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Abstract. Let J be an m × m signature matrix, i.e., J = J∗ = J−1. An m × m

mvf (matrix valued function) W (λ) that is meromorphic in the unit disk D is called

J-inner if W (λ)JW (λ)∗ ≤ J for every λ from h
+
W

, the domain of holomorphy of W ,
in D, and W (µ)JW (µ)∗ = J for a.e. µ ∈ T = ∂D. A J-inner mvf W (λ) is called
A-singular if it is outer and it is called right A-regular if it has no non-constant A-

singular right divisors. As was shown by D. Arov [8] every J-inner mvf admits an

essentially unique A-regular–A-singular factorization W = W (1)W (2). In the present

paper this factorization result is extended to the class Ur
κ(J) of right generalized J-

inner mvf’s introduced in [18]. The notion and criterion of A-regularity for right
generalized J-inner mvf’s are presented. The main result of the paper is that we
find a criterion for existence of an A-regular–A-singular factorization for a rational
generalized J-inner mvf.

1. Introduction

Let Ω+ be equal to either D = {λ ∈ C : |λ| < 1} or C+ = {λ ∈ C : −i(λ − λ̄) > 0}.
Let us set

ρω(λ) =

{
1− λω, if Ω+ = D,

−2πi(λ− ω), if Ω+ = C+,

and let Ω− := {ω ∈ C : ρω(ω) < 0}. Then Ω0 := ∂Ω+ is either the unit circle T, if
Ω+ = D, or the real axis R, if Ω+ = C+.

The following basic classes of mvf’s will be used in this paper:
Hr (1 ≤ r ≤ ∞), the Hardy class with respect to Ω+;
Hp×q

r , the class of p× q-mvf’s with entries in Hr, H
p
r := Hp×1

r (1 ≤ r ≤ ∞);
Sp×q, the Schur class of contractive and holomorphic on Ω+ p× q-mvf’s;

Sp×q
out = {s ∈ Sp×q : sHq

2 = Hp
2} (Sp×q

in ), the class of outer (inner, resp.) mvf’s from
Sp×q.

In this paper we consider a signature matrix J of the following specific form:

(1.1) J = jpq =

[
Ip 0
0 −Iq

]
, where p+ q = m.

Definition 1.1. ([4, 18]). An m×m mvf (matrix valued function) W (λ) that is mero-
morphic in Ω+ is said to belong to the class Uκ(jpq) of generalized jpq-inner mvf’s, if

(i) the kernel

(1.2) K
W
ω (λ) =

jpq −W (λ)jpqW (ω)∗

ρω(λ)
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has κ negative squares in h+W ×h+W , where h+W denotes the domain of holomorphy
of W in Ω+ and

(ii) jpq −W (µ)jpqW (µ)∗ = 0 a.e. on the boundary Ω0 of Ω+.

The class U(jpq) := U0(jpq) is contained in the class P(jpq) of jpq-contractive mero-
morphic on Ω+ mvf’s. The class P(jpq) was introduced and studied by M. S. Livsič [25]
in connection with the theory of characteristic functions of quasi-Hermitian operators,
see also [31] for the case of unbounded operators. A complete factorization theory for
mvf’s from the class P(jpq) was developed by V. P. Potapov [28]. Mvf’s from the class
U(jpq) are called jpq-inner. jpq-inner mvf’s appear in [22], [26], [14], [8], [21] as resolvent
matrices of various interpolation problems.

A jpq-inner mvf W (λ) is called A-singular, if W ∈ Sm×m
out . A jpq-inner mvf W (λ)

is called right A-regular, if it has no non-constant A-singular right divisors in the class
U(jpq). In particular, the resolvent matrix of a bitangential problem belongs to the class
U(jpq) and turns out to be a right A-regular jpq-inner mvf, see [8], [10]. An important
result of [8] claims that an arbitrary jpq-inner mvf W (λ) admits an essentially unique
factorization

(1.3) W (λ) =W (1)(λ)W (2)(λ),

where W (1)(λ) and W (2)(λ) are right A-regular and A-singular mvf’s, respectively.
The class Uκ(jpq), κ ∈ N, and a reproducing kernel Pontryagin space K(W ) with the

reproducing kernel KW
ω (λ) based onW ∈ Uκ(jpq) were studied in [4] and [2]. In [27], [14],

[13], [17], [19], [20] mvf’s W ∈ Uκ(jpq) appear as resolvent matrices of some indefinite
interpolation problems. In most cases these resolvent matrices belong also to a subclass
Ur
κ(jpq) of right generalized jpq-inner mvf’s introduced and studied in [18]. The class of

right and left A-singular generalized jpq-inner mvf’s was introduced and characterized
in [30].

In the present paper we introduce the notions of right and left A-regular generalized
jpq-inner mvf’s and prove a criterion of A-regularity for rational generalized jpq-inner
mvf’s. The main result of the paper contains a criterion of existence of A-regular–
A-singular factorization (1.3) for a rational generalized jpq-inner mvf. This criterion
is formulated in terms of reproducing kernel Pontryagin spaces K(W ) associated with
W (λ). An example of a right generalized jpq-inner mvf W (λ) is given such that W (λ)
does not admit an A-regular–A-singular factorization in the class of generalized jpq-inner
mvf’s.

2. Preliminaries

2.1. The generalized Schur class. Let κ ∈ Z+. Recall [6] that a Hermitian kernel
Kω(λ) : Ω × Ω → C

m×m is said to have κ negative squares, if for every positive integer
n and every choice of ωj ∈ Ω and uj ∈ C

m (j = 1, . . . , n) the matrix

(u∗kKωj
(ωk)uj)

n
j,k=1

has at most κ, and for some choice of ωj ∈ Ω and uj ∈ C
m exactly κ negative eigenvalues.

Denote by hs the domain of holomorphy of the mvf s and let us set h±s = hs ∩ Ω±.
Let Sq×p

κ denote the generalized Schur class of q × p mvf’s s that are meromorphic in
Ω+ and for which the kernel

(2.1) Λ
s
ω(λ) =

Ip − s(λ)s(ω)∗

ρω(λ)

has κ negative squares on h+s × h+s (see [23]). In the case where κ = 0 the class Sq×p
0

coincides with the Schur class Sq×p of contractive mvf’s holomorphic in Ω+.
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Let bω(λ) be an elementary factor Blaschke

(2.2) bω(λ) =

{
(λ− ω)/(1− λω), if Ω+ = D,
(λ− ω)/(λ− ω), if Ω+ = C+

and let P be an orthogonal projection in C
p. Then the mvf

Bω(λ) = Im + (bω(λ)− 1)P

belongs to the Schur class Sp×p and is called an elementary BP (Blaschke–Potapov)
factor and B(λ) is called primary if rank P = 1. The product

B(λ) =

κ
y∏

j=1

Bωj
(λ),

where Bωj
(λ) are primary BP-factors is called a Blaschke–Potapov product of degree κ.

Every mvf s ∈ Sp×p of rank p admits an inner-outer factorization of F. Riesz

(2.3) s = ba = a∗b∗, where b, b∗ ∈ Sp×p
in , a, a∗ ∈ Sp×p

out .

If b and b∗ in (2.3) are Blaschke–Potapov products of finite degree, then deg b = deg b∗.
The notation Mζ(s,Ω+) := deg b will be used for the degree of the factors b and b∗.

As was shown in [23] every mvf s ∈ Sq×p
κ admits a factorization of the form

(2.4) s(λ) = bℓ(λ)
−1sℓ(λ), λ ∈ h+s ,

where bℓ ∈ Sq×q is a q × q Blaschke–Potapov product of degree κ, sℓ ∈ Sq×p and

(2.5) rank
[
bℓ(λ) sℓ(λ)

]
= q (λ ∈ Ω+).

The representation (2.4) is called a left KL (Krĕın–Langer) factorization. Similarly, every
generalized Schur function s ∈ Sq×p

κ admits a right KL-factorization

(2.6) s(λ) = sr(λ)br(λ)
−1 for λ ∈ h+s ,

where br ∈ Sp×p is a Blaschke–Potapov product of degree κ, sr ∈ Sq×p and

(2.7) rank
[
br(λ)

∗ sr(λ)
∗ ]

= p (λ ∈ Ω+).

The following generalization of the Rouche theorem was presented in [24]. The proof
of this theorem was not complete and was fixed in [20]. Its scalar version was proved
in [1].

Theorem 2.1. (Generalized Rouche Theorem) ([24]). Let ϕ,ψ ∈ Hq×q
∞ , det(ϕ +

ψ) 6≡ 0 in Ω+, Mζ(ϕ,Ω+) <∞,

(2.8) ‖ϕ(µ)−1ψ(µ)‖ ≤ 1 a.e. on Ω0.

Then Mζ(ϕ+ ψ,Ω+) ≤Mζ(ϕ,Ω+) with equality if

(2.9) (ϕ+ ψ)−1ϕ|Ω0
∈ L̃q×q

1 .

The coprimeness condition (2.5) for a right KL-factorization (2.4) can be reformulated
as follows.

Lemma 2.2. ([18]). A mvf sℓ ∈ Sq×p and a finite Blaschke–Potapov product bℓ ∈ Sq×q
in

meet the rank condition (2.5) if and only if there exists a pair of mvf’s cℓ ∈ Hq×q
∞ and

dℓ ∈ Hp×q
∞ such that

(2.10) bℓ(λ)cℓ(λ) + sℓ(λ)dℓ(λ) = Iq for λ ∈ Ω+.
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2.2. Generalized jpq-inner mvf’s. Let us recall some facts concerning the PG (Pota-
pov–Ginzburg) transform of generalized jpq-inner mvf’s. As is known [4, Theorem 6.8],
for every W ∈ Uκ(jpq) the matrix w22(λ) is invertible for all λ ∈ h+W except for at most
κ point in Ω+. Thus, the PG-transform S of W (see [2])

(2.11)
S(λ) = (PG(W ))(λ) :=

[
w11(λ) w12(λ)

0 Iq

] [
Ip 0

w21(λ) w22(λ)

]−1

(λ ∈ h+S ∩ h+W )

is well defined for those λ ∈ h+W , for which w22(λ) is invertible. As is easily seen, S(λ)
belongs to the class Sm×m

κ and S(µ) is unitary for a.e. µ ∈ Ω0 (see [4], [18]).
The formula (2.11) can be rewritten as

(2.12) S =

[
s11 s12
s21 s22

]
=

[
w11 − w12w

−1
22 w21 w12w

−1
22

−w−1
22 w21 w−1

22

]
.

Since the mvf S(λ) has unitary nontangential boundary limits a.e. on Ω0, the pseudo-
continuation of S to Ω− can be defined by the formula S(λ) = (S#(λ))−1, where the
reflection function S#(λ) is defined by

(2.13) S#(λ) = S(λ◦)∗, λ◦ =

{
1/λ : if Ω+ = D, λ 6= 0,

λ : if Ω+ = C+.

Formulas (2.13) and (2.12) lead to the dual formula for S:

(2.14) S =

[
w#

11 0

w#
12 Iq

]−1 [
Ip w#

21

0 w#
22

]
=

[
w−#

11 w−#
11 w#

21

−w#
12w

−#
11 w#

22 − w#
12w

−#
11 w#

21

]

on h+S ∩ h+
W# . Moreover, s22(λ) is invertible for all λ ∈ h+W , the PG-transform of S(λ)

makes sense, and W = PG(S).
Let

(2.15) T r
W [ε] := (w11(λ)ε(λ) + w12(λ))(w21(λ)ε(λ) + w22(λ))

−1

denote the (right) linear fractional transformation of a mvf ε ∈ Sp×q
κ2

(κ2 ∈ Z+) based
on the block decomposition

(2.16) W (λ) =

[
w11(λ) w12(λ)
w21(λ) w22(λ)

]

of a mvfW ∈ Uκ(jpq) with blocks w11(λ) and w22(λ) of sizes p×p and q×q, respectively.
Let

(2.17) Λ = {λ ∈ h+W ∩ h+ε : det (w21(λ)ε(λ) + w22(λ)) = 0}.
The transformation T r

W [ε] is well defined for λ ∈ (h+W ∩ h+ε ) \ Λ.

Lemma 2.3. Let W ∈ Uκ1
(jpq), ε ∈ Sp×q

κ2
. Then T r

W [ε] ∈ Sp×q
κ′ with κ′ ≤ κ2 + κ1.

2.3. The class Ur
κ(jpq).

Definition 2.4. ([18]). An m × m mvf W (λ) ∈ Uκ(jpq) is said to be in the class
Ur
κ(jpq), if

(2.18) s21 := −w−1
22 w21 ∈ Sq×p

κ .

Theorem 2.5. ([18]). Let W ∈ Ur
κ(jpq) and let the BP-factors bℓ and br be defined by

the KL-factorizations of s21:

(2.19) s21(λ) := bℓ(λ)
−1sℓ(λ) = sr(λ)br(λ)

−1, λ ∈ h+s21 ,
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where bℓ ∈ Sq×q
in , br ∈ Sp×p

in , sℓ, sr ∈ Sq×p. Then the mvf’s bℓs22 and s11br are holomor-
phic in Ω+, and hence they admit the following inner-outer and outer-inner factorizations

(2.20) s11br = b1a1, bℓs22 = a2b2,

where b1 ∈ Sp×p
in , b2 ∈ Sq×q

in , a1 ∈ Sp×p
out , a2 ∈ Sq×q

out .

The pair {b1, b2} is called the right associated pair of the mvf W ∈ Ur
κ(jpq) and is

written as {b1, b2} ∈ apr(W ). In the case κ = 0 this notion was introduced in [10].
As was shown in [18, Theorem 4.11] for every W ∈ Ur

κ(jpq) and cℓ and dℓ as in (2.10)
the mvf

(2.21) K = (−w11dℓ + w12cℓ)(−w21dℓ + w22cℓ)
−1,

belongs to Hp×q
∞ and admits the representations

(2.22) K = (−w11dℓ + w12cℓ)a2b2,

where {b1, b2} ∈ apr(W ).
Let us set K#(λ) = K(λ)∗, λ ∈ C−. It is clear that K

# ∈ Hq×p
∞ (Ω−).

Example 1. A jpq-inner mvf W (λ) is called elementary if it has no nontrivial factoriza-
tion in the class of jpq-inner mvf’s. All elementary jpq-inner mvf’s are exhausted by the
set of BP-factors of the following three types (see [22]):

(1) Uω(λ) = U(Im + (bω(λ)− 1)P ), ω ∈ Ω+, P = P 2 and Pjpq ≥ 0;
(2) Uω(λ) = U(Im + (bω(λ)− 1)P ), ω ∈ Ω−, P = P 2 and Pjpq ≤ 0;
(3) Uω(λ) = U(Im − cω(λ)E), ω ∈ Ω0, E

2 = 0 and Ejpq ≥ 0.

Here U are constant jpq-unitary matrices, bω(λ) are elementary Blaschke factors of the
form (2.2) and

cω(λ) =

{
(ω + λ)/(ω − λ), if Ω+ = D, ω ∈ Ω0,
1/(πi(ω − λ)), if Ω+ = C+, ω ∈ Ω0.

If Ω+ = C+ then there exists one more type of BP-factors (of the fourth kind), cor-
responding to ω = ∞,

U∞(λ) = Uexp(iλE).

An elementary BP-factor is said to be primary, if rankP = 1 or rankE = 1. The
preceding three types of primary BP-factors take the form

(1) Uω(λ) = U(Im + (bω(λ)− 1)vv∗jpq), ω ∈ Ω+, v ∈ C
m and v∗jpqv = 1;

(2) Uω(λ) = U(Im − (bω(λ)− 1)vv∗jpq), ω ∈ Ω−, v ∈ C
m and v∗jpqv = −1;

(3) Uω(λ) = U(Im − cω(λ)vv
∗jpq), ω ∈ Ω0, v ∈ C

m and v∗jpqv = 0.

Notice that by changing sign of v∗jpqv in the first two types of primary BP-factors one
obtains generalized jpq-inner mvf’s which belong to the class U1(jpq),

(2.23) Uω(λ) = U(Im − (bω(λ)− 1)vv∗jpq), ω ∈ Ω+, v ∈ C
m and v∗jpqv = −1;

(2.24) Uω(λ) = U(Im + (bω(λ)− 1)vv∗jpq), ω ∈ Ω−, v ∈ C
m and v∗jpqv = 1.

Moreover, the mvf Uω(λ) in (2.23) and (2.24) belongs to the class Ur
1 (jpq), if the vector

v = col{v1, v2} satisfies the condition v2v
∗
1 6= 0.

2.4. The class U ℓ
κ(jpq). The following definitions and statements concerning the dual

class U ℓ
κ(jpq) are taken from [30].

Definition 2.6. An m×m mvf W ∈ Uκ(jpq) is said to be in the class U ℓ
κ(jpq), if

(2.25) s12 := w12w
−1
22 ∈ Sp×q

κ .
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If W ∈ Uκ(jpq) and the mvf W̃ is defined by

(2.26) W̃ (λ) =

{
W (λ)∗, if Ω+ = D,

W (−λ)∗, if Ω+ = C+,

then, as was shown [30], the following equivalence holds:

(2.27) W ∈ U ℓ
κ(jpq) ⇐⇒ W̃ ∈ Ur

κ(jpq),

and as a corollary of Theorem 2.5 one can get the following statement.

Theorem 2.7. Let W ∈ U ℓ
κ(jpq) and let the BP-factors bℓ and br be defined by the

KL-factorizations (2.4), (2.6) of s12,

(2.28) s12(λ) = bℓ(λ)
−1sℓ(λ) = sr(λ)br(λ)

−1, (λ ∈ h+s12),

where bℓ ∈ Sp×p
in , br ∈ Sq×q

in , sℓ, sr ∈ Sp×q. Then

(2.29) s22br ∈ Sq×q and bℓs11 ∈ Sp×p.

Definition 2.8. Consider inner-outer factorizations of bℓs11 and s22br

(2.30) bℓs11 = a1b1, s22br = b2a2,

where b1 ∈ Sp×p
in , b2 ∈ Sq×q

in , a1 ∈ Sp×p
out , a2 ∈ Sq×q

out . The pair b1, b2 of inner factors in
the factorizations (2.30) is called the left associated pair of the mvf W ∈ U ℓ

κ(jpq) and is
written as {b1, b2} ∈ apℓ(W ), for short.

The following example shows that the classes Ur
κ(jpq) and U ℓ

κ(jpq) do not coincide.

Example 2. Let Ω+ = D and W = 1√
3

[
2 λ
1 2λ

]
. The kernel KW

ω (λ) =

[
0 0
0 −1

]
has

1 negative square, therefore W ∈ U1(j11). The mvf W (λ) belongs to the class Ur
1 (j11),

since s21 = 1
2λ ∈ S1. On the other hand W 6∈ U ℓ

1(j11), since s12 = 1
2 6∈ S1.

Similarly, one has W̃ = 1√
3

[
2 1
λ 2λ

]
∈ U ℓ

1(j11) \ Ur
1 (j11).

Let W ∈ Uκ(jpq) be a mvf with the block decomposition (2.16) and let the left linear
fractional transformation T ℓ

W be defined by

(2.31) T ℓ
W [ε] := (ε(λ)w12(λ) + w22(λ))

−1(ε(λ)w11(λ) + w21(λ)).

Then the left and the right linear fractional transformations are connected by the equality

(2.32) T ℓ
W [ε] = (T r

W̃
[ε̃])˜.

The following statement is implied by (2.32) and Lemma 2.3.

Lemma 2.9. Let W ∈ Uκ1
(jpq), ε ∈ Sq×p

κ2
. Then T ℓ

W [ε] ∈ Sq×p
κ′ with κ′ ≤ κ2 + κ1.

2.5. Reproducing kernel Pontryagin spaces. In this subsection we review some facts
and notation from [11, 16, 18] on the theory of indefinite inner product spaces for the
convenience of the reader. A linear space K equipped with a sesquilinear form 〈·, ·〉K on
K × K is called an indefinite inner product space. A subspace F of K is called positive
(negative) if 〈f, f〉K > 0 (< 0) for all f ∈ F , f 6= 0. If the full space K is positive and

complete with respect to the norm ‖f‖ = 〈f, f〉1/2K then it is a Hilbert space.
An indefinite inner product space (K, 〈·, ·〉K) is called a Pontryagin space, if it can be

decomposed as the orthogonal sum

(2.33) K = K+ ⊕K−

of a positive subspace K+ which is a Hilbert space and a negative subspace K− of finite
dimension. The number ind−K := dimK− is referred to as the negative index of K. The
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convergence in a Pontryagin space (K, 〈·, ·〉K) is meant with respect to the Hilbert space
norm

(2.34) ‖h‖2 = 〈h+, h+〉K − 〈h−, h−〉K , h = h+ + h−, h± ∈ K±.

It is easily seen that the convergence does not depend on a choice of the decomposi-
tion (2.33).

A Pontryagin space (K, 〈·, ·〉K) of Cm-valued functions defined on a subset Ω of C is
called a RKPS (reproducing kernel Pontryagin space), if there exists a Hermitian kernel
Kω(λ) : Ω× Ω → C

m×m, such that

(1) for every ω ∈ Ω and every u ∈ C
m the vvf Kω(λ)u belongs to K;

(2) for every h ∈ K, ω ∈ Ω and u ∈ C
m the following identity holds:

(2.35) 〈h,Kωu〉K = u∗f(ω).

It is known (see [29]) that for every Hermitian kernel Kω(λ) : Ω× Ω → C
m×m with a

finite number of negative squares on Ω × Ω there is a unique Pontryagin space K with
reproducing kernel Kω(λ), and that ind−K = sq−K = κ. In the case κ = 0 this fact is
due to Aronszajn [6].

IfW ∈ Uκ(jpq), then assumption (ii) in the definition of Uκ(jpq) guarantees thatW (λ)
is invertible in Ω+ except for an isolated set of points. Define W in Ω− by the formula
(2.36)

W (λ) = jpqW
#(λ)−1jpq = jpqW (λ◦)−∗jpq if λ◦ ∈ h+W and detW (λ◦) 6= 0.

Since W is of bounded type, the nontangential limits

W±(µ) = ∠ lim
λ→µ

{W (λ) : λ ∈ Ω±}

exist a.e. on Ω0; and assumption (ii) in the definition of Uκ(jpq) implies that the non-
tangential limits W+(µ) and W−(µ) coincide a.e. in Ω0, that is, W in Ω− is a pseudo-
meromorphic extension of W in Ω+. If W (λ) is rational this extension is meromorphic
on C. The symbol hW will be used to denote the domain of holomorphy of W in C.
Formula (2.36) implies that W (λ) is holomorphic and invertible in

(2.37) ΩW := hW ∩ hW# .

Let W ∈ Uκ(jpq) and let K(W ) be the RKPS associated with the kernel KW
ω (λ). The

kernel KW
ω (λ) extended to ΩW by the equality (2.36) has the same number κ of negative

squares [2, Theorem 2.5.2].
In the case where W belongs to the subclass Ur

κ(jpq) the subspaces

(2.38) L+
W := K(W ) ∩Hm

2 , L−
W := K(W ) ∩ (Hm

2 )⊥, LW := K(W ) ∩ Lm
2

can be characterized by the following.

Theorem 2.10 ([18, Theorem 4.19]). Let W ∈ Ur
κ(jpq), {b1, b2} ∈ apr(W ), let K be

defined by (2.22), let

(2.39) H(b1) = Hm
2 ⊖ b1H

m
2 , H∗(b2) = (Hm

2 )⊥ ⊖ b∗2(H
m
2 )⊥,

and let

Γ11 : f ∈ Hq
2 −→ PH(b1)Kf, Γ22 : f ∈ H∗(b2) −→ P(Hp

2 )
⊥Kf.

Then

(2.40) L+
W =

{[
u1

Γ∗
11u1

]
: u1 ∈ H(b1)

}
,

(2.41) L−
W =

{[
Γ22u2
u2

]
: u2 ∈ H∗(b2)

}
,
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(2.42) LW = L+
W +̇L−

W .

3. A-regular and A-singular generalized jpq-inner mvf’s

3.1. A-singular generalized jpq-inner mvf. Let us recall the notations (see [10]):

N p×q
± = {f = h−1g : g ∈ Hp×q

∞ (Ω±), h ∈ S1×1
out (Ω±)},

N p×q
out = {f = h−1g : g ∈ Sp×q

out , h ∈ S1×1
out }.

A mvf W ∈ Uκ(jpq) is called A-singular, if it is an outer mvf (see [7, 30]). The set of
A-singular mvf’s in Uκ(jpq) is denoted by US

κ (jpq).
We will be also using the following subclasses of the class US

κ (jpq):

Ur,S
κ (jpq) := Ur

κ(jpq) ∩ Nm×m
out , U ℓ,S

κ (jpq) := U ℓ
κ(jpq) ∩ Nm×m

out .

In the case κ = 0 the class US(jpq) := US
0 (jpq) was introduced and characterized

in terms of associated pairs by D. Arov in [9]. For κ 6= 0 a definition of A-singular
generalized jpq-inner mvf and its characterization in terms of associated pairs was given
in [30].

Theorem 3.1 ([30]). Let W ∈ Ur
κ(jpq) and {b1, b2} ∈ apr(W ). Then

(1) W ∈ Ur
κ(jpq) ∩ N+ if and only if b2 ≡ const;

(2) W ∈ Ur
κ(jpq) ∩ N− if and only if b1 ≡ const;

(3) W ∈ Ur,S
κ (jpq) if and only if b1 ≡ const and b2 ≡ const.

If W ∈ Uκ(jpq) and the mvf W̃ is defined by (2.26) than as follows from (2.27)

(3.1) W ∈ U ℓ,S
κ (jpq) ⇐⇒ W̃ ∈ Ur,S

κ (jpq).

As a corollary of Theorem 3.1 one get a similar characterization of the class U ℓ
κ(jpq).

Corollary 3.2 ([30]). Let W ∈ U ℓ
κ(jpq) and {b1, b2} ∈ apℓ(W ). Then

(1) W ∈ U ℓ
κ(jpq) ∩ N+ if and only if b2 ≡ const;

(2) W ∈ U ℓ
κ(jpq) ∩ N− if and only if b1 ≡ const;

(3) W ∈ U ℓ,S
κ (jpq) if and only if b1 ≡ const and b2 ≡ const.

Next we will present a characterization of A-singular mvf’s W in terms of reproducing
kernel spaces K(W ) and its subspaces L+(W ) and L−(W ) and LW , introduced in (2.38).

Theorem 3.3. Let W ∈ Ur
κ(jpq), {b1, b2} ∈ apr(W ). Then

(1) W ∈ Ur
κ(jpq) ∩ N+ if and only if L−

W = {0};
(2) W ∈ Ur

κ(jpq) ∩ N− if and only if L+
W = {0};

(3) W ∈ Ur,S
κ (jpq) if and only if LW = {0}.

Proof. Assume that W ∈ Ur
κ(jpq)∩N+. Then by Theorem 3.1 (1) b2 ≡ const. Therefore,

H∗(b2) = (Hm
2 )⊥ ⊖ b∗2(H

m
2 )⊥ = {0} and by Theorem 2.10 one obtains

L−
W = {0}.

Conversely, if L−
W = {0} then by formula (2.41)

[
Γ22

I

]
H∗(b2) = {0},

and hence H∗(b2) = {0}. Therefore, b2 ≡ const, and, consequently, W ∈ Ur
κ(jpq) ∩ N+.

Similarly, the equivalence (2) is implied by Theorem 3.1 (1) and (2.40), and the equi-
valence (3) is implied by (1), (2) and (2.42). �

Corollary 3.4. Let W ∈ U ℓ
κ(jpq). Then

(1) W ∈ U ℓ
κ(jpq) ∩ N+ if and only if L+

W̃
= {0};
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(2) W ∈ U ℓ
κ(jpq) ∩ N− if and only if L−

W̃
= {0};

(3) W ∈ U ℓ,S
κ (jpq) if and only if L

W̃
= {0}.

Proof. Since W ∈ U ℓ,S
κ (jpq), then W̃ ∈ Ur,S

κ (jpq), and by Theorem 3.3 it is possible if
and only if L

W̃
= {0}. �

Remark 3.5. In the case κ = 0 descriptions of linear manifolds L±
W , LW in the form of

(2.40) and a criterion of A-singularity of mvf W ∈ Uκ(jpq) in terms of LW was presented
in [9].

3.2. Factorization of generalized jpq-inner mvf’s and associated pairs. If W ∈
U(jpq) admits a representation W = W (1)W (2) with W (1),W (2) ∈ U(jpq) and {b1, b2} ∈
ap(W ) and {b(1)1 , b

(1)
2 } ∈ ap(W (1)) then b

(1)
1 is a left divisor of b1 and b

(1)
2 is a right divisor

of b2, see [8], [10, Lemma 4.28]. In this section an analog of this statement is proved for
right and left generalized jpq-inner mvf’s. Relations between RKPS’s corresponding to

W , W (1) and W (2) are presented in the following theorem.

Theorem 3.6 ([2, Theorem 4.11]). Let a mvf W (λ) admit a factorization

(3.2) W =W (1)W (2), W (1) ∈ Uκ1
(jpq), W (2) ∈ Uκ2

(jpq).

Then W ∈ Uκ(jpq) with κ ≤ κ1 + κ2 and

(3.3) K(W ) ⊆ K(W (1)) +W (1)K(W (2),

where K(W ), K(W (1)) and K(W (2)) are RKPS’s with reproducing kernels K
W
ω (λ),

K
W (1)

ω (λ) and K
W (2)

ω (λ), respectively. The following conditions are equivalent:

(1) κ = κ1 + κ2,
(2) K(W (1)) is contained contractively in K(W ),
(3) K(W (1)) ∩W (1)K(W (2)) is a Hilbert subspace of K(W ),

and in this case the equality in (3.3) prevails. Moreover, K(W (1)) sits isometrically in
K(W ) if and only if K(W (1)) ∩ W (1)K(W (2)) = {0} and in this case the decomposi-
tion (3.3) becomes orthogonal

(3.4) K(W ) = K(W (1))[+]W (1)K(W (2).

The importance of the condition (1) in Theorem 3.6 is illustrated by the following

Example 3. Let Ω+ = D and let mvf’s U (1)(λ) and U (2)(λ) be given by

U (1)(λ) =
1

2(1− λ)

[
3− λ −λ− 1
1 + λ 1− 3λ

]
, U (2)(λ) =

1

2(1− λ)

[
1− 3λ λ+ 1
−1− λ 3− λ

]
.

Then

K
U(1)

ω (λ) =
−1

(1− λ)(1− ω̄)

[
1 1
1 1

]
, K

U(2)

ω (λ) =
1

(1− λ)(1− ω̄)

[
1 1
1 1

]
.

Therefore, U (1) ∈ Ur,S
1 (j11), U

(2) ∈ U(j11) and

K(U (1)) = K(U (2)) = U (1)K(U (2)) = span

{
1

1− λ

[
1
1

]}
.

But U(λ) = U (1)(λ)U (2)(λ) ≡ I and hence K(U) = {0} 6= K(U (1)) + U (1)K(U (2)). In
this example all the assumptions of Theorem 3.6 hold except of (1).

Lemma 3.7. Let a mvf W ∈ Ur
κ(jpq) admit a factorization (3.2), where κ1 + κ2 = κ.

Then

(i) W (1) ∈ Ur
κ1
(jpq).
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(ii) For {b1, b2} ∈ apr(W ) and {b(1)1 , b
(1)
2 } ∈ apr(W (1)) one has

(3.5) θ1 := (b
(1)
1 )−1b1 ∈ Sp×p

in , θ2 := b2(b
(1)
2 )−1 ∈ Sq×q

in .

Proof. The proof is divided into steps.
1. Verification of (i): Let the mvf’s W , W (k) and their PG-transforms S, S(k) (k = 1, 2)
defined by (2.11) have the block matrix representations:
(3.6)

W = (wij)
2
i,j=1, W (k) = (w

(k)
ij )2i,j=1, S = (sij)

2
i,j=1, S(k) = (s

(k)
ij )2i,j=1, k = 1, 2,

corresponding to the decomposition (1.1) of jpq. It follows from the equality W =

W (1)W (2) that

(3.7) w21 = w
(1)
21 w

(2)
11 + w

(1)
22 w

(2)
21 , w22 = w

(1)
21 w

(2)
12 + w

(1)
22 w

(2)
22 .

Since W ∈ Ur
κ(jpq) and W

(1) ∈ Uκ1
(jpq), then the matrices w22(λ) (see Section 2.2) and

w
(1)
22 (λ) are invertible for every λ ∈ (h+W ∩ h+

W (1)) except a finite number of points and

(3.8) s21 = −w−1
22 w21 ∈ Sq×p

κ , s
(1)
21 = −(w

(1)
22 )

−1w
(1)
21 ∈ Sq×p

κ′ with κ′ ≤ κ1.

It follows from (3.7) that

w−1
22 w21 = (w

(1)
21 w

(2)
12 + w

(1)
22 w

(2)
22 )

−1(w
(1)
21 w

(2)
11 + w

(1)
22 w

(2)
21 )

= (−s(1)21 w
(2)
12 + w

(2)
22 )

−1(−s(1)21 w
(2)
11 + w

(2)
21 ).

(3.9)

Since W (2) ∈ Uκ2
(jpq), then by Lemma 2.9

(3.10) w−1
22 w21 = T ℓ

W (2) [−s(1)21 ] ∈ Sq×p
κ′′ , where κ′′ ≤ κ′ + κ2.

On the other hand w−1
22 w21 ∈ Sq×p

κ by the assumption W ∈ Ur
κ(jpq). Comparing the

equality κ = κ′′ with (3.10) one obtains

κ = κ′′ ≤ κ′ + κ2 ≤ κ1 + κ2 = κ

and hence κ′′ = κ, κ′ = κ1. Therefore, s
(1)
21 ∈ Sq×p

κ1
. This proves the inclusion W (1) ∈

Ur
κ1
(jpq).

2. Verification of (ii): Let K(W ) and K(W (j)) (j = 1, 2) be reproducing kernel spaces
with the kernels (1.2) and

K
W (j)

ω (λ) =
jpq −W (j)(λ)jpqW

(j)(ω)∗

ρω(λ)
(j = 1, 2).

It follows from Theorem 3.6 that

K(W ) ∩Hm
2 ⊃ K(W (1)) ∩Hm

2 , K(W ) ∩ (Hm
2 )⊥ ⊃ K(W (1)) ∩ (Hm

2 )⊥.

Using the formulas for K(W )∩Hm
2 and K(W )∩ (Hm

2 )⊥ from Theorem 2.10 one obtains

(3.11) H(b1) ⊇ H(b
(1)
1 ), H∗(b2) ⊇ H∗(b

(1)
2 ).

The inclusions (3.11) are equivalent to the relations (3.5). �

As shows the following example the assumptionW ∈ Ur
κ(jpq) in Lemma 3.7 is essential.

Example 4. Let Ω+ = D. Consider the mvf’s

W (1)(λ) =
1√
3

[
2 λ
1 2λ

]
∈ Ur

1 (j11), W (2)(λ) =

[
λ 0
0 λ

]
∈ U1(j11) \ U ℓ

1(j11),

and let W (λ) =W (1)(λ)W (2)(λ) be the product of these mvf’s

W (λ) =W (1)(λ)W (2)(λ) =
1√
3

[
2λ λ2

λ 2λ2

]
.
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The kernel

K
W
ω (λ) =

[
1 0
0 −1

]
− λω

3

[
1 2
2 4

]

has 2 negative square, therefore,W ∈ U2(j11). However,W 6∈ Ur
2 (j11), since s21 = − 1

2λ ∈
S1. This shows that the converse statement to Lemma 3.7 (i) is not true.

The next statement is a dual version of Lemma 3.7.

Lemma 3.8. Let W ∈ U ℓ
κ(jpq) admit the factorization (3.2), where κ1 + κ2 = κ. Then

(i) W (2) ∈ U ℓ
κ2
(jpq).

(ii) For {b1, b2} ∈ apℓ(W ) and {b(2)1 , b
(2)
2 } ∈ apℓ(W (2)) one has

(3.12) ϑ1 := b1(b
(2)
1 )−1 ∈ Sp×p

in , ϑ2 := (b
(2)
2 )−1b2 ∈ Sq×q

in .

Proof. If W ∈ U ℓ
κ(jpq) and {b1, b2} ∈ apℓ(W ), then as was shown in [30, Proposition 3.7

and Theorem 3.8] {b̃1, b̃2} ∈ apr(W̃ ) and W̃ ∈ Ur
κ(jpq) by (2.27). Due to Lemma 3.7 W̃ =

W̃ (2)W̃ (1), where W̃ (2) ∈ Ur
κ2
(jpq). Applying again (2.27) one obtains the statement (i).

Next, if {b(2)1 , b
(2)
2 } ∈ apℓ(W (2)), then {b̃(2)1 , b̃

(2)
2 } ∈ apr(W̃ (2)) and by Lemma 3.7

(3.13) (b̃
(2)
1 )−1b̃1 ∈ Sp×p

in , b̃2(b̃
(2)
2 )−1 ∈ Sq×q

in .

These inclusions are equivalent to (3.12). �

Corollary 3.9. Let W ∈ Ur
κ(jpq) admit the factorization (3.2), with κ1 = κ, κ2 = 0.

Then W (1) ∈ Ur
κ(jpq) and if {b1, b2} ∈ apr(W ) and {b(1)1 , b

(1)
2 } ∈ apr(W (1)), then (3.5)

holds.

Corollary 3.10. Let W ∈ U ℓ
κ(jpq) admit the factorization (3.2), with κ1 = 0, κ2 = κ.

Then W (2) ∈ U ℓ
κ(jpq) and if {b1, b2} ∈ apℓ(W ) and {b(1)1 , b

(1)
2 } ∈ apℓ(W (2)), then (3.12)

holds.

Lemma 3.11. Let W ∈ Ur
κ(jpq)admit the factorization (3.2), where

W (1) ∈ Ur
κ1
(jpq), W (2) ∈ U ℓ

κ2
(jpq), κ = κ1 + κ2,

and let {b1, b2} ∈ apr(W ), {b(1)1 , b
(1)
2 } ∈ apr(W (1)), {b(2)1 , b

(2)
2 } ∈ apℓ(W (2)). Then

(3.14) deg b1 ≥ deg b
(1)
1 + deg b

(2)
1 , deg b2 ≥ deg b

(1)
2 + deg b

(2)
2 .

If, in addition, W (1) ∈ L̃m
2 then the following equalities hold:

(3.15) deg b1 = deg b
(1)
1 + deg b

(2)
1 , deg b2 = deg b

(1)
2 + deg b

(2)
2 .

Proof. 1. Two formulas for the blocks s11 and s22 of the PG-transform S of the mvf W
will be established. Let the mvf’s W , W (k) and their PG-transforms S, S(k) (k = 1, 2)
defined by (2.11) have the block matrix representations (3.6). Using the equality

(3.16) w11 = w
(1)
11 w

(2)
11 + w

(1)
12 w

(2)
21

one obtains from (2.14) that the following equalities are valid on h+S ∩ h+
W# :

s11 = w−#
11 =

(
(w

(2)
11 )

#(w
(1)
11 )

# + (w
(2)
21 )

#(w
(1)
12 )

#
)−1

= (w
(1)
11 )

−#
(
Ip + (w

(2)
11 )

−#(w
(2)
21 )

#(w
(1)
12 )

#(w
(1)
11 )

−#
)−1

(w
(2)
11 )

−#

= s
(1)
11 (Ip − s

(2)
12 s

(1)
21 )

−1s
(2)
11 .

(3.17)

Similarly, it follows from (3.7) and (2.12) that

(3.18) w22 = w
(1)
22 (Iq − s

(1)
21 s

(2)
12 )w

(2)
22 ,
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(3.19) s22 = w−1
22 = s

(2)
22 (Iq − s

(1)
21 s

(2)
12 )

−1s
(1)
22 .

2. Further factorizations in (3.17) and (3.19) is given in terms of associated pairs of W ,
W (1) and W (2).

Since W ∈ Ur
κ(jpq), W

(1) ∈ Ur
κ1
(jpq) and W

(2) ∈ U ℓ
κ2
(jpq), then

s21 ∈ Sq×p
κ , s

(1)
21 ∈ Sq×p

κ1
, s

(2)
12 ∈ Sp×q

κ2
.

Let bℓ, br, b
(1)
ℓ , b

(1)
r , b

(2)
ℓ and b

(2)
r be inner factors determined by the KL-factorizations

of mvf’s s21, s
(1)
21 , s

(2)
12

s21 = b−1
ℓ sℓ = srb

−1
r ,

s
(1)
21 = (b

(1)
ℓ )−1s

(1)
ℓ = s(1)r (b(1)r )−1,

s
(2)
12 = (b

(2)
ℓ )−1s

(2)
ℓ = sr(b

(2)
r )−1.

Then as follows from [18, Theorem 4.6] (see (2.20)) and [30, Theorem 3.8]

bℓs22, b
(1)
ℓ s

(1)
22 , s

(2)
22 b

(2)
r ∈ Sq×q, s11br, s

(1)
11 b

(1)
r , b

(2)
ℓ s

(2)
11 ∈ Sp×p.

Consider inner-outer (and outer-inner, resp.) factorizations for these mvf’s

(3.20) s11br = b1a1, bℓs22 = a2b2,

(3.21) s
(1)
11 b

(1)
r = b

(1)
1 a

(1)
1 , b

(1)
ℓ s

(1)
22 = a

(1)
2 b

(1)
2 ,

(3.22) b
(2)
ℓ s

(2)
11 = a

(2)
1 b

(2)
1 , s

(2)
22 b

(2)
r = b

(2)
2 a

(2)
2 ,

where b1, b
(1)
1 , b

(2)
1 ∈ Sp×p

in , b2, b
(1)
2 , b

(2)
2 ∈ Sq×q

in , a1, a
(1)
1 , a

(2)
1 ∈ Sp×p

out , a2, a
(1)
2 , a

(2)
2 ∈

Sq×q
out .
Multiplying (3.17) by br from the right and using (3.20)–(3.22) one obtains

b1a1 = s
(1)
11 (Ip − (b

(2)
ℓ )−1s

(2)
ℓ s(1)r (b(1)r )−1)−1s

(2)
11 br

= b
(1)
1 a

(1)
1 (b

(2)
ℓ b(1)r − s

(2)
ℓ s(1)r )−1a

(2)
1 b

(2)
1 br.

(3.23)

Similarly, multiplying (3.19) by bℓ from the left and using (3.20)–(3.22), one obtains

a2b2 = bℓs
(2)
22 (Iq − (b

(1)
ℓ )−1s

(1)
ℓ s(2)r (b(2)r )−1)−1(b

(1)
ℓ )

−1
a
(1)
2 b

(1)
2

= bℓb
(2)
2 a

(2)
2 (b

(1)
ℓ b(2)r − s

(1)
ℓ s(2)r )−1a

(1)
2 b

(1)
2 .

(3.24)

3. Verification of (3.14): Let θ1, θ2 be mvf’s defined by (3.5). Then it follows from (3.23)
and (3.24) that

(3.25) θ1a1 = a
(1)
1 (b

(2)
ℓ b(1)r − s

(2)
ℓ s(1)r )−1a

(2)
1 b

(2)
1 br,

(3.26) (b
(2)
ℓ b(1)r − s

(2)
ℓ s(1)r )(a

(1)
1 )−1θ1a1 = a

(2)
1 b

(2)
1 br.

By the generalized Rouche Theorem (Theorem 2.1)

(3.27) Mζ(b
(2)
ℓ b(1)r − s

(2)
ℓ s(1)r ,Ω+) ≤ κ.

On the other hand,

(3.28) Mζ(a
(2)
1 b

(2)
1 br,Ω+) = deg br + deg b

(2)
1 = κ+ deg b

(2)
1 .

Now (3.27), (3.28) imply the inequality

(3.29) κ+ deg b
(2)
1 ≤ κ+ deg θ = κ+ deg b1 − deg b

(1)
1 ,

which coincides with the first inequality in (3.14).
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Similarly, it follows from (3.24) that

(3.30) a2θ2(a
(1)
2 )−1(b

(1)
ℓ b(2)r − s

(1)
ℓ s(2)r ) = bℓb

(2)
2 a

(2)
2 .

When comparing zero multiplicities of both parts of (3.30) and applying Theorem 2.1
one obtains

deg b
(2)
2 + κ = Mζ(bℓb

(2)
2 a

(2)
2 ,Ω+) = Mζ(θ2(a

(1)
2 )−1(b

(1)
ℓ b(2)r − s

(1)
ℓ s(2)r ),Ω+)

≤ κ+ deg b2 − deg b
(1)
2 ,

(3.31)

which coincides with the second inequality in (3.14).

4. Verification of (3.15): By [18, Lemma 4.22] the assumption W (1) ∈ L̃m×m
2 implies

(Ip − εs
(1)
21 )

−1 ∈ L̃p×p
1 and (Ip − s

(1)
21 ε)

−1 ∈ L̃p×p
1

for all ε ∈ Sp×q. Hence, by generalized Rouche Theorem (Theorem 2.1) one obtains

(3.32) Mζ(b
(2)
ℓ b(1)r − s

(2)
ℓ s(1)r ,Ω+) = Mζ(b

(1)
ℓ b(2)r − s

(1)
ℓ s(2)r ,Ω+) = κ.

Therefore, the inequalities (3.29), and (3.31) will transform into equalities (3.15). �

Lemma 3.12. Let W ∈ Ur
κ(jpq)and let W =W (1)W (2), where W (1) ∈ Ur

κ1
(jpq), W

(2) ∈
U ℓ
κ2
(jpq) and κ = κ1 + κ2. Then the following implication holds:

(3.33) apr(W (1)) = apr(W ) ⇒W (2) ∈ U ℓ,S
κ2

(jpq).

If, in addition, W (1) ∈ L̃m
2 then the converse is also true and thus the following equiva-

lence holds

(3.34) apr(W (1)) = apr(W ) ⇐⇒W (2) ∈ U ℓ,S
κ2

(jpq).

Proof. Assume that apr(W (1)) = apr(W ), i.e.

(3.35) b1 = b
(1)
1 θ1, b2 = θ2b

(1)
2

for some constant unitary matrices θ1 θ2. Then, by Lemma 3.11 deg b
(2)
1 = 0 and

deg b
(2)
2 = 0. In view of Theorem 3.1 this implies, that W (2) ∈ U ℓ,S

κ2
(jpq).

Conversely, if W (1) ∈ L̃m×m
2 and W (2) ∈ U ℓ,S

κ2
(jpq), then by Theorem 3.1 deg b

(2)
1 =

0 and deg b
(2)
2 = 0. Now the second statement of Lemma 3.11 yields the equality

apr(W (1)) = apr(W ). �

In the case κ2 = 0 the previous statement takes the form.

Corollary 3.13. Let W ∈ Ur
κ(jpq) and let W = W (1)W (2), where W (1) ∈ Ur

κ(jpq),

W (2) ∈ U(jpq). Then the following implication holds:

(3.36) apr(W (1)) = apr(W ) ⇒W (2) ∈ US(jpq).

If in addition, W (1) ∈ L̃m
2 then the converse is also true and thus the following equivalence

holds:

(3.37) apr(W (1)) = apr(W ) ⇐⇒W (2) ∈ US(jpq).
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3.3. A-regular generalized jpq-inner mvf’s. Recall (see [7]), that a mvf W ∈ U(jpq)
is called right A-regular (left A-regular), if for any factorization W = W (1)W (2) with
W (1),W (2) ∈ U(jpq) the assumption W2 ∈ US(jpq) (W

(1) ∈ US(jpq)) implies W (2)(λ) ≡
const (W (1)(λ) ≡ const). The set of right A-regular and left A-regular mvf’s in U(jpq) is
denoted by Ur,R(jpq) and U ℓ,R(jpq).

Definition 3.14. A mvf W ∈ Ur
κ(jpq) is called right A-regular, if for any factorization

(3.38) W =W (1)W (2), W (1) ∈ Ur
κ1
(jpq), W (2) ∈ U ℓ

κ2
(jpq),

with κ1 + κ2 = κ the assumption W (2) ∈ U ℓ,S
κ2

(jpq) implies W (2)(λ) ≡ const.

Similarly, a mvf W ∈ U ℓ
κ(jpq) is called left A-regular, if for any factorization (3.38)

with κ1 + κ2 = κ the assumption W (1) ∈ US
κ1
(jpq) implies W (1)(λ) ≡ const.

In order to prove the next result we will need the following two theorems from [5,
Theorems 4.1 and 4.2] and [3, Theorem 8]. The first theorem was formulated in terms
of the resolvent operator Rα acting in a RKPS K(W ) (W ∈ Uκ(jp,q)) by the formula

(Rαf)(ω) =
f(λ)− f(ω)

λ− ω
, f ∈ K(W ), λ, ω ∈ hW .

Recall, that K(W ) denotes the RKPS with the reproducing kernel KW
ω (λ), see (1.2).

Theorem 3.15. ([5], Theorems 4.1 and 4.2). A RKPS K of Cm-valued vvf ’s holomorphic
on a domain hK with negative index κ ∈ N∪{0} is a K(W ) space for some W ∈ Uκ(jpq),
if and only if the following three conditions hold:

(1) K is invariant with respect to Rα for all α ∈ hK;
(2) for all α, β ∈ hK and f, g ∈ K one of the following equalities holds:

(3.39) [f, g]K+α[Rαf, g]K+β[f,Rβg]K−(1−αβ)[Rαf,Rβg]K=g(β)∗jpqf(α), if Ω+ = D,

(3.40) or [Rαf, g]K−[f,Rβg]K−(α−β)[Rαf,Rβg]K = 2πig(β)∗jpqf(α), if Ω+ = C+;

(3) hK ∩ Ω0 6= ∅.
Recall, that reproducing kernel Hilbert spaces K(W ) were first characterized by

L. de Branges [15] for the case Ω+ = C+, the disc version is due to J. Ball [12]; a
unified version of both that is applicable to Krĕın spaces is presented in [5].

Another theorem gives a generalization of Leech’s criterion for the existence of a
factorization of operator valued functions in terms of the nonnegativity of certain kernel.
We will adapt below Theorem 8 from [3] to our notations.

Theorem 3.16. Suppose W ∈ Uκ(jpq) and W (1) ∈ Uκ1
(jpq), where 0 ≤ κ1 ≤ κ. Put

κ2 = κ− κ1. The following are equivalent:

(i) W (λ) admits a factorization W (λ) =W (1)(λ)W (2)(λ) for some W (2) ∈ Uκ2
(jpq);

(ii) the kernel
W (1)(λ)jpqW

(1)(ω)∗ −W (λ)jpqW (ω)∗

ρω(λ)
has κ2 negative squares.

The following theorem ensures the existence of some specific factorization of the
form (3.2). In this section we present some sufficient conditions for a generalized jpq-inner
mvf W ∈ Ur

κ(jpq) (W ∈ U ℓ
κ(jpq)) to admit such a factorization.

Theorem 3.17. LetW ∈ Ur
κ(jpq), let K(W ) be the RKPS with the kernel KW

ω (λ), defined
by (1.2), let LW := K(W ) ∩ Lm

2 , and let κ1 = ind−(LW ), κ2 = κ− κ1. Assume that

(A1) hW ∩ Ω0 6= ∅;
(A2) The closure LW of LW is nondegenerate in K(W ).

Then the mvf W (λ) admits the factorization (3.2) such that

(i) the RKPS K(W (1)) coincides with LW and is embedded isometrically in K(W );
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(ii) LW (1) = LW and apr(W (1)) = apr(W ).

Proof. Step 1. Verification that the closure LW of LW is a RKPS.
Indeed, LW is a nondegenerate subspace of K(W ) and hence LW is a Pontryagin

space of negative index κ1. Since K(W ) is a RKPS, then the evaluation operator E(λ)
is bounded as an operator acting from K(W ) to C

m. The reproducing kernel for K(W )
is given by

Kω(λ) = E(λ)E(ω)∗.

Let F (λ) be a restriction of E(λ) to LW , [2]. F (λ) is bounded as an operator from LW

to C
m. The reproducing kernel for LW has the form

K
(1)
ω (λ) = F (λ)F (ω)∗.

Step 2. Verification that the RKPS LW is a K(W (1)) space, i.e. its kernel can be
represented as

K
(1)
ω (λ) = K

W (1)

ω (λ) :=
jpq −W (1)(λ)jpqW

(1)(ω)∗

ρω(λ)
,

for some W (1) ∈ Uκ1
(jpq).

Let us check the conditions (1)–(3) of Theorem 3.17 for the RKPS LW . The condition
(1) holds, since LW is Rα invariant for all α ∈ hW , the condition (2) is in force, since the
de Branges identity holds for all f, g ∈ K(W ) and LW ⊂ K(W ). The last condition follows
from (A1). Therefore, the RKPS LW is a K(W (1)) space, for some W (1) ∈ Uκ1

(jpq).

Step 3. Construction of a mvf W (2) ∈ Uκ2
(jpq) such that (3.2) holds.

Let P be the orthogonal projection in K(W ) onto

(3.41) K(W (1)) := LW .

Then
PE(·)E(ω)∗|LW

= F (·)F (ω)∗ (ω ∈ hW ).

Indeed, for all f ∈ K(W (1)) and u ∈ Km one obtains

(3.42)
〈f, P (E(·)E(ω)∗u〉K(W (1)) = 〈f,E(·)E(ω)∗u〉K(W )

= u∗f(ω) = 〈f, F (·)F (ω)∗u〉K(W (1)).

Let the kernel K
(2)
ω (λ) be defined by

K
(2)
ω (λ) = Kω(λ)− K

(1)
ω (λ) (ω, λ ∈ hW ).

The kernel K
(2)
ω (λ) has κ2 = κ− κ1 negative squares. Indeed, for every u, v ∈ Km

〈K(2)
ω (λ)u, v〉 = 〈E(ω)∗u,E(ω)∗v〉K(W ) − 〈F (ω)∗u, F (ω)∗v〉K(W )

= 〈(1− P )E(ω)∗u, (1− P )E(ω)∗v〉K(W ).

Hence one obtains the equality
n∑

j,k=1

〈K(2)
ωj

(ωk)uj , uk〉ξjξk =

n∑

j,k=1

〈(I − P )E(ωj)
∗uj , (I − P )E(ωk)

∗uk〉K(W )ξjξk,

which shows that K
(2)
ω (λ) has κ2 negative squares.

By Theorem 3.16 there is W (2) ∈ Uκ2
(jpq) such that W (λ) =W (1)(λ)W (2)(λ). More-

over, W (2) ∈ Uκ2
(jpq), since both W and W (1) have jpq-unitary nontangential limits a.e.

on Ω0.
Step 4. Verification that W (1) ∈ Ur

κ1
(jpq), ap

r(W (1)) = apr(W ).

The inclusion W (1) ∈ Ur
κ(jpq) is implied by Lemma 3.7. Now it follows from [4,

Theorem 6.14] that

(3.43) K(W ) = K(W (1))[∔]W (1)K(W (2)).
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Equality (3.43) implies the statement (ii). Moreover, it follows from (3.43) that

LW (1) = K(W (1)) ∩ Lm
2 ⊂ K(W ) ∩ Lm

2 = LW .

On the other hand, it follows from (3.41) that

LW (1) = K(W (1)) ∩ Lm
2 = LW ∩ Lm

2 ⊃ LW .

Therefore, LW (1) = LW and hence apr(W (1)) = apr(W ) by Theorem 2.10. This com-
pletes the proof. �

Corollary 3.18. Let, under the assumptions of Theorem 3.17, W ∈ Ur
κ(jpq) ∩ U ℓ

κ(jpq),

and let W (1) ∈ Ur
κ1
(jpq) and W (2) ∈ U ℓ

κ2
(jpq) be the mvf’s determined in Theorem 3.17.

Then

(3.44) W (2) ∈ U ℓ,S
κ2

(jpq).

Proof. Since W ∈ Ur
κ(jpq)∩ U ℓ

κ(jpq) one has W (1) ∈ Ur
κ1
(jpq) and W

(2) ∈ U ℓ
κ2
(jpq). Next

by Theorem 3.17 the following condition holds

(3.45) apr(W (1)) = apr(W ),

and hence by Lemma 3.12 W (2) ∈ U ℓ,S
κ2

(jpq). �

Corollary 3.19. Let, under the assumptions of Theorem 3.17, W ∈ Ur
κ(jpq), let W

(1) ∈
Ur
κ(jpq), W

(2) ∈ U(jpq) be the mvf’s constructed in Theorem 3.17, and let ind−LW = κ.

Then W (2) ∈ U ℓ,S(jpq).

Proof. Since ind−LW = κ the space LW = (K(W ) ∩ Lm
2 ) is nondegenerate, i.e. the

assumption (A2) holds. By Theorem 3.17 there exist mvf’s W (1) ∈ Ur
κ(jpq) and W

(2) ∈
U(jpq), such that W = W (1)W (2) and (3.45) holds. By Corollary 3.13 W (2) ∈ US(jpq).

�

In the next lemma we find some sufficient conditions for a mvf W (λ) to be regular.
Denote by Rm×m the set of rational m×m-mvf’s.

Lemma 3.20. Let, under the assumptions of Theorem 3.17, ind−LW = κ. Then the
following implications hold:

(1) W ∈ Ur,R
κ (jpq) =⇒ LW = K(W );

(2) K(W̃ ) ⊂ Lm×m
2 =⇒W ∈ Ur,R

κ (jpq);

(3) W ∈ L̃m×m
2 ∩Rm×m =⇒W ∈ Ur,R

κ (jpq).

Proof. By Theorem 3.17 and Corollary 3.19 W =W (1)W (2), where W (1) ∈ Ur
κ1
(jpq) and

W (2) ∈ US(jpq).

(1) Let W ∈ Ur,R
κ (jpq) and assume that K(W ) ∩ Lm

2 6= K(W ). Then

(3.46) K(W (1)) = K(W ) ∩ Lm
2 6= K(W ),

and the equalities (3.43) and (3.46) yield K(W (2)) 6= {0}, i.e. W (2) 6≡ const. But this
contradicts the assumption W ∈ UrR

κ (jpq).

(2) Let K(W̃ ) ⊂ Lm×m
2 , and assume that

W =W (3)W (4), where W (3) ∈ Ur
κ1
(jpq), W (4) ∈ U ℓ,S

κ2
(jpq) and κ3 + κ4 = κ.

Then

W̃ = W̃ (4)W̃ (3), where W̃ (3) ∈ Uκ3
(jpq), W̃ (4) ∈ Ur,S

κ4
(jpq).

By Theorem 3.6

(3.47) K(W̃ ) = K(W̃ (4)) + W̃ (4)K(W̃ (3)).
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Since K(W̃ ) ⊂ Lm×m
2 and K(W̃ (4)) ⊂ K(W̃ ) one obtains K(W̃ (4)) = {0} and hence

W (4) ≡ const.
(3) Assume thatW ∈ L̃m×m

2 ∩Rm×m. Then Kωu ∈ Lm
2 for all ω ∈ hW and u ∈ Km and

hence the set LW = K(W )∩Lm
2 is dense in K(W ). In fact, K(W ) is a finite-dimensional

space since W is rational, and hence K(W ) = LW ⊂ Lm×m
2 .

The assumption W ∈ L̃m×m
2 ∩Rm×m implies also W̃ ∈ L̃m×m

2 ∩Rm×m and hence as

above one obtains K(W̃ ) ⊂ Lm×m
2 . Now the statement is implied by (2) �

Remark 3.21. In contrast with the definite case the result of Lemma 3.20 is much
weaker. If κ = 0 then the statements (1) and (3) take the form (see [10, Theorems 5.86,
5.90]):

(1′) W ∈ Ur,R(jpq) ⇐⇒ LW = K(W );

(3′) W ∈ L̃m×m
2 ∩ Ur(jpq) =⇒W ∈ Ur,R(jpq).

In the following theorem a criterion for a rational mvf W ∈ Ur
κ(jpq) to be A-regular is

proved.

Theorem 3.22. Let W ∈ Ur
κ(jpq) be a rational mvf. Then

W ∈ Ur,R
κ (jpq) ⇐⇒ LW = K(W ).

Proof. 1. Verification of the implication LW = K(W ) ⇒W ∈ Ur,R
κ (jpq).

It follows from the assumption LW = K(W ) that W ∈ L̃m×m
2 . Hence by Theorem 3.20

W ∈ Ur,R
κ (jpq).

2. Verification of the implication W ∈ Ur,R
κ (jpq) ⇒ LW = K(W ).

Assume that LW 6= K(W̃ ). Then W has a pole ω0 on Ω0 and hence the space K(W )
contains a vvf f(λ) = v

λ−ω0
, see [4, Theorem 5.2]. A vvf f(λ) is an eigenfunction for

the backward shift operator Rα corresponding to the eigenvalue 1
ω0−α , α ∈ Ω+. Since

K = K(W̃ ) is a RKPS with the kernel K
W̃
ω (λ) by [4, Theorem 6.9], then for every

choice of f, g ∈ K(W̃ ) and every α, β ∈ Ω+ the identity (3.39) holds if Ω+ = D, or the
identity (3.40) holds if Ω+ = C+. Substituting β = α and g = f = v

λ−ω0
in (3.39) if

Ω+ = D (or in (3.40), if Ω+ = C+), one obtains from (3.39) ((3.40), resp.)

(3.48) v∗jpqv = 0.

Consider the mvf’s

Vε(λ) := Im − ε

2
cω0

(λ)vv∗jpq, Wε(λ) := Vε(λ)
−1W̃ (λ), ε > 0.

Then Vε ∈ U(jpq) and K(Vε) = span f (see Example 1), Wε ∈ Uκ′(jpq) for some κ′ ≥ κ,

(3.49) W̃ (λ) = Vε(λ)Wε(λ)

and

(3.50) K(W̃ ) ⊆ K(Vε) + Vε(K(Wε)).

If [f, f ]K ≤ 0 then the following inequality holds

(3.51) [f, f ]K ≤ 0 ≤ [f, f ]K(Vε)

and hence the space K(Vε) is contractively contained in K(W̃ ).
If [f, f ]K > 0, then the inequality (3.51) will be satisfied for ε small enough, cf. [4,

Theorem 5.4], and hence again the inclusion K(Vε) ⊂ K(W̃ ) will be contractive. By
Theorem 3.6 one obtains κ′ = κ and hence Wε ∈ Uκ(jpq). Applying the transform (2.26)
one obtains the factorization

W (λ) = W̃ε(λ)Ṽε(λ),
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where Wε ∈ Ur
κ(jpq), Vε ∈ US(jpq) and Vε 6≡ const. This contradicts the assumption

W ∈ Ur,R
κ (jpq). �

In the case κ = 0 an examples of A-regular jpq-inner mvf’s are provided by BP-factors
of the 1-st and the 2-nd kind. In the indefinite case (κ > 0) these examples can be
slightly modified.

Example 5. By Theorem 3.22 every rational mvf from Ur
1 (jpq), which has no poles on

Ω0, is right A-regular, in particular, the mvf’s Uω(λ) in (2.23) and (2.24) belong to the

class Ur,R
1 (jpq), if v2v

∗
1 6= 0.

In the following example we introduce a rational generalized jpq-inner mvf with poles
on the boundary Ω0, which is not A-regular and does not admit A-regular–A-singular
factorization.

Example 6. Let Ω+ = D and let the mvf W (λ) be defined by (see [4, (7.5)])

W (λ) = (I2 + {bβ,α(λ)− 1}W1,2)(I2 + {bα,β(λ)− 1}jpqW ∗
1,2jpq),

where

W1,2 = u1(u
∗
2jpqu1)

−1u∗2jpq, bα,β(λ) =
λ− α

1− λβ∗ ,

and u1, u2 are vectors in C
2, such that u∗2jpqu1 6= 0. Then for u1 =

[
1
1

]
, u2 =

[
1
−1

]
,

α = 0 ∈ Ω+, β = 1, (notice that β 6∈ Ω+) one obtains

W (λ) =
1

2λ− 2

[
λ2 − 3λ+ 1 λ2 − λ+ 1
λ2 − λ+ 1 λ2 − 3λ+ 1

]
.

The mvf W (λ) has the following properties:

(1) W ∈ Ur
1 (jpq);

(2) W (·) is neither A-singular, nor A-regular;
(3) W (·) does not admit A-regular–A-singular factorization.

Indeed, the kernel

(3.52) K
W
ω (λ) =

jpq −W (λ)jpqW (ω)∗

1− λω
=

1

2(λ− 1)(ω − 1)

[
2− λ− ω λ− ω
−(λ− ω) −(2− λ− ω)

]

has 1 negative square in h+W ; W (λ) is jpq-unitary a.e. on T, hence W ∈ U1(jpq). The
PG-transformation S = PG(W ) of W takes the form

S(λ) =
1

λ2 − 3λ+ 1

[
−2λ(λ− 1) λ2 − λ+ 1

−(λ2 − λ+ 1) 2(λ− 1)

]
.

If λ1 and λ2 are two zeros of the polynomial λ2 − 3λ+ 1, such that λ1 ∈ D and λ2 6∈ D,
then the left KL- factorization of s21(λ) takes the form

s21(λ) = − λ2 − λ+ 1

λ2 − 3λ+ 1
= b−1

ℓ sℓ = srb
−1
r ,

where br(λ) = bℓ(λ) =
λ−λ1

1−λ1λ
and hence s21 ∈ S1 and W ∈ Ur

1 (jpq).

Since the function

bℓs22 =
λ− λ1

1− λ1λ
· 2(λ− 1)

(λ− λ1)(λ− λ2)
=

2(λ− 1)

(1− λ1λ)(λ− λ2)
, λ2 /∈ D.

is outer, the factor b2 in (2.20) is missing, that is b2 = 1. The function

s11br = − 2λ(λ− 1)

λ2 − 3λ+ 1
· λ− λ1

1− λ1λ
= − 2λ(λ− 1)

(λ− λ2)(1− λ1λ)
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has an inner factor b1 = λ. Therefore, the associated pair apr(W ) coincides with {λ, 1}
and by Theorem 3.1 the mvf W (·) is not A-singular.

The RKPS K(W ) and the subspace LW take the form

K(W ) = span

{[
1
1

]
,

1

λ− 1

[
1
−1

]}
, LW = span

{[
1
1

]}
.

By Theorem 3.22 the mvf W (λ) is not A-regular, since LW 6= K(W ).
Notice, that the fact that W (λ) is not right A-regular can be also checked directly.

Indeed, W (λ) admits the factorization

W (λ) =W (1)(λ)U (2)(λ),

where U (2)(λ) is the mvf from Example 3 and

W (1)(λ) =W (λ)(U (2)(λ))−1 =
1

2(1− λ)

[
3λ− 2 −λ(2λ− 1)
λ− 2 −λ(2λ− 3)

]
.

The corresponding reproducing kernel KW (1)

ω (λ) and the RKPS K(W (1)) take the form

K
W (1)

ω (λ) =
−1

2(1− λ)(1− ω)

[
2λω − λ− ω 2λω − 3λ− ω + 2

2λω − λ− 3ω + 2 2λω − 3λ− 3ω + 4

]
,

K(W (1)) = span

{[
1
1

]
,

1

λ− 1

[
1
−1

]}
.

It is easily checked that κ−(K(W (1))) = 1 and hence W (1) ∈ Ur
1 (j11). Since U (2) ∈

US(j11) and U
(2) 6≡ const it shows that W (λ) is not A-regular.

Moreover, the mvf W (λ) does not admit right A-regular–A-singular factorization.
Indeed, if

(3.53) W (λ) =W (3)(λ)W (4)(λ), W (3) ∈ Ur,R
κ3

(j11), W (4) ∈ U ℓ,S
κ4

(j11),

then W (3)(λ) and W (4)(λ) are factors of degree 1, since W is neither right A-regular nor
A-singular mvf. If κ3 = 0 then the mvf W (3) is a BP-factor of the 1-st kind with pole at
∞,

(3.54) W (3)(λ) = I + (λ− 1)vv∗jpq, v∗jpqv = 1,

where v ∈ C
2 is determined by v∗jpqW

(3)(0) = 0.
However, the equation v∗jpqW (0) = 0 has a unique (up to a jpq-unitary factor) solution

v =

[
1
1

]
and this vector does not satisfy the condition v∗jpqv = 1.

In the case κ3 = 1 the mvf W (3) admits the representation (2.23) (see Example 1)

W (3)(λ) = I − (λ− 1)vv∗jpq, where v∗jpqv = −1

and again v ∈ C
2 is determined by v∗jpqW

(3)(0) = 0. But this implies v∗jpqW (0) = 0

and solution v =

[
1
1

]
of the equation v∗jpqW (0) = 0 does not satisfies v∗jpqv = −1.

This proves that the mvf W (λ) does not admit the factorization (3.53).

3.4. Existence of A-regular–A-singular factorizations.

Theorem 3.23. Let W ∈ Ur
κ(jpq)∩U ℓ

κ(jpq)∩Rm×m. Then the following statements are
equivalent:

(1) W admits the factorization

(3.55) W =W (1)W (2), where W (1) ∈ Ur,R
κ1

(jpq) and W (2) ∈ U ℓ,S
κ2

(jpq)

with κ = κ1 + κ2;
(2) LW is a nondegenerate subspace of K(W ).
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Moreover, if (2) is the case then the factors W (1) and W (2) in (3.55) are uniquely deter-
mined up to jpq-unitary factors.

Proof. 1. Verification of implication (2) =⇒ (1). Consider the factorization W =
W (1)W (2), constructed in Theorem 3.17, in which W (1) ∈ Ur

κ1
(jpq) and W

(2) ∈ Uκ2
(jpq).

By Lemma 3.8 W (2) ∈ U ℓ
κ2
(jpq) and by Corollary 3.18 W (2) ∈ U ℓ,S

κ2
(jpq). Since

K(W (1)) = LW = LW ⊂ Lm
2 ,

andW (1) ∈ Rm×m then also W̃ (1) ∈ L̃m×m
2 and in view of Lemma 3.20W (1) ∈ Ur,R

κ1
(jpq).

2. Verification of implication (1) =⇒ (2). Let W admits the factorization (3.55) with
κ = κ1 + κ2. By Theorem 3.6 the following equality holds

(3.56) K(W ) = K(W (1)) +W (1)K(W (2)).

Since W (1) ∈ Ur,R
κ1

(jpq) it has no zeros on Ω0 and hence W (1)K(W (2)) ∩Lm
2 = {0}. This

implies W (1)K(W (2)) ∩ K(W (1)) = {0} and hence by Theorem 3.6 the sum in (3.56) is
orthogonal. Therefore, the subspace LW = K(W ) ∩ Lm

2 = K(W (1)) is nondegenerate in
K(W ).
3. Verification of uniqueness of (3.55). Assume now that W = W (3)W (4) is another
factorization of W , such that W (3) ∈ Ur,R

κ3
(jpq) and W

(4) ∈ US
κ4
(jpq).

Then by Theorem 3.22 LW (3) = K(W (3)). Therefore, K(W (3)) ⊂ Lm
2 and hence

W (3) ⊂ L̃m×m
2 . Applying Lemma 3.11, one obtains the equality

apr(W (3)) = apr(W ).

which implies (K(W (3)) =)LW (3) = LW . Besides, in view of Theorem 3.20

K(W (1)) = LW (1) = LW .

Thus, by [18, Theorem 4.19] W (3) =W (1)V and, hence, W (4) = V −1W (2), where V is a
constant jpq-unitary matrix. �
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23. M. G. Krĕın and H. Langer, Über die verallgemeinerten Resolventen und die characteristische

Function eines isometrischen Operators im Raume Πκ, Hilbert space Operators and Operator
Algebras (Proc. Intern. Conf., Tihany, 1970); Colloq. Math. Soc. Janos Bolyai, vol. 5, North–
Holland, Amsterdam, 1972, pp. 353–399.
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