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ABSTRACT. Let J be an m X m signature matrix, i.e., J = J* = J~ 1. An m xm
mvf (matrix valued function) W () that is meromorphic in the unit disk D is called
J-inner if W(A)JW (X)* < J for every A from h‘tv, the domain of holomorphy of W,
in D, and W(p)JW (u)* = J for ae. p € T = 9D. A J-inner mvf W(A) is called
A-singular if it is outer and it is called right A-regular if it has no non-constant A-
singular right divisors. As was shown by D. Arov [8] every J-inner mvf admits an
essentially unique A-regular—A-singular factorization W = WOW, In the present
paper this factorization result is extended to the class U (J) of right generalized J-
inner mvf’s introduced in [18]. The notion and criterion of A-regularity for right
generalized J-inner mvf’s are presented. The main result of the paper is that we
find a criterion for existence of an A-regular—A-singular factorization for a rational
generalized J-inner mvf.

1. INTRODUCTION

Let Q4 be equal to either D ={\A € C: [\ <1} orCy ={A € C: —i(A—\) > 0}.
Let us set

1-— )\w, lf Q+ = D,
Pu(A) = . _ .
—2mi(A —w), ifQy=Cy,
and let Q_ = {w € C : p,(w) < 0}. Then Qq := 90, is either the unit circle T, if

Q4 =D, or the real axis R, if Q. = C,.
The following basic classes of mvf’s will be used in this paper:
H, (1 <r < o0), the Hardy class with respect to Q;
HP*4_ the class of p x ¢-mvf’s with entries in H,., HP := HP*! (1 <r < o0);
SP*4. the Schur class of contractive and holomorphic on Q4 p x g-mvf’s;

Shid = {s € 8P*1 : sHY = HY} (SE*7), the class of outer (inner, resp.) mvf’s from

8P4,
In this paper we consider a signature matrix J of the following specific form:
) I, 0
(L.1) J = jpg = ,  where p+ g =m.
0 -1,

Definition 1.1. ([4, 18]). An m x m myf (matriz valued function) W (X) that is mero-
morphic in Q4 is said to belong to the class Uy (jpq) of generalized j,q-inner muf’s, if

(i) the kernel
— W()\)quW(w)*
Pu(A)

(1.2) KV (\) = Ira

w
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has k negative squares in h"‘/{, X f)"‘/{,, where h+W denotes the domain of holomorphy
of W in Q4 and
(ii) Jpg — W()jpgW ()" = 0 a.e. on the boundary Qo of Q4.

The class U(jpq) := Up(Jpq) is contained in the class P(jpq) of jpg-contractive mero-
morphic on €4 mvf’s. The class P(j,q) was introduced and studied by M. S. Livsi¢ [25]
in connection with the theory of characteristic functions of quasi-Hermitian operators,
see also [31] for the case of unbounded operators. A complete factorization theory for
mvf’s from the class P(j,q) was developed by V. P. Potapov [28]. Mvf’s from the class
U(jpq) are called jp,-inner. j,,-inner mvf’s appear in [22], [26], [14], [8], [21] as resolvent
matrices of various interpolation problems.

A jpg-inner mvf W () is called A-singular, if W € SJ.S™. A jpe-inner mvf W ()
is called right A-regular, if it has no non-constant A-singular right divisors in the class
U(jpg)- In particular, the resolvent matrix of a bitangential problem belongs to the class
U(jpq) and turns out to be a right A-regular j,q-inner mvf, see [8], [10]. An important
result of [8] claims that an arbitrary j,e-inner mvf W (A) admits an essentially unique
factorization

(1.3) W) =wWHNWE (),

where W) (X) and W) () are right A-regular and A-singular mvf’s, respectively.

The class Uy (Jpq), & € N, and a reproducing kernel Pontryagin space K(W) with the
reproducing kernel KV (\) based on W € U, (j,,) were studied in [4] and [2]. In [27], [14],
[13], [17], [19], [20] mvf’s W € U,.(jpq) appear as resolvent matrices of some indefinite
interpolation problems. In most cases these resolvent matrices belong also to a subclass
U] (jpq) of Tight generalized jpq-inner mvf’s introduced and studied in [18]. The class of
right and left A-singular generalized jp,-inner mvf’s was introduced and characterized
in [30].

In the present paper we introduce the notions of right and left A-reqular generalized
Jpg-inner mvf’s and prove a criterion of A-regularity for rational generalized jpq-inner
mvf’s. The main result of the paper contains a criterion of existence of A-regular—
A-singular factorization (1.3) for a rational generalized j,,-inner mvf. This criterion
is formulated in terms of reproducing kernel Pontryagin spaces (W) associated with
W(A). An example of a right generalized jj,-inner mvf W (\) is given such that W (\)
does not admit an A-regular—A-singular factorization in the class of generalized jyq-inner
mvf’s.

2. PRELIMINARIES

2.1. The generalized Schur class. Let k € Z;. Recall [6] that a Hermitian kernel
Ko(A) @ Q2 x Q — C™*™ is said to have k negative squares, if for every positive integer
n and every choice of w; € Q and u; € C™ (j =1,...,n) the matrix

(ukKa, (@k)1;)T =
has at most x, and for some choice of w; € Q and u; € C™ exactly x negative eigenvalues.
Denote by b, the domain of holomorphy of the mvf s and let us set hF = b, N Q.
Let SI*P denote the generalized Schur class of ¢ x p mvf’s s that are meromorphic in
Q. and for which the kernel

(2.1 Aoy = =)

has k negative squares on h x b} (see [23]). In the case where £ = 0 the class S¢*7
coincides with the Schur class S7*P of contractive mvf’s holomorphic in .
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Let b, (A) be an elementary factor Blaschke

A —w)/(1 - @), ifQ, =D,
(22) bNM:{(A_@NA—@, 0, - C,

and let P be an orthogonal projection in CP. Then the mvf

belongs to the Schur class SP*P and is called an elementary BP (Blaschke—Potapov)
factor and B() is called primary if rank P = 1. The product

B(A) = H B“’j (A)v
j=1

where B, (A) are primary BP-factors is called a Blaschke-Potapov product of degree k.
Every mvf s € SP*P of rank p admits an inner-outer factorization of F. Riesz

(2.3) s =ba = a,b,, where bb, €SP a,a, €SP

out

If b and b, in (2.3) are Blaschke—Potapov products of finite degree, then deg b = deg b..
The notation M¢(s, Q) := deg b will be used for the degree of the factors b and b,.
As was shown in [23] every mvf s € S2*P admits a factorization of the form

(2.4) s(A) = be(N)"tse(N), A ey,
where b, € §7%? is a ¢ X q Blaschke—Potapov product of degree k, s, € S4*P and
(2.5) rank [ be(A) s¢(A) | =¢q (AeQy).

The representation (2.4) is called a left KL (Krein—Langer) factorization. Similarly, every
generalized Schur function s € SI*P admits a right KL-factorization

(2.6) s(A) = s, (\)b.(A\)"' for et
where b, € SP*P is a Blaschke—Potapov product of degree &, s, € S7*P and
(2.7 rank [ b.(A)* s (A)* | =p (AeQy).

The following generalization of the Rouche theorem was presented in [24]. The proof
of this theorem was not complete and was fixed in [20]. Its scalar version was proved
in [1].

Theorem 2.1. (Generalized Rouche Theorem) ([24]). Let o, € HL9, det(p +
Y) £ 0 in Qp, Me(p,Q4) < oo,

(2.8) le(w) " ()| <1 ace. on Q.
Then Mc (¢ + 1, Q4) < M (@, Q) with equality if
(2.9) (¢ +1) pla, € LT

The coprimeness condition (2.5) for a right KL-factorization (2.4) can be reformulated
as follows.

Lemma 2.2. ([18]). A muf s, € S¥*P and a finite Blaschke—Potapov product by € S1*4
meet the rank condition (2.5) if and only if there exists a pair of muf’s ¢, € HIXY and
dy € HZX9 such that

(2.10) be(N)ee(A) + se(N)de(N) =1, for XeQy.



234 VOLODYMYR DERKACH AND OLENA SUKHORUKOVA

2.2. Generalized j,,-inner mvf’s. Let us recall some facts concerning the PG (Pota-
pov-Ginzburg) transform of generalized jp,-inner mvf’s. As is known [4, Theorem 6.8],
for every W € Uy (jipy) the matrix waz () is invertible for all A € b}, except for at most
k point in 4. Thus, the PG-transform S of W (see [2])

—1
wll()\) ’wlz()\) :| |: Ip 0 :|
S(A) = (PGW))(N) :=
) = (o = | e
(A€ b3 Nbyy)
is well defined for those A € by}, for which waa(A) is invertible. As is easily seen, S(\)

belongs to the class S**™ and S(p) is unitary for a.e. p € Qg (see [4], [18]).
The formula (2.11) can be rewritten as

(2.11)

—1 —1
_ | St Si2 | _ |Wil T Wi2Way W21 Wi2Wag
(2.12) S = = 1 it
S21 S22 —Wgo W21 Wag

Since the mvf S(A) has unitary nontangential boundary limits a.e. on €, the pseudo-
continuation of S to {_ can be defined by the formula S(\) = (S#()\))~!, where the
reflection function S#()) is defined by

/X 0 if Qe =D, A#0
# _ o\ * o _ - + ) )
(2.13) S7T(A)=S(A%)*, A { Y i, =C,.
Formulas (2.13) and (2.12) lead to the dual formula for S:
(2.14) g - [wﬁ 0]1 {Ip w;&l] _ { wﬂ# wﬁ#w#l
wly L) L0 wh] o [swhun® wl - wihuFed

on hi N [7?/_[/#' Moreover, s22(A) is invertible for all A € byf,, the PG-transform of S(\)
makes sense, and W = PG(S).
Let

(2.15) T [e] := (w11 (N)e(\) + w2 (X)) (war (N)e(X) + waa (X))~

denote the (right) linear fractional transformation of a mvf ¢ € SPX? (k2 € Z, ) based
on the block decomposition

wu()\) wlg()\)
wgl()\) 'lUQQ()\)

of a mvif W € U, (jpq) with blocks w11 (A) and was(A) of sizes p x p and ¢ x g, respectively.
Let

(2.17) A={Xxebf nhl: det (war(N)e(A) + waz(N)) = 0}.
The transformation 77 [e] is well defined for A € (b, N HT) \ A.

(2.16) W) =

Lemma 2.3. Let W € Uy, (Jipq), € € SEX?. Then Ty [e] € S5 with k' < kg + k1.
2.3. The class U] (jpq)-

Definition 2.4. ([18]). An m x m muf W(X) € U.(jpq) is said to be in the class
U,Z(qu), lf
(2.18) S91 1= 7w2_21w21 e SIxp,

Theorem 2.5. ([18]). Let W € U] (jpq) and let the BP-factors by and b, be defined by
the KL-factorizations of sa1:

(2.19) s91(N) == be(N) " Lse(N) = 5, (N)b,. (M) 7L, N e bt

S217
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where by € ST*9 b, € anXp, 8¢, 8p € ST*P. Then the muf’s bysas and s11b,. are holomor-

m ’

phic in Q. , and hence they admit the following inner-outer and outer-inner factorizations

(2.20) s11by = bray, bysaz = asbs,
where by € SPXP by € ST, a1 € SLIF, ay € ST

The pair {b1,b2} is called the right associated pair of the mvf W € U (j,,) and is
written as {b1,b2} € ap”(W). In the case k = 0 this notion was introduced in [10].

As was shown in [18, Theorem 4.11] for every W € U (jpq) and ¢, and d; as in (2.10)
the mvf

(2.21) K = (—wlldg + ’wlgcg)(—wgldg + wQQCg)_l,
belongs to H2>*9 and admits the representations
(2.22) K = (—wi1de + wizcr)azbs,

where {b1,b2} € ap"(W).
Let us set K#(\) = K(\)*, A € C_. It is clear that K# € HIXP(Q_).

Example 1. A j,,-inner mvf W(\) is called elementary if it has no nontrivial factoriza-
tion in the class of j,q-inner mvf’s. All elementary jp,-inner mvt’s are exhausted by the
set of BP-factors of the following three types (see [22]):

(1) Uy(N) =U(Ip, + (by(N) = 1)P), w € Qy, P=P? and Pj,, > 0;

(2) Us(A) =U(I, + (by(N) = 1)P), weQ_, P=P?and Pj, <0;

(3) Uu(N) =U(Im — cu(ME), w € Ny, E?=0 and Ej,, > 0.
Here U are constant jp,-unitary matrices, b, (\) are elementary Blaschke factors of the
form (2.2) and

o) = (wWH+N)/(w=2N), ifQy =D, weQy,
“VV T 1/ (mi(w — ), if Oy =Cy, we .
If Q; = C, then there exists one more type of BP-factors (of the fourth kind), cor-
responding to w = oo,
Uso(X) = Uexp(iAE).
An elementary BP-factor is said to be primary, if rank P = 1 or rank F = 1. The
preceding three types of primary BP-factors take the form
(1) Us(X\) = UL, + (b (A) — 1)vv*jipg), w € Q4 v € C™ and v* jpv = 1;
(2) Uu(N) =U(Ip, — (b (X) — D)vv*jpg), w € Q_, v € C™ and v*jpv = —1;
(3) Uu(N) =U(Ip, — cu(N)v0*jpq), w € Qy, veC™and v*jv=0.
Notice that by changing sign of v*j,qv in the first two types of primary BP-factors one
obtains generalized j,q-inner mvf’s which belong to the class Ui (jpq),

. w = m — (Ow — Lvv gpe), welly, ve an V JpgV = —1;
2.23) Uy(A) = UL — (bo(N) — 1)vo*jpg Q C™ and v*jp, 1

(2.24) Us(N) =U(Im + (bo(A) —1)vv™jpg), we -, veC™ and v*jyev =1

Moreover, the mvf U, (\) in (2.23) and (2.24) belongs to the class U] (jpq), if the vector
v = col{vy, va} satisfies the condition vav] # 0.

2.4. The class U’(jp,). The following definitions and statements concerning the dual
class U (jpq) are taken from [30].

Definition 2.6. An m x m muf W € Uy (jpq) is said to be in the class U (j,q), if

(225) S12 1= wuw;; S ngq.
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If W € Uy (jpq) and the mvf W is defined by
= W), Q. =D,
2.2 = -
(226) e { W(-X7, 9 =Cs,
then, as was shown [30], the following equivalence holds:
(227) W € Uy (jpg) = W € Uy (jng).
and as a corollary of Theorem 2.5 one can get the following statement.

Theorem 2.7. Let W € U.(j,q) and let the BP-factors by and b, be defined by the
KL-factorizations (2.4), (2.6) of s12,

(2.28) s12(A) = be(A) se(A) = 5. (A)b.(N) 7!, (A ebl),

where by € SPYP, b, € SI*7 54,5, € SPX4. Then

(2.29) 5920, € ST*7  and  bysyy € SPXP.

Definition 2.8. Consider inner-outer factorizations of bysi11 and s22b,

(2.30) bysi1 = a1by,  S99b,. = boao,

where by € SE¥P, by € 8179 ay € SUIF, ag € 815, The pair by, by of inner factors in

the factorizations (2.30) is called the left associated pair of the muf W € UL (jpq) and is
written as {b1, b2} € ap®(W), for short.

The following example shows that the classes U (j,q) and U.(jp,) do not coincide.

. o112 A W 10 0
Example 2. Let Q; =D and W = VAR The kernel K}y (\) = 1 has

0
1 negative square, therefore W € U (j11). The mvf W (A) belongs to the class U] (j11),
since s91 = i € S1. On the other hand W ¢ U{(j11), since s15 = % Z 8.

. = 2 1 . .
Similarly, one has W = % {)\ 2)\] € Uf(ji1) \ Uy (jr1)-

Let W € U, (jpq) be a mvf with the block decomposition (2.16) and let the left linear
fractional transformation T3, be defined by

(2.31) Tivle] = (e(Nwiz(N) + w2 (X)) " (W wir (A) + wa1 (V).
Then the left and the right linear fractional transformations are connected by the equality
(2.32) Ty le] = (T [E)).

The following statement is implied by (2.32) and Lemma 2.3.
Lemma 2.9. Let W € Uy, (jipq), € € SIXP. Then Ty, [e] € ST with £’ < kg + k1.

2.5. Reproducing kernel Pontryagin spaces. In this subsection we review some facts
and notation from [11, 16, 18] on the theory of indefinite inner product spaces for the
convenience of the reader. A linear space K equipped with a sesquilinear form (-,-),. on
K x K is called an indefinite inner product space. A subspace F of K is called positive

(negative) if (f, f) > 0(< 0) for all f € F, f # 0. If the full space K is positive and
complete with respect to the norm || f|| = (f, f>,1</2 then it is a Hilbert space.
An indefinite inner product space (K, (-, -),) is called a Pontryagin space, if it can be

decomposed as the orthogonal sum
(2.33) K=K;ydK_

of a positive subspace K which is a Hilbert space and a negative subspace K_ of finite
dimension. The number ind_/K := dim K _ is referred to as the negative index of K. The
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convergence in a Pontryagin space (I, (-, -),) is meant with respect to the Hilbert space
norm

(2.34) Il* = (ha by dye = (hos b}, h=hi+ho, hy € Ky
It is easily seen that the convergence does not depend on a choice of the decomposi-
tion (2.33).

A Pontryagin space (IC, (-,),) of C™-valued functions defined on a subset Q2 of C is
called a RKPS (reproducing kernel Pontryagin space), if there exists a Hermitian kernel
Ku(A) : 2 x Q@ — C™*™ such that

(1) for every w € Q and every u € C™ the vvf K, (\)u belongs to K;

(2) for every h € K, w € Q and u € C™ the following identity holds:
(2.35) (h, Kou) e = u™ f(w).

It is known (see [29]) that for every Hermitian kernel K, (A) :  x Q@ — C™*™ with a
finite number of negative squares on 2 x €2 there is a unique Pontryagin space K with
reproducing kernel K, ()), and that ind_K = sq_K = k. In the case k = 0 this fact is
due to Aronszajn [6].

W € U,.(jpq), then assumption (ii) in the definition of U, (j,) guarantees that W(\)
is invertible in Q1 except for an isolated set of points. Define W in Q2_ by the formula
(2.36)

W) = GpgWH(N) Vpg = GpgW(A) "G if A€ b, and  det W(A°) # 0.

Since W is of bounded type, the nontangential limits
Wi(p)=Zlim{WA): X e Qy}
A=

exist a.e. on Qp; and assumption (ii) in the definition of U, (j,,) implies that the non-
tangential limits Wy (u) and W_(u) coincide a.e. in Qg, that is, W in Q_ is a pseudo-
meromorphic extension of W in Q. If W (\) is rational this extension is meromorphic
on C. The symbol by will be used to denote the domain of holomorphy of W in C.
Formula (2.36) implies that W (\) is holomorphic and invertible in

(2.37) Qw = bw Nbhy=.

Let W € Uy (jipg) and let (W) be the RKPS associated with the kernel KV ()). The
kernel KV () extended to Qy by the equality (2.36) has the same number & of negative
squares [2, Theorem 2.5.2].

In the case where W belongs to the subclass U] (j,,) the subspaces
(2.38) Ly =KW)NHY, Ly :=KW)nHP, Lw:=KW)nLy
can be characterized by the following.

Theorem 2.10 ([18, Theorem 4.19]). Let W € UL (jpq), {b1,b2} € ap” (W), let K be
defined by (2.22), let

(2.39) H(b1) = Hy' © b HY',  H.(ba) = (HS")" ©b5(HS)",
and let
I f S Hg — PH(bl)Kf7 Ty f S H*(bg) — P(Hg)J_Kf
Then
+ _ uy o,
(2.40) L, = { {Fi‘lul] fup € H(bl)},

(2.41) Ly = { F“’;ﬂ g € ’H*(bg)} ,
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(2.42) Lw = L A+Ly
3. A-REGULAR AND A-SINGULAR GENERALIZED j,,-INNER MVF’S

3.1. A-singular generalized j,.-inner mvf. Let us recall the notations (see [10]):
N ={f=h""g:g€ HEZ Q). h € Spu ()},
Nowt ={f=h""g:ge Spu' he Sy}

A mvEf W € Uy, (jpq) is called A-singular, if it is an outer mvf (see [7, 30]). The set of
A-singular mvf’s in U, (j,,) is denoted by U (j,q)-
We will be also using the following subclasses of the class U2 (jpq):
Up® (pg) = U (pg) DN ™ UL (pg) 7= Uy (Gpg) N NG ™.

In the case £ = 0 the class U (jpy) = U5 (jpq) was introduced and characterized
in terms of associated pairs by D. Arov in [9]. For k # 0 a definition of A-singular
generalized j,q,-inner mvf and its characterization in terms of associated pairs was given
in [30].

Theorem 3.1 ([30]). Let W € UL(jpq) and {b1,b2} € ap”(W). Then
(1) W e U] (jpq) NNy if and only if by = const;
(2) W € UL (jpg) NN if and only if by = const;
(3) W € U5 (jipg) if and only if by = const and by = const.

If W e Uy (jpq) and the mvf W is defined by (2.26) than as follows from (2.27)
(3.1) W € Uy (jipg) <= W € U5 (jpg)-

As a corollary of Theorem 3.1 one get a similar characterization of the class U (jpq)-

Corollary 3.2 ([30]). Let W € U(jpq) and {b1,b2} € ap®(W). Then
(1) W € U-(jpg) N Ny if and only if by = const;
(2) W € U (jpg) NN_ if and only if by = const;
(3) W € U55(jpy) if and only if by = const and by = const.

Next we will present a characterization of A-singular mvf’s W in terms of reproducing
kernel spaces (W) and its subspaces £, (W) and £_ (W) and Ly, introduced in (2.38).
Theorem 3.3. Let W € U}, (jpg), {b1,b2} € ap”(W). Then

(1) W e U (jpg) NN if and only if Ly, = {0};
(2) W € U~ (jpg) NN if and only if L3, = {0};
(3) W e U3 (jpq) if and only if Ly = {0}.
Proof. Assume that W € U (j,,) NN4. Then by Theorem 3.1 (1) by = const. Therefore,
Ha(bo) = (HF)+ © b3(H)L = {0} and by Theorem 2.10 one obtains
Ly, ={0}.
Conversely, if £;;, = {0} then by formula (2.41)

] e ) = 0,

and hence M, (b2) = {0}. Therefore, by = const, and, consequently, W € U (jpq) NN
Similarly, the equivalence (2) is implied by Theorem 3.1 (1) and (2.40), and the equi-
valence (3) is implied by (1), (2) and (2.42). O
Corollary 3.4. Let W € U’ (jpq). Then
(1) W € Ug(jpg) N N5 if and only if LT = {0};
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(2) W € Ug(jpg) NN= if and only if L = {0};
(3) W € UL (jing) if and only if Ly = {0}.

Proof. Since W € U (jpq), then W e U (jpq), and by Theorem 3.3 it is possible if
and only if Ly = {0}. O

Remark 3.5. In the case k = 0 descriptions of linear manifolds Eﬁ,, Ly in the form of
(2.40) and a criterion of A-singularity of mvf W € U, (jpq) in terms of Ly was presented
in [9].

3.2. Factorization of generalized j,,-inner mvf’s and associated pairs. If W ¢
U(jpq) admits a representation W = WOW ) with W W € U(j,,) and {by, b2} €
ap(W) and {bgl)7 bgl)} € ap(WW) then bgl) is a left divisor of b, and bgl) is a right divisor
of ba, see [8], [10, Lemma 4.28]. In this section an analog of this statement is proved for

right and left generalized j,,-inner mvf’s. Relations between RKPS’s corresponding to
W, W) and W) are presented in the following theorem.

Theorem 3.6 ([2, Theorem 4.11]). Let a mvf W () admit a factorization

(3.2) W=wOW WO el (jpg), WP € U, (py)-
Then W € Uy (jipq) with & < k1 + ko and
(3.3) KWw) c KwW) + whmwe),

where (W), IC(W(I)) and K(W®)) are RKPS’s with reproducing kernels K ()),
KWO) A) and KW (M), respectively. The following conditions are equivalent:

(
(1) k= m + K2,
(2) K(WW) is contained contractively in K(W),
(3) KWWY nWOK(W®R) is a Hilbert subspace of K(W),
and in this case the equality in (3.3) prevails. Moreover, K(W(M)) sits isometrically in
KW) if and only if K(WD) N WOKWR) = {0} and in this case the decomposi-
tion (3.3) becomes orthogonal

(3.4) KW = K(WO)[HW DKW @),
The importance of the condition (1) in Theorem 3.6 is illustrated by the following
Example 3. Let Q, =D and let mvf’s UM (\) and U®)()\) be given by

L 1 3—X —A-—1 ) 1 1—-3\ A+1
VO = [h 1ea)s PNy Lo 8]
Then
1) -1 1 1 ) 1 1 1
KC <A>=(1_A><1_@>L 1}, Ko “):a—m—mL 1]'

Therefore, UM e U{"S(ju), U® € U(j11) and

1-X |1

But U(\) = UD AU () = I and hence K(U) = {0} # KOD) + UDKUP). In
this example all the assumptions of Theorem 3.6 hold except of (1).

KUYy = KU = U<1>/C(U<2>)—span{ ! H}

Lemma 3.7. Let a muf W € U] (jpq) admit a factorization (3.2), where k1 + ko = K.
Then

(1) WO €U, (jpg)-
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(ii) For {b1,b2} € ap"(W) and {b(ll), bél)} € ap”" (W) one has
(3.5) 01 := (V)"0 € ST, Gy = by(bSV) Tt € ST
Proof. The proof is divided into steps.
1. Verification of (i): Let the mvf’s W, W) and their PG-transforms S, S®) (k = 1,2)
defined by (2.11) have the block matrix representations:
(3.6)
k k
W= (i, WO =@i)im S=()im, S%= ()0 k=12,

©j ij
corresponding to the decomposition (1.1) of j,a. It follows from the equality W =
WOW®) that

2 2 1
(3.7) W21 = w21 w%l) + w£2)wgl)7 Wa2 = wél)wEQ) éz)wéz)

Since W € U7 (jpq) and W) € Uy, (jpq), then the matrices waz()\) (see Section 2.2) and

wéQ)(/\) are invertible for every A € (bf;, Nb,,)) except a finite number of points and

(3.8) 91 = —Woy woy € STXP séll) = —(wé?)_lwéll) € SUP with ' < k.
It follows from (3.7) that
w221w21 _ (wé )w£2) er(l) (2))7 (w$ (1) (2) +w(1) (2))

= (- 1, (2) (2)) (- (1) (2) (2))

891’ Wiy + Wagy S91' Wiy + Wy

(3.9)

Since W® € U,, (jpq), then by Lemma 2.9

(3.10) Wy wor = Tl e2) [—sV] e S4NP. where £ < K+ ko.
On the other hand wy, wa; € S9*P by the assumption W € U (jp,). Comparing the
equality x = k" with (3.10) one obtains

k=kK'<K +ky<ki+ky=kr
()

and hence k" = K, k' = k1. Therefore, s,

ulzl (jPQ)‘
2. Verification of (i): Let IK(W) and K(W W) (4 = 1,2) be reproducing kernel spaces
with the kernels (1.2) and

€ SExP. This proves the inclusion w e

o Gog — WO N jpa WD (w)*
KU () = e =Bl ),

It follows from Theorem 3.6 that
KW)nHP > KWWY nHY, KW)n(HP)* > KWD)n (HP)* .
Using the formulas for (W) N HY* and K(W) N (H3*)*+ from Theorem 2.10 one obtains
(3.11) H(b1) D HOY),  Ha(bo) D H().
The inclusions (3.11) are equivalent to the relations (3.5). O
As shows the following example the assumption W € U], (jpq) in Lemma 3.7 is essential.

Example 4. Let Q2 =D. Consider the mvf’s

1 [2 A . A0

3 {1 2)\} €U (jun), W) = {0 A] € Uy (j1) \ Ui (),
and let W(X\) = WO (X)W (X) be the product of these mvf’s

1[2a a2

VAL HE

W(l)()\)

W) =WONWE () =
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co=fp 42 3

has 2 negative square, therefore, W € Us(j11). However, W & U5 (j11), since sa1 = —i €
Si1. This shows that the converse statement to Lemma 3.7 (i) is not true.

The kernel

The next statement is a dual version of Lemma 3.7.

Lemma 3.8. Let W € U.(jp,) admit the factorization (3.2), where k1 + ko = k. Then
(1) W e U, (jpa)-
(ii) For {b1,bo} € ap®(W) and {b§2), béz)} c ap’(W®) one has
(3.12) Oy == by (b))t €SP 9,y = (6)) 1y € ST
Proof. f W € UL (jpq) and {b1,ba} € ap’(W), then as was shown in [30, Proposition 3.7
and Theorem 3.8] {b1, ba} € ap” (W) and W € U] (jpq) by (2.27). Due to Lemma 3.7 W =
WEAWW where W3 € UL (jpq). Applying again (2.27) one obtains the statement (i).
Next, if {ng), béQ)} € ap’(W®?), then {552),Eé2)} € ap"(W®) and by Lemma 3.7
(3.13) (6) by € SEP, ba(bs”)) ! € I
These inclusions are equivalent to (3.12). O
Corollary 3.9. Let W € UL(jpq) admit the factorization (3.2), with k1 = Kk, kg = 0.

Then WO € U (Gog) and if {b1,bo} € ap”(W) and {bV, 65V} € ap” (WD), then (3.5)
holds.

Corollary 3.10. Let W € U.(jp,) admit the factorization (3.2), with k1 = 0, ky = K.
Then W2 € UL (jpq) and if {b1, b2} € ap® (W) and {6\, 65"} € ap?(W®), then (3.12)
holds.

Lemma 3.11. Let W € U] (jpq) admit the factorization (3.2), where
WO Uy, (o), WO €UL(Gpg): 5= k1 + ha,
and let {by, by} € ap” (W), {b{", bV} € apr (WD), (6?65} € ap!(W®)). Then

(3.14) deg by > deg bgl) + deg ng), deg bo > deg bgl) + deg ng).
If, in addition, W) E’Q” then the following equalities hold:
(3.15) deg by = deg b\ + deg b1?),  deg by = deg b + deg b2

Proof. 1. Two formulas for the blocks si11 and saa of the PG-transform S of the muf W
will be established. Let the mvf’s W, W) and their PG-transforms S, S*) (k = 1,2)
defined by (2.11) have the block matrix representations (3.6). Using the equality

(3.16) wi = wiwiy +wiws

one obtains from (2.14) that the following equalities are valid on h; N b;rv#:
s =i = () + @) E)*)
(.17 = i) (5 + @) ) @) ) #) T @iy
000, ~ el
Similarly, it follows from (3.7) and (2.12) that

1 1) _(2), (2
(3.18) Wag = wéz) (g — 3&1)552))'“’&2)7
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(3.19) Sog = w22 = 522 (I — s(l)sg})*lsg?.

2. Further factorizations in (3.17) and (3.19) is given in terms of associated pairs of W,
WO and W@,
Since W € UL (jpq), W € UL, (pq) and WP € UL (jpy), then

1 2
so1 € 8P, s e 5T s € gpxa,

Let by, b, by) b(l) bf) and 59) be inner factors determined by the KL-factorizations
of mvf’s so1, sgll), 5(122)
So1 = bZISg = s,b;l,

1 1)\ — 1 _
shi = (b)) Lsg? = s (p{D)

2 2\—1 (2 _

8(12) (hg )) 15§ ) :57«(552)) 1

Then as follows from [18, Theorem 4.6] (see (2.20)) and [30, Theorem 3.8]
besaz, bg )3é12) 5522)[’52) € ST 511y, 811 b(l) [342)8 2) ¢ gpxp,

Consider inner-outer (and outer-inner, resp.) factorizations for these mvf’s

(3.20) 5110, = bra1, bes22 = azbo,

(3.21) sib0 = b{Mal, sty = Vb,

(3.22) bPs® = o@p®  Dp® — (D@,

g};xege by, BV, 602 € 527 by bV 82 € 9979 ay oV 0P € S ay, alV), al? €
%4,

Multiplying (3.17) by b, from the right and using (3.20)—(3.22) one obtains
- brag = 3511)( (b(2)) 1 (2) (1)(651))’1)’18521)%
=MV (01 — 5 sy~ 1aPpPp,.

Similarly, multiplying (3.19) by b, from the left and using (3.20)—(3.22), one obtains

-1
azby = besty (I, — (0) 71y s (02) ) 1B s bt

(3:24) ) () ;1) (1) 1), (1)
= b6 al? (b6 — 5Vs(2) 14 pD.

3. Verification of (3.14): Let 61, 03 be mvf’s defined by (3.5). Then it follows from (3.23)
and (3.24) that

329 s = 0 — o),
(3.26) (061 — 5P s (@) 1011 = afP b,

By the generalized Rouche Theorem (Theorem 2.1)

(3.27) MC( bg) (2)59),94_) <k

On the other hand,

(3.28) M (@P6?b,,0,) = degb, + degb'? = & + deg b'?.

Now (3.27), (3.28) imply the inequality
(3.29) k + deg bf) < k+deg = k + degb; — deg bgl)
which coincides with the first inequality in (3.14).
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Similarly, it follows from (3.24) that
(3.30) az02(aS) 1 (6 6® — Vs = b,bP 0.

When comparing zero multiplicities of both parts of (3.30) and applying Theorem 2.1

one obtains
1) degbs? + K = Mc(beb$as?, Q1) = Mc(02(a”) 71 (0502 — siVs(?), 0y )
. < Kk + degbs —degbgl),

which coincides with the second inequality in (3.14).
4. Verification of (3.15): By [18, Lemma 4.22] the assumption W) € LI"*™ implies

I, — esi) 1 e IP*P and (I, — s{Ve)~l e LP*P
for all € € SP*4. Hence, by generalized Rouche Theorem (Theorem 2.1) one obtains
(3.32) M (b0 = 575,01 ) = Mc (b 6P — 552, Q) = k.

Therefore, the inequalities (3.29), and (3.31) will transform into equalities (3.15). O

Lemma 3.12. Let W € U (jpqg)and let W = WOW ) where WD € UL (jpq), WP €
L{£2 (Jpg) and k = k1 + Kka. Then the following implication holds:

(3.33) ap" (W) = ap™(W) = W e U5 ().

If, in addition, W) e Jjgl then the converse is also true and thus the following equiva-
lence holds

(3.34) ap” (W) = ap"(W) <= W& € UL (jipq)-
Proof. Assume that ap” (W) = ap” (W), i.e.
(3.35) by =bV6;, by = 0,5

for some constant unitary matrices 61 603. Then, by Lemma 3.11 deg bf) = 0 and
deg bgz) = 0. In view of Theorem 3.1 this implies, that W) € 155 (j,q).
Conversely, if W € L™ and W € U455 (j,q), then by Theorem 3.1 deg b{? =

0 and deg [152) = 0. Now the second statement of Lemma 3.11 yields the equality
ap” (W) = ap”(W). O

In the case ko = 0 the previous statement takes the form.

Corollary 3.13. Let W € U (jpg) and let W = WOWE)  where W € U (5,,),
W@ € U(jp,). Then the following implication holds:

(3.36) ap”" (W) = ap”(W) = WP e U5 (j,,).

If in addition, W) € E;” then the converse is also true and thus the following equivalence
holds:

(3.37) ap" (W) = ap™(W) <= WP c U5(j,,).
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3.3. A-regular generalized j,,-inner mvf’s. Recall (see [7]), that a mvf W € U(j,q)
is called right A-regular (left A-regular), if for any factorization W = WOWE with
WM W € U(jp,) the assumption Wa € U5 (jpg) (WD € U (j,q)) implies W (N) =
const (WM () = const). The set of right A-regular and left A-regular mvf’s in U(j,,) is
denoted by U™ (j,q) and U (jq).

Definition 3.14. A muf W € U (jpq) is called right A-regular, if for any factorization
(3.38) W=wWOWE WO el (o), W €Ul (jpa),

with k1 + ke = K the assumption W) € ULS (Jpg) implies W@ ()\) = const.
Similarly, a muf W € U (jpq) is called left A-regular, if for any factorization (3.38)
with k1 + Ky = K the assumption W € US (j,q) implies WV (X) = const.

In order to prove the next result we will need the following two theorems from [5,
Theorems 4.1 and 4.2] and [3, Theorem 8]. The first theorem was formulated in terms
of the resolvent operator R, acting in a RKPS (W) (W € U, (jp,q)) by the formula

_ ) = f(w)
(Rof)(w) = LA
Recall, that (W) denotes the RKPS with the reproducing kernel K¥V (), see (1.2).
Theorem 3.15. ([5], Theorems 4.1 and 4.2). A RKPS K of C™-valued vvf’s holomorphic

on a domain b with negative index k € NU{0} is a K(W) space for some W € Uy (Jpq),
if and only if the following three conditions hold:

FeEKW), Awe by.

(1) K is invariant with respect to R, for all a € hyc;
(2) for all o, B € b and f,g € K one of the following equalities holds:

(339) [fa g]/Cm[Rozfa g]lC+B[fa Rﬁg}le(lfo‘B) [Raf7 Rﬁg]’c :g(ﬂ)*quf(a)7 if Q+ = Da

(3.40) or [Rof,glk—[f Rpglc—(a—=B)[Raf, Rpglc = 2mig(B) jpef(a), if Q4 =Cy;
(3) b N Qo # 0.

Recall, that reproducing kernel Hilbert spaces K(W) were first characterized by
L. de Branges [15] for the case Q; = C,, the disc version is due to J. Ball [12]; a
unified version of both that is applicable to Krein spaces is presented in [5].

Another theorem gives a generalization of Leech’s criterion for the existence of a
factorization of operator valued functions in terms of the nonnegativity of certain kernel.
We will adapt below Theorem 8 from [3] to our notations.

Theorem 3.16. Suppose W € Uy (jp,) and WO € Uy, (jpq), where 0 < ky < k. Put
Ko = k — K1. The following are equivalent:

(i) W(X) admits a factorization W (X) = WO (NWR(N) for some WP € Uy, (jpq);
W(l)(/\)quw(l)(w)* = WA jpgW (w)*
Puw(N)

The following theorem ensures the existence of some specific factorization of the

form (3.2). In this section we present some sufficient conditions for a generalized jjq-inner
mvf W € U (jpg) (W € U (jpq)) to admit such a factorization.

Theorem 3.17. Let W € UL (jpq), let K(W) be the RKPS with the kernel K (X), defined
by (1.2), let Ly := K(W)N LY, and let k1 = ind_(Lw), k2 = Kk — k1. Assume that
(A1) bw NQo #0;
(A2) The closure Ly of Ly is nondegenerate in K(W).
Then the muf W () admits the factorization (3.2) such that
(i) the RKPS K(WW) coincides with Ly and is embedded isometrically in K(W);

(i) the kernel has ko megative squares.
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(i) Lya) = Lw and ap” (WD) = ap™(W).

Proof. Step 1. Verification that the closure Ly of Lw is a RKPS.

Indeed, Ly is a nondegenerate subspace of (W) and hence Ly is a Pontryagin
space of negative index k1. Since (W) is a RKPS, then the evaluation operator E(\)
is bounded as an operator acting from (W) to C™. The reproducing kernel for (W)
is given by

Ko(A) = E(N)E(w)™.
Let F()\) be a restriction of E()\) to Ly, [2]. F(\) is bounded as an operator from Ly,
to C™. The reproducing kernel for £y has the form

KI () = F)F(w)".

Step 2. Verification that the RKPS Ly is a K(W®) space, i.e. its kernel can be
represented as
K () = KW(I)(A) . Jpa WD (N)jipg W (w)*
N “ ’ Pu(A) ’

for some W) € Uy, (jpq)-

Let us check the conditions (1)—(3) of Theorem 3.17 for the RKPS Ly,. The condition
(1) holds, since Ly is R, invariant for all a € hyy, the condition (2) is in force, since the
de Branges identity holds for all f,g € K(W) and Ly, C K(W). The last condition follows
from (A1). Therefore, the RKPS Ly is a K(W 1)) space, for some W) € Uy, (jpq)-

Step 3. Construction of a muf W® € Uy, (jpq) such that (3.2) holds.

Let P be the orthogonal projection in (W) onto

(3.41) KWWy =Ly

Then

PE()EW) |z = FOFW)* (@ € by).
Indeed, for all f € K(W™) and v € K™ one obtains
(3.42) (f, P(EC)E(W) u)cwary = (f, EC)E(w) u)cw)
=u" f(w) = <f>F(')F(W)*u>IC(W(1>)'
Let the kernel K ()) be defined by

KN = Ku(W) =K (@, A € bw).
The kernel Kg)()\) has ko = kK — k1 negative squares. Indeed, for every u,v € K™

(KD (N, 0) = (E(@)"u, Bw@) vheaw) — (Fw) u, Fw) o))
= (1= P)Ew)"u, (1 = P)E(w)*v)cw)-

Hence one obtains the equality

Z (K (wr)ug, un)&58k = > (I = PYE(wy) uy, (I = P)E(wr) wr) w5,
Jk=1 j,k=1

which shows that Kg)(/\) has kg negative squares.

By Theorem 3.16 there is W®) € U,, (jip,) such that W(\) = WO (M)W (X). More-
over, W) € U,, (jpq), since both W and W) have j,,-unitary nontangential limits a.e.
on Qo.

Step 4. Verification that W) e UL (Jpq) ap” (W) = ap™(W).

The inclusion W) € U’ (j,,) is implied by Lemma 3.7. Now it follows from [4,
Theorem 6.14] that

(3.43) KW) = K(WO)[HW DKW ),
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Equality (3.43) implies the statement (ii). Moreover, it follows from (3.43) that
Ly =KW)NLE c KW)NLY = L.
On the other hand, it follows from (3.41) that
Loy =KWI)YNLP =Lw NLY D Ly
Therefore, L,y = Ly and hence ap” (W) = ap” (W) by Theorem 2.10. This com-
pletes the proof. |

Corollary 3.18. Let, under the assumptions of Theorem 3.17, W € U" (jpq) NUE (Gpq)s
and let WO € UL (jpq) and WP € UL (jpq) be the muf’s determined in Theorem 3.17.
Then

(3.44) W € U5 (Gpg)-

Proof. Since W € UL (jpq) NUL(jpq) one has W € UL (j,q) and WP € UL (jq). Next
by Theorem 3.17 the following condition holds

(3.45) ap” (W) = ap” (W),

and hence by Lemma 3.12 W) € U%5(j,,). O

Corollary 3.19. Let, under the assumptions of Theorem 3.17, W € U}, (jipq), let w e
U (Gpg)s WP € U(jpg) be the muf’s constructed in Theorem 3.17, and let ind_ Ly = k.
Then W@ € U5 (jp,).

Proof. Since ind_Ly = & the space Ly = (K(W)N L) is nondegenerate, i.e. the
assumption (A2) holds. By Theorem 3.17 there exist mvf’s W) € U7 (j,,) and W) ¢
U(jpq), such that W = WOHW ) and (3.45) holds. By Corollary 3.13 W) € U5 (j,,).

|

In the next lemma we find some sufficient conditions for a mvf W () to be regular.
Denote by R™*™ the set of rational m x m-mvf’s.

Lemma 3.20. Let, under the assumptions of Theorem 3.17, ind_Lyw = k. Then the
following implications hold:

(1) WSZ/{::’R(qu) = Lw = KW);

(2) K(W) C Ly ™ = W € U (jpg);

(3) W e LP*™ NR™™ = W € UL (jipg).

Proof. By Theorem 3.17 and Corollary 3.19 W = WMW®) | where W) e Uy (jpq) and
W@ € U5 ().

(1) Let W € U%E(jp,) and assume that (W) N Ly £ K(W). Then
(3.46) KWWy = K(W)N Ly # K(W),

and the equalities (3.43) and (3.46) yield (W) # {0}, i.e. W) # const. But this
contradicts the assumption W € UL (jp,).

(2) Let (W) C L™, and assume that
W=wWOWW  where WO €Ul (jog), W cU¥(jpg) and w3+ ka = k.

Then . . .
W=WOWE  where WO €U, (Gpg), WP €U (Gpg)-
By Theorem 3.6

(3.47) KW) = KWWy + WO e),
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Since (W) C L™ and K(W®W) c K(W) one obtains K(W®) = {0} and hence
W® = const.

(3) Assume that W € LI*™AR™*™_ Then K,u € LT for allw € hyy and u € K™ and
hence the set Ly = K(W) N LY is dense in IO(W). In fact, (W) is a finite-dimensional
space since W is rational, and hence K(W) = Ly C Ly"*™.

The assumption W € L7 0 R™*™ implies also W € LI**™ 1 R™*™ and hence as
above one obtains IC(W) C L™, Now the statement is implied by (2) O

Remark 3.21. In contrast with the definite case the result of Lemma 3.20 is much
weaker. If Kk = 0 then the statements (1) and (3) take the form (see [10, Theorems 5.86,
5.90]):

(1) We uT’R(qu) = Ly = K(W);

(3) W€ L5 NU (jug) = W € UM (jyg).

In the following theorem a criterion for a rational mvf W € U], (jpq) to be A-regular is
proved.

Theorem 3.22. Let W € UL (jpq) be a rational muf. Then
W e U (j,og) = Lw = K(W).

Proof. 1. Verification of the implication Ly = K(W) = W € U-E ().

It follows from the assumption Ly = K(W) that W € LJ"*™. Hence by Theorem 3.20
W € U (jpg)-

2. Verification of the implication W € UL (jp,) = L = K(W).

Assume that Ly # IC(W) Then W has a pole wy on £y and hence the space K(W)
contains a vvf f(A) = 55, see [4, Theorem 5.2]. A vvf f()) is an eigenfunction for
the backward shift operator R, corresponding to the eigenvalue Uo%oﬂ a € Q4. Since
K = IC(W) is a RKPS with the kernel KWW()\) by [4, Theorem 6.9], then for every
choice of f,g € K(W) and every o, 3 € Q) the identity (3.39) holds if Q, = D, or the
identity (3.40) holds if Q2 = C4. Substituting 8 = a and g = f = ;5 in (3.39) if

Q4 =D (or in (3.40), if Q4 = C,), one obtains from (3.39) ((3.40), res);\)._)w
(3.48) v jipgv = 0.
Consider the mvf’s
Ve 5= I = Sy V0w pg, W) = V-) W), &> 0.

Then V. € U(jpq) and K(V.) = span f (see Example 1), W, € Uy (jpq) for some &' > &,
(3.49) W) = V(W)
and
(3.50) K(W) C K(Ve) + Ve (K(W2)).

If [f, flc <0 then the following inequality holds
(3.51) s fle <0< [f, fleovy

and hence the space K (VL) is contractively contained in /C(W)

If [f, flc > 0, then the inequality (3.51) will be satisfied for & small enough, cf. [4,
Theorem 5.4], and hence again the inclusion K(V.) C (W) will be contractive. By
Theorem 3.6 one obtains £’ = x and hence W, € U,.(jpq). Applying the transform (2.26)
one obtains the factorization

W(A) = We(MVE(N),
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where W. € U (jpq), Ve € U%(jpy) and V. # const. This contradicts the assumption
W € U (jpg)- U

In the case x = 0 an examples of A-regular j,q-inner mvf’s are provided by BP-factors
of the 1-st and the 2-nd kind. In the indefinite case (x > 0) these examples can be
slightly modified.

Example 5. By Theorem 3.22 every rational mvf from U (j,q), which has no poles on

0o, is right A-regular, in particular, the mvf’s U, ()) in (2.23) and (2.24) belong to the
rRy . . «

class Uy (Jpq), if vavt # 0.

In the following example we introduce a rational generalized jp4-inner mvf with poles
on the boundary g, which is not A-regular and does not admit A-regular—A-singular
factorization.

Example 6. Let Q. =D and let the mvf W (\) be defined by (see [4, (7.5)])
W(A) = (2 +{bg,a(A) = 1}W12) (L2 + {ba,53(A) = 1}7pg W1 20ipq)

where
A—«

* —1, %
Wio = ui1(uajpqu1) ™ Usjpgs  ba,p(A) = W’

and w1, us are vectors in C2, such that u3jpgu1 7 0. Then for u; = [1] , Uy = [ 1 },
a=0€eQ,, 8=1, (notice that 8 & Q) one obtains

1 A2 —32+1 )\2—)\+1}

W)= 3 A2 —at1 A2 —3a+1

The mvf W(A) has the following properties:
(1) W e U (pq);
(2) W(-) is neither A-singular, nor A-regular;
(3) W(-) does not admit A-regular—A-singular factorization.
Indeed, the kernel

— Jpg — W()\)quW(w)* — 1
(3.52) KW (\) = 1= \& T 20-D@-1) [

2-A-w A—w
—-A—w) -2-X2-D)

has 1 negative square in byj,;; W()) is jpe-unitary a.e. on T, hence W € Ui (jpq). The
PG-transformation S = PG(W) of W takes the form
) = 1 —22X(A—=1) M —-X+1
T30 +1 -2 =X+ 200—1) |°
If A\; and Ay are two zeros of the polynomial A\?> — 3\ + 1, such that A\; € D and X\, ¢ D,
then the left KL- factorization of sa1(\) takes the form

S(

AN —A+1 4 .
s21(\) = ISV e b, sy = s:b. ",
where b,.(A\) = bp(N) = 1)‘:%1)\ and hence sg1 € S1 and W € U (jpq)-
Since the function
A=A 200 —1 200 —1
brsas = L. ( ) = ( ) A2 ¢ D.

I—=XA A=A =X2)  (1=XNA=X)’
is outer, the factor by in (2.20) is missing, that is by = 1. The function
AN—1) A=\ 2A(\ — 1)

by = — AT )
S X231 1-MA (A=)l —nN)
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has an inner factor by = A. Therefore, the associated pair ap” (W) coincides with {\, 1}
and by Theorem 3.1 the mvf W(-) is not A-singular.
The RKPS K(W) and the subspace Ly take the form

- [] 515 [} =[]}

By Theorem 3.22 the mvf W () is not A-regular, since Ly # IKC(W).
Notice, that the fact that W (X) is not right A-regular can be also checked directly.
Indeed, W(A) admits the factorization

W) = WO,
where U)()\) is the mvf from Example 3 and

W(l)()\) = W(/\)(U@)(/\))*l _ 1 {3)\ -2 =22x- 1)} .

20— N [A—2 —A(2\-3)
The corresponding reproducing kernel KX,V(U (A\) and the RKPS K(WM) take the form
KW(I)(A): -1 20\ — A —w 200 -3\ —w+2
« 2(1—)\)(1—5) 20— A —=3w+2 22w —-3\—3w+4|’

- {25 1]}

It is easily checked that x_(K(W®™)) = 1 and hence W) € Uy (j11). Since U?) ¢
U5 (j11) and U # const it shows that W () is not A-regular.

Moreover, the mvf W(\) does not admit right A-regular—A-singular factorization.
Indeed, if

(3.53) W) =wWENWHN), WO eurln), w®euld(n),

then W) (\) and W® () are factors of degree 1, since W is neither right A-regular nor
A-singular mvf. If k3 = 0 then the mvf W®) is a BP-factor of the 1-st kind with pole at
m?

(3.54) W(B)()‘) =T+ A=1vvjpg, v jpev =1,

where v € C? is determined by v*j,, W) (0) = 0.
However, the equation v*ji,, W (0) = 0 has a unique (up to a j,,-unitary factor) solution

v = [ﬂ and this vector does not satisfy the condition v*jpv = 1.
In the case x3 = 1 the mvf W () admits the representation (2.23) (see Example 1)
WEN) =1 (\—1)vw*j,y, where v*jpv=—1
and again v € C? is determined by v*j,, W) (0) = 0. But this implies v*j,,W(0) = 0

1
This proves that the mvf W(A) does not admit the factorization (3.53).

. 1 . . . )
and solution v = [ } of the equation v*j,,W(0) = 0 does not satisfies v*j,,v = —1.

3.4. Existence of A-regular—A-singular factorizations.

Theorem 3.23. Let W € U (jpq) VU (jpg) NR™>™. Then the following statements are
equivalent:

(1) W admits the factorization
(3.55) W=wOWw®  where WO cUlB(j,y) and W €Ul ()

with kK = K1 + Ko,
(2) Lw is a nondegenerate subspace of IC(W).
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Moreover, if (2) is the case then the factors W) and W®) in (3.55) are uniquely deter-
mined up to jpq-unitary factors.

Proof. 1. Verification of implication (2) = (1). Consider the factorization W =
WOWE) | constructed in Theorem 3.17, in which W € UL (j,q) and W € U, (jq)-
By Lemma 3.8 W2 € U’ (jpq) and by Corollary 3.18 W2 € U%5(j,,). Since

KWWY =Ly = Lw C LY,

and W1 € R™*™ then also W1 € LI*™ and in view of Lemma 3.20 W) € U5E (j,,).
2. Verification of implication (1) = (2). Let W admits the factorization (3.55) with
Kk = K1 + Ko. By Theorem 3.6 the following equality holds

(3.56) KW) = KWy + wOcw®),

Since W € ULE(j,,) it has no zeros on Qg and hence W IC(W )N Ly = {0}. This
implies WKW @) N (WD) = {0} and hence by Theorem 3.6 the sum in (3.56) is
orthogonal. Therefore, the subspace Ly = K(W) N Ly = (W 1)) is nondegenerate in
KW).

3. Verification of uniqueness of (3.55). Assume now that W = W®W® is another
factorization of W, such that W® € ULE(j,q) and W € U2 (j,q).

4

Then by Theorem 3.22 Ly = K(W®). Therefore, K(W®) C LT and hence
W) ¢ Ly>™™. Applying Lemma 3.11, one obtains the equality

ap” (W) = ap” (W).
which implies ((W®)) =)Ly, = L. Besides, in view of Theorem 3.20
KWWY = Loy = Ly

Thus, by [18, Theorem 4.19] WG = WMV and, hence, W = V-1W®) | where V is a
constant jp,-unitary matrix. O
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