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TRANSFORMATIONS OF NEVANLINNA OPERATOR-FUNCTIONS

AND THEIR FIXED POINTS

YU. M. ARLINSKĬI

To Eduard R. Tsekanovskĭı on the occasion of his 80th birthday

Abstract. We give a new characterization of the class N
0
M
[−1, 1] of the operator-

valued in the Hilbert space M Nevanlinna functions that admit representations as
compressed resolvents (m-functions) of selfadjoint contractions. We consider the

automorphism Γ : M(λ) 7→MΓ(λ) :=
(
(λ2 − 1)M(λ)

)
−1

of the class N0
M
[−1, 1] and

construct a realization of MΓ(λ) as a compressed resolvent. The unique fixed point
of Γ is the m-function of the block-operator Jacobi matrix related to the Chebyshev

polynomials of the first kind. We study a transformation Γ̂ : M(λ) 7→ M
Γ̂
(λ) :=

−(M(λ)+λIM)−1 that maps the set of all Nevanlinna operator-valued functions into

its subset. The unique fixed point M0 of Γ̂ admits a realization as the compressed

resolvent of the ”free” discrete Schrödinger operator Ĵ0 in the Hilbert space H0 =
ℓ2(N0)

⊗
M. We prove that M0 is the uniform limit on compact sets of the open

upper/lower half-plane in the operator norm topology of the iterations {Mn+1(λ) =

−(Mn(λ) + λIM)−1} of Γ̂. We show that the pair {H0, Ĵ0} is the inductive limit

of the sequence of realizations {Ĥn, Ân} of {Mn}. In the scalar case (M = C),
applying the algorithm of I. S. Kac, a realization of iterates {Mn(λ)} as m-functions
of canonical (Hamiltonian) systems is constructed.

1. Introduction and preliminaries

Notations. We use the symbols domT , ranT , kerT for the domain, the range, and
the null-subspace of a linear operator T . The closures of domT , ranT are denoted by
domT , ranT , respectively. The identity operator in a Hilbert space H is denoted by I
and sometimes by IH. If L is a subspace, i.e., a closed linear subset of H, the orthogonal
projection in H onto L is denoted by PL. The notation T ↾L means the restriction of a
linear operator T on the set L ⊂ domT . The resolvent set of T is denoted by ρ(T ). The
linear space of bounded operators acting between Hilbert spaces H and K is denoted by
B(H,K) and the Banach algebra B(H,H) by B(H). Throughout this paper we consider
separable Hilbert spaces over the field C of complex numbers. C+/C− denotes the
open upper/lower half-plane of C, R+ := [0,+∞), N is the set of natural numbers,
N0 := N ∪ {0}.

Definition 1.1. A B(M)-valued function M is called a Nevanlinna function (R-function
[15], [20], Herglotz function [12], Herglotz-Nevanlinna function [1], [3]) if it is holo-
morphic outside the real axis, symmetric M(λ)∗ = M(λ̄), and satisfies the inequality
Imλ ImM(λ) ≥ 0 for all λ ∈ C\R.

This class is often denoted by R[M]. A more general is the notion of Nevanlinna
family, cf. [9].
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Definition 1.2. A family of linear relations M(λ), λ ∈ C\R, in a Hilbert space M is
called a Nevanlinna family if:

(1) M(λ) is maximal dissipative for every λ ∈ C+ (resp. accumulative for every
λ ∈ C−);

(2) M(λ)∗ =M(λ̄), λ ∈ C\R;
(3) for some, and hence for all, µ ∈ C+(C−) the operator family (M(λ)+µIM)−1(∈

B(M)) is holomorphic on C+(C−).

The class of all Nevanlinna families in a Hilbert space M is denoted by R̃(M). Each

Nevanlinna familyM ∈ R̃(M) admits the following decomposition to the operator part
Ms(λ), λ ∈ C\R, and constant multi-valued part M∞:

M(λ) = Ms(λ)⊕M∞, M∞ = {0} ×mulM(λ).

Here Ms(λ) is a Nevanlinna family of densely defined operators in M⊖mulM(λ).
A Nevanlinna B(M)-valued function admits the integral representation, see [15], [20],

(1.1) M(λ) = A+Bλ+

∫

R

(
1

t− λ
− t

t2 + 1

)
dΣ(t),

∫

R

dΣ(t)

t2 + 1
∈ B(M),

where A = A∗ ∈ B(M), 0 ≤ B = B∗ ∈ B(M), the B(M)-valued function Σ(·) is
nondecreasing and Σ(t) = Σ(t − 0). The integral is uniformly convergent in the strong
topology; cf. [8], [15]. The following condition is equivalent to the definition of a B(M)-
valued Nevanlinna function M(λ) holomorphic on C\R : the function of two variables

K(λ, µ) =
M(λ)−M(µ)∗

λ− µ̄

is a nonnegative kernel, i.e.,
n∑

k,l=1

(K(λk, λl)fl, fk) ≥ 0 for an arbitrary set of points

{λ1, λ2, . . . , λn} ⊂ C+/(⊂ C−) and an arbitrary set of vectors {f1, f2, . . . , fn} ⊂M.
It follows from (1.1) that

B = s− lim
y↑∞

M(iy)

y
= s− lim

y↑∞

ImM(iy)

y
,

ImM(iy) = B y +

∫

R

y

t2 + y2
dΣ(t),

and this implies that limy→∞ yImM(iy) exists in the strong resolvent sense as a self-
adjoint relation; see e.g. [5]. This limit is a bounded selfadjoint operator if and only if
B = 0 and

∫
R
dΣ(t) ∈ B(M), in which case s − limy→∞ yImM(iy) =

∫
R
dΣ(t). In this

case one can rewrite the integral representation (1.1) in the form

(1.2) M(λ) = E +

∫

R

1

t− λ
dΣ(t),

∫

R

dΣ(t) ∈ B(M),

and E = limy→∞ M(iy) in B(M).
The class of B(M)-valued Nevanlinna functions M with the integral representation

(1.2) with E = 0 is denoted by R0[M]. In this paper we will consider the following
subclasses of the class R0[M].

Definition 1.3. A function N from the class R0[M] is said to belong to the class

(1) N [M] if s− limy→∞ iyN(iy) = −IM,
(2) N0

M if N ∈ N [M] and N is holomorphic at infinity,
(3) N0

M[−1, 1] if N ∈ N0
M and is holomorphic outside the interval [−1, 1].



214 YU. M. ARLINSKĬI

Thus, we have inclusions

N0
M[−1, 1] ⊂ N0

M ⊂ N [M] ⊂ R0[M] ⊂ R[M] ⊂ R̃(M).

A selfadjoint operator T in the Hilbert space H is called M-simple, where M is a
subspace of H, if span {T −λI)−1M, λ ∈ C+ ∪C−} = H. If T is bounded then the latter
condition is equivalent to span {TnM, n ∈ N0} = H.

The next theorem follows from [8, Theorem 4.8] and the Năımark’s dilation theorem
[8, Theorem 1, Appendix I], see [2] and [3] for the case M ∈ N0

M.

Theorem 1.4. 1) If M ∈ N [M], then there exist a Hilbert space H containing M as a
subspace and a selfadjoint operator T in H such that T is M-simple and

(1.3) M(λ) = PM(T − λI)−1↾M.

for λ in the domain of M . If M ∈ N0
M, then T is bounded and if M ∈ N0

M[−1, 1], then
T is a selfadjoint contraction.

2) If T1 and T2 are selfadjoint operators in the Hilbert spaces H1 and H2, respectively,
M is a subspace in H1 and H2, T1 and T2 are M-simple, and

M(λ) = PM(T1 − λIH1
)−1↾M = PM(T2 − λIH2

)−1↾M, λ ∈ C\R,
then there exists a unitary operator U mapping H1 onto H2 such that

U↾M = IM and UT1 = T2U.

The right hand side in (1.3) is often called compressed resolvent/M-resolvent/the Weyl
function/m-function, [6], [11]. A representation M ∈ N0

M in the form (1.3) will be called
a realization of M .

We show in Section 2, that M(λ) ∈ N0
M[−1, 1] ⇐⇒ (λ2 − 1)−1M(λ)−1 ∈ N0

M[−1, 1].
It follows that the transformation

(1.4) N0
M[−1, 1] ∋M(λ)

Γ7→MΓ(λ) :=
M(λ)−1

λ2 − 1
∈ N0

M[−1, 1]

maps the class N0
M[−1, 1] onto itself and Γ−1 = Γ. In Theorem 2.6 we construct a

realization of (λ2 − 1)−1M(λ)−1 as a compressed resolvent by means of the contraction

T that realizes M . The mapping Γ has the unique fixed point M0(λ) = −
IM√
λ2 − 1

that

is compressed resolvent PM0
(J0 − λI)−1↾M0 of the block-operator Jacobi matrix

(1.5) J0 =




0
1√
2
IM 0 0 0 · · ·

1√
2
IM 0

1

2
IM 0 0 · · ·

0
1

2
IM 0

1

2
IM 0 · · ·

0 0
1

2
IM 0

1

2
IM 0 · ·

...
...

...
...

...
...

...
...




,

acting in the Hilbert space ℓ2(N0)
⊗

M, and M0 = M⊕ {0} ⊕ · · · , see Proposition 2.7.

A selfadjoint linear relation Ã in the orthogonal sum M ⊕ K is called minimal with
respect to M (see [9, page 5366]) if

M⊕K = span
{
M+ (Ã− λI)−1M : λ ∈ ρ(Ã)

}
.

One of the statements obtained in [9] in the context of the Weyl family of a boundary
relation is the following:
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Theorem 1.5. LetM be a Nevanlinna family in the Hilbert space M. Then there exists

unique up to unitary equivalence a selfadjoint linear relation Ã in the Hilbert space M⊕K
such that Ã is minimal with respect to M and the equality

(1.6) M(λ) = −
(
PM

(
Ã− λI

)−1

↾M

)−1

− λIM, λ ∈ C\R

holds.

The equivalent form of (1.6) is

PM(Ã− λI)−1↾M = −(M(λ) + λIM)−1, λ ∈ C\R.
The compressed resolvent PM(Ã− λI)−1↾M belongs to the class R0[M] and even to its
more narrow subclass, see Corollary 2.4.

In Section 3 we consider the following mapping defined on the whole class R̃(M) of
Nevanlinna families:

(1.7) M(λ)
Γ̂7→ M

Γ̂
(λ) := −(M(λ) + λIM)−1, λ ∈ C\R.

We prove (Theorem 3.1) that the mapping Γ̂ and each its degree Γ̂k has the unique fixed
point

M0(λ) =
− λ+

√
λ2 − 4

2
IM

and the sequence of iterations

M1(λ) = −(M(λ) + λIM)−1, Mn+1(λ) = −(Mn(λ) + λIM)−1, n ∈ N,

starting with an arbitrary Nevanlinna familyM, converges toM0 in the operator norm
topology uniformly on compact sets lying in the open left/right half-plane of the complex
plane. The functionM0(λ) can be realized by the free discrete Schrödinger operator given
by the block-operator Jacobi matrix

(1.8) Ĵ0 =




0 IM 0 0 0 · · ·
IM 0 IM 0 0 · · ·
0 IM 0 IM 0 · · ·
...

...
...

...
...

...
...

...




acting in the Hilbert space ℓ2(N0)
⊗

M. Besides we construct a sequence {Ĥn, Ân} of

realizations of functionsMn (Mn(λ) = PM(Ân−1 − λI)−1↾M, λ ∈ C\R) and show that

the Hilbert space ℓ2(N0)
⊗

M and the block-operator Jacobi matrix Ĵ0 are the inductive

limits of {Ĥn} and {Ân}, respectively. Observe that when M = C, the Jacobi matrices

J0 and
1

2
Ĵ0 are connected with Chebyshev polynomials of the first and second kinds,

respectively [6].

Let H(t) =
[
h11(t) h12(t)
h21(t) h22(t)

]
be symmetric and nonnegative 2×2 matrix-function with

scalar real-valued entries on R+. Assume that H(t) is locally integrable on R+ and is

trace-normed, i.e., trH(t) = 1 a.e. on R+. Let J =

[
0 −1
1 0

]
. The system of differential

equations

(1.9) J d~x

dt
= λH(t)~x(t), ~x(t) =

[
x1(t)
x2(t)

]
, t ∈ R+, λ ∈ C,

is called the canonical system with the Hamiltonian H or the Hamiltonian system.
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The m-function mH of the canonical system (1.9) can be defined as follows:

mH(λ) =
x2(0, λ)

x1(0, λ)
, λ ∈ C\R,

where ~x(t, λ) is the solution of (1.9), satisfying

x1(0, λ) 6= 0 and

∫

R+

~x(t, λ)∗H(t)~x(t, λ) dt <∞.

The m-function of a canonical system is a Nevanlinna function. As has been proved
by L. de Branges [7], see also [22], for each Nevanlinna function m there exists a unique
trace-normed canonical system such that its m-function mH coincides with m. In the last
Section 4, applying the algorithm suggested by I.S. Kac in [14], we construct a sequence
of Hamiltonians {Hn} such that the m-functions of the corresponding canonical systems

coincides with the sequence of the iterates {mn} of the mapping Γ̂

m1(λ) = −
1

m(λ) + λ
, . . . , mn+1(λ) = −

1

mn(λ) + λ
, . . . , λ ∈ C\R,

where m(λ) is a non-rational Nevanlinna function form the class N0
C
. This sequence

{mn} converges locally uniformly on C+/C− to the function m0(λ) =
− λ+

√
λ2 − 4

2
that is the m-function of the canonical system with the Hamiltonian

H0(t) =



cos2(j + 1)

π

2
0

0 sin2(j + 1)
π

2


 , t ∈ [j, j + 1) ∀j ∈ N0.

For the constructed Hamiltonian Hn the property Hn↾ [0, n+1) = H0↾ [0, n+1) is valid
for each n ∈ N. Moreover, our construction shows that for the Hamiltonian H such that
the m-function mH of the corresponding canonical system belongs to the class N0

C
, the

Hamiltonian H
Γ̂
of the canonical system having Γ̂(m) as its m-function, is of the form

H
Γ̂
(t) =




H0(t), t ∈ [0, 2)[
1 0
0 1

]
−H(t− 1), t ∈ [2,+∞)

.

2. Characterizations of subclasses

2.1. The subclass R0[M]. The next proposition is well known, cf.[8].

Proposition 2.1. Let M(λ) be a B(M)-valued Nevanlinna function. Then the following
statements are equivalent:

(i) M ∈ R0[M];
(ii) the function y‖M(iy)‖ is bounded on [1,∞),
(iii) there exists a strong limit s − lim

y→+∞
iyM(iy) = −C, where C is a bounded self-

adjoint nonnegative operator in M;
(iv) M admits a representation

(2.1) M(λ) = K∗(T − λI)−1K, λ ∈ C\R,
where T is a selfadjoint operator in a Hilbert space K and K ∈ B(M,K); here
K, T , and K can be selected such that T is ranK-simple, i.e.,

span {(T − λ)−1ranK : λ ∈ C\R} = K.
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Proposition 2.2. ([9],Lemma 2.14, Example 6.6). Let K and M be Hilbert spaces,
let K ∈ B(M,K) and let D and T be selfadjoint operators in M and K, respectively.

Consider a selfadjoint operator Ã in the Hilbert space M⊕K given by the block-operator
matrix

Ã =

[
D K∗

K T

]
, dom Ã = domD ⊕ domT.

Then Ã is M-minimal if and only if T is ranK-simple.

Proof. Our proof is based on the Schur-Frobenius formula for the resolvent (Ã− λI)−1

(2.2)

(Ã− λI)−1 =

[
−V (λ)−1 V (λ)−1K∗(T − λI)−1

(T − λI)−1KV (λ)−1 (T − λI)−1
(
IK −KV (λ)−1K∗(T − λI)−1

)
]
,

V (λ) := λIM −D +K∗(T − λI)−1K,

λ ∈ ρ(T ) ∩ ρ(Ã).

Actually, (2.2) implies the equivalences

span
{
M+ (Ã− λI)−1M : λ ∈ C\R

}
= M⊕K

⇐⇒ K
⋂

λ∈C\R

ker
(
PM(Ã− λI)−1

)
= {0} ⇐⇒

⋂

λ∈C\R

ker
(
K∗(T − λI)−1

)
= {0}

⇐⇒ span {(T − λ)−1ranK : λ ∈ C\R} = K.
�

In the sequel we will use the following consequence of (2.2):

(2.3) PM(Ã− λI)−1↾M = −
(
−D +K∗(T − λIM)−1K + λIM

)−1
, λ ∈ ρ(T ) ∩ ρ(Ã).

Proposition 2.3. (cf. [9], the proof of Theorem 3.9). For a B(M)-valued Nevanlinna
function M the following statements are equivalent:

(i) the limit value C := −s− lim
y→+∞

iyM(iy) satisfies 0 ≤ C ≤ IM;

(ii) M admits a representation

(2.4) M(λ) = PM(Ã− λI)−1↾M, λ ∈ C\R,
where Ã is a selfadjoint linear relation in a Hilbert space H ⊃M and PM is the
orthogonal projection from H onto M;

(iii) M admits a representation (2.1) with a contraction K ∈ B(M, H̃);
(iv) the following inequality holds

ImM(λ)

Imλ
−M(λ)M(λ)∗ ≥ 0, λ ∈ C\R.

In (ii) H and Ã can be selected such that Ã is minimal w.r.t. M. Moreover, Ã in (2.4)
can be taken to be a selfadjoint operator if and only if C = IM. The operator K in (iii)
is an isometry if and only if C = IM.

Proof. The equivalence (i)⇐⇒ (iii) follows from Proposition 2.1.
(i)=⇒(iv). Since (2.1) holds, we get C = K∗K and the inequality 0 ≤ C ≤ IM implies

||K|| ≤ 1 and, therefore holds the inequality.

ImM(λ)

Imλ
−M(λ)M(λ)∗ ≥ 0, λ ∈ C\R.
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(iv)=⇒(ii). Consider −M(λ)−1. Then

Im (−M(λ)−1h− λh, h)

Imλ
=

Im (−M(λ)−1h, h)

Imλ
− ||h||2 ≥ 0, h ∈M.

HenceM(λ) := −M(λ)−1 − λIM is a Nevanlinna family. Due to Theorem 1.5 and (1.6)
we have

−(M(λ) + λIM)−1 = PM(Ã− λIH)
−1↾M, λ ∈ C\R,

where Ã is a selfadjoint linear relation in some Hilbert space H = M⊕K.
(ii)=⇒(i). Let Â0 be the operator part of Ã acting in a subspace H0 of H. Decompose

Ã as H = GrÂ0 ⊕ {0,H⊖ H0}. Then
PM(Ã− λI)−1↾M = PM(Â0 − λI)−1PH0

↾M = PMPH0
(Â0 − λI)−1PH0

↾M.

Set K = PH0
↾M : M→ H0. Then K∗ = PMPH0

, ||K|| ≤ 1,

M(λ) = K∗(Â0 − λI)−1K, λ ∈ C\R,
and

s− lim
x→+∞

iyM(iy) = −K∗K, C = K∗K ∈ [0, IM].

(iii)=⇒(ii). Since ||K|| ≤ 1, M(λ) = −M−1(λ) − λIM is a Nevanlinna family. By

Theorem 1.5 there is a Hilbert space K and a selfadjoint linear relation Ã in M ⊕ K
minimal w.r.t. M such thatM(λ) = −

(
PM(Ã− λI)−1↾M

)−1

− λIM, λ ∈ C\R. �

Corollary 2.4. There is a one-to-one correspondence between all Nevanlinna families
M in M and all B(M)-valued Nevanlinna functions M satisfying the condition (ii) in
Proposition 2.1 with C ∈ [0, IM]. This correspondence is given by the relations

M(λ) = −(M(λ) + λIM)−1, M(λ) = −M(λ)−1 − λIM, λ ∈ C\R.
Remark 2.5. For the case M = C the statement of Corollary 2.4 can be found in [6,
Chapter VII, § 1, Lemma 1.7].

In [10] (see also [4]) it is established that an B(M)-valued function M(λ), λ ∈ D ⊂
C+/C− admits the representation (2.4) iff the kernel

K(λ, µ) =
M(λ)−M(µ)∗

λ− µ̄
−M(µ)∗M(λ)

is nonnegative on D.
2.2. The subclass N0

M[−1, 1]. Notice, that if M ∈ N0
M[−1, 1], then

{
(M(x)g, g) > 0 ∀g ∈M \ {0}, x < −1
(M(x)g, g) < 0 ∀g ∈M \ {0}, x > 1

.

Therefore, see [16, Appendix]

(1 + λ)M(λ), (1− λ)M(λ) ∈ R[M].

Theorem 2.6. 1) A B(M)-valued Nevanlinna function M belongs to N0
M[−1, 1] if and

only if the function

L(λ, ξ) =
(1− λ2)M(λ)− (1− ξ̄2)M(ξ)∗ − (λ− ξ̄)IM

λ− ξ̄
,

with λ, ξ ∈ C \ [−1, 1], λ 6= ξ̄ is a nonnegative kernel.
2) If M ∈ N0

M[−1, 1], then the function

M(λ)−1

λ2 − 1
, λ ∈ C \ [−1, 1]
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belongs to N0
M[−1, 1] as well.

3) If a selfadjoint contraction T in the Hilbert space H, containing M as a subspace,
realizes M , i.e., M(λ) = PM(T − λI)−1↾M, for all λ ∈ C \ [−1, 1], then

M(λ)−1

λ2 − 1
= PM(T− λI)−1↾M, λ ∈ C \ [−1, 1],

where a selfadjoint contraction T is given by

(2.5) T :=

[
−PMT ↾M PMDT

DT ↾M T

]
:

M

⊕
DT

→
M

⊕
DT

,

and DT := (I −T 2)1/2, DT := ranDT . Moreover, if T is M-simple, then T is M-simple
as well and the operator T↾DT is unitarily equivalent to the operator PM⊥T ↾M⊥.

Proof. The statement in 1) follows from [2, Theorem 6.1]. Observe that if M(λ) =
PM(T − λI)−1↾M ∀λ ∈ C \ [−1, 1], where T is a selfadjoint contraction, then

(2.6)
L(λ, ξ) =

(1− λ2)M(λ)− (1− ξ̄2)M(ξ)∗ − (λ− ξ̄)IM
λ− ξ̄

= PM(T − λI)−1(I − T 2)(T − ξI)−1↾M, λ, ξ ∈ C \ [−1, 1], λ 6= ξ̄.

2) Let λ ∈ C \ [−1, 1], then
|((T − λI)h, h)| ≥ d(λ)||h||2 ∀h ∈ H,

where d(λ) = dist(λ, [−1, 1]). Set h = (T − λI)−1f , f ∈M. Then

||M(λ)f ||||f || ≥ |(f,M(λ)f)| =
∣∣(f, (T − λI)−1f

)∣∣

= |(h, (T − λI)h)| ≥ d(λ)||h||2 ≥ c(λ)||f ||2, c(λ) > 0.

Hence, ||M(λ)f || ≥ c(λ)||f || and since M(λ̄) = M(λ)∗, we get ||M(λ)∗f || ≥ c(λ̄)||f ||. It
follows that M(λ)−1 ∈ B(M) for all λ ∈ C \ [−1, 1].

Set

L(λ) := (1− λ2)M(λ)− λIM, λ ∈ C \ [−1, 1].
Then from (2.6) we get

L(λ)− L(λ)∗ = (1− λ2)M(λ)− (1− λ̄2)(M(λ)∗ − (λ− λ̄)IM

= (λ− λ̄)PM(T − λI)−1(I − T 2)(T − λ̄I)−1↾M.

It follows that L(λ) and the functions

(1− λ2)M(λ) = L(λ) + λIM, λ ∈ C \ [−1, 1]
and

−
(
(1− λ2)M(λ)

)−1
=

M(λ)−1

λ2 − 1
, λ ∈ C \ [−1, 1]

are Nevanlinna functions. Then from the equality M(λ) = −λ−1 + o(λ−1), λ → ∞, we
get that also

M(λ)−1

λ2 − 1
= −λ−1 + o(λ−1), λ→∞,

i.e.,

M(λ)−1

λ2 − 1
∈ N0

M[−1, 1].
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3) Observe that the subspaceDT is contained in the Hilbert space H. LetH := M⊕DT

and let T be given by (2.5). Since T is a selfadjoint contraction in H, we get for an
arbitrary ϕ ∈M and f ∈ DT the equalities

([
ϕ
f

]
,

[
ϕ
f

])
±
([

ϕ
f

]
,T

[
ϕ
f

])
=
∥∥∥(I ∓ T )1/2ϕ± (I ± T )1/2f

∥∥∥
2

.

Therefore T is a selfadjoint contraction in the Hilbert space H.
Applying (2.3) we obtain

PM(T− λI)−1↾M = −
(
λI + PMT ↾M+ PMDT (T − λI)−1DT ↾M

)−1

= −
(
λI + PM

(
T (T − λI) + I − T 2

)
(T − λI)−1↾M

)−1

= −
(
λI + PM(I − λT )(T − λI)−1↾M

)−1

= −
(
(1− λ2)PM(T − λI)−1↾M

)−1
=

M−1(λ)

λ2 − 1
, λ ∈ C \ [−1, 1].

Suppose that T is M-simple, i.e.,

span {TnM, n ∈ N0} = M⊕K ⇐⇒
∞⋂

n=0

ker(PMTn) = {0}.

Hence, since

DT ⊖ {span {TnDTM, n ∈ N0}} =
∞⋂

n=0

ker(PMTnDT ),

we get span {TnDTM, n ∈ N0} = DT . This means that the operator T is M-simple.
Let

T =

[
−PMT↾M PMDT↾DT

DT↾M T↾DT

]
=

[
PMT ↾M PMDT

DT↾M T↾DT

]
:

M

⊕
DT

→
M

⊕
DT

.

As has been proved above because the selfadjoint contraction T realizes the function
Q(λ) := (λ2 − 1)−1M(λ)−1, i.e.,

PM(T− λI)−1↾M = Q(λ) =
M(λ)−1

λ2 − 1
, λ ∈ C \ [−1, 1],

the selfadjoint contraction T realizes the function (λ2−1)−1Q(λ)−1 = M(λ). In addition,
if T is M-simple, then T and therefore T are M-simple. Since

PM(T− λI)−1↾M = PM(T − λI)−1↾M = M(λ), |λ| > 1,

the operators T and T are unitarily equivalent and, moreover, see Theorem 1.4, there
exists a unitary operator U of the form

U =

[
IM 0
0 U

]
:

M

⊕
DT

→
M

⊕
K

,

where K := H⊖M and U is a unitary operator from DT onto K such that

TU = UT⇐⇒
[
PMT ↾M PMT ↾K
PKT ↾M PKT ↾K

] [
IM 0
0 U

]
=

[
IM 0
0 U

] [
PMT ↾M PMDT↾DT

DT↾M T

]

⇐⇒





(PMT ↾K)U = PMDT↾DT

PKT ↾M = UDT↾M

(PKT ↾K)U = UT↾DT↾DT

.

In particular PKT ↾K and T↾DT are unitarily equivalent. �
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Observe that for a bounded selfadjoint T the equality M(λ) = PM(T − λI)−1↾M

yields the following relation for λ ∈ C\R:
1− |λ|2
Imλ

ImM(λ)− 2Re (λM(λ))− IM = PM(T − λI)−1(I − T 2)(T − λ̄I)−1↾M.

Hence for M(λ) ∈ N0
M[−1, 1] we get

1− |λ|2
Imλ

ImM(λ)− 2Re (λM(λ))− IM =
Im
(
(1− λ2)M(λ)− λ

)

Imλ
≥ 0, Imλ 6= 0.

2.3. The fixed point of the mapping Γ.

Proposition 2.7. Let M be a Hilbert space. Then the mapping Γ (1.4) has a unique
fixed point

(2.7) M0(λ) = −
IM√
λ2 − 1

(Im
√
λ2 − 1 > 0 for Imλ > 0).

Define the weight ρ0(t) and the weighted Hilbert space H0 as follows

(2.8)

ρ0(t) =
1

π

1√
1− t2

, t ∈ (−1, 1),

H0 :=L2([−1, 1],M, ρ0(t)) = L2 ([−1, 1], ρ0(t))
⊗

M

=



f(t) :

1∫

−1

||f(t)||2M√
1− t2

dt <∞



 .

Then H0 is the Hilbert space with the inner product

(f(t), g(t))
H0

=
1

π

1∫

−1

(f(t), g(t))M ρ0(t) dt =
1

π

1∫

−1

(f(t), g(t))M√
1− t2

dt.

Identify M with a subspace of H0 of constant vector-functions {f(t) ≡ f, f ∈M}. Define
in H0 the multiplication operator

(2.9) (T0f)(t) = tf(t), f ∈ H0.

Then
M0(λ) = PM(T0 − λI)−1↾M.

Let H0 =
∞⊕
j=0

M = ℓ2(N0)
⊗

M and let J0 be the operator in H0 given by the block-

operator Jacobi matrix of the form (1.5). Set M0 := M
⊕{0}⊕{0}⊕ · · · . Then

M0(λ) = PM0
(J0 − λI)−1↾M0.

Proof. Let M0(λ) be a fixed point of the mapping Γ , i.e.,

M0(λ) =
M0(λ)

−1

λ2 − 1
⇐⇒M0(λ)

2 =
1

λ2 − 1
IM, λ ∈ C \ [−1, 1].

Since M0(λ) is Nevanlinna function, we get (2.7).
For each h ∈M calculations give the equality, see [6, pages 545–546], [18],

− h√
λ2 − 1

=
1

π

1∫

−1

h

t− λ

1√
1− t2

dt, λ ∈ C \ [−1, 1].

Therefore, if T0 is the operator of the form (2.9), then

M0(λ) = PM(T0 − λI)−1↾M, λ ∈ C \ [−1, 1].
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As it is well known the Chebyshev polynomials of the first kind

T̂0(t) = 1, T̂n(t) :=
√
2 cos(n arccos t), n ≥ 1

form an orthonormal basis of the space L2([−1, 1], ρ0(t)), where ρ0(t) is given by (2.8).
This polynomials satisfy the recurrence relations

tT̂0(t) =
1√
2
T̂1(t), tT̂1(t) =

1√
2
T̂0(t) +

1

2
T̂2(t),

tT̂n(t) =
1

2
T̂n−1(t) +

1

2
T̂n+1(t), n ≥ 2.

Hence the matrix of the operator T0 of multiplication on the independent variable in

the Hilbert space L2([−1, 1], ρ0(t)) w.r.t. the basis {T̂n(t)}∞n=0 (the Jacobi matrix) takes

the form (1.5) when M = C. Besides m0(λ) := ((J0 − λI)−1δ0, δ0) = −
1√

λ2 − 1
, where

δ0 =
[
1 0 0 · · ·

]T
[6]. Since T0 = T0

⊗
IM we get that T0 is unitarily equivalent to

J0 = J0
⊗

IM and M0(λ) = PM0
(J0 − λI)−1↾M0. �

Observe that M-valued holomorphic in C \ [−1, 1] function

M1(λ) := 2(−λIM −M−1
0 (λ)) = 2(−λ+

√
λ2 − 1)IM

belongs to the class N0
M[−1, 1].

3. The fixed point of the mapping Γ̂

Now we will study the mapping Γ̂ (1.7). LetM be a Nevanlinna family in the Hilbert
space M. Then since

|Im ((M(λ) + λIM)f, f)| ≥ |Imλ|||f ||2, Imλ 6= 0, f ∈ domM(λ),

the estimate

(3.1) ||(M(λ) + λIM)−1|| ≤ 1

|Imλ|, Imλ 6= 0

holds true. It follows that M1(λ) = −(M(λ) + λIM)−1 is B(M)-valued Nevanlinna

function from the class R0[M] and, moreover, M1(λ) = K∗(T̃ − λI)−1K, Imλ 6= 0,

where T̃ is a selfadjoint operator in a Hilbert space H̃ and K ∈ B(M, H̃) is a contraction,
see Corollary 2.4 and Proposition 2.1. ForM2(λ) = −(M1(λ) + λIM)−1 one has

lim
y→±∞

||iyM2(iy) + IM|| = 0,

i.e.,M2(λ) ∈ N [M]. Thus, see Corollary 2.4,

ran Γ̂ = Γ̂(R̃[M]) =

{
M(λ) ∈ R0[M] : s− lim

y→+∞
(−iyM(iy)) ∈ [0, IM]

}
,

ran Γ̂k ⊂ N [M], k ≥ 2.

Theorem 3.1. Let M be a Hilbert space. Then

(1) the function

(3.2) M0(λ) =
− λ+

√
λ2 − 4

2
IM, Imλ 6= 0, M0(∞) = 0

is a unique fixed point of the mapping Γ̂ (1.7);

(2) if Γ̂(M) =M0, thenM(λ) =M0(λ) for all λ ∈ C\R;
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(3) for every sequence of iterations of the form

M1(λ) = −(M(λ) + λIM)−1, Mn+1(λ) = −(Mn(λ) + λIM)−1, n = 1, 2 . . . ,

whereM(λ) is an arbitrary Nevanlinna function, the relation

lim
n→∞

||Mn(λ)−M0(λ)|| = 0

holds uniformly on each compact subsets of the open upper/lower half-plane of
the complex plane C;

(4) the functionM0(λ) is a unique fixed point for each degree of Γ̂.

Proof. (1) Since

M(λ) = −(M(λ) + λIM)−1 ⇐⇒M2(λ) + λM(λ) + IM = 0,

andM is a Nevanlinna family, we get thatM0 given by (3.2) is a unique solution.

(2) Suppose Γ̂(M) =M0, i.e.,

−(M(λ) + λIM)−1 =
− λ+

√
λ2 − 4

2
IM, λ ∈ C\R.

Then

M(λ) =

(
− 2

−λ+
√
λ2 − 4

− λ

)
IM =

− λ+
√
λ2 − 4

2
IM =M0(λ).

(3) Let F and G be two B(M)-valued Nevanlinna functions. Set

F̂ (λ) = −(F(λ) + λIM)−1, Ĝ(λ) = −(G(λ) + λIM)−1, λ ∈ C\R.
Then F̂ and Ĝ are B(M)-valued and

F̂ (λ)− Ĝ(λ) = (F(λ) + λIM)−1 (F(λ)− G(λ)) (G(λ) + λIM)−1.

From (3.1) we get

||(F̂ (λ)− Ĝ(λ))|| ≤ 1

|Imλ|2||F(λ)− G(λ)||.

Hence for the sequence of iterations {Mn(λ)} one has

||(Mn(λ)−Mm(λ))|| ≤ 1

(|Imλ|2)m−1
||Mn−m+1(λ)−M1(λ)||, n > m.

It follows that if |Imλ| > 1, then

||(Mn(λ)−Mm(λ))|| ≤ (|Imλ|2)−m+1

1− (|Imλ|)−2
||M2(λ)−M1(λ)||, n > m.

Therefore, the sequence of linear operators {Mn(λ)}∞n=1 convergence in the operator
norm topology, and the limit satisfies the equalityM(λ) = −(M(λ) + λI)−1, i.e., is the

fixed point of the mapping Γ̂. In addition due to the inequality

||(Mn(λ)−Mm(λ))|| ≤ 1

Rm−1
||Mn−m+1(λ)−M1(λ)||, n > m, |Imλ| ≥ R, R > 1

we get that the convergence is uniform on λ on the domain {λ : |Imλ| ≥ R}, R > 1.
Note that from

||Mn(λ)|| = ||(Mn−1(λ) + λIM)−1|| ≤ 1

|Imλ|, Imλ 6= 0

it follows that the sequence of operator-valued functions {Mn(λ)}∞n=1 is uniformly
bounded on λ on each domain |Imλ| > r, r > 0. Thus, the sequence {Mn}∞n=1 is locally
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uniformly bounded in the upper and lower open half-planes and, in addition, {Mn} uni-
formly converges in the operator-norm topology on the domains {λ : |Imλ| ≥ R}, R > 1.
By the Vitali-Porter theorem [19] the relation

lim
n→∞

||Mn(λ)−M0(λ)|| = 0

holds uniformly on λ on each compact subset of the open upper/lower half-plane of the
complex plane C.

(4) The functionM0 is a fixed point for each degree of Γ̂. Suppose that the mapping

Γ̂l0 , l0 ≥ 2 has one more fixed point L0(λ). Then arguing as above, we get

||M0(λ)− L0(λ)|| ≤ |Imλ|−2l0 ||M0(λ)− L0(λ)|| ∀λ ∈ C\R.
It follows that L0(λ) ≡M0(λ). �

The scalar case (M = C) of the next Proposition can be found in [6, pages 544–
545], [18].

Proposition 3.2. Let M be a Hilbert space.

(1) Consider the weighted Hilbert space

L0 := L2

(
[−2, 2], 1

2π

√
4− t2

)
⊗M

and the operator

(T0f)(t) = tf(t), f(t) ∈ L.

Identify M with a subspace of L0 of constant vector-functions {f(t) ≡ f, f ∈M}.
Then

M0(λ) = PM(T0 − λI)−1↾M, λ ∈ C \ [−2, 2],
whereM0(λ) is given by (3.2).

(2) Let H0 =
∞⊕
j=0

M = ℓ2(N0)
⊗

M and let Ĵ0 be the operator in H0 given by the

block-operator Jacobi matrix of the form (1.8).
Set M0 := M

⊕{0}⊕{0}⊕ · · · . Then

M0(λ) = PM0
(Ĵ0 − λI)−1↾M0, λ ∈ C \ [−2, 2].

In the next statement we show that one can construct a sequence {Ĥn, Ân} of realiza-
tions for the iterates {Mn+1 = Γ̂(Mn)}∞n=1 that inductively converges to {H0, Ĵ0}.
Theorem 3.3. LetM(λ) be an arbitrary Nevanlinna family in M. Define the iterations

of the mapping Γ̂ (1.7):

M1(λ) = −(M(λ) + λIM)−1, Mn+1(λ) = −(Mn(λ) + λIM)−1, n = 1, 2 . . . ,

λ ∈ C\R.

Let M1(λ) = K∗(T̂ − λI)−1K, Imλ 6= 0 be a realization of M1(λ), where T̂ is a self-

adjoint operator in the Hilbert space Ĥ and K ∈ B(M, Ĥ) is a contraction. Further,
set

(3.3) Ĥ1 = M⊕ Ĥ, Ĥ2 = M⊕ Ĥ1 = M⊕M⊕ Ĥ,

Ĥn+1 = M⊕ Hn = M⊕M⊕ · · · ⊕M︸ ︷︷ ︸
n+1

⊕Ĥ, . . .
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and define the following linear operators for each n ∈ N:

M ∋ x 7→ I
(n)
M

x = [x, 0, 0, . . . , 0︸ ︷︷ ︸
n

]T ∈ Ĥn,

Ĥn ∋
[
x
h

]
7→ P

(0,n)
M

[
x
h

]
= x ∈M(⊥ Ĥn) ∀x ∈M, ∀h ∈ Ĥn.

Define selfadjoint operators in the Hilbert spaces Ĥn for n ∈ N:

(3.4) Â1 =

[
0 K∗

K T̂

]
:

M

⊕
Ĥ

→
M

⊕
Ĥ

, dom Â1 = M⊕ dom T̂ ,

dom T̂ → Ĥ1,

Â2 =

[
0 P

(0,1)
M

I
(1)
M

Â1

]
:

M

⊕
Ĥ1

→
M

⊕
Ĥ1

, dom Â2 = M⊕ dom Â1,

Ân+1 =

[
0 P

(0,n)
M

I
(n)
M

Ân

]
:

M

⊕
Ĥn

→
M

⊕
Ĥn

, dom Ân+1 = M⊕ dom Ân.

Then Ân is a realization ofMn+1 for each n, i.e.,

(3.5) Mn+1(λ) = PM(Ân − λI)−1↾M, n = 1, 2 . . . , λ ∈ C\R.
If T̂ is ranK-simple, i.e., span {(T̂−λ)−1ranK : λ ∈ C\R} = K, then Ân is M-minimal
for each n ∈ N. Moreover, the Hilbert space H0 and the block-operator Jacobi matrix (1.8)

are the inductive limits H0 = lim
→

Ĥn and Ĵ0 = lim
→

Ân, of the chains {Ĥn} and {Ân},
respectively.

Proof. Relations in (3.5) follow by induction from (2.3).

Note that the operator Ân can be represented by the block-operator matrix

(3.6) Ân=




0 IM 0 0 0 · · · 0
IM 0 IM 0 0 · · · 0
0 IM 0 IM 0 · · · 0
0 0 IM 0 IM 0 · · 0
...

...
...

...
...

...
...

...
...

0 0 · · · 0 0 IM 0
0 0 · · · 0 IM 0 K∗

0 0 · · · 0 0 K T̂




:

n





M

⊕
M

⊕
...
⊕
M

⊕
Ĥ

−→
n





M

⊕
M

⊕
...
⊕
M

⊕
Ĥ

.

Besides, if T̂ is bounded, then all operators {Ân}n≥1 are bounded and each Mn(λ)
belongs to the class N0

M for n ≥ 2.

Define the linear operators γl
k : Ĥk → Ĥl, l ≥ k, γk : Ĥk → H0, k ∈ N as follows

(3.7) γl
k[f1, f2, . . . , fk, ϕ] = [f1, f2, . . . , fk, 0, 0, . . . , 0︸ ︷︷ ︸

l−k

, ϕ],

γk[f1, f2, . . . , fk, ϕ] = [f1, f2, . . . , fk, 0, 0, . . .],

{fi}ki=1 ⊂M, ϕ ∈ Ĥ.

Then

(1) γk
k is the identity on H̃k for each k ∈ N,
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(2) γm
k = γm

l ◦ γl
k if k ≤ l ≤ m,

(3) γk = γl ◦ γl
k, l ≥ k, k ∈ N,

(4) H0 = span {γkĤk, k ≥ 1}.
Note that the operators {γl

k} are isometries and the operators {γk} are partial isometries

and ker γk = H̃ for all k. The family {Ĥk, γ
l
k, γk} forms the inductive isometric chain

[17] and the Hilbert space H0 is the inductive limit of the Hilbert spaces {Ĥn} (3.3):

H0 = lim
→

Ĥn.

Define following [17] on D∞ :=
∞⋃

n=1
γndom Ân a linear operator in H0:

Â∞h := lim
m→∞

γmÂmγm
k hk, h = γkhk, hk ∈ Ĥk ⊖ Ĥ,

where {Ân} are defined in (3.4). Due to (3.7) and (3.6) the operator Â∞ exists, densely
defined and its closure is bounded selfadjoint operator in H0 given by the block-operator

matrix Ĵ0 of the form (1.8). �

Note that the operator Ĵ0 is called the free discrete Schrödinger operator [18]. Observe
also that the function

M1(λ) =
1

2
M0

(
λ

2

)
= 2(−λ+

√
λ2 − 1)IM, λ ∈ C \ [−1, 1],

where M0(λ) is given by (3.2), belongs to the class N0
M[−1, 1]. Besides, for all λ ∈

C\ [−1, 1] the equality M1(λ) = PM(T1−λI)−1↾M holds, where T1 is the multiplication
operator (T1f)(t) = tf(t) in the weighted Hilbert space

L2

(
[−1, 1], 2

π

√
1− t2

)
⊗M.

If M = C, then the matrix of the corresponding operator T1 in the orthonormal basis of
the Chebyshev polynomials of the second kind

Un(t) =
sin[(n+ 1) arccos t]√

1− t2
, n = 0, 1, . . .

is of the form
1

2
Ĵ0 [6].

4. Canonical systems and the mapping Γ̂

Letm ∈ N0
C
. Then, see [6, Chapter VII, § 1, Theorem 1.11], [11], [18], the functionm is

the compressed resolvent (m(λ) =
(
(J − λI)

−1
δ0, δ0

)
) of a unique finite or semi-infinite

Jacobi matrix J = J({ak}, {bk}) with real diagonal entries {ak} and positive off-diagonal
entries {bk} and in the semi-infinite case one has {ak}, {bk} ∈ ℓ∞(N0). Observe that the
entries of J can be found using the continued fraction (J-fraction) expansion of m(λ)
[11], [21]

m(λ) =
−1

λ− a0 +

−b20
λ− a1 +

−b21
λ− a2 + . . . +

−b2n−1

λ− an + . . .
.

On the other hand the algorithm of I. S. Kac [14] enables to construct for given
J({ak}, {bk}) the Hamiltonian H(t) such that the m-function of J({ak}, {bk}) is the
m-function of the corresponding canonical system of the form (1.9).
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Below we give the algorithm of Kac. Let J be a semi-infinite Jacobi matrix

(4.1) J = J({ak}, {bk}) =




a0 b0 0 0 0 · · ·
b0 a1 b1 0 0 · · ·
0 b1 a2 b2 0 · · ·
...

...
...

...
...

...
...

...


 .

The condition {ak}, {bk} ∈ ℓ∞(N0) is necessary and sufficient for the boundedness of the
corresponding selfadjoint operator in the Hilbert space ℓ2(N0).

Put

(4.2) l−1 = 1, l0 = 1, θ−1 = 0, θ0 =
π

2
.

Then calculate

(4.3) θ1 = arctan a0 + π, l1 =
1

l0b20 sin
2(θ1 − θ0)

.

Find θ2 from the system

(4.4)

{
cot(θ2 − θ1) = −a1l1 − cot(θ1 − θ0)
θ2 ∈ (θ1, θ1 + π)

.

Find successively lj and θj+1, j = 2, 3, . . .

(4.5)
lj =

1

lj−1b2j−1 sin
2(θj − θj−1)

,
{

cot(θj+1 − θj) = −aj lj − cot(θj − θj−1)
θj+1 ∈ (θj , θj + π)

.

Define intervals [tj , tj+1) as follows

(4.6) t−1 = −1, t0 = t−1 + l−1 = 0, t1 = t0 + l0 = 1,

tj+1 = tj + lj = 1 +

j∑

k=1

lk, j ∈ N.

Then necessarily, [14], we get that limj→∞ tj = +∞. Finally define the right continuous
increasing step-function

(4.7) θ(t) :=





θ0 =
π

2
, t ∈ (t0, t1) = (0, 1)

θj , t ∈ [tj , tj+1), j ∈ N

and the Hamiltonian H(t) on R+

(4.8)

H(t) :=
[
cos θ(t)
sin θ(t)

] [
cos θ(t) sin θ(t)

]
=

[
cos2 θ(t) cos θ(t) sin θ(t)

cos θ(t) sin θ(t) sin2 θ(t)

]

=
1

2

[
1 0
0 1

]
+

1

2

[
cos 2θ(t) sin 2θ(t)
sin 2θ(t) − cos 2θ(t)

]
.

Then the Nevanlinna function m(λ) = ((J − λI)−1δ0, δ0) coincides with m-function of
the corresponding canonical system of the form (1.9). Observe that the algorithm shows
that

(4.9) H(t) =
[
0 0
0 1

]
, t ∈ [0, 1).
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Using (4.2)–(4.8) for the Jacobi matrix Ĵ0

Ĵ0 =




0 1 0 0 0 · · ·
1 0 1 0 0 · · ·
0 1 0 1 0 · · ·
...

...
...

...
...

...
...

...


 ,

we get

l0j = 1, θ0j = (j + 1)
π

2
∀j ∈ N0,

θ0(t) = (j + 1)
π

2
, t ∈ [j, j + 1) ∀j ∈ N0,

(4.10) H0(t) =



cos2(j + 1)

π

2
0

0 sin2(j + 1)
π

2




=
1

2

[
1− (−1)j 0

0 1 + (−1)j
]
, t ∈ [j, j + 1) ∀j ∈ N0.

Proposition 4.1. Let the scalar non-rational Nevanlinna function m belong to the class
N0

C
. Define the functions

m1(λ) = −
1

m(λ) + λ
, . . . ,mn+1(λ) = −

1

mn(λ) + λ
, . . . , λ ∈ C\R.

Let J be the Jacobi matrix with the m-function m, i.e., m(λ) =
(
(J − λI)

−1
δ0, δ0

)
, ∀λ ∈

C\R. Assume that H(t) is the Hamiltonian such that the m-function of the corresponding
canonical system coincides with m. Then the Hamiltonian Hn(t) of the canonical system
whose m-function coincides with mn, takes the form

(4.11) Hn(t) =





H0(t), t ∈ [0, n+ 1),

(−1)nH(t− n) +
1

2

[
1− (−1)n 0

0 1− (−1)n
]
, t ∈ [n+ 1,∞)

=





H0(t), t ∈ [0, n+ 1),


cos2

(
θj + n

π

2

)
(−1)n

2
sin 2θj

(−1)n
2

sin 2θj sin2

(
θj + n

π

2

)



, t ∈ [tj + n, tj+1 + n), j ∈ N

,

where {tj , θj}j≥1 are parameters of the Hamiltonian H(t).
Proof. Set

(4.12) J1 =




0 1 0 0 . . .

1
0
...

J


 , . . . , Jn =




0 1 0 0 . . .

1
0
...

Jn−1


 , . . .

Then (2.3) and induction yield the equalities
(
(J1 − λI)−1δ0, δ0

)
= −(m(λ) + λ)−1 = m1(λ), . . . ,(

(Jn − λI)−1δ0, δ0
)
= −(mn−1(λ) + λ)−1 = mn(λ), . . . ,

λ ∈ C\R.
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Let J = J ({ak}∞k=0, {bk}∞k=0) be of the form (4.1). Then from (4.12) it follows that for

the entries of Jn = Jn

(
{a(n)k }∞k=0, {b

(n)
k }∞k=0

)
, n ∈ N, we have the equalities

(4.13)

{
a
(n)
0 = a

(n)
1 = · · · = a

(n)
n−1 = 0

a
(n)
k = ak−n, k ≥ n

,

{
b
(n)
0 = b

(n)
1 = · · · = b

(n)
n−1 = 1

b
(n)
k = bk−n, k ≥ n

.

In order to find an explicit form of the Hamiltonian corresponding to the Nevanlinna
function mn we apply the algorithm of Kac described by (4.2), (4.3), (4.4), (4.5), (4.6),
(4.7), (4.8). Then we obtain

l
(n)
−1 = l

(n)
0 = l

(n)
1 = · · · = l

(n)
n = 1,

θ
(n)
−1 = 0, θ

(n)
0 =

π

2
, θ

(n)
1 = π, . . . , θ

(n)
n = (n+ 1)

π

2
,

l
(n)
n+j = lj , θ

(n)
n+j = θj + (n+ 2)

π

2
, j ∈ N.

Hence (4.8) and (4.10) yield (4.11). �

By Theorem 3.1 the sequence {mn} of Nevanlinna functions converges uniformly on
each compact subset of C+/C− to the Nevanlinna function

m0(λ) =
− λ+

√
λ2 − 4

2
, λ ∈ C\R.

This function is the m-function of the Jacobi matrix Ĵ0 and the m-function of the ca-
nonical system with the Hamiltonian H0. From (4.12) we see that for the sequence of
selfadjoint Jacobi operators {Jn} in ℓ2(N0) the relations

PnJn+1Pn = PnJ0Pn ∀n ∈ N0

hold, where Pn is the orthogonal projection in ℓ2(N0) on the subspace

En = span {δ0, δ1, . . . , δn−1}.
It follows that

s− lim
n→∞

PnJn+1Pn = Ĵ0.

For the sequence (4.11) of {Hn} one has

(4.14) Hn↾ [0, n+ 1) = H0↾ [0, n+ 1) ∀n.

From (4.14) it follows that if ~f(t) =

[
f1(t)
f2(t)

]
is a continuous function on R+ with a compact

support, then there exists n0 ∈ N such that
∞∫
0

~f(t)∗Hn(t)~f(t) dt =
∞∫
0

~f(t)∗H0(t)~f(t) dt

for all n ≥ n0.
It is proved in [13, Proposition 5.1] that for a sequence of canonical systems with

Hamiltonians {Hn} and H the convergence mHn
(λ) → mH(λ), n → ∞ of m-functions

holds locally uniformly on C+/C− if and only if
∞∫
0

~f(t)∗Hn(t)~f(t) dt→
∞∫
0

~f(t)∗H(t)~f(t) dt

for all continuous functions ~f(t) with compact support on R+.
In conclusion we note that the equalities (4.9), (4.10), and (4.11) (for n = 1) show

that for the transformation Γ̂ one has the following scheme:

N0
C ∋ m (non-rational) −→ H(t) =⇒

H
Γ̂
(t) =




H0(t), t ∈ [0, 2)[
1 0
0 1

]
−H(t− 1), t ∈ [2,+∞)

←− Γ̂(m).
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