 0 & 0 & \ldots \tag{4.12}\\
\hline 1 & & & & \\
0 & & & J & \\
\vdots & & & &
\end{array}\right], \ldots, \quad J_{n}=\left[\begin{array}{c|cccc}
0 & 1 & 0 & 0 & \ldots \\
\hline 1 & & & & \\
0 & & & J_{n-1} & \\
\vdots & & & &
\end{array}\right], \ldots
$$

Then (2.3) and induction yield the equalities

$$
\begin{aligned}
& \left(\left(J_{1}-\lambda I\right)^{-1} \delta_{0}, \delta_{0}\right)=-(m(\lambda)+\lambda)^{-1}=m_{1}(\lambda), \ldots \\
& \quad\left(\left(J_{n}-\lambda I\right)^{-1} \delta_{0}, \delta_{0}\right)=-\left(m_{n-1}(\lambda)+\lambda\right)^{-1}=m_{n}(\lambda), \ldots
\end{aligned}
$$

$$
\lambda \in \mathbb{C} \backslash \mathbb{R}
$$

Let $J=J\left(\left\{a_{k}\right\}_{k=0}^{\infty},\left\{b_{k}\right\}_{k=0}^{\infty}\right)$ be of the form (4.1). Then from (4.12) it follows that for the entries of $J_{n}=J_{n}\left(\left\{a_{k}^{(n)}\right\}_{k=0}^{\infty},\left\{b_{k}^{(n)}\right\}_{k=0}^{\infty}\right), n \in \mathbb{N}$, we have the equalities

$$
\left\{\begin{array}{l}
a_{0}^{(n)}=a_{1}^{(n)}=\cdots=a_{n-1}^{(n)}=0 \tag{4.13}\\
a_{k}^{(n)}=a_{k-n}, k \geq n
\end{array}, \quad\left\{\begin{array}{l}
b_{0}^{(n)}=b_{1}^{(n)}=\cdots=b_{n-1}^{(n)}=1 \\
b_{k}^{(n)}=b_{k-n}, k \geq n
\end{array}\right.\right.
$$

In order to find an explicit form of the Hamiltonian corresponding to the Nevanlinna function m_{n} we apply the algorithm of Kac described by (4.2), (4.3), (4.4), (4.5), (4.6), (4.7), (4.8). Then we obtain

$$
\begin{aligned}
& l_{-1}^{(n)}=l_{0}^{(n)}=l_{1}^{(n)}=\cdots=l_{n}^{(n)}=1 \\
& \theta_{-1}^{(n)}=0, \theta_{0}^{(n)}=\frac{\pi}{2}, \theta_{1}^{(n)}=\pi, \ldots, \theta_{n}^{(n)}=(n+1) \frac{\pi}{2}, \\
& l_{n+j}^{(n)}=l_{j}, \quad \theta_{n+j}^{(n)}=\theta_{j}+(n+2) \frac{\pi}{2}, \quad j \in \mathbb{N} .
\end{aligned}
$$

Hence (4.8) and (4.10) yield (4.11).
By Theorem 3.1 the sequence $\left\{m_{n}\right\}$ of Nevanlinna functions converges uniformly on each compact subset of $\mathbb{C}_{+} / \mathbb{C}_{-}$to the Nevanlinna function

$$
m_{0}(\lambda)=\frac{-\lambda+\sqrt{\lambda^{2}-4}}{2}, \quad \lambda \in \mathbb{C} \backslash \mathbb{R}
$$

This function is the m-function of the Jacobi matrix \widehat{J}_{0} and the m-function of the canonical system with the Hamiltonian \mathcal{H}_{0}. From (4.12) we see that for the sequence of selfadjoint Jacobi operators $\left\{J_{n}\right\}$ in $\ell^{2}\left(\mathbb{N}_{0}\right)$ the relations

$$
P_{n} J_{n+1} P_{n}=P_{n} J_{0} P_{n} \quad \forall n \in \mathbb{N}_{0}
$$

hold, where P_{n} is the orthogonal projection in $\ell^{2}\left(\mathbb{N}_{0}\right)$ on the subspace

$$
E_{n}=\operatorname{span}\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{n-1}\right\}
$$

It follows that

$$
s-\lim _{n \rightarrow \infty} P_{n} J_{n+1} P_{n}=\widehat{J}_{0}
$$

For the sequence (4.11) of $\left\{\mathcal{H}_{n}\right\}$ one has

$$
\begin{equation*}
\mathcal{H}_{n} \upharpoonright[0, n+1)=\mathcal{H}_{0} \upharpoonright[0, n+1) \quad \forall n . \tag{4.14}
\end{equation*}
$$

From (4.14) it follows that if $\vec{f}(t)=\left[\begin{array}{l}f_{1}(t) \\ f_{2}(t)\end{array}\right]$ is a continuous function on \mathbb{R}_{+}with a compact support, then there exists $n_{0} \in \mathbb{N}$ such that $\int_{0}^{\infty} \vec{f}(t)^{*} \mathcal{H}_{n}(t) \vec{f}(t) d t=\int_{0}^{\infty} \vec{f}(t)^{*} \mathcal{H}_{0}(t) \vec{f}(t) d t$ for all $n \geq n_{0}$.

It is proved in [13, Proposition 5.1] that for a sequence of canonical systems with Hamiltonians $\left\{H_{n}\right\}$ and H the convergence $m_{H_{n}}(\lambda) \rightarrow m_{H}(\lambda), n \rightarrow \infty$ of m-functions holds locally uniformly on $\mathbb{C}_{+} / \mathbb{C}_{-}$if and only if $\int_{0}^{\infty} \vec{f}(t)^{*} H_{n}(t) \vec{f}(t) d t \rightarrow \int_{0}^{\infty} \vec{f}(t)^{*} H(t) \vec{f}(t) d t$ for all continuous functions $\vec{f}(t)$ with compact support on \mathbb{R}_{+}.

In conclusion we note that the equalities (4.9), (4.10), and (4.11) (for $n=1$) show that for the transformation $\widehat{\boldsymbol{\Gamma}}$ one has the following scheme:

$$
\begin{aligned}
\mathbf{N}_{\mathbb{C}}^{0} \ni m \text { (non-rational) } \longrightarrow \mathcal{H}(t) & \Longrightarrow \\
\mathcal{H}_{\widehat{\boldsymbol{\Gamma}}}(t) & =\left\{\begin{array}{l}
\mathcal{H}_{0}(t), t \in[0,2) \\
{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\mathcal{H}(t-1), t \in[2,+\infty)}
\end{array}<\widehat{\boldsymbol{\Gamma}}(m) .\right.
\end{aligned}
$$

References

1. Yu. Arlinskiŭ, S. Belyi, and E. Tsekanovskiŭ, Conservative Realizations of Herglotz-Nevanlinna Functions, Oper. Theory Adv. Appl., vol. 217, Birkhäuser Verlag, Basel, 2011.
2. Yu. M. Arlinskiй, S. Hassi, and H.S.V. de Snoo, Q-functions of quasi-selfadjoint contractions, Oper. Theory Adv. Appl. 163 (2006), 23-54.
3. Yu. Arlinskiĭ and L. Klotz, Weyl functions of bounded quasi-selfadjoint operators and block operator Jacobi matrices, Acta Sci. Math. (Szeged) 76 (2010), no. 3-4, 585-626.
4. T. Ya. Azizov, A. Dijksma, and G. Wanjala, Compressions of maximal dissipative and selfadjoint linear relations and of dilations, Linear Algebra Appl. 439 (2013), 771-792.
5. Ju. Behrndt, S. Hassi, H. de Snoo, and R. Wietsma, Monotone convergence theorems for semibounded operators and forms with applications, Proc. Royal Soc. of Edinburgh 140 A (2010), 927-951.
6. Yu. M. Berezanskii, Expansion in Eigenfunctions of Selfadjoint Operators, Amer. Math. Soc., Providence, RI, 1968. (Russian edition: Naukova Dumka, Kiev, 1965)
7. L. de Branges, Some Hilbert spaces of entire functions. II, Trans. Amer. Math. Soc. 99 (1961), 118-152.
8. M. S. Brodskiĭ, Triangular and Jordan Representations of Linear Operators, Nauka, Moscow, 1969. (Russian); English transl. Transl. Math. Monographs, Vol. 32. Amer. Math. Soc., Providence, RI, 1971.
9. V. Derkach, S. Hassi, M. M. Malamud, and H.S.V. de Snoo, Boundary relations and their Weyl families, Trans. Amer. Math. Soc. 358 (2006), no. 12, 5351-5400.
10. A. Dijksma, H. Langer, and H.S.V. de Snoo, Selfadjoint Π_{κ}-extensions of symmetric subspaces: an abstract approach to boundary problems with spectral parameter in the boundary conditions, Integr. Equ. Oper. Theory 7 (1984), no. 4, 459-515. (Addendum, Integr. Equ. Oper. Theory 7 (1984), no. 6, 905)
11. F. Gesztesy and B. Simon, M-functions and inverse spectral analysis for finite and semifinite Jacobi matrices, J. Anal. Math. 73 (1997), 267-297.
12. F. Gesztesy and E. R. Tsekanovskiĭ, On matrix-valued Herglotz functions, Math. Nachr. 218 (2000), 61-138.
13. I. Hur, Density of Schrödinger Weyl-Titchmarsh m-functions on Herglotz functions, J. Differ. Equations 260 (2016), no. 11, 8137-8159.
14. I. S. Kac, Inclusion of Hamburger's power moment problem in the spectral theory of canonical systems, Zap. Nauchn. Semin. POMI 262 (1999), 147-171. (Russian); English transl. J. Math. Sci. (New York) 110 (2002), no. 5, 2991-3004.
15. I. S. Kac and M. G. Krĕ̆n, R-functions - analytic functions mapping the upper halfplane into itself, Supplement to the Russian edition of F. V. Atkinson, Discrete and Continuous Boundary Problems, Mir, Moscow, (1968). (Russian); English transl. Amer. Math. Soc. Transl. Ser. 2103 (1974), 1-18.
16. M. G. Kreĭn and A. A. Nudelman, The Markov Moment Problem and Extremal Problems, Nauka, Moscow, 1973. (Russian); English transl. Transl. Math. Monographs, Vol. 50. Amer. Math. Soc., Providence, RI, 1977.
17. A. V. Marchenko, Selfadjoint differential operators with an infinite number of independent variables, Mat. Sbornik 96 (1975), no. 2, 276-293. (Russian); English transl. Mathematics of the USSR-Sbornik 25 (1975), no. 2, 259-275.
18. C. Remling, Lecture Notes for Functional Analysis, Chapter 13, www2.math.ou.edu/ cremling /teaching/lecturenotes/fa-new/ln13.pdf.
19. Joel L. Schiff, Normal Families, Springer-Verlag, 1993.
20. Yu. L. Shmul'yan, On operator-valued R-functions, Sibirsk. Mat. Zh. 12 (1971), no. 2, 442-452. (Russian); English transl. Siberian Math. J. 12 (1971), no. 2, 315-322.
21. H. S. Wall, Analytic Theory of Continued Fractions, Chelsea, Bronx, NY, 1973.
22. H. Winkler, The inverse spectral problem for canonical systems, Integr. Equ. Oper. Theory 22 (1995), no. 3, 360-374.

Department of Mathematics, Dragomanov National Pedagogical University, 9 Pirogova, Kyiv, 01601, Ukraine

E-mail address: yury.arlinskii@gmail.com

[^0]: 2010 Mathematics Subject Classification. 47A06, 47A56, 47B25, 47B36.
 Key words and phrases. Nevanlinna operator-valued function, compressed resolvent, fixed point, block-operator Jacobi matrix, canonical system.

