A-REGULAR- A-SINGULAR FACTORIZATIONS OF GENERALIZED J-INNER MATRIX FUNCTIONS

VOLODYMYR DERKACH AND OLENA SUKHORUKOVA
Dedicated to Eduard Tsekanovskii on the occasion of his 80th birthday

Abstract

Let J be an $m \times m$ signature matrix, i.e., $J=J^{*}=J^{-1}$. An $m \times m$ mvf (matrix valued function) $W(\lambda)$ that is meromorphic in the unit disk \mathbb{D} is called J-inner if $W(\lambda) J W(\lambda)^{*} \leq J$ for every λ from \mathfrak{h}_{W}^{+}, the domain of holomorphy of W, in \mathbb{D}, and $W(\mu) J W(\mu)^{*}=J$ for a.e. $\mu \in \mathbb{T}=\partial \mathbb{D}$. A J-inner mvf $W(\lambda)$ is called A-singular if it is outer and it is called right A-regular if it has no non-constant A singular right divisors. As was shown by D. Arov [8] every J-inner mvf admits an essentially unique A-regular $-A$-singular factorization $W=W^{(1)} W^{(2)}$. In the present paper this factorization result is extended to the class $\mathcal{U}_{\kappa}^{r}(J)$ of right generalized J inner mvf's introduced in [18]. The notion and criterion of A-regularity for right generalized J-inner mvf's are presented. The main result of the paper is that we find a criterion for existence of an A-regular- A-singular factorization for a rational generalized J-inner mvf.

1. Introduction

Let Ω_{+}be equal to either $\mathbb{D}=\{\lambda \in \mathbb{C}:|\lambda|<1\}$ or $\mathbb{C}_{+}=\{\lambda \in \mathbb{C}:-i(\lambda-\bar{\lambda})>0\}$. Let us set

$$
\rho_{\omega}(\lambda)= \begin{cases}1-\lambda \bar{\omega}, & \text { if } \Omega_{+}=\mathbb{D} \\ -2 \pi i(\lambda-\bar{\omega}), & \text { if } \Omega_{+}=\mathbb{C}_{+}\end{cases}
$$

and let $\Omega_{-}:=\left\{\omega \in \mathbb{C}: \rho_{\omega}(\omega)<0\right\}$. Then $\Omega_{0}:=\partial \Omega_{+}$is either the unit circle \mathbb{T}, if $\Omega_{+}=\mathbb{D}$, or the real axis \mathbb{R}, if $\Omega_{+}=\mathbb{C}_{+}$.

The following basic classes of mvf's will be used in this paper:
$H_{r}(1 \leq r \leq \infty)$, the Hardy class with respect to Ω_{+};
$H_{r}^{p \times q}$, the class of $p \times q$-mvf's with entries in $H_{r}, H_{r}^{p}:=H_{r}^{p \times 1}(1 \leq r \leq \infty)$;
$\mathcal{S}^{p \times q}$, the Schur class of contractive and holomorphic on $\Omega_{+} p \times q$-mvf's;
$\mathcal{S}_{\text {out }}^{p \times q}=\left\{s \in \mathcal{S}^{p \times q}: \overline{s H_{2}^{q}}=H_{2}^{p}\right\}\left(\mathcal{S}_{\text {in }}^{p \times q}\right)$, the class of outer (inner, resp.) mvf's from $\mathcal{S}^{p \times q}$.

In this paper we consider a signature matrix J of the following specific form:

$$
J=j_{p q}=\left[\begin{array}{cc}
I_{p} & 0 \tag{1.1}\\
0 & -I_{q}
\end{array}\right], \quad \text { where } p+q=m
$$

Definition 1.1. ([4, 18]). An $m \times m$ mvf (matrix valued function) $W(\lambda)$ that is meromorphic in Ω_{+}is said to belong to the class $\mathcal{U}_{\kappa}\left(j_{p q}\right)$ of generalized $j_{p q}$-inner mvf's, if
(i) the kernel

$$
\begin{equation*}
\mathrm{K}_{\omega}^{W}(\lambda)=\frac{j_{p q}-W(\lambda) j_{p q} W(\omega)^{*}}{\rho_{\omega}(\lambda)} \tag{1.2}
\end{equation*}
$$

[^0]has κ negative squares in $\mathfrak{h}_{W}^{+} \times \mathfrak{h}_{W}^{+}$, where \mathfrak{h}_{W}^{+}denotes the domain of holomorphy of W in Ω_{+}and
(ii) $j_{p q}-W(\mu) j_{p q} W(\mu)^{*}=0$ a.e. on the boundary Ω_{0} of Ω_{+}.

The class $\mathcal{U}\left(j_{p q}\right):=\mathcal{U}_{0}\left(j_{p q}\right)$ is contained in the class $\mathcal{P}\left(j_{p q}\right)$ of $j_{p q}$-contractive meromorphic on Ω_{+}mvf's. The class $\mathcal{P}\left(j_{p q}\right)$ was introduced and studied by M. S. Livsič [25] in connection with the theory of characteristic functions of quasi-Hermitian operators, see also [31] for the case of unbounded operators. A complete factorization theory for mvf's from the class $\mathcal{P}\left(j_{p q}\right)$ was developed by V. P. Potapov [28]. Mvf's from the class $\mathcal{U}\left(j_{p q}\right)$ are called $j_{p q}$-inner. $j_{p q}$-inner mvf's appear in [22], [26], [14], [8], [21] as resolvent matrices of various interpolation problems.

A $j_{p q}$-inner mvf $W(\lambda)$ is called A-singular, if $W \in \mathcal{S}_{o u t}^{m \times m}$. A $j_{p q}$-inner mvf $W(\lambda)$ is called right A-regular, if it has no non-constant A-singular right divisors in the class $\mathcal{U}\left(j_{p q}\right)$. In particular, the resolvent matrix of a bitangential problem belongs to the class $\mathcal{U}\left(j_{p q}\right)$ and turns out to be a right A-regular $j_{p q}$-inner mvf, see [8], [10]. An important result of [8] claims that an arbitrary $j_{p q}$-inner mvf $W(\lambda)$ admits an essentially unique factorization

$$
\begin{equation*}
W(\lambda)=W^{(1)}(\lambda) W^{(2)}(\lambda) \tag{1.3}
\end{equation*}
$$

where $W^{(1)}(\lambda)$ and $W^{(2)}(\lambda)$ are right A-regular and A-singular mvf's, respectively.
The class $\mathcal{U}_{\kappa}\left(j_{p q}\right), \kappa \in \mathbb{N}$, and a reproducing kernel Pontryagin space $\mathcal{K}(W)$ with the reproducing kernel $\mathbf{K}_{\omega}^{W}(\lambda)$ based on $W \in \mathcal{U}_{\kappa}\left(j_{p q}\right)$ were studied in [4] and [2]. In [27], [14], [13], [17], [19], [20] mvf's $W \in \mathcal{U}_{\kappa}\left(j_{p q}\right)$ appear as resolvent matrices of some indefinite interpolation problems. In most cases these resolvent matrices belong also to a subclass $\mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$ of right generalized $j_{p q}$-inner mvf's introduced and studied in [18]. The class of right and left A-singular generalized $j_{p q}$-inner mvf's was introduced and characterized in [30].

In the present paper we introduce the notions of right and left A-regular generalized $j_{p q}$-inner mvf's and prove a criterion of A-regularity for rational generalized $j_{p q}$-inner mvf's. The main result of the paper contains a criterion of existence of A-regular-A-singular factorization (1.3) for a rational generalized $j_{p q}$-inner mvf. This criterion is formulated in terms of reproducing kernel Pontryagin spaces $\mathcal{K}(W)$ associated with $W(\lambda)$. An example of a right generalized $j_{p q}$-inner mvf $W(\lambda)$ is given such that $W(\lambda)$ does not admit an A-regular $-A$-singular factorization in the class of generalized $j_{p q}$-inner mvf's.

2. Preliminaries

2.1. The generalized Schur class. Let $\kappa \in \mathbb{Z}_{+}$. Recall [6] that a Hermitian kernel $\mathrm{K}_{\omega}(\lambda): \Omega \times \Omega \rightarrow \mathbb{C}^{m \times m}$ is said to have κ negative squares, if for every positive integer n and every choice of $\omega_{j} \in \Omega$ and $u_{j} \in \mathbb{C}^{m}(j=1, \ldots, n)$ the matrix

$$
\left(u_{k}^{*} \mathrm{~K}_{\omega_{j}}\left(\omega_{k}\right) u_{j}\right)_{j, k=1}^{n}
$$

has at most κ, and for some choice of $\omega_{j} \in \Omega$ and $u_{j} \in \mathbb{C}^{m}$ exactly κ negative eigenvalues.
Denote by \mathfrak{h}_{s} the domain of holomorphy of the mvf s and let us set $\mathfrak{h}_{s}^{ \pm}=\mathfrak{h}_{s} \cap \Omega_{ \pm}$.
Let $\mathcal{S}_{\mathcal{K}}^{q \times p}$ denote the generalized Schur class of $q \times p$ mvf's s that are meromorphic in Ω_{+}and for which the kernel

$$
\begin{equation*}
\Lambda_{\omega}^{s}(\lambda)=\frac{I_{p}-s(\lambda) s(\omega)^{*}}{\rho_{\omega}(\lambda)} \tag{2.1}
\end{equation*}
$$

has κ negative squares on $\mathfrak{h}_{s}^{+} \times \mathfrak{h}_{s}^{+}$(see [23]). In the case where $\kappa=0$ the class $\mathcal{S}_{0}^{q \times p}$ coincides with the Schur class $\mathcal{S}^{q \times p}$ of contractive mvf's holomorphic in Ω_{+}.

Let $b_{\omega}(\lambda)$ be an elementary factor Blaschke

$$
b_{\omega}(\lambda)= \begin{cases}(\lambda-\omega) /(1-\lambda \bar{\omega}), & \text { if } \Omega_{+}=\mathbb{D}, \tag{2.2}\\ (\lambda-\omega) /(\lambda-\bar{\omega}), & \text { if } \Omega_{+}=\mathbb{C}_{+}\end{cases}
$$

and let P be an orthogonal projection in \mathbb{C}^{p}. Then the mvf

$$
B_{\omega}(\lambda)=I_{m}+\left(b_{\omega}(\lambda)-1\right) P
$$

belongs to the Schur class $\mathcal{S}^{p \times p}$ and is called an elementary BP (Blaschke-Potapov) factor and $B(\lambda)$ is called primary if $\operatorname{rank} P=1$. The product

$$
B(\lambda)=\prod_{j=1}^{\stackrel{\kappa}{\sim}} B_{\omega_{j}}(\lambda)
$$

where $B_{\omega_{j}}(\lambda)$ are primary BP-factors is called a Blaschke-Potapov product of degree κ.
Every mvf $s \in \mathcal{S}^{p \times p}$ of rank p admits an inner-outer factorization of F . Riesz

$$
\begin{equation*}
s=b a=a_{*} b_{*}, \quad \text { where } \quad b, b_{*} \in \mathcal{S}_{i n}^{p \times p}, \quad a, a_{*} \in \mathcal{S}_{o u t}^{p \times p} . \tag{2.3}
\end{equation*}
$$

If b and b_{*} in (2.3) are Blaschke-Potapov products of finite degree, then $\operatorname{deg} b=\operatorname{deg} b_{*}$. The notation $\mathcal{M}_{\zeta}\left(s, \Omega_{+}\right):=\operatorname{deg} b$ will be used for the degree of the factors b and b_{*}.

As was shown in [23] every mvf $s \in \mathcal{S}_{\kappa}^{q \times p}$ admits a factorization of the form

$$
\begin{equation*}
s(\lambda)=b_{\ell}(\lambda)^{-1} s_{\ell}(\lambda), \quad \lambda \in \mathfrak{h}_{s}^{+} \tag{2.4}
\end{equation*}
$$

where $b_{\ell} \in \mathcal{S}^{q \times q}$ is a $q \times q$ Blaschke-Potapov product of degree $\kappa, s_{\ell} \in \mathcal{S}^{q \times p}$ and

$$
\begin{equation*}
\operatorname{rank}\left[b_{\ell}(\lambda) \quad s_{\ell}(\lambda)\right]=q \quad\left(\lambda \in \Omega_{+}\right) \tag{2.5}
\end{equation*}
$$

The representation (2.4) is called a left KL (Kreĭn-Langer) factorization. Similarly, every generalized Schur function $s \in \mathcal{S}_{\kappa}^{q \times p}$ admits a right KL-factorization

$$
\begin{equation*}
s(\lambda)=s_{r}(\lambda) b_{r}(\lambda)^{-1} \quad \text { for } \quad \lambda \in \mathfrak{h}_{s}^{+} \tag{2.6}
\end{equation*}
$$

where $b_{r} \in \mathcal{S}^{p \times p}$ is a Blaschke-Potapov product of degree $\kappa, s_{r} \in \mathcal{S}^{q \times p}$ and

$$
\operatorname{rank}\left[\begin{array}{cc}
b_{r}(\lambda)^{*} & \left.s_{r}(\lambda)^{*}\right]=p \quad\left(\lambda \in \Omega_{+}\right) . \tag{2.7}
\end{array}\right.
$$

The following generalization of the Rouche theorem was presented in [24]. The proof of this theorem was not complete and was fixed in [20]. Its scalar version was proved in [1].

Theorem 2.1. (Generalized Rouche Theorem) ([24]). Let $\varphi, \psi \in H_{\infty}^{q \times q}, \operatorname{det}(\varphi+$ $\psi) \not \equiv 0$ in $\Omega_{+}, M_{\zeta}\left(\varphi, \Omega_{+}\right)<\infty$,

$$
\begin{equation*}
\left\|\varphi(\mu)^{-1} \psi(\mu)\right\| \leq 1 \quad \text { a.e. on } \Omega_{0} \tag{2.8}
\end{equation*}
$$

Then $M_{\zeta}\left(\varphi+\psi, \Omega_{+}\right) \leq M_{\zeta}\left(\varphi, \Omega_{+}\right)$with equality if

$$
\begin{equation*}
\left.(\varphi+\psi)^{-1} \varphi\right|_{\Omega_{0}} \in \widetilde{L}_{1}^{q \times q} \tag{2.9}
\end{equation*}
$$

The coprimeness condition (2.5) for a right KL-factorization (2.4) can be reformulated as follows.

Lemma 2.2. ([18]). A mvf $s_{\ell} \in \mathcal{S}^{q \times p}$ and a finite Blaschke-Potapov product $b_{\ell} \in \mathcal{S}_{i n}^{q \times q}$ meet the rank condition (2.5) if and only if there exists a pair of mvf's $c_{\ell} \in H_{\infty}^{q \times q}$ and $d_{\ell} \in H_{\infty}^{p \times q}$ such that

$$
\begin{equation*}
b_{\ell}(\lambda) c_{\ell}(\lambda)+s_{\ell}(\lambda) d_{\ell}(\lambda)=I_{q} \quad \text { for } \quad \lambda \in \Omega_{+} \tag{2.10}
\end{equation*}
$$

2.2. Generalized $j_{p q}$-inner mvf's. Let us recall some facts concerning the PG (Pota-pov-Ginzburg) transform of generalized $j_{p q}$-inner mvf's. As is known [4, Theorem 6.8], for every $W \in \mathcal{U}_{\kappa}\left(j_{p q}\right)$ the matrix $w_{22}(\lambda)$ is invertible for all $\lambda \in \mathfrak{h}_{W}^{+}$except for at most κ point in Ω_{+}. Thus, the PG-transform S of W (see [2])

$$
\begin{align*}
& S(\lambda)=(P G(W))(\lambda):= {\left[\begin{array}{cc}
w_{11}(\lambda) & w_{12}(\lambda) \\
0 & I_{q}
\end{array}\right]\left[\begin{array}{cc}
I_{p} & 0 \\
w_{21}(\lambda) & w_{22}(\lambda)
\end{array}\right]^{-1} } \tag{2.11}\\
&\left(\lambda \in \mathfrak{h}_{S}^{+} \cap \mathfrak{h}_{W}^{+}\right)
\end{align*}
$$

is well defined for those $\lambda \in \mathfrak{h}_{W}^{+}$, for which $w_{22}(\lambda)$ is invertible. As is easily seen, $S(\lambda)$ belongs to the class $\mathcal{S}_{\kappa}^{m \times m}$ and $S(\mu)$ is unitary for a.e. $\mu \in \Omega_{0}$ (see [4], [18]).

The formula (2.11) can be rewritten as

$$
S=\left[\begin{array}{ll}
s_{11} & s_{12} \tag{2.12}\\
s_{21} & s_{22}
\end{array}\right]=\left[\begin{array}{cc}
w_{11}-w_{12} w_{22}^{-1} w_{21} & w_{12} w_{22}^{-1} \\
-w_{22}^{-1} w_{21} & w_{22}^{-1}
\end{array}\right] .
$$

Since the mvf $S(\lambda)$ has unitary nontangential boundary limits a.e. on Ω_{0}, the pseudocontinuation of S to Ω_{-}can be defined by the formula $S(\lambda)=\left(S^{\#}(\lambda)\right)^{-1}$, where the reflection function $S^{\#}(\lambda)$ is defined by

$$
S^{\#}(\lambda)=S\left(\lambda^{\circ}\right)^{*}, \quad \lambda^{\circ}= \begin{cases}1 / \bar{\lambda} & : \text { if } \Omega_{+}=\mathbb{D}, \lambda \neq 0 \tag{2.13}\\ \bar{\lambda} & : \text { if } \Omega_{+}=\mathbb{C}_{+}\end{cases}
$$

Formulas (2.13) and (2.12) lead to the dual formula for S :

$$
S=\left[\begin{array}{cc}
w_{11}^{\#} & 0 \tag{2.14}\\
w_{12}^{\#} & I_{q}
\end{array}\right]^{-1}\left[\begin{array}{cc}
I_{p} & w_{21}^{\#} \\
0 & w_{22}^{\#}
\end{array}\right]=\left[\begin{array}{cc}
w_{11}^{-\#} & w_{11}^{-\#} w_{21}^{\#} \\
-w_{12}^{\#} w_{11}^{-\#} & w_{22}^{\#}-w_{12}^{\#} w_{11}^{-\#} w_{21}^{\#}
\end{array}\right]
$$

on $\mathfrak{h}_{S}^{+} \cap \mathfrak{h}_{W \#}^{+}$. Moreover, $s_{22}(\lambda)$ is invertible for all $\lambda \in \mathfrak{h}_{W}^{+}$, the PG-transform of $S(\lambda)$ makes sense, and $W=P G(S)$.

Let

$$
\begin{equation*}
T_{W}^{r}[\varepsilon]:=\left(w_{11}(\lambda) \varepsilon(\lambda)+w_{12}(\lambda)\right)\left(w_{21}(\lambda) \varepsilon(\lambda)+w_{22}(\lambda)\right)^{-1} \tag{2.15}
\end{equation*}
$$

denote the (right) linear fractional transformation of a $\operatorname{mvf} \varepsilon \in \mathcal{S}_{\kappa_{2}}^{p \times q}\left(\kappa_{2} \in \mathbb{Z}_{+}\right)$based on the block decomposition

$$
W(\lambda)=\left[\begin{array}{ll}
w_{11}(\lambda) & w_{12}(\lambda) \tag{2.16}\\
w_{21}(\lambda) & w_{22}(\lambda)
\end{array}\right]
$$

of a mvf $W \in \mathcal{U}_{\kappa}\left(j_{p q}\right)$ with blocks $w_{11}(\lambda)$ and $w_{22}(\lambda)$ of sizes $p \times p$ and $q \times q$, respectively. Let

$$
\begin{equation*}
\Lambda=\left\{\lambda \in \mathfrak{h}_{W}^{+} \cap \mathfrak{h}_{\varepsilon}^{+}: \operatorname{det}\left(w_{21}(\lambda) \varepsilon(\lambda)+w_{22}(\lambda)\right)=0\right\} \tag{2.17}
\end{equation*}
$$

The transformation $T_{W}^{r}[\varepsilon]$ is well defined for $\lambda \in\left(\mathfrak{h}_{W}^{+} \cap \mathfrak{h}_{\varepsilon}^{+}\right) \backslash \Lambda$.
Lemma 2.3. Let $\mathrm{W} \in \mathcal{U}_{\kappa_{1}}\left(j_{p q}\right), \varepsilon \in \mathcal{S}_{\kappa_{2}}^{p \times q}$. Then $T_{W}^{r}[\varepsilon] \in \mathcal{S}_{\kappa^{\prime}}^{p \times q}$ with $\kappa^{\prime} \leq \kappa_{2}+\kappa_{1}$.
2.3. The class $\mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$.

Definition 2.4. ([18]). An $m \times m \operatorname{mvf} W(\lambda) \in \mathcal{U}_{\kappa}\left(j_{p q}\right)$ is said to be in the class $\mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$, if

$$
\begin{equation*}
s_{21}:=-w_{22}^{-1} w_{21} \in \mathcal{S}_{\kappa}^{q \times p} . \tag{2.18}
\end{equation*}
$$

Theorem 2.5. ([18]). Let $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$ and let the BP-factors b_{ℓ} and b_{r} be defined by the KL-factorizations of s_{21} :

$$
\begin{equation*}
s_{21}(\lambda):=b_{\ell}(\lambda)^{-1} s_{\ell}(\lambda)=s_{r}(\lambda) b_{r}(\lambda)^{-1}, \quad \lambda \in \mathfrak{h}_{s_{21}}^{+} \tag{2.19}
\end{equation*}
$$

where $b_{\ell} \in \mathcal{S}_{i n}^{q \times q}, b_{r} \in \mathcal{S}_{i n}^{p \times p}$, $s_{\ell}, s_{r} \in \mathcal{S}^{q \times p}$. Then the mvf's $b_{\ell} s_{22}$ and $s_{11} b_{r}$ are holomorphic in Ω_{+}, and hence they admit the following inner-outer and outer-inner factorizations

$$
\begin{equation*}
s_{11} b_{r}=b_{1} a_{1}, \quad b_{\ell} s_{22}=a_{2} b_{2} \tag{2.20}
\end{equation*}
$$

where $b_{1} \in \mathcal{S}_{\text {in }}^{p \times p}, b_{2} \in \mathcal{S}_{\text {in }}^{q \times q}, a_{1} \in \mathcal{S}_{\text {out }}^{p \times p}, a_{2} \in \mathcal{S}_{\text {out }}^{q \times q}$.
The pair $\left\{b_{1}, b_{2}\right\}$ is called the right associated pair of the $\operatorname{mvf} W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$ and is written as $\left\{b_{1}, b_{2}\right\} \in \operatorname{ap}^{r}(W)$. In the case $\kappa=0$ this notion was introduced in [10].

As was shown in [18, Theorem 4.11] for every $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$ and c_{ℓ} and d_{ℓ} as in (2.10) the mvf

$$
\begin{equation*}
K=\left(-w_{11} d_{\ell}+w_{12} c_{\ell}\right)\left(-w_{21} d_{\ell}+w_{22} c_{\ell}\right)^{-1} \tag{2.21}
\end{equation*}
$$

belongs to $H_{\infty}^{p \times q}$ and admits the representations

$$
\begin{equation*}
K=\left(-w_{11} d_{\ell}+w_{12} c_{\ell}\right) a_{2} b_{2}, \tag{2.22}
\end{equation*}
$$

where $\left\{b_{1}, b_{2}\right\} \in a p^{r}(W)$.
Let us set $K^{\#}(\lambda)=K(\bar{\lambda})^{*}, \lambda \in \mathbb{C}_{-}$. It is clear that $K^{\#} \in H_{\infty}^{q \times p}\left(\Omega_{-}\right)$.
Example 1. A $j_{p q}$-inner mvf $W(\lambda)$ is called elementary if it has no nontrivial factorization in the class of $j_{p q}$-inner mvf's. All elementary $j_{p q}$-inner mvf's are exhausted by the set of BP-factors of the following three types (see [22]):
(1) $U_{\omega}(\lambda)=U\left(I_{m}+\left(b_{\omega}(\lambda)-1\right) P\right), \quad \omega \in \Omega_{+}, P=P^{2}$ and $P j_{p q} \geq 0 ;$
(2) $U_{\omega}(\lambda)=U\left(I_{m}+\left(b_{\omega}(\lambda)-1\right) P\right), \quad \omega \in \Omega_{-}, P=P^{2}$ and $P j_{p q} \leq 0$;
(3) $U_{\omega}(\lambda)=U\left(I_{m}-c_{\omega}(\lambda) E\right), \quad \omega \in \Omega_{0}, \quad E^{2}=0$ and $E j_{p q} \geq 0$.

Here U are constant $j_{p q}$-unitary matrices, $b_{\omega}(\lambda)$ are elementary Blaschke factors of the form (2.2) and

$$
c_{\omega}(\lambda)= \begin{cases}(\omega+\lambda) /(\omega-\lambda), & \text { if } \Omega_{+}=\mathbb{D}, \omega \in \Omega_{0} \\ 1 /(\pi i(\omega-\lambda)), & \text { if } \Omega_{+}=\mathbb{C}_{+}, \omega \in \Omega_{0}\end{cases}
$$

If $\Omega_{+}=\mathbb{C}_{+}$then there exists one more type of BP-factors (of the fourth kind), corresponding to $\omega=\infty$,

$$
U_{\infty}(\lambda)=U \exp (i \lambda E)
$$

An elementary BP-factor is said to be primary, if $\operatorname{rank} P=1$ or $\operatorname{rank} E=1$. The preceding three types of primary BP-factors take the form
(1) $U_{\omega}(\lambda)=U\left(I_{m}+\left(b_{\omega}(\lambda)-1\right) v v^{*} j_{p q}\right), \omega \in \Omega_{+}, v \in \mathbb{C}^{m}$ and $v^{*} j_{p q} v=1$;
(2) $U_{\omega}(\lambda)=U\left(I_{m}-\left(b_{\omega}(\lambda)-1\right) v v^{*} j_{p q}\right), \omega \in \Omega_{-}, v \in \mathbb{C}^{m}$ and $v^{*} j_{p q} v=-1$;
(3) $U_{\omega}(\lambda)=U\left(I_{m}-c_{\omega}(\lambda) v v^{*} j_{p q}\right), \quad \omega \in \Omega_{0}, v \in \mathbb{C}^{m}$ and $v^{*} j_{p q} v=0$.

Notice that by changing sign of $v^{*} j_{p q} v$ in the first two types of primary BP-factors one obtains generalized $j_{p q}$-inner mvf's which belong to the class $\mathcal{U}_{1}\left(j_{p q}\right)$,

$$
\begin{gather*}
U_{\omega}(\lambda)=U\left(I_{m}-\left(b_{\omega}(\lambda)-1\right) v v^{*} j_{p q}\right), \quad \omega \in \Omega_{+}, \quad v \in \mathbb{C}^{m} \quad \text { and } \quad v^{*} j_{p q} v=-1 \tag{2.23}\\
U_{\omega}(\lambda)=U\left(I_{m}+\left(b_{\omega}(\lambda)-1\right) v v^{*} j_{p q}\right), \quad \omega \in \Omega_{-}, \quad v \in \mathbb{C}^{m} \quad \text { and } \quad v^{*} j_{p q} v=1 \tag{2.24}
\end{gather*}
$$

Moreover, the mvf $U_{\omega}(\lambda)$ in (2.23) and (2.24) belongs to the class $\mathcal{U}_{1}^{r}\left(j_{p q}\right)$, if the vector $v=\operatorname{col}\left\{v_{1}, v_{2}\right\}$ satisfies the condition $v_{2} v_{1}^{*} \neq 0$.
2.4. The class $\mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right)$. The following definitions and statements concerning the dual class $\mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right)$ are taken from [30].

Definition 2.6. An $m \times m \operatorname{mvf} W \in \mathcal{U}_{\kappa}\left(j_{p q}\right)$ is said to be in the class $\mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right)$, if

$$
\begin{equation*}
s_{12}:=w_{12} w_{22}^{-1} \in \mathcal{S}_{\kappa}^{p \times q} . \tag{2.25}
\end{equation*}
$$

If $W \in \mathcal{U}_{\kappa}\left(j_{p q}\right)$ and the $\operatorname{mvf} \widetilde{W}$ is defined by

$$
\widetilde{W}(\lambda)= \begin{cases}W(\bar{\lambda})^{*}, & \text { if } \Omega_{+}=\mathbb{D} \tag{2.26}\\ W(-\bar{\lambda})^{*}, & \text { if } \Omega_{+}=\mathbb{C}_{+}\end{cases}
$$

then, as was shown [30], the following equivalence holds:

$$
\begin{equation*}
W \in \mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right) \Longleftrightarrow \widetilde{W} \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right) \tag{2.27}
\end{equation*}
$$

and as a corollary of Theorem 2.5 one can get the following statement.
Theorem 2.7. Let $W \in \mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right)$ and let the BP-factors \mathfrak{b}_{ℓ} and \mathfrak{b}_{r} be defined by the KL-factorizations (2.4), (2.6) of s_{12},

$$
\begin{equation*}
s_{12}(\lambda)=\mathfrak{b}_{\ell}(\lambda)^{-1} \mathfrak{s}_{\ell}(\lambda)=\mathfrak{s}_{r}(\lambda) \mathfrak{b}_{r}(\lambda)^{-1}, \quad\left(\lambda \in \mathfrak{h}_{s_{12}}^{+}\right), \tag{2.28}
\end{equation*}
$$

where $\mathfrak{b}_{\ell} \in \mathcal{S}_{i n}^{p \times p}, \mathfrak{b}_{r} \in \mathcal{S}_{i n}^{q \times q}, \mathfrak{s}_{\ell}, \mathfrak{s}_{r} \in \mathcal{S}^{p \times q}$. Then

$$
\begin{equation*}
s_{22} \mathfrak{b}_{r} \in \mathcal{S}^{q \times q} \quad \text { and } \quad \mathfrak{b}_{\ell} s_{11} \in \mathcal{S}^{p \times p} . \tag{2.29}
\end{equation*}
$$

Definition 2.8. Consider inner-outer factorizations of $\mathfrak{b}_{\ell} s_{11}$ and $s_{22} \mathfrak{b}_{r}$

$$
\begin{equation*}
\mathfrak{b}_{\ell} s_{11}=\mathfrak{a}_{1} \mathfrak{b}_{1}, \quad s_{22} \mathfrak{b}_{r}=\mathfrak{b}_{2} \mathfrak{a}_{2} \tag{2.30}
\end{equation*}
$$

where $\mathfrak{b}_{1} \in \mathcal{S}_{\text {in }}^{p \times p}, \mathfrak{b}_{2} \in \mathcal{S}_{\text {in }}^{q \times q}, \mathfrak{a}_{1} \in \mathcal{S}_{\text {out }}^{p \times p}, \mathfrak{a}_{2} \in \mathcal{S}_{\text {out }}^{q \times q}$. The pair $\mathfrak{b}_{1}, \mathfrak{b}_{2}$ of inner factors in the factorizations (2.30) is called the left associated pair of the $m v f W \in \mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right)$ and is written as $\left\{\mathfrak{b}_{1}, \mathfrak{b}_{2}\right\} \in a p^{\ell}(W)$, for short.

The following example shows that the classes $\mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$ and $\mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right)$ do not coincide.
Example 2. Let $\Omega_{+}=\mathbb{D}$ and $W=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}2 & \lambda \\ 1 & 2 \lambda\end{array}\right]$. The kernel $K_{\omega}^{W}(\lambda)=\left[\begin{array}{cc}0 & 0 \\ 0 & -1\end{array}\right]$ has 1 negative square, therefore $W \in \mathcal{U}_{1}\left(j_{11}\right)$. The mvf $W(\lambda)$ belongs to the class $\mathcal{U}_{1}^{r}\left(j_{11}\right)$, since $s_{21}=\frac{1}{2 \lambda} \in \mathcal{S}_{1}$. On the other hand $W \notin \mathcal{U}_{1}^{\ell}\left(j_{11}\right)$, since $s_{12}=\frac{1}{2} \notin \mathcal{S}_{1}$.

Similarly, one has $\widetilde{W}=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}2 & 1 \\ \lambda & 2 \lambda\end{array}\right] \in \mathcal{U}_{1}^{\ell}\left(j_{11}\right) \backslash \mathcal{U}_{1}^{r}\left(j_{11}\right)$.
Let $W \in \mathcal{U}_{\kappa}\left(j_{p q}\right)$ be a mvf with the block decomposition (2.16) and let the left linear fractional transformation T_{W}^{ℓ} be defined by

$$
\begin{equation*}
T_{W}^{\ell}[\varepsilon]:=\left(\varepsilon(\lambda) w_{12}(\lambda)+w_{22}(\lambda)\right)^{-1}\left(\varepsilon(\lambda) w_{11}(\lambda)+w_{21}(\lambda)\right) \tag{2.31}
\end{equation*}
$$

Then the left and the right linear fractional transformations are connected by the equality

$$
\begin{equation*}
T_{W}^{\ell}[\varepsilon]=\left(T_{\widetilde{W}}^{r}[\widetilde{\varepsilon}]\right) \tag{2.32}
\end{equation*}
$$

The following statement is implied by (2.32) and Lemma 2.3.
Lemma 2.9. Let $\mathrm{W} \in \mathcal{U}_{\kappa_{1}}\left(j_{p q}\right), \varepsilon \in \mathcal{S}_{\kappa_{2}}^{q \times p}$. Then $T_{W}^{\ell}[\varepsilon] \in \mathcal{S}_{\kappa^{\prime}}^{q \times p}$ with $\kappa^{\prime} \leq \kappa_{2}+\kappa_{1}$.
2.5. Reproducing kernel Pontryagin spaces. In this subsection we review some facts and notation from $[11,16,18]$ on the theory of indefinite inner product spaces for the convenience of the reader. A linear space \mathcal{K} equipped with a sesquilinear form $\langle\cdot, \cdot\rangle_{\mathcal{K}}$ on $\mathcal{K} \times \mathcal{K}$ is called an indefinite inner product space. A subspace \mathcal{F} of \mathcal{K} is called positive (negative) if $\langle f, f\rangle_{\mathcal{K}}>0(<0)$ for all $f \in \mathcal{F}, f \neq 0$. If the full space \mathcal{K} is positive and complete with respect to the norm $\|f\|=\langle f, f\rangle_{\mathcal{K}}^{1 / 2}$ then it is a Hilbert space.

An indefinite inner product space $\left(\mathcal{K},\langle\cdot, \cdot\rangle_{\mathcal{K}}\right)$ is called a Pontryagin space, if it can be decomposed as the orthogonal sum

$$
\begin{equation*}
\mathcal{K}=\mathcal{K}_{+} \oplus \mathcal{K}_{-} \tag{2.33}
\end{equation*}
$$

of a positive subspace \mathcal{K}_{+}which is a Hilbert space and a negative subspace \mathcal{K}_{-}of finite dimension. The number ind $\mathcal{K}_{\mathcal{K}}:=\operatorname{dim} \mathcal{K}_{-}$is referred to as the negative index of \mathcal{K}. The
convergence in a Pontryagin space $\left(\mathcal{K},\langle\cdot, \cdot\rangle_{\mathcal{K}}\right)$ is meant with respect to the Hilbert space norm

$$
\begin{equation*}
\|h\|^{2}=\left\langle h_{+}, h_{+}\right\rangle_{\mathcal{K}}-\left\langle h_{-}, h_{-}\right\rangle_{\mathcal{K}}, \quad h=h_{+}+h_{-}, \quad h_{ \pm} \in \mathcal{K}_{ \pm} \tag{2.34}
\end{equation*}
$$

It is easily seen that the convergence does not depend on a choice of the decomposition (2.33).

A Pontryagin space $\left(\mathcal{K},\langle\cdot, \cdot\rangle_{\mathcal{K}}\right)$ of \mathbb{C}^{m}-valued functions defined on a subset Ω of \mathbb{C} is called a RKPS (reproducing kernel Pontryagin space), if there exists a Hermitian kernel $\mathrm{K}_{\omega}(\lambda): \Omega \times \Omega \rightarrow \mathbb{C}^{m \times m}$, such that
(1) for every $\omega \in \Omega$ and every $u \in \mathbb{C}^{m}$ the $\operatorname{vvf} \mathrm{K}_{\omega}(\lambda) u$ belongs to \mathcal{K};
(2) for every $h \in \mathcal{K}, \omega \in \Omega$ and $u \in \mathbb{C}^{m}$ the following identity holds:

$$
\begin{equation*}
\left\langle h, \mathrm{~K}_{\omega} u\right\rangle_{\mathcal{K}}=u^{*} f(\omega) . \tag{2.35}
\end{equation*}
$$

It is known (see [29]) that for every Hermitian kernel $\mathrm{K}_{\omega}(\lambda): \Omega \times \Omega \rightarrow \mathbb{C}^{m \times m}$ with a finite number of negative squares on $\Omega \times \Omega$ there is a unique Pontryagin space \mathcal{K} with reproducing kernel $\mathrm{K}_{\omega}(\lambda)$, and that ind $\mathcal{K}=$ sq_ $_{-} \mathrm{K}=\kappa$. In the case $\kappa=0$ this fact is due to Aronszajn [6].

If $W \in \mathcal{U}_{\kappa}\left(j_{p q}\right)$, then assumption (ii) in the definition of $\mathcal{U}_{\kappa}\left(j_{p q}\right)$ guarantees that $W(\lambda)$ is invertible in Ω_{+}except for an isolated set of points. Define W in Ω_{-}by the formula (2.36)

$$
W(\lambda)=j_{p q} W^{\#}(\lambda)^{-1} j_{p q}=j_{p q} W\left(\lambda^{\circ}\right)^{-*} j_{p q} \quad \text { if } \quad \lambda^{\circ} \in \mathfrak{h}_{W}^{+} \quad \text { and } \quad \operatorname{det} W\left(\lambda^{\circ}\right) \neq 0
$$

Since W is of bounded type, the nontangential limits

$$
W_{ \pm}(\mu)=\angle \lim _{\lambda \rightarrow \mu}\left\{W(\lambda): \lambda \in \Omega_{ \pm}\right\}
$$

exist a.e. on Ω_{0}; and assumption (ii) in the definition of $\mathcal{U}_{\kappa}\left(j_{p q}\right)$ implies that the nontangential limits $W_{+}(\mu)$ and $W_{-}(\mu)$ coincide a.e. in Ω_{0}, that is, W in Ω_{-}is a pseudomeromorphic extension of W in Ω_{+}. If $W(\lambda)$ is rational this extension is meromorphic on \mathbb{C}. The symbol \mathfrak{h}_{W} will be used to denote the domain of holomorphy of W in \mathbb{C}. Formula (2.36) implies that $W(\lambda)$ is holomorphic and invertible in

$$
\begin{equation*}
\Omega_{W}:=\mathfrak{h}_{W} \cap \mathfrak{h}_{W \#} \tag{2.37}
\end{equation*}
$$

Let $W \in \mathcal{U}_{\kappa}\left(j_{p q}\right)$ and let $\mathcal{K}(W)$ be the RKPS associated with the kernel $\mathrm{K}_{\omega}^{W}(\lambda)$. The kernel $\mathrm{K}_{\omega}^{W}(\lambda)$ extended to Ω_{W} by the equality (2.36) has the same number κ of negative squares [2, Theorem 2.5.2].

In the case where W belongs to the subclass $\mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$ the subspaces

$$
\begin{equation*}
\mathcal{L}_{W}^{+}:=\mathcal{K}(W) \cap H_{2}^{m}, \quad \mathcal{L}_{W}^{-}:=\mathcal{K}(W) \cap\left(H_{2}^{m}\right)^{\perp}, \quad \mathcal{L}_{W}:=\mathcal{K}(W) \cap L_{2}^{m} \tag{2.38}
\end{equation*}
$$

can be characterized by the following.
Theorem 2.10 ([18, Theorem 4.19]). Let $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right),\left\{b_{1}, b_{2}\right\} \in a p^{r}(W)$, let K be defined by (2.22), let

$$
\begin{equation*}
\mathcal{H}\left(b_{1}\right)=H_{2}^{m} \ominus b_{1} H_{2}^{m}, \quad \mathcal{H}_{*}\left(b_{2}\right)=\left(H_{2}^{m}\right)^{\perp} \ominus b_{2}^{*}\left(H_{2}^{m}\right)^{\perp} \tag{2.39}
\end{equation*}
$$

and let

$$
\Gamma_{11}: f \in H_{2}^{q} \longrightarrow P_{\mathcal{H}\left(b_{1}\right)} K f, \quad \Gamma_{22}: f \in \mathcal{H}_{*}\left(b_{2}\right) \longrightarrow P_{\left(H_{2}^{p}\right)^{\perp}} K f
$$

Then

$$
\begin{gather*}
\mathcal{L}_{W}^{+}=\left\{\left[\begin{array}{c}
u_{1} \\
\Gamma_{11}^{*} u_{1}
\end{array}\right]: u_{1} \in \mathcal{H}\left(b_{1}\right)\right\} \tag{2.40}\\
\mathcal{L}_{W}^{-}=\left\{\left[\begin{array}{c}
\Gamma_{22} u_{2} \\
u_{2}
\end{array}\right]: u_{2} \in \mathcal{H}_{*}\left(b_{2}\right)\right\} \tag{2.41}
\end{gather*}
$$

$$
\begin{equation*}
\mathcal{L}_{W}=\mathcal{L}_{W}^{+} \dot{+} \mathcal{L}_{W}^{-} \tag{2.42}
\end{equation*}
$$

3. A-REGULAR AND A-Singular generalized $j_{p q}$-INNER MVF's

3.1. A-singular generalized $j_{p q}$-inner mvf. Let us recall the notations (see [10]):

$$
\begin{aligned}
\mathcal{N}_{ \pm}^{p \times q} & =\left\{f=h^{-1} g: g \in H_{\infty}^{p \times q}\left(\Omega_{ \pm}\right), h \in \mathcal{S}_{o u t}^{1 \times 1}\left(\Omega_{ \pm}\right)\right\}, \\
\mathcal{N}_{o u t}^{p \times q} & =\left\{f=h^{-1} g: g \in \mathcal{S}_{o u t}^{p \times q}, h \in \mathcal{S}_{o u t}^{1 \times 1}\right\} .
\end{aligned}
$$

A mvf $W \in \mathcal{U}_{\kappa}\left(j_{p q}\right)$ is called A-singular, if it is an outer mvf (see [7, 30]). The set of A-singular mvf's in $\mathcal{U}_{\kappa}\left(j_{p q}\right)$ is denoted by $\mathcal{U}_{\kappa}^{S}\left(j_{p q}\right)$.

We will be also using the following subclasses of the class $\mathcal{U}_{\kappa}^{S}\left(j_{p q}\right)$:

$$
\mathcal{U}_{\kappa}^{r, S}\left(j_{p q}\right):=\mathcal{U}_{\kappa}^{r}\left(j_{p q}\right) \cap \mathcal{N}_{o u t}^{m \times m}, \quad \mathcal{U}_{\kappa}^{\ell, S}\left(j_{p q}\right):=\mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right) \cap \mathcal{N}_{o u t}^{m \times m} .
$$

In the case $\kappa=0$ the class $\mathcal{U}^{S}\left(j_{p q}\right):=\mathcal{U}_{0}^{S}\left(j_{p q}\right)$ was introduced and characterized in terms of associated pairs by D. Arov in [9]. For $\kappa \neq 0$ a definition of A-singular generalized $j_{p q}$-inner mvf and its characterization in terms of associated pairs was given in [30].

Theorem $3.1([30])$. Let $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$ and $\left\{b_{1}, b_{2}\right\} \in a p^{r}(W)$. Then
(1) $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right) \cap \mathcal{N}_{+}$if and only if $b_{2} \equiv$ const;
(2) $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right) \cap \mathcal{N}_{-}$if and only if $b_{1} \equiv$ const;
(3) $W \in \mathcal{U}_{\kappa}^{r, S}\left(j_{p q}\right)$ if and only if $b_{1} \equiv$ const and $b_{2} \equiv$ const.

If $W \in \mathcal{U}_{\kappa}\left(j_{p q}\right)$ and the $\operatorname{mvf} \widetilde{W}$ is defined by (2.26) than as follows from (2.27)

$$
\begin{equation*}
W \in \mathcal{U}_{\kappa}^{\ell, S}\left(j_{p q}\right) \Longleftrightarrow \widetilde{W} \in \mathcal{U}_{\kappa}^{r, S}\left(j_{p q}\right) \tag{3.1}
\end{equation*}
$$

As a corollary of Theorem 3.1 one get a similar characterization of the class $\mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right)$.
Corollary $3.2([30])$. Let $W \in \mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right)$ and $\left\{\mathfrak{b}_{1}, \mathfrak{b}_{2}\right\} \in a p^{\ell}(W)$. Then
(1) $W \in \mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right) \cap \mathcal{N}_{+}$if and only if $\mathfrak{b}_{2} \equiv$ const;
(2) $W \in \mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right) \cap \mathcal{N}_{-}$if and only if $\mathfrak{b}_{1} \equiv$ const;
(3) $W \in \mathcal{U}_{\kappa}^{\ell, S}\left(j_{p q}\right)$ if and only if $\mathfrak{b}_{1} \equiv$ const and $\mathfrak{b}_{2} \equiv$ const.

Next we will present a characterization of A-singular mvf's W in terms of reproducing kernel spaces $\mathcal{K}(W)$ and its subspaces $\mathcal{L}_{+}(W)$ and $\mathcal{L}_{-}(W)$ and \mathcal{L}_{W}, introduced in (2.38).

Theorem 3.3. Let $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right),\left\{b_{1}, b_{2}\right\} \in a p^{r}(W)$. Then
(1) $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right) \cap \mathcal{N}_{+}$if and only if $\mathcal{L}_{W}^{-}=\{0\}$;
(2) $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right) \cap \mathcal{N}_{-}$if and only if $\mathcal{L}_{W}^{+}=\{0\}$;
(3) $W \in \mathcal{U}_{\kappa}^{r, S}\left(j_{p q}\right)$ if and only if $\mathcal{L}_{W}=\{0\}$.

Proof. Assume that $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right) \cap \mathcal{N}_{+}$. Then by Theorem 3.1 (1) $b_{2} \equiv$ const. Therefore, $\mathcal{H}_{*}\left(b_{2}\right)=\left(H_{2}^{m}\right)^{\perp} \ominus b_{2}^{*}\left(H_{2}^{m}\right)^{\perp}=\{0\}$ and by Theorem 2.10 one obtains

$$
\mathcal{L}_{W}^{-}=\{0\}
$$

Conversely, if $\mathcal{L}_{W}^{-}=\{0\}$ then by formula (2.41)

$$
\left[\begin{array}{c}
\Gamma_{22} \\
I
\end{array}\right] \mathcal{H}^{*}\left(b_{2}\right)=\{0\}
$$

and hence $\mathcal{H}_{*}\left(b_{2}\right)=\{0\}$. Therefore, $b_{2} \equiv$ const, and, consequently, $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right) \cap \mathcal{N}_{+}$.
Similarly, the equivalence (2) is implied by Theorem 3.1 (1) and (2.40), and the equivalence (3) is implied by (1), (2) and (2.42).

Corollary 3.4. Let $W \in \mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right)$. Then
(1) $W \in \mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right) \cap \mathcal{N}_{+}$if and only if $\mathcal{L}_{\widetilde{W}}^{+}=\{0\}$;
(2) $W \in \mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right) \cap \mathcal{N}_{-}$if and only if $\mathcal{L}_{\widetilde{W}}^{-}=\{0\}$;
(3) $W \in \mathcal{U}_{\kappa}^{\ell, S}\left(j_{p q}\right)$ if and only if $\mathcal{L}_{\widetilde{W}}=\{0\}$.

Proof. Since $W \in \mathcal{U}_{\kappa}^{\ell, S}\left(j_{p q}\right)$, then $\widetilde{W} \in \mathcal{U}_{\kappa}^{r, S}\left(j_{p q}\right)$, and by Theorem 3.3 it is possible if and only if $\mathcal{L}_{\widetilde{W}}=\{0\}$.

Remark 3.5. In the case $\kappa=0$ descriptions of linear manifolds $\mathcal{L}_{W}^{ \pm}, \mathcal{L}_{W}$ in the form of (2.40) and a criterion of A-singularity of mvf $W \in \mathcal{U}_{\kappa}\left(j_{p q}\right)$ in terms of \mathcal{L}_{W} was presented in [9].
3.2. Factorization of generalized $j_{p q}$-inner mvf's and associated pairs. If $W \in$ $\mathcal{U}\left(j_{p q}\right)$ admits a representation $W=W^{(1)} W^{(2)}$ with $W^{(1)}, W^{(2)} \in \mathcal{U}\left(j_{p q}\right)$ and $\left\{b_{1}, b_{2}\right\} \in$ $\operatorname{ap}(W)$ and $\left\{b_{1}^{(1)}, b_{2}^{(1)}\right\} \in \operatorname{ap}\left(W^{(1)}\right)$ then $b_{1}^{(1)}$ is a left divisor of b_{1} and $b_{2}^{(1)}$ is a right divisor of b_{2}, see [8], [10, Lemma 4.28]. In this section an analog of this statement is proved for right and left generalized $j_{p q}$-inner mvf's. Relations between RKPS's corresponding to $W, W^{(1)}$ and $W^{(2)}$ are presented in the following theorem.

Theorem 3.6 ([2, Theorem 4.11]). Let a mvf $W(\lambda)$ admit a factorization

$$
\begin{equation*}
W=W^{(1)} W^{(2)}, \quad W^{(1)} \in \mathcal{U}_{\kappa_{1}}\left(j_{p q}\right), \quad W^{(2)} \in \mathcal{U}_{\kappa_{2}}\left(j_{p q}\right) \tag{3.2}
\end{equation*}
$$

Then $W \in \mathcal{U}_{\kappa}\left(j_{p q}\right)$ with $\kappa \leq \kappa_{1}+\kappa_{2}$ and

$$
\begin{equation*}
\mathcal{K}(W) \subseteq \mathcal{K}\left(W^{(1)}\right)+W^{(1)} \mathcal{K}\left(W^{(2}\right) \tag{3.3}
\end{equation*}
$$

where $\mathcal{K}(W), \mathcal{K}\left(W^{(1)}\right)$ and $\mathcal{K}\left(W^{(2)}\right)$ are RKPS's with reproducing kernels $\mathrm{K}_{\omega}^{W}(\lambda)$, $\mathrm{K}_{\omega}^{W^{(1)}}(\lambda)$ and $\mathrm{K}_{\omega}^{W^{(2)}}(\lambda)$, respectively. The following conditions are equivalent:
(1) $\kappa=\kappa_{1}+\kappa_{2}$,
(2) $\mathcal{K}\left(W^{(1)}\right)$ is contained contractively in $\mathcal{K}(W)$,
(3) $\mathcal{K}\left(W^{(1)}\right) \cap W^{(1)} \mathcal{K}\left(W^{(2)}\right)$ is a Hilbert subspace of $\mathcal{K}(W)$,
and in this case the equality in (3.3) prevails. Moreover, $\mathcal{K}\left(W^{(1)}\right)$ sits isometrically in $\mathcal{K}(W)$ if and only if $\mathcal{K}\left(W^{(1)}\right) \cap W^{(1)} \mathcal{K}\left(W^{(2)}\right)=\{0\}$ and in this case the decomposition (3.3) becomes orthogonal

$$
\begin{equation*}
\mathcal{K}(W)=\mathcal{K}\left(W^{(1)}\right)[+] W^{(1)} \mathcal{K}\left(W^{(2}\right) . \tag{3.4}
\end{equation*}
$$

The importance of the condition (1) in Theorem 3.6 is illustrated by the following
Example 3. Let $\Omega_{+}=\mathbb{D}$ and let mvf's $U^{(1)}(\lambda)$ and $U^{(2)}(\lambda)$ be given by

$$
U^{(1)}(\lambda)=\frac{1}{2(1-\lambda)}\left[\begin{array}{ll}
3-\lambda & -\lambda-1 \\
1+\lambda & 1-3 \lambda
\end{array}\right], \quad U^{(2)}(\lambda)=\frac{1}{2(1-\lambda)}\left[\begin{array}{cc}
1-3 \lambda & \lambda+1 \\
-1-\lambda & 3-\lambda
\end{array}\right] .
$$

Then

$$
\mathrm{K}_{\omega}^{U^{(1)}}(\lambda)=\frac{-1}{(1-\lambda)(1-\bar{\omega})}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right], \quad \mathrm{K}_{\omega}^{U^{(2)}}(\lambda)=\frac{1}{(1-\lambda)(1-\bar{\omega})}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

Therefore, $U^{(1)} \in \mathcal{U}_{1}^{r, S}\left(j_{11}\right), U^{(2)} \in \mathcal{U}\left(j_{11}\right)$ and

$$
\mathcal{K}\left(U^{(1)}\right)=\mathcal{K}\left(U^{(2)}\right)=U^{(1)} \mathcal{K}\left(U^{(2)}\right)=\operatorname{span}\left\{\frac{1}{1-\lambda}\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}
$$

But $U(\lambda)=U^{(1)}(\lambda) U^{(2)}(\lambda) \equiv I$ and hence $\mathcal{K}(U)=\{0\} \neq \mathcal{K}\left(U^{(1)}\right)+U^{(1)} \mathcal{K}\left(U^{(2)}\right)$. In this example all the assumptions of Theorem 3.6 hold except of (1).
Lemma 3.7. Let a mvf $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$ admit a factorization (3.2), where $\kappa_{1}+\kappa_{2}=\kappa$. Then

$$
\text { (i) } W^{(1)} \in \mathcal{U}_{\kappa_{1}}^{r}\left(j_{p q}\right) \text {. }
$$

(ii) For $\left\{b_{1}, b_{2}\right\} \in \operatorname{ap}^{r}(W)$ and $\left\{b_{1}^{(1)}, b_{2}^{(1)}\right\} \in \operatorname{ap}^{r}\left(W^{(1)}\right)$ one has

$$
\begin{equation*}
\theta_{1}:=\left(b_{1}^{(1)}\right)^{-1} b_{1} \in S_{i n}^{p \times p}, \quad \theta_{2}:=b_{2}\left(b_{2}^{(1)}\right)^{-1} \in S_{i n}^{q \times q} . \tag{3.5}
\end{equation*}
$$

Proof. The proof is divided into steps.

1. Verification of (i): Let the mvf's $W, W^{(k)}$ and their PG-transforms $S, S^{(k)}(k=1,2)$ defined by (2.11) have the block matrix representations:

$$
\begin{equation*}
W=\left(w_{i j}\right)_{i, j=1}^{2}, \quad W^{(k)}=\left(w_{i j}^{(k)}\right)_{i, j=1}^{2}, \quad S=\left(s_{i j}\right)_{i, j=1}^{2}, \quad S^{(k)}=\left(s_{i j}^{(k)}\right)_{i, j=1}^{2}, \quad k=1,2 \tag{3.6}
\end{equation*}
$$

corresponding to the decomposition (1.1) of $j_{p q}$. It follows from the equality $W=$ $W^{(1)} W^{(2)}$ that

$$
\begin{equation*}
w_{21}=w_{21}^{(1)} w_{11}^{(2)}+w_{22}^{(1)} w_{21}^{(2)}, \quad w_{22}=w_{21}^{(1)} w_{12}^{(2)}+w_{22}^{(1)} w_{22}^{(2)} \tag{3.7}
\end{equation*}
$$

Since $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$ and $W^{(1)} \in \mathcal{U}_{\kappa_{1}}\left(j_{p q}\right)$, then the matrices $w_{22}(\lambda)$ (see Section 2.2) and $w_{22}^{(1)}(\lambda)$ are invertible for every $\lambda \in\left(\mathfrak{h}_{W}^{+} \cap \mathfrak{h}_{W^{(1)}}^{+}\right)$except a finite number of points and

$$
\begin{equation*}
s_{21}=-w_{22}^{-1} w_{21} \in S_{\kappa}^{q \times p}, \quad s_{21}^{(1)}=-\left(w_{22}^{(1)}\right)^{-1} w_{21}^{(1)} \in S_{\kappa^{\prime}}^{q \times p} \quad \text { with } \quad \kappa^{\prime} \leq \kappa_{1} \tag{3.8}
\end{equation*}
$$

It follows from (3.7) that

$$
\begin{align*}
w_{22}^{-1} w_{21} & =\left(w_{21}^{(1)} w_{12}^{(2)}+w_{22}^{(1)} w_{22}^{(2)}\right)^{-1}\left(w_{21}^{(1)} w_{11}^{(2)}+w_{22}^{(1)} w_{21}^{(2)}\right) \\
& =\left(-s_{21}^{(1)} w_{12}^{(2)}+w_{22}^{(2)}\right)^{-1}\left(-s_{21}^{(1)} w_{11}^{(2)}+w_{21}^{(2)}\right) \tag{3.9}
\end{align*}
$$

Since $W^{(2)} \in \mathcal{U}_{\kappa_{2}}\left(j_{p q}\right)$, then by Lemma 2.9

$$
\begin{equation*}
w_{22}^{-1} w_{21}=T_{W^{(2)}}^{\ell}\left[-s_{21}^{(1)}\right] \in S_{\kappa^{\prime \prime}}^{q \times p}, \quad \text { where } \quad \kappa^{\prime \prime} \leq \kappa^{\prime}+\kappa_{2} \tag{3.10}
\end{equation*}
$$

On the other hand $w_{22}^{-1} w_{21} \in S_{\kappa}^{q \times p}$ by the assumption $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$. Comparing the equality $\kappa=\kappa^{\prime \prime}$ with (3.10) one obtains

$$
\kappa=\kappa^{\prime \prime} \leq \kappa^{\prime}+\kappa_{2} \leq \kappa_{1}+\kappa_{2}=\kappa
$$

and hence $\kappa^{\prime \prime}=\kappa, \kappa^{\prime}=\kappa_{1}$. Therefore, $s_{21}^{(1)} \in S_{\kappa_{1}}^{q \times p}$. This proves the inclusion $W^{(1)} \in$ $\mathcal{U}_{\kappa_{1}}^{r}\left(j_{p q}\right)$.
2. Verification of (ii): Let $\mathcal{K}(W)$ and $\mathcal{K}\left(W^{(j)}\right)(j=1,2)$ be reproducing kernel spaces with the kernels (1.2) and

$$
\mathrm{K}_{\omega}^{W^{(j)}}(\lambda)=\frac{j_{p q}-W^{(j)}(\lambda) j_{p q} W^{(j)}(\omega)^{*}}{\rho_{\omega}(\lambda)} \quad(j=1,2)
$$

It follows from Theorem 3.6 that

$$
\mathcal{K}(W) \cap H_{2}^{m} \supset \mathcal{K}\left(W^{(1)}\right) \cap H_{2}^{m}, \quad \mathcal{K}(W) \cap\left(H_{2}^{m}\right)^{\perp} \supset \mathcal{K}\left(W^{(1)}\right) \cap\left(H_{2}^{m}\right)^{\perp}
$$

Using the formulas for $\mathcal{K}(W) \cap H_{2}^{m}$ and $\mathcal{K}(W) \cap\left(H_{2}^{m}\right)^{\perp}$ from Theorem 2.10 one obtains

$$
\begin{equation*}
\mathcal{H}\left(b_{1}\right) \supseteq \mathcal{H}\left(b_{1}^{(1)}\right), \quad \mathcal{H}_{*}\left(b_{2}\right) \supseteq \mathcal{H}_{*}\left(b_{2}^{(1)}\right) . \tag{3.11}
\end{equation*}
$$

The inclusions (3.11) are equivalent to the relations (3.5).
As shows the following example the assumption $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$ in Lemma 3.7 is essential.
Example 4. Let $\Omega_{+}=\mathbb{D}$. Consider the mvf's

$$
W^{(1)}(\lambda)=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}
2 & \lambda \\
1 & 2 \lambda
\end{array}\right] \in \mathcal{U}_{1}^{r}\left(j_{11}\right), \quad W^{(2)}(\lambda)=\left[\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right] \in \mathcal{U}_{1}\left(j_{11}\right) \backslash \mathcal{U}_{1}^{\ell}\left(j_{11}\right),
$$

and let $W(\lambda)=W^{(1)}(\lambda) W^{(2)}(\lambda)$ be the product of these mvf's

$$
W(\lambda)=W^{(1)}(\lambda) W^{(2)}(\lambda)=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}
2 \lambda & \lambda^{2} \\
\lambda & 2 \lambda^{2}
\end{array}\right]
$$

The kernel

$$
\mathrm{K}_{\omega}^{W}(\lambda)=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]-\frac{\lambda \bar{\omega}}{3}\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right]
$$

has 2 negative square, therefore, $W \in \mathcal{U}_{2}\left(j_{11}\right)$. However, $W \notin \mathcal{U}_{2}^{r}\left(j_{11}\right)$, since $s_{21}=-\frac{1}{2 \lambda} \in$ \mathcal{S}_{1}. This shows that the converse statement to Lemma 3.7 (i) is not true.

The next statement is a dual version of Lemma 3.7.
Lemma 3.8. Let $W \in \mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right)$ admit the factorization (3.2), where $\kappa_{1}+\kappa_{2}=\kappa$. Then
(i) $W^{(2)} \in \mathcal{U}_{\kappa_{2}}^{\ell}\left(j_{p q}\right)$.
(ii) For $\left\{\mathfrak{b}_{1}, \mathfrak{b}_{2}\right\} \in \operatorname{ap}^{\ell}(W)$ and $\left\{\mathfrak{b}_{1}^{(2)}, \mathfrak{b}_{2}^{(2)}\right\} \in \operatorname{ap}^{\ell}\left(W^{(2)}\right)$ one has

$$
\begin{equation*}
\vartheta_{1}:=\mathfrak{b}_{1}\left(\mathfrak{b}_{1}^{(2)}\right)^{-1} \in S_{i n}^{p \times p}, \quad \vartheta_{2}:=\left(\mathfrak{b}_{2}^{(2)}\right)^{-1} \mathfrak{b}_{2} \in S_{i n}^{q \times q} . \tag{3.12}
\end{equation*}
$$

Proof. If $W \in \mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right)$ and $\left\{\mathfrak{b}_{1}, \mathfrak{b}_{2}\right\} \in \operatorname{ap}^{\ell}(W)$, then as was shown in [30, Proposition 3.7 and Theorem 3.8] $\left\{\widetilde{\mathfrak{b}}_{1}, \widetilde{\mathfrak{b}}_{2}\right\} \in \operatorname{ap}^{r}(\widetilde{W})$ and $\widetilde{W} \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$ by (2.27). Due to Lemma 3.7 $\widetilde{W}=$ $\widetilde{W}^{(2)} \widetilde{W}^{(1)}$, where $\widetilde{W}^{(2)} \in \mathcal{U}_{\kappa_{2}}^{r}\left(j_{p q}\right)$. Applying again (2.27) one obtains the statement (i).

Next, if $\left\{\mathfrak{b}_{1}^{(2)}, \mathfrak{b}_{2}^{(2)}\right\} \in \operatorname{ap}^{\ell}\left(W^{(2)}\right)$, then $\left\{\widetilde{\mathfrak{b}}_{1}^{(2)}, \widetilde{\mathfrak{b}}_{2}^{(2)}\right\} \in \operatorname{ap}^{r}\left(\widetilde{W}^{(2)}\right)$ and by Lemma 3.7

$$
\begin{equation*}
\left(\widetilde{\mathfrak{b}}_{1}^{(2)}\right)^{-1} \widetilde{\mathfrak{b}}_{1} \in S_{i n}^{p \times p}, \quad \widetilde{\mathfrak{b}}_{2}\left(\widetilde{\mathfrak{b}}_{2}^{(2)}\right)^{-1} \in S_{i n}^{q \times q} . \tag{3.13}
\end{equation*}
$$

These inclusions are equivalent to (3.12).
Corollary 3.9. Let $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$ admit the factorization (3.2), with $\kappa_{1}=\kappa$, $\kappa_{2}=0$. Then $W^{(1)} \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$ and if $\left\{b_{1}, b_{2}\right\} \in \operatorname{ap}^{r}(W)$ and $\left\{b_{1}^{(1)}, b_{2}^{(1)}\right\} \in \operatorname{ap}^{r}\left(W^{(1)}\right)$, then (3.5) holds.
Corollary 3.10. Let $W \in \mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right)$ admit the factorization (3.2), with $\kappa_{1}=0, \kappa_{2}=\kappa$.
Then $W^{(2)} \in \mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right)$ and if $\left\{\mathfrak{b}_{1}, \mathfrak{b}_{2}\right\} \in \operatorname{ap}^{\ell}(W)$ and $\left\{\mathfrak{b}_{1}^{(1)}, \mathfrak{b}_{2}^{(1)}\right\} \in \operatorname{ap}^{\ell}\left(W^{(2)}\right)$, then (3.12) holds.

Lemma 3.11. Let $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$ admit the factorization (3.2), where

$$
W^{(1)} \in \mathcal{U}_{\kappa_{1}}^{r}\left(j_{p q}\right), \quad W^{(2)} \in \mathcal{U}_{\kappa_{2}}^{\ell}\left(j_{p q}\right), \quad \kappa=\kappa_{1}+\kappa_{2},
$$

and let $\left\{b_{1}, b_{2}\right\} \in \operatorname{ap}^{r}(W),\left\{b_{1}^{(1)}, b_{2}^{(1)}\right\} \in \operatorname{ap}^{r}\left(W^{(1)}\right),\left\{\mathfrak{b}_{1}^{(2)}, \mathfrak{b}_{2}^{(2)}\right\} \in \operatorname{ap}^{\ell}\left(W^{(2)}\right)$. Then

$$
\begin{equation*}
\operatorname{deg} b_{1} \geq \operatorname{deg} b_{1}^{(1)}+\operatorname{deg} \mathfrak{b}_{1}^{(2)}, \quad \operatorname{deg} b_{2} \geq \operatorname{deg} b_{2}^{(1)}+\operatorname{deg} \mathfrak{b}_{2}^{(2)} \tag{3.14}
\end{equation*}
$$

If, in addition, $W^{(1)} \in \widetilde{L}_{2}^{m}$ then the following equalities hold:

$$
\begin{equation*}
\operatorname{deg} b_{1}=\operatorname{deg} b_{1}^{(1)}+\operatorname{deg} \mathfrak{b}_{1}^{(2)}, \quad \operatorname{deg} b_{2}=\operatorname{deg} b_{2}^{(1)}+\operatorname{deg} \mathfrak{b}_{2}^{(2)} \tag{3.15}
\end{equation*}
$$

Proof. 1. Two formulas for the blocks s_{11} and s_{22} of the PG-transform S of the mvf W will be established. Let the mvf's $W, W^{(k)}$ and their PG-transforms $S, S^{(k)}(k=1,2)$ defined by (2.11) have the block matrix representations (3.6). Using the equality

$$
\begin{equation*}
w_{11}=w_{11}^{(1)} w_{11}^{(2)}+w_{12}^{(1)} w_{21}^{(2)} \tag{3.16}
\end{equation*}
$$

one obtains from (2.14) that the following equalities are valid on $\mathfrak{h}_{S}^{+} \cap \mathfrak{h}_{W^{\#}}^{+}$:

$$
\begin{align*}
s_{11} & =w_{11}^{-\#}=\left(\left(w_{11}^{(2)}\right)^{\#}\left(w_{11}^{(1)}\right)^{\#}+\left(w_{21}^{(2)}\right)^{\#}\left(w_{12}^{(1)}\right)^{\#}\right)^{-1} \\
& =\left(w_{11}^{(1)}\right)^{-\#}\left(I_{p}+\left(w_{11}^{(2)}\right)^{-\#}\left(w_{21}^{(2)}\right)^{\#}\left(w_{12}^{(1)}\right)^{\#}\left(w_{11}^{(1)}\right)^{-\#}\right)^{-1}\left(w_{11}^{(2)}\right)^{-\#} \tag{3.17}\\
& =s_{11}^{(1)}\left(I_{p}-s_{12}^{(2)} s_{21}^{(1)}\right)^{-1} s_{11}^{(2)} .
\end{align*}
$$

Similarly, it follows from (3.7) and (2.12) that

$$
\begin{equation*}
w_{22}=w_{22}^{(1)}\left(I_{q}-s_{21}^{(1)} s_{12}^{(2)}\right) w_{22}^{(2)}, \tag{3.18}
\end{equation*}
$$

$$
\begin{equation*}
s_{22}=w_{22}^{-1}=s_{22}^{(2)}\left(I_{q}-s_{21}^{(1)} s_{12}^{(2)}\right)^{-1} s_{22}^{(1)} . \tag{3.19}
\end{equation*}
$$

2. Further factorizations in (3.17) and (3.19) is given in terms of associated pairs of W, $W^{(1)}$ and $W^{(2)}$.

Since $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right), W^{(1)} \in \mathcal{U}_{\kappa_{1}}^{r}\left(j_{p q}\right)$ and $W^{(2)} \in \mathcal{U}_{\kappa_{2}}^{\ell}\left(j_{p q}\right)$, then

$$
s_{21} \in S_{\kappa}^{q \times p}, \quad s_{21}^{(1)} \in S_{\kappa_{1}}^{q \times p}, \quad s_{12}^{(2)} \in S_{\kappa_{2}}^{p \times q} .
$$

Let $b_{\ell}, b_{r}, b_{\ell}^{(1)}, b_{r}^{(1)}, \mathfrak{b}_{\ell}^{(2)}$ and $\mathfrak{b}_{r}^{(2)}$ be inner factors determined by the KL-factorizations of mvf's $s_{21}, s_{21}^{(1)}, s_{12}^{(2)}$

$$
\begin{gathered}
s_{21}=b_{\ell}^{-1} s_{\ell}=s_{r} b_{r}^{-1}, \\
s_{21}^{(1)}=\left(b_{\ell}^{(1)}\right)^{-1} s_{\ell}^{(1)}=s_{r}^{(1)}\left(b_{r}^{(1)}\right)^{-1}, \\
s_{12}^{(2)}=\left(\mathfrak{b}_{\ell}^{(2)}\right)^{-1} \mathfrak{s}_{\ell}^{(2)}=\mathfrak{s}_{r}\left(\mathfrak{b}_{r}^{(2)}\right)^{-1} .
\end{gathered}
$$

Then as follows from [18, Theorem 4.6] (see (2.20)) and [30, Theorem 3.8]

$$
b_{\ell} s_{22}, b_{\ell}^{(1)} s_{22}^{(1)}, s_{22}^{(2)} \mathfrak{b}_{r}^{(2)} \in \mathcal{S}^{q \times q}, \quad s_{11} b_{r}, s_{11}^{(1)} b_{r}^{(1)}, \mathfrak{b}_{\ell}^{(2)} s_{11}^{(2)} \in \mathcal{S}^{p \times p}
$$

Consider inner-outer (and outer-inner, resp.) factorizations for these mvf's

$$
\begin{array}{cl}
s_{11} b_{r}=b_{1} a_{1}, & b_{\ell} s_{22}=a_{2} b_{2}, \\
s_{11}^{(1)} b_{r}^{(1)}=b_{1}^{(1)} a_{1}^{(1)}, & b_{\ell}^{(1)} s_{22}^{(1)}=a_{2}^{(1)} b_{2}^{(1)}, \\
\mathfrak{b}_{\ell}^{(2)} s_{11}^{(2)}=\mathfrak{a}_{1}^{(2)} \mathfrak{b}_{1}^{(2)}, & s_{22}^{(2)} \mathfrak{b}_{r}^{(2)}=\mathfrak{b}_{2}^{(2)} \mathfrak{a}_{2}^{(2)}, \tag{3.22}
\end{array}
$$

where $b_{1}, b_{1}^{(1)}, \mathfrak{b}_{1}^{(2)} \in S_{i n}^{p \times p}, b_{2}, b_{2}^{(1)}, \mathfrak{b}_{2}^{(2)} \in S_{i n}^{q \times q}, a_{1}, a_{1}^{(1)}, \mathfrak{a}_{1}^{(2)} \in S_{o u t}^{p \times p}, a_{2}, a_{2}^{(1)}, \mathfrak{a}_{2}^{(2)} \in$ $S_{\text {out }}^{q \times q}$.

Multiplying (3.17) by b_{r} from the right and using (3.20)-(3.22) one obtains

$$
\begin{align*}
b_{1} a_{1} & =s_{11}^{(1)}\left(I_{p}-\left(\mathfrak{b}_{\ell}^{(2)}\right)^{-1} \mathfrak{s}_{\ell}^{(2)} s_{r}^{(1)}\left(b_{r}^{(1)}\right)^{-1}\right)^{-1} s_{11}^{(2)} b_{r} \\
& =b_{1}^{(1)} a_{1}^{(1)}\left(\mathfrak{b}_{\ell}^{(2)} b_{r}^{(1)}-\mathfrak{s}_{\ell}^{(2)} s_{r}^{(1)}\right)^{-1} \mathfrak{a}_{1}^{(2)} \mathfrak{b}_{1}^{(2)} b_{r} . \tag{3.23}
\end{align*}
$$

Similarly, multiplying (3.19) by b_{ℓ} from the left and using (3.20)-(3.22), one obtains

$$
\begin{align*}
a_{2} b_{2} & =b_{\ell} s_{22}^{(2)}\left(I_{q}-\left(b_{\ell}^{(1)}\right)^{-1} s_{\ell}^{(1)} \mathfrak{s}_{r}^{(2)}\left(\mathfrak{b}_{r}^{(2)}\right)^{-1}\right)^{-1}\left(b_{\ell}^{(1)}\right)^{-1} a_{2}^{(1)} b_{2}^{(1)} \tag{3.24}\\
& =b_{\ell} \mathfrak{b}_{2}^{(2)} \mathfrak{a}_{2}^{(2)}\left(b_{\ell}^{(1)} \mathfrak{b}_{r}^{(2)}-s_{\ell}^{(1)} \mathfrak{s}_{r}^{(2)}\right)^{-1} a_{2}^{(1)} b_{2}^{(1)} .
\end{align*}
$$

3. Verification of (3.14): Let θ_{1}, θ_{2} be mvf's defined by (3.5). Then it follows from (3.23) and (3.24) that

$$
\begin{gather*}
\theta_{1} a_{1}=a_{1}^{(1)}\left(\mathfrak{b}_{\ell}^{(2)} b_{r}^{(1)}-\mathfrak{s}_{\ell}^{(2)} s_{r}^{(1)}\right)^{-1} \mathfrak{a}_{1}^{(2)} \mathfrak{b}_{1}^{(2)} b_{r} \tag{3.25}\\
\left(\mathfrak{b}_{\ell}^{(2)} b_{r}^{(1)}-\mathfrak{s}_{\ell}^{(2)} s_{r}^{(1)}\right)\left(a_{1}^{(1)}\right)^{-1} \theta_{1} a_{1}=\mathfrak{a}_{1}^{(2)} \mathfrak{b}_{1}^{(2)} b_{r} \tag{3.26}
\end{gather*}
$$

By the generalized Rouche Theorem (Theorem 2.1)

$$
\begin{equation*}
\mathcal{M}_{\zeta}\left(\mathfrak{b}_{\ell}^{(2)} b_{r}^{(1)}-\mathfrak{s}_{\ell}^{(2)} s_{r}^{(1)}, \Omega_{+}\right) \leq \kappa \tag{3.27}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\mathcal{M}_{\zeta}\left(\mathfrak{a}_{1}^{(2)} \mathfrak{b}_{1}^{(2)} b_{r}, \Omega_{+}\right)=\operatorname{deg} b_{r}+\operatorname{deg} \mathfrak{b}_{1}^{(2)}=\kappa+\operatorname{deg} \mathfrak{b}_{1}^{(2)} . \tag{3.28}
\end{equation*}
$$

Now (3.27), (3.28) imply the inequality

$$
\begin{equation*}
\kappa+\operatorname{deg} \mathfrak{b}_{1}^{(2)} \leq \kappa+\operatorname{deg} \theta=\kappa+\operatorname{deg} b_{1}-\operatorname{deg} b_{1}^{(1)} \tag{3.29}
\end{equation*}
$$

which coincides with the first inequality in (3.14).

Similarly, it follows from (3.24) that

$$
\begin{equation*}
a_{2} \theta_{2}\left(a_{2}^{(1)}\right)^{-1}\left(b_{\ell}^{(1)} \mathfrak{b}_{r}^{(2)}-s_{\ell}^{(1)} \mathfrak{s}_{r}^{(2)}\right)=b_{\ell} \mathfrak{b}_{2}^{(2)} \mathfrak{a}_{2}^{(2)} \tag{3.30}
\end{equation*}
$$

When comparing zero multiplicities of both parts of (3.30) and applying Theorem 2.1 one obtains

$$
\begin{align*}
\operatorname{deg} \mathfrak{b}_{2}^{(2)}+\kappa=\mathcal{M}_{\zeta}\left(b_{\ell} \mathfrak{b}_{2}^{(2)} \mathfrak{a}_{2}^{(2)}, \Omega_{+}\right) & =\mathcal{M}_{\zeta}\left(\theta_{2}\left(a_{2}^{(1)}\right)^{-1}\left(b_{\ell}^{(1)} \mathfrak{b}_{r}^{(2)}-s_{\ell}^{(1)} \mathfrak{s}_{r}^{(2)}\right), \Omega_{+}\right) \\
& \leq \kappa+\operatorname{deg} b_{2}-\operatorname{deg} b_{2}^{(1)}, \tag{3.31}
\end{align*}
$$

which coincides with the second inequality in (3.14).
4. Verification of (3.15): By [18, Lemma 4.22] the assumption $W^{(1)} \in \widetilde{L}_{2}^{m \times m}$ implies

$$
\left(I_{p}-\varepsilon s_{21}^{(1)}\right)^{-1} \in \widetilde{L}_{1}^{p \times p} \quad \text { and } \quad\left(I_{p}-s_{21}^{(1)} \varepsilon\right)^{-1} \in \widetilde{L}_{1}^{p \times p}
$$

for all $\varepsilon \in S^{p \times q}$. Hence, by generalized Rouche Theorem (Theorem 2.1) one obtains

$$
\begin{equation*}
\mathcal{M}_{\zeta}\left(\mathfrak{b}_{\ell}^{(2)} b_{r}^{(1)}-\mathfrak{s}_{\ell}^{(2)} s_{r}^{(1)}, \Omega_{+}\right)=\mathcal{M}_{\zeta}\left(b_{\ell}^{(1)} \mathfrak{b}_{r}^{(2)}-s_{\ell}^{(1)} \mathfrak{s}_{r}^{(2)}, \Omega_{+}\right)=\kappa . \tag{3.32}
\end{equation*}
$$

Therefore, the inequalities (3.29), and (3.31) will transform into equalities (3.15).
Lemma 3.12. Let $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$ and let $W=W^{(1)} W^{(2)}$, where $W^{(1)} \in \mathcal{U}_{\kappa_{1}}^{r}\left(j_{p q}\right)$, $W^{(2)} \in$ $\mathcal{U}_{\kappa_{2}}^{\ell}\left(j_{p q}\right)$ and $\kappa=\kappa_{1}+\kappa_{2}$. Then the following implication holds:

$$
\begin{equation*}
\operatorname{ap}^{r}\left(W^{(1)}\right)=\operatorname{ap}^{r}(W) \Rightarrow W^{(2)} \in \mathcal{U}_{\kappa_{2}}^{\ell, S}\left(j_{p q}\right) . \tag{3.33}
\end{equation*}
$$

If, in addition, $W^{(1)} \in \widetilde{L}_{2}^{m}$ then the converse is also true and thus the following equivalence holds

$$
\begin{equation*}
\operatorname{ap}^{r}\left(W^{(1)}\right)=\operatorname{ap}^{r}(W) \Longleftrightarrow W^{(2)} \in \mathcal{U}_{\kappa_{2}}^{\ell, S}\left(j_{p q}\right) \tag{3.34}
\end{equation*}
$$

Proof. Assume that $\operatorname{ap}^{r}\left(W^{(1)}\right)=\operatorname{ap}^{r}(W)$, i.e.

$$
\begin{equation*}
b_{1}=b_{1}^{(1)} \theta_{1}, \quad b_{2}=\theta_{2} b_{2}^{(1)} \tag{3.35}
\end{equation*}
$$

for some constant unitary matrices $\theta_{1} \theta_{2}$. Then, by Lemma $3.11 \operatorname{deg} \mathfrak{b}_{1}^{(2)}=0$ and $\operatorname{deg} \mathfrak{b}_{2}^{(2)}=0$. In view of Theorem 3.1 this implies, that $W^{(2)} \in \mathcal{U}_{\kappa_{2}}^{\ell, S}\left(j_{p q}\right)$.

Conversely, if $W^{(1)} \in \widetilde{L}_{2}^{m \times m}$ and $W^{(2)} \in \mathcal{U}_{\kappa_{2}}^{\ell, S}\left(j_{p q}\right)$, then by Theorem $3.1 \operatorname{deg} \mathfrak{b}_{1}^{(2)}=$ 0 and $\operatorname{deg} \mathfrak{b}_{2}^{(2)}=0$. Now the second statement of Lemma 3.11 yields the equality $\operatorname{ap}^{r}\left(W^{(1)}\right)=\operatorname{ap}^{r}(W)$.

In the case $\kappa_{2}=0$ the previous statement takes the form.
Corollary 3.13. Let $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$ and let $W=W^{(1)} W^{(2)}$, where $W^{(1)} \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$, $W^{(2)} \in \mathcal{U}\left(j_{p q}\right)$. Then the following implication holds:

$$
\begin{equation*}
\operatorname{ap}^{r}\left(W^{(1)}\right)=\operatorname{ap}^{r}(W) \Rightarrow W^{(2)} \in \mathcal{U}^{S}\left(j_{p q}\right) \tag{3.36}
\end{equation*}
$$

If in addition, $W^{(1)} \in \widetilde{L}_{2}^{m}$ then the converse is also true and thus the following equivalence holds:

$$
\begin{equation*}
\operatorname{ap}^{r}\left(W^{(1)}\right)=\operatorname{ap}^{r}(W) \Longleftrightarrow W^{(2)} \in \mathcal{U}^{S}\left(j_{p q}\right) . \tag{3.37}
\end{equation*}
$$

3.3. A-regular generalized $j_{p q}$-inner mvf's. Recall (see [7]), that a mvf $W \in \mathcal{U}\left(j_{p q}\right)$ is called right A-regular (left A-regular), if for any factorization $W=W^{(1)} W^{(2)}$ with $W^{(1)}, W^{(2)} \in \mathcal{U}\left(j_{p q}\right)$ the assumption $W_{2} \in \mathcal{U}^{S}\left(j_{p q}\right)\left(W^{(1)} \in \mathcal{U}^{S}\left(j_{p q}\right)\right)$ implies $W^{(2)}(\lambda) \equiv$ const $\left(W^{(1)}(\lambda) \equiv\right.$ const). The set of right A-regular and left A-regular mvf's in $\mathcal{U}\left(j_{p q}\right)$ is denoted by $\mathcal{U}^{r, R}\left(j_{p q}\right)$ and $\mathcal{U}^{\ell, R}\left(j_{p q}\right)$.
Definition 3.14. A mvf $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$ is called right A-regular, if for any factorization

$$
\begin{equation*}
W=W^{(1)} W^{(2)}, \quad W^{(1)} \in \mathcal{U}_{\kappa_{1}}^{r}\left(j_{p q}\right), \quad W^{(2)} \in \mathcal{U}_{\kappa_{2}}^{\ell}\left(j_{p q}\right), \tag{3.38}
\end{equation*}
$$

with $\kappa_{1}+\kappa_{2}=\kappa$ the assumption $W^{(2)} \in \mathcal{U}_{\kappa_{2}}^{\ell, S}\left(j_{p q}\right)$ implies $W^{(2)}(\lambda) \equiv$ const.
Similarly, a mvf $W \in \mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right)$ is called left A-regular, if for any factorization (3.38) with $\kappa_{1}+\kappa_{2}=\kappa$ the assumption $W^{(1)} \in \mathcal{U}_{\kappa_{1}}^{S}\left(j_{p q}\right)$ implies $W^{(1)}(\lambda) \equiv$ const.

In order to prove the next result we will need the following two theorems from [5, Theorems 4.1 and 4.2] and [3, Theorem 8]. The first theorem was formulated in terms of the resolvent operator R_{α} acting in a $\operatorname{RKPS} \mathcal{K}(W)\left(W \in \mathcal{U}_{\kappa}\left(j_{p, q}\right)\right)$ by the formula

$$
\left(R_{\alpha} f\right)(\omega)=\frac{f(\lambda)-f(\omega)}{\lambda-\omega}, \quad f \in \mathcal{K}(W), \quad \lambda, \omega \in \mathfrak{h}_{W}
$$

Recall, that $\mathcal{K}(W)$ denotes the RKPS with the reproducing kernel $\mathrm{K}_{\omega}^{W}(\lambda)$, see (1.2).
Theorem 3.15. ([5], Theorems 4.1 and 4.2). A RKPS \mathcal{K} of \mathbb{C}^{m}-valued vvf's holomorphic on a domain $\mathfrak{h}_{\mathcal{K}}$ with negative index $\kappa \in \mathbb{N} \cup\{0\}$ is a $\mathcal{K}(W)$ space for some $W \in \mathcal{U}_{\kappa}\left(j_{p q}\right)$, if and only if the following three conditions hold:
(1) \mathcal{K} is invariant with respect to R_{α} for all $\alpha \in \mathfrak{h}_{\mathcal{K}}$;
(2) for all $\alpha, \beta \in \mathfrak{h}_{\mathcal{K}}$ and $f, g \in \mathcal{K}$ one of the following equalities holds:

$$
\begin{equation*}
[f, g]_{\mathcal{K}}+\alpha\left[R_{\alpha} f, g\right]_{\mathcal{K}}+\bar{\beta}\left[f, R_{\beta} g\right]_{\mathcal{K}}-(1-\alpha \bar{\beta})\left[R_{\alpha} f, R_{\beta} g\right]_{\mathcal{K}}=g(\beta)^{*} j_{p q} f(\alpha), \quad \text { if } \Omega_{+}=\mathbb{D} \tag{3.39}
\end{equation*}
$$

$$
\begin{equation*}
\text { or } \quad\left[R_{\alpha} f, g\right]_{\mathcal{K}}-\left[f, R_{\beta} g\right]_{\mathcal{K}}-(\alpha-\bar{\beta})\left[R_{\alpha} f, R_{\beta} g\right]_{\mathcal{K}}=2 \pi i g(\beta)^{*} j_{p q} f(\alpha), \quad \text { if } \Omega_{+}=\mathbb{C}_{+} \tag{3.40}
\end{equation*}
$$

(3) $\mathfrak{h}_{\mathcal{K}} \cap \Omega_{0} \neq \emptyset$.

Recall, that reproducing kernel Hilbert spaces $\mathcal{K}(W)$ were first characterized by L. de Branges [15] for the case $\Omega_{+}=\mathbb{C}_{+}$, the disc version is due to J. Ball [12]; a unified version of both that is applicable to Kreĭn spaces is presented in [5].

Another theorem gives a generalization of Leech's criterion for the existence of a factorization of operator valued functions in terms of the nonnegativity of certain kernel. We will adapt below Theorem 8 from [3] to our notations.
Theorem 3.16. Suppose $W \in \mathcal{U}_{\kappa}\left(j_{p q}\right)$ and $W^{(1)} \in \mathcal{U}_{\kappa_{1}}\left(j_{p q}\right)$, where $0 \leq \kappa_{1} \leq \kappa$. Put $\kappa_{2}=\kappa-\kappa_{1}$. The following are equivalent:
(i) $W(\lambda)$ admits a factorization $W(\lambda)=W^{(1)}(\lambda) W^{(2)}(\lambda)$ for some $W^{(2)} \in \mathcal{U}_{\kappa_{2}}\left(j_{p q}\right)$;
(ii) the kernel $\frac{W^{(1)}(\lambda) j_{p q} W^{(1)}(\omega)^{*}-W(\lambda) j_{p q} W(\omega)^{*}}{\rho_{\omega}(\lambda)}$ has κ_{2} negative squares.

The following theorem ensures the existence of some specific factorization of the form (3.2). In this section we present some sufficient conditions for a generalized $j_{p q}$-inner $\operatorname{mvf} W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)\left(W \in \mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right)\right)$ to admit such a factorization.
Theorem 3.17. Let $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$, let $\mathcal{K}(W)$ be the $R K P S$ with the kernel $\mathrm{K}_{\omega}^{W}(\lambda)$, defined by (1.2), let $\mathcal{L}_{W}:=\mathcal{K}(W) \cap L_{2}^{m}$, and let $\kappa_{1}=\operatorname{ind}_{-}\left(\mathcal{L}_{W}\right), \kappa_{2}=\kappa-\kappa_{1}$. Assume that
(A1) $\mathfrak{h}_{W} \cap \Omega_{0} \neq \emptyset$;
(A2) The closure $\overline{\mathcal{L}_{W}}$ of \mathcal{L}_{W} is nondegenerate in $\mathcal{K}(W)$.
Then the mvf $W(\lambda)$ admits the factorization (3.2) such that
(i) the RKPS $\mathcal{K}\left(W^{(1)}\right)$ coincides with $\overline{\mathcal{L}_{W}}$ and is embedded isometrically in $\mathcal{K}(W)$;
(ii) $\mathcal{L}_{W^{(1)}}=\mathcal{L}_{W}$ and $\operatorname{ap}^{r}\left(W^{(1)}\right)=\operatorname{ap}^{r}(W)$.

Proof. Step 1. Verification that the closure $\overline{\mathcal{L}_{W}}$ of \mathcal{L}_{W} is a RKPS.
Indeed, $\overline{\mathcal{L}_{W}}$ is a nondegenerate subspace of $\mathcal{K}(W)$ and hence $\overline{\mathcal{L}_{W}}$ is a Pontryagin space of negative index κ_{1}. Since $\mathcal{K}(W)$ is a RKPS, then the evaluation operator $E(\lambda)$ is bounded as an operator acting from $\mathcal{K}(W)$ to \mathbb{C}^{m}. The reproducing kernel for $\mathcal{K}(W)$ is given by

$$
\mathrm{K}_{\omega}(\lambda)=E(\lambda) E(\omega)^{*}
$$

Let $F(\lambda)$ be a restriction of $E(\lambda)$ to $\overline{\mathcal{L}_{W}},[2] . F(\lambda)$ is bounded as an operator from $\overline{\mathcal{L}_{W}}$ to \mathbb{C}^{m}. The reproducing kernel for $\overline{\mathcal{L}_{W}}$ has the form

$$
\mathrm{K}_{\omega}^{(1)}(\lambda)=F(\lambda) F(\omega)^{*}
$$

Step 2. Verification that the $\operatorname{RKPS} \overline{\mathcal{L}_{W}}$ is a $\mathcal{K}\left(W^{(1)}\right)$ space, i.e. its kernel can be represented as

$$
\mathrm{K}_{\omega}^{(1)}(\lambda)=\mathrm{K}_{\omega}^{W^{(1)}}(\lambda):=\frac{j_{p q}-W^{(1)}(\lambda) j_{p q} W^{(1)}(\omega)^{*}}{\rho_{\omega}(\lambda)}
$$

for some $W^{(1)} \in \mathcal{U}_{\kappa_{1}}\left(j_{p q}\right)$.
Let us check the conditions (1)-(3) of Theorem 3.17 for the RKPS $\overline{\mathcal{L}_{W}}$. The condition (1) holds, since \mathcal{L}_{W} is R_{α} invariant for all $\alpha \in \mathfrak{h}_{W}$, the condition (2) is in force, since the de Branges identity holds for all $f, g \in \mathcal{K}(W)$ and $\overline{\mathcal{L}_{W}} \subset \mathcal{K}(W)$. The last condition follows from (A1). Therefore, the RKPS $\overline{\mathcal{L}_{W}}$ is a $\mathcal{K}\left(W^{(1)}\right)$ space, for some $W^{(1)} \in \mathcal{U}_{\kappa_{1}}\left(j_{p q}\right)$.

Step 3. Construction of a mvf $W^{(2)} \in \mathcal{U}_{\kappa_{2}}\left(j_{p q}\right)$ such that (3.2) holds.
Let P be the orthogonal projection in $\mathcal{K}(W)$ onto

$$
\begin{equation*}
\mathcal{K}\left(W^{(1)}\right):=\overline{\mathcal{L}_{W}} \tag{3.41}
\end{equation*}
$$

Then

$$
\left.P E(\cdot) E(\omega)^{*}\right|_{\overline{\mathcal{L}_{W}}}=F(\cdot) F(\omega)^{*} \quad\left(\omega \in \mathfrak{h}_{W}\right) .
$$

Indeed, for all $f \in \mathcal{K}\left(W^{(1)}\right)$ and $u \in \mathcal{K}^{m}$ one obtains

$$
\begin{align*}
\left\langle f, P\left(E(\cdot) E(\omega)^{*} u\right\rangle_{\mathcal{K}\left(W^{(1)}\right)}\right. & =\left\langle f, E(\cdot) E(\omega)^{*} u\right\rangle_{\mathcal{K}(W)} \tag{3.42}\\
& =u^{*} f(\omega)=\left\langle f, F(\cdot) F(\omega)^{*} u\right\rangle_{\mathcal{K}\left(W^{(1)}\right)}
\end{align*}
$$

Let the kernel $\mathrm{K}_{\omega}^{(2)}(\lambda)$ be defined by

$$
\mathrm{K}_{\omega}^{(2)}(\lambda)=\mathrm{K}_{\omega}(\lambda)-\mathrm{K}_{\omega}^{(1)}(\lambda) \quad\left(\omega, \lambda \in \mathfrak{h}_{W}\right)
$$

The kernel $\mathrm{K}_{\omega}^{(2)}(\lambda)$ has $\kappa_{2}=\kappa-\kappa_{1}$ negative squares. Indeed, for every $u, v \in \mathcal{K}^{m}$

$$
\begin{aligned}
\left\langle\mathrm{K}_{\omega}^{(2)}(\lambda) u, v\right\rangle & =\left\langle E(\omega)^{*} u, E(\omega)^{*} v\right\rangle_{\mathcal{K}(W)}-\left\langle F(\omega)^{*} u, F(\omega)^{*} v\right\rangle_{\mathcal{K}(W)} \\
& =\left\langle(1-P) E(\omega)^{*} u,(1-P) E(\omega)^{*} v\right\rangle_{\mathcal{K}(W)}
\end{aligned}
$$

Hence one obtains the equality

$$
\sum_{j, k=1}^{n}\left\langle\mathbf{K}_{\omega_{j}}^{(2)}\left(\omega_{k}\right) u_{j}, u_{k}\right\rangle \xi_{j} \overline{\xi_{k}}=\sum_{j, k=1}^{n}\left\langle(I-P) E\left(\omega_{j}\right)^{*} u_{j},(I-P) E\left(\omega_{k}\right)^{*} u_{k}\right\rangle_{\mathcal{K}(W)} \xi_{j} \overline{\xi_{k}},
$$

which shows that $\mathrm{K}_{\omega}^{(2)}(\lambda)$ has κ_{2} negative squares.
By Theorem 3.16 there is $W^{(2)} \in \mathcal{U}_{\kappa_{2}}\left(j_{p q}\right)$ such that $W(\lambda)=W^{(1)}(\lambda) W^{(2)}(\lambda)$. Moreover, $W^{(2)} \in \mathcal{U}_{\kappa_{2}}\left(j_{p q}\right)$, since both W and $W^{(1)}$ have $j_{p q}$-unitary nontangential limits a.e. on Ω_{0}.

Step 4. Verification that $W^{(1)} \in \mathcal{U}_{\kappa_{1}}^{r}\left(j_{p q}\right), \operatorname{ap}^{r}\left(W^{(1)}\right)=\operatorname{ap}^{r}(W)$.
The inclusion $W^{(1)} \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$ is implied by Lemma 3.7. Now it follows from [4, Theorem 6.14] that

$$
\begin{equation*}
\mathcal{K}(W)=\mathcal{K}\left(W^{(1)}\right)[\dot{+}] W^{(1)} \mathcal{K}\left(W^{(2)}\right) . \tag{3.43}
\end{equation*}
$$

Equality (3.43) implies the statement (ii). Moreover, it follows from (3.43) that

$$
\mathcal{L}_{W^{(1)}}=\mathcal{K}\left(W^{(1)}\right) \cap L_{2}^{m} \subset \mathcal{K}(W) \cap L_{2}^{m}=\mathcal{L}_{W}
$$

On the other hand, it follows from (3.41) that

$$
\mathcal{L}_{W^{(1)}}=\mathcal{K}\left(W^{(1)}\right) \cap L_{2}^{m}=\overline{\mathcal{L}_{W}} \cap L_{2}^{m} \supset \mathcal{L}_{W}
$$

Therefore, $\mathcal{L}_{W^{(1)}}=\mathcal{L}_{W}$ and hence $\operatorname{ap}^{r}\left(W^{(1)}\right)=\operatorname{ap}^{r}(W)$ by Theorem 2.10. This completes the proof.
Corollary 3.18. Let, under the assumptions of Theorem 3.17, $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right) \cap \mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right)$, and let $W^{(1)} \in \mathcal{U}_{\kappa_{1}}^{r}\left(j_{p q}\right)$ and $W^{(2)} \in \mathcal{U}_{\kappa_{2}}^{\ell}\left(j_{p q}\right)$ be the mvf's determined in Theorem 3.17. Then

$$
\begin{equation*}
W^{(2)} \in \mathcal{U}_{\kappa_{2}}^{\ell, S}\left(j_{p q}\right) . \tag{3.44}
\end{equation*}
$$

Proof. Since $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right) \cap \mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right)$ one has $W^{(1)} \in \mathcal{U}_{\kappa_{1}}^{r}\left(j_{p q}\right)$ and $W^{(2)} \in \mathcal{U}_{\kappa_{2}}^{\ell}\left(j_{p q}\right)$. Next by Theorem 3.17 the following condition holds

$$
\begin{equation*}
\operatorname{ap}^{r}\left(W^{(1)}\right)=\operatorname{ap}^{r}(W) \tag{3.45}
\end{equation*}
$$

and hence by Lemma $3.12 W^{(2)} \in \mathcal{U}_{\kappa_{2}}^{\ell, S}\left(j_{p q}\right)$.
Corollary 3.19. Let, under the assumptions of Theorem 3.17, $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$, let $W^{(1)} \in$ $\mathcal{U}_{\kappa}^{r}\left(j_{p q}\right), W^{(2)} \in \mathcal{U}\left(j_{p q}\right)$ be the mvf's constructed in Theorem 3.17, and let ind $\mathcal{L}_{W}=\kappa$. Then $W^{(2)} \in \mathcal{U}^{\ell, S}\left(j_{p q}\right)$.

Proof. Since ind_ $\mathcal{L}_{W}=\kappa$ the space $\overline{\mathcal{L}_{W}}=\overline{\left(\mathcal{K}(W) \cap L_{2}^{m}\right)}$ is nondegenerate, i.e. the assumption (A2) holds. By Theorem 3.17 there exist mvf's $W^{(1)} \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$ and $W^{(2)} \in$ $\mathcal{U}\left(j_{p q}\right)$, such that $W=W^{(1)} W^{(2)}$ and (3.45) holds. By Corollary $3.13 W^{(2)} \in \mathcal{U}^{S}\left(j_{p q}\right)$.

In the next lemma we find some sufficient conditions for a $\operatorname{mvf} W(\lambda)$ to be regular. Denote by $\mathcal{R}^{m \times m}$ the set of rational $m \times m$-mvf's.

Lemma 3.20. Let, under the assumptions of Theorem 3.17, ind $\mathcal{L}_{W}=\kappa$. Then the following implications hold:
(1) $W \in \mathcal{U}_{\kappa}^{r, R}\left(j_{p q}\right) \Longrightarrow \overline{\mathcal{L}_{W}}=\mathcal{K}(W)$;
(2) $\mathcal{K}(\widetilde{W}) \subset L_{2}^{m \times m} \Longrightarrow W \in \mathcal{U}_{\kappa}^{r, R}\left(j_{p q}\right)$;
(3) $W \in \widetilde{L}_{2}^{m \times m} \cap \mathcal{R}^{m \times m} \Longrightarrow W \in \mathcal{U}_{\kappa}^{r, R}\left(j_{p q}\right)$.

Proof. By Theorem 3.17 and Corollary $3.19 W=W^{(1)} W^{(2)}$, where $W^{(1)} \in \mathcal{U}_{\kappa_{1}}^{r}\left(j_{p q}\right)$ and $W^{(2)} \in \mathcal{U}^{S}\left(j_{p q}\right)$.
(1) Let $W \in \mathcal{U}_{\kappa}^{r, R}\left(j_{p q}\right)$ and assume that $\overline{\mathcal{K}(W) \cap L_{2}^{m}} \neq \mathcal{K}(W)$. Then

$$
\begin{equation*}
\mathcal{K}\left(W^{(1)}\right)=\overline{\mathcal{K}(W) \cap L_{2}^{m}} \neq \mathcal{K}(W), \tag{3.46}
\end{equation*}
$$

and the equalities (3.43) and (3.46) yield $\mathcal{K}\left(W^{(2)}\right) \neq\{0\}$, i.e. $W^{(2)} \not \equiv$ const. But this contradicts the assumption $W \in \mathcal{U}_{\kappa}^{r R}\left(j_{p q}\right)$.
(2) Let $\mathcal{K}(\widetilde{W}) \subset L_{2}^{m \times m}$, and assume that
$W=W^{(3)} W^{(4)}, \quad$ where $\quad W^{(3)} \in \mathcal{U}_{\kappa_{1}}^{r}\left(j_{p q}\right), \quad W^{(4)} \in \mathcal{U}_{\kappa_{2}}^{\ell, S}\left(j_{p q}\right) \quad$ and $\quad \kappa_{3}+\kappa_{4}=\kappa$.
Then

$$
\widetilde{W}=\widetilde{W}^{(4)} \widetilde{W}^{(3)}, \quad \text { where } \quad \widetilde{W}^{(3)} \in \mathcal{U}_{\kappa_{3}}\left(j_{p q}\right), \quad \widetilde{W}^{(4)} \in \mathcal{U}_{\kappa_{4}}^{r, S}\left(j_{p q}\right)
$$

By Theorem 3.6

$$
\begin{equation*}
\mathcal{K}(\widetilde{W})=\mathcal{K}\left(\widetilde{W}^{(4)}\right)+\widetilde{W}^{(4)} \mathcal{K}\left(\widetilde{W}^{(3)}\right) \tag{3.47}
\end{equation*}
$$

Since $\mathcal{K}(\widetilde{W}) \subset L_{2}^{m \times m}$ and $\mathcal{K}\left(\widetilde{W}{ }^{(4)}\right) \subset \mathcal{K}(\widetilde{W})$ one obtains $\mathcal{K}(\widetilde{W}(4))=\{0\}$ and hence $W^{(4)} \equiv$ const.
(3) Assume that $W \in \widetilde{L}_{2}^{m \times m} \cap \mathcal{R}^{m \times m}$. Then $\mathrm{K}_{\omega} u \in L_{2}^{m}$ for all $\omega \in \mathfrak{h}_{W}$ and $u \in \mathcal{K}^{m}$ and hence the set $\mathcal{L}_{W}=\mathcal{K}(W) \cap L_{2}^{m}$ is dense in $\mathcal{K}(W)$. In fact, $\mathcal{K}(W)$ is a finite-dimensional space since W is rational, and hence $\mathcal{K}(W)=\mathcal{L}_{W} \subset L_{2}^{m \times m}$.

The assumption $W \in \widetilde{L}_{2}^{m \times m} \cap \mathcal{R}^{m \times m}$ implies also $\widetilde{W} \in \widetilde{L}_{2}^{m \times m} \cap \mathcal{R}^{m \times m}$ and hence as above one obtains $\mathcal{K}(\widetilde{W}) \subset L_{2}^{m \times m}$. Now the statement is implied by (2)

Remark 3.21. In contrast with the definite case the result of Lemma 3.20 is much weaker. If $\kappa=0$ then the statements (1) and (3) take the form (see [10, Theorems 5.86 , 5.90]):
(1') $W \in \mathcal{U}^{r, R}\left(j_{p q}\right) \Longleftrightarrow \overline{\mathcal{L}_{W}}=\mathcal{K}(W) ;$
$\left(3^{\prime}\right) W \in \widetilde{L}_{2}^{m \times m} \cap \mathcal{U}^{r}\left(j_{p q}\right) \Longrightarrow W \in \mathcal{U}^{r, R}\left(j_{p q}\right)$.
In the following theorem a criterion for a rational mvf $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$ to be A-regular is proved.

Theorem 3.22. Let $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right)$ be a rational mvf. Then

$$
W \in \mathcal{U}_{\kappa}^{r, R}\left(j_{p q}\right) \Longleftrightarrow \mathcal{L}_{W}=\mathcal{K}(W) .
$$

Proof. 1. Verification of the implication $\mathcal{L}_{W}=\mathcal{K}(W) \Rightarrow W \in \mathcal{U}_{\kappa}^{r, R}\left(j_{p q}\right)$.
It follows from the assumption $\mathcal{L}_{W}=\mathcal{K}(W)$ that $W \in \widetilde{L}_{2}^{m \times m}$. Hence by Theorem 3.20 $W \in \mathcal{U}_{\kappa}^{r, R}\left(j_{p q}\right)$.
2. Verification of the implication $W \in \mathcal{U}_{\kappa}^{r, R}\left(j_{p q}\right) \Rightarrow \mathcal{L}_{W}=\mathcal{K}(W)$.

Assume that $\mathcal{L}_{W} \neq \mathcal{K}(\widetilde{W})$. Then W has a pole ω_{0} on Ω_{0} and hence the space $\mathcal{K}(W)$ contains a $\operatorname{vvf} f(\lambda)=\frac{v}{\lambda-\overline{\omega_{0}}}$, see [4, Theorem 5.2]. A vvf $f(\lambda)$ is an eigenfunction for the backward shift operator R_{α} corresponding to the eigenvalue $\frac{1}{\bar{\omega}_{0}-\alpha}, \alpha \in \Omega_{+}$. Since $\mathcal{K}=\mathcal{K}(\widetilde{W})$ is a RKPS with the kernel $\mathcal{K}_{\omega}^{\widetilde{W}}(\lambda)$ by [4, Theorem 6.9], then for every choice of $f, g \in \mathcal{K}(\widetilde{W})$ and every $\alpha, \beta \in \Omega_{+}$the identity (3.39) holds if $\Omega_{+}=\mathbb{D}$, or the identity (3.40) holds if $\Omega_{+}=\mathbb{C}_{+}$. Substituting $\beta=\alpha$ and $g=f=\frac{v}{\lambda-\bar{\omega}_{0}}$ in (3.39) if $\Omega_{+}=\mathbb{D}\left(\right.$ or in (3.40), if $\left.\Omega_{+}=\mathbb{C}_{+}\right)$, one obtains from (3.39) ((3.40), resp.)

$$
\begin{equation*}
v^{*} j_{p q} v=0 \tag{3.48}
\end{equation*}
$$

Consider the mvf's

$$
V_{\varepsilon}(\lambda):=I_{m}-\frac{\varepsilon}{2} c_{\omega_{0}}(\lambda) v v^{*} j_{p q}, \quad W_{\varepsilon}(\lambda):=V_{\varepsilon}(\lambda)^{-1} \widetilde{W}(\lambda), \quad \varepsilon>0
$$

Then $V_{\varepsilon} \in \mathcal{U}\left(j_{p q}\right)$ and $\mathcal{K}\left(V_{\varepsilon}\right)=\operatorname{span} f$ (see Example 1), $W_{\varepsilon} \in \mathcal{U}_{\kappa^{\prime}}\left(j_{p q}\right)$ for some $\kappa^{\prime} \geq \kappa$,

$$
\begin{equation*}
\widetilde{W}(\lambda)=V_{\varepsilon}(\lambda) W_{\varepsilon}(\lambda) \tag{3.49}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{K}(\widetilde{W}) \subseteq \mathcal{K}\left(V_{\varepsilon}\right)+V_{\varepsilon}\left(\mathcal{K}\left(W_{\varepsilon}\right)\right) \tag{3.50}
\end{equation*}
$$

If $[f, f]_{\mathcal{K}} \leq 0$ then the following inequality holds

$$
\begin{equation*}
[f, f]_{\mathcal{K}} \leq 0 \leq[f, f]_{\mathcal{K}\left(V_{\varepsilon}\right)} \tag{3.51}
\end{equation*}
$$

and hence the space $\mathcal{K}\left(V_{\varepsilon}\right)$ is contractively contained in $\mathcal{K}(\widetilde{W})$.
If $[f, f]_{\mathcal{K}}>0$, then the inequality (3.51) will be satisfied for ε small enough, cf. [4, Theorem 5.4], and hence again the inclusion $\mathcal{K}\left(V_{\varepsilon}\right) \subset \mathcal{K}(\widetilde{W})$ will be contractive. By Theorem 3.6 one obtains $\kappa^{\prime}=\kappa$ and hence $W_{\varepsilon} \in \mathcal{U}_{\kappa}\left(j_{p q}\right)$. Applying the transform (2.26) one obtains the factorization

$$
W(\lambda)=\widetilde{W}_{\varepsilon}(\lambda) \widetilde{V}_{\varepsilon}(\lambda),
$$

where $W_{\varepsilon} \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right), V_{\varepsilon} \in \mathcal{U}^{S}\left(j_{p q}\right)$ and $V_{\varepsilon} \not \equiv$ const. This contradicts the assumption $W \in \mathcal{U}_{\kappa}^{r, R}\left(j_{p q}\right)$.

In the case $\kappa=0$ an examples of A-regular $j_{p q}$-inner mvf's are provided by BP-factors of the 1 -st and the 2 -nd kind. In the indefinite case ($\kappa>0$) these examples can be slightly modified.

Example 5. By Theorem 3.22 every rational mvf from $\mathcal{U}_{1}^{r}\left(j_{p q}\right)$, which has no poles on Ω_{0}, is right A-regular, in particular, the mvf's $U_{\omega}(\lambda)$ in (2.23) and (2.24) belong to the class $\mathcal{U}_{1}^{r, R}\left(j_{p q}\right)$, if $v_{2} v_{1}^{*} \neq 0$.

In the following example we introduce a rational generalized $j_{p q}$-inner mvf with poles on the boundary Ω_{0}, which is not A-regular and does not admit A-regular $-A$-singular factorization.

Example 6. Let $\Omega_{+}=\mathbb{D}$ and let the mvf $W(\lambda)$ be defined by (see [4, (7.5)])

$$
W(\lambda)=\left(I_{2}+\left\{b_{\beta, \alpha}(\lambda)-1\right\} W_{1,2}\right)\left(I_{2}+\left\{b_{\alpha, \beta}(\lambda)-1\right\} j_{p q} W_{1,2}^{*} j_{p q}\right),
$$

where

$$
W_{1,2}=u_{1}\left(u_{2}^{*} j_{p q} u_{1}\right)^{-1} u_{2}^{*} j_{p q}, \quad b_{\alpha, \beta}(\lambda)=\frac{\lambda-\alpha}{1-\lambda \beta^{*}},
$$

and u_{1}, u_{2} are vectors in \mathbb{C}^{2}, such that $u_{2}^{*} j_{p q} u_{1} \neq 0$. Then for $u_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], u_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$, $\alpha=0 \in \Omega_{+}, \beta=1$, (notice that $\beta \notin \Omega_{+}$) one obtains

$$
W(\lambda)=\frac{1}{2 \lambda-2}\left[\begin{array}{cc}
\lambda^{2}-3 \lambda+1 & \lambda^{2}-\lambda+1 \\
\lambda^{2}-\lambda+1 & \lambda^{2}-3 \lambda+1
\end{array}\right] .
$$

The mvf $W(\lambda)$ has the following properties:
(1) $W \in \mathcal{U}_{1}^{r}\left(j_{p q}\right)$;
(2) $W(\cdot)$ is neither A-singular, nor A-regular;
(3) $W(\cdot)$ does not admit A-regular $-A$-singular factorization.

Indeed, the kernel

$$
\mathrm{K}_{\omega}^{W}(\lambda)=\frac{j_{p q}-W(\lambda) j_{p q} W(\omega)^{*}}{1-\lambda \bar{\omega}}=\frac{1}{2(\lambda-1)(\bar{\omega}-1)}\left[\begin{array}{cc}
2-\lambda-\bar{\omega} & \lambda-\bar{\omega} \tag{3.52}\\
-(\lambda-\bar{\omega}) & -(2-\lambda-\bar{\omega})
\end{array}\right]
$$

has 1 negative square in $\mathfrak{h}_{W}^{+} ; W(\lambda)$ is $j_{p q}$-unitary a.e. on \mathbb{T}, hence $W \in \mathcal{U}_{1}\left(j_{p q}\right)$. The PG-transformation $S=P G(W)$ of W takes the form

$$
S(\lambda)=\frac{1}{\lambda^{2}-3 \lambda+1}\left[\begin{array}{cc}
-2 \lambda(\lambda-1) & \lambda^{2}-\lambda+1 \\
-\left(\lambda^{2}-\lambda+1\right) & 2(\lambda-1)
\end{array}\right] .
$$

If λ_{1} and λ_{2} are two zeros of the polynomial $\lambda^{2}-3 \lambda+1$, such that $\lambda_{1} \in \mathbb{D}$ and $\lambda_{2} \notin \mathbb{D}$, then the left KL- factorization of $s_{21}(\lambda)$ takes the form

$$
s_{21}(\lambda)=-\frac{\lambda^{2}-\lambda+1}{\lambda^{2}-3 \lambda+1}=b_{\ell}^{-1} s_{\ell}=s_{r} b_{r}^{-1}
$$

where $b_{r}(\lambda)=b_{\ell}(\lambda)=\frac{\lambda-\lambda_{1}}{1-\bar{\lambda}_{1} \lambda}$ and hence $s_{21} \in \mathcal{S}_{1}$ and $W \in \mathcal{U}_{1}^{r}\left(j_{p q}\right)$.
Since the function

$$
b_{\ell} s_{22}=\frac{\lambda-\lambda_{1}}{1-\overline{\lambda_{1}} \lambda} \cdot \frac{2(\lambda-1)}{\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right)}=\frac{2(\lambda-1)}{\left(1-\overline{\lambda_{1}} \lambda\right)\left(\lambda-\lambda_{2}\right)}, \quad \lambda_{2} \notin \mathbb{D} .
$$

is outer, the factor b_{2} in (2.20) is missing, that is $b_{2}=1$. The function

$$
s_{11} b_{r}=-\frac{2 \lambda(\lambda-1)}{\lambda^{2}-3 \lambda+1} \cdot \frac{\lambda-\lambda_{1}}{1-\overline{\lambda_{1}} \lambda}=-\frac{2 \lambda(\lambda-1)}{\left(\lambda-\lambda_{2}\right)\left(1-\overline{\lambda_{1}} \lambda\right)}
$$

has an inner factor $b_{1}=\lambda$. Therefore, the associated pair $\operatorname{ap}^{r}(W)$ coincides with $\{\lambda, 1\}$ and by Theorem 3.1 the mvf $W(\cdot)$ is not A-singular.

The RKPS $\mathcal{K}(W)$ and the subspace \mathcal{L}_{W} take the form

$$
\mathcal{K}(W)=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right], \frac{1}{\lambda-1}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right\}, \quad \mathcal{L}_{W}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\} .
$$

By Theorem 3.22 the mvf $W(\lambda)$ is not A-regular, since $\mathcal{L}_{W} \neq \mathcal{K}(W)$.
Notice, that the fact that $W(\lambda)$ is not right A-regular can be also checked directly. Indeed, $W(\lambda)$ admits the factorization

$$
W(\lambda)=W^{(1)}(\lambda) U^{(2)}(\lambda)
$$

where $U^{(2)}(\lambda)$ is the mvf from Example 3 and

$$
W^{(1)}(\lambda)=W(\lambda)\left(U^{(2)}(\lambda)\right)^{-1}=\frac{1}{2(1-\lambda)}\left[\begin{array}{cc}
3 \lambda-2 & -\lambda(2 \lambda-1) \\
\lambda-2 & -\lambda(2 \lambda-3)
\end{array}\right]
$$

The corresponding reproducing kernel $\mathrm{K}_{\omega}^{W^{(1)}}(\lambda)$ and the RKPS $\mathcal{K}\left(W^{(1)}\right)$ take the form

$$
\begin{gathered}
\mathrm{K}_{\omega}^{W^{(1)}}(\lambda)=\frac{-1}{2(1-\lambda)(1-\bar{\omega})}\left[\begin{array}{cc}
2 \lambda \bar{\omega}-\lambda-\bar{\omega} & 2 \lambda \bar{\omega}-3 \lambda-\bar{\omega}+2 \\
2 \lambda \bar{\omega}-\lambda-3 \bar{\omega}+2 & 2 \lambda \bar{\omega}-3 \lambda-3 \bar{\omega}+4
\end{array}\right] \\
\mathcal{K}\left(W^{(1)}\right)=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right], \frac{1}{\lambda-1}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right\}
\end{gathered}
$$

It is easily checked that $\kappa_{-}\left(\mathcal{K}\left(W^{(1)}\right)\right)=1$ and hence $W^{(1)} \in \mathcal{U}_{1}^{r}\left(j_{11}\right)$. Since $U^{(2)} \in$ $\mathcal{U}^{S}\left(j_{11}\right)$ and $U^{(2)} \not \equiv$ const it shows that $W(\lambda)$ is not A-regular.

Moreover, the mvf $W(\lambda)$ does not admit right A-regular $-A$-singular factorization. Indeed, if

$$
\begin{equation*}
W(\lambda)=W^{(3)}(\lambda) W^{(4)}(\lambda), \quad W^{(3)} \in \mathcal{U}_{\kappa_{3}}^{r, R}\left(j_{11}\right), \quad W^{(4)} \in \mathcal{U}_{\kappa_{4}}^{\ell, S}\left(j_{11}\right) \tag{3.53}
\end{equation*}
$$

then $W^{(3)}(\lambda)$ and $W^{(4)}(\lambda)$ are factors of degree 1 , since W is neither right A-regular nor A-singular mvf. If $\kappa_{3}=0$ then the mvf $W^{(3)}$ is a BP-factor of the 1 -st kind with pole at ∞,

$$
\begin{equation*}
W^{(3)}(\lambda)=I+(\lambda-1) v v^{*} j_{p q}, \quad v^{*} j_{p q} v=1 \tag{3.54}
\end{equation*}
$$

where $v \in \mathbb{C}^{2}$ is determined by $v^{*} j_{p q} W^{(3)}(0)=0$.
However, the equation $v^{*} j_{p q} W(0)=0$ has a unique (up to a $j_{p q}$-unitary factor) solution $v=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and this vector does not satisfy the condition $v^{*} j_{p q} v=1$.

In the case $\kappa_{3}=1$ the $\operatorname{mvf} W^{(3)}$ admits the representation (2.23) (see Example 1)

$$
W^{(3)}(\lambda)=I-(\lambda-1) v v^{*} j_{p q}, \quad \text { where } \quad v^{*} j_{p q} v=-1
$$

and again $v \in \mathbb{C}^{2}$ is determined by $v^{*} j_{p q} W^{(3)}(0)=0$. But this implies $v^{*} j_{p q} W(0)=0$ and solution $v=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ of the equation $v^{*} j_{p q} W(0)=0$ does not satisfies $v^{*} j_{p q} v=-1$.

This proves that the mvf $W(\lambda)$ does not admit the factorization (3.53).

3.4. Existence of A-regular- A-singular factorizations.

Theorem 3.23. Let $W \in \mathcal{U}_{\kappa}^{r}\left(j_{p q}\right) \cap \mathcal{U}_{\kappa}^{\ell}\left(j_{p q}\right) \cap \mathcal{R}^{m \times m}$. Then the following statements are equivalent:
(1) W admits the factorization

$$
\begin{align*}
& \text { 55) } W=W^{(1)} W^{(2)}, \quad \text { where } \quad W^{(1)} \in \mathcal{U}_{\kappa_{1}}^{r, R}\left(j_{p q}\right) \quad \text { and } \quad W^{(2)} \in \mathcal{U}_{\kappa_{2}}^{\ell, S}\left(j_{p q}\right) \tag{3.55}\\
& \text { with } \kappa=\kappa_{1}+\kappa_{2} ; \\
& \text { (2) } \mathcal{L}_{W} \text { is a nondegenerate subspace of } \mathcal{K}(W) .
\end{align*}
$$

Moreover, if (2) is the case then the factors $W^{(1)}$ and $W^{(2)}$ in (3.55) are uniquely determined up to $j_{p q}$-unitary factors.
Proof. 1. Verification of implication (2) \Longrightarrow (1). Consider the factorization $W=$ $W^{(1)} W^{(2)}$, constructed in Theorem 3.17, in which $W^{(1)} \in \mathcal{U}_{\kappa_{1}}^{r}\left(j_{p q}\right)$ and $W^{(2)} \in \mathcal{U}_{\kappa_{2}}\left(j_{p q}\right)$. By Lemma $3.8 W^{(2)} \in \mathcal{U}_{\kappa_{2}}^{\ell}\left(j_{p q}\right)$ and by Corollary $3.18 W^{(2)} \in \mathcal{U}_{\kappa_{2}}^{\ell, S}\left(j_{p q}\right)$. Since

$$
\mathcal{K}\left(W^{(1)}\right)=\overline{\mathcal{L}_{W}}=\mathcal{L}_{W} \subset L_{2}^{m}
$$

and $W^{(1)} \in \mathcal{R}^{m \times m}$ then also $\widetilde{W}^{(1)} \in \widetilde{L}_{2}^{m \times m}$ and in view of Lemma 3.20 $W^{(1)} \in \mathcal{U}_{\kappa_{1}}^{r, R}\left(j_{p q}\right)$. 2. Verification of implication $(1) \Longrightarrow(2)$. Let W admits the factorization (3.55) with $\kappa=\kappa_{1}+\kappa_{2}$. By Theorem 3.6 the following equality holds

$$
\begin{equation*}
\mathcal{K}(W)=\mathcal{K}\left(W^{(1)}\right)+W^{(1)} \mathcal{K}\left(W^{(2)}\right) \tag{3.56}
\end{equation*}
$$

Since $W^{(1)} \in \mathcal{U}_{\kappa_{1}}^{r, R}\left(j_{p q}\right)$ it has no zeros on Ω_{0} and hence $W^{(1)} \mathcal{K}\left(W^{(2)}\right) \cap L_{2}^{m}=\{0\}$. This implies $W^{(1)} \mathcal{K}\left(W^{(2)}\right) \cap \mathcal{K}\left(W^{(1)}\right)=\{0\}$ and hence by Theorem 3.6 the sum in (3.56) is orthogonal. Therefore, the subspace $\mathcal{L}_{W}=\mathcal{K}(W) \cap L_{2}^{m}=\mathcal{K}\left(W^{(1)}\right)$ is nondegenerate in $\mathcal{K}(W)$.
3. Verification of uniqueness of (3.55). Assume now that $W=W^{(3)} W^{(4)}$ is another factorization of W, such that $W^{(3)} \in \mathcal{U}_{\kappa_{3}}^{r, R}\left(j_{p q}\right)$ and $W^{(4)} \in \mathcal{U}_{\kappa_{4}}^{S}\left(j_{p q}\right)$.

Then by Theorem $3.22 \mathcal{L}_{W^{(3)}}=\mathcal{K}\left(W^{(3)}\right)$. Therefore, $\mathcal{K}\left(W^{(3)}\right) \subset L_{2}^{m}$ and hence $W^{(3)} \subset \widetilde{L}_{2}^{m \times m}$. Applying Lemma 3.11, one obtains the equality

$$
\operatorname{ap}^{r}\left(W^{(3)}\right)=\operatorname{ap}^{r}(W)
$$

which implies $\left(\mathcal{K}\left(W^{(3)}\right)=\right) \mathcal{L}_{W^{(3)}}=\mathcal{L}_{W}$. Besides, in view of Theorem 3.20

$$
\mathcal{K}\left(W^{(1)}\right)=\mathcal{L}_{W^{(1)}}=\mathcal{L}_{W}
$$

Thus, by $\left[18\right.$, Theorem 4.19] $W^{(3)}=W^{(1)} V$ and, hence, $W^{(4)}=V^{-1} W^{(2)}$, where V is a constant $j_{p q}$-unitary matrix.

Acknowledgments. The authors thank the referee for valuable remarks and D. Alpay for paying our attention to the paper [3], where Leech type Theorem 3.16 was proved.

References

1. V. M. Adamyan, D. Z. Arov, and M. G. Kreйn, Analytic properties of the Schmidt pairs of a Hankel operator and the generalized Schur-Takagi problem, Mat. Sbornik 86 (1971), 34-75.
2. D. Alpay, A. Dijksma, J. Rovnyak, and H.S.V. de Snoo, Schur Functions, Operator Colligations, and Reproducing Kernel Pontryagin Spaces, Oper. Theory Adv. Appl., vol. 96, Birkhäuser Verlag, Basel, 1997.
3. D. Alpay, A. Dijksma, J. Rovnyak, and H.S.V. de Snoo, Realization and Factorization in Reproducing Kernel Pontryagin Spaces, Oper. Theory Adv. Appl., vol. 123, Birkhäuser Verlag, Basel, 2001.
4. D. Alpay and H. Dym, On Applications of Reproducing Kernel Spaces to the Schur Algorithm and Rational J Unitary Factorization. I. Schur Methods in Operator Theory and Signal Processing, Oper. Theory Adv. Appl., vol. 18, Birkhäuser Verlag, Basel, 1986, pp. 89-159.
5. D. Alpay and H. Dym, On a new class of structured reproducing kernel spaces, J. Funct. Anal. 111 (1993), no. 1, 1-28.
6. N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337-404.
7. D. Z. Arov, Realization of matrix-valued functions according to Darlington, Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973), 1299-1331. (Russian)
8. D. Z. Arov, Regular and singular J-inner matrix functions and corresponding extrapolation problems, Funktsional. Anal. i Prilozhen. 22 (1988), no. 1, 57-59. (Russian); English transl. Funct. Anal. Appl. 22 (1988), no. 1, 46-48.
9. D. Z. Arov and H. Dym, J-inner matrix function, interpolation and inverse problems for canonical system. I. Foundation, Integr. Equ. Oper. Theory 28 (1997), 1-16.
10. D. Z. Arov and H. Dym, J-Contractive Matrix Valued Functions and Related Topics, Encyclopedia of Mathematics and its Applications, vol. 116, Cambridge University Press, Cambridge, 2008.
11. T. Ya. Azizov and I. S. Iokhvidov, Foundations of the Theory of Linear Operators in Spaces with an Indefinite Metric, Nauka, Moscow, 1986. (Russian); English transl. Wiley, New York, 1989.
12. J. A. Ball, Models for noncontractions J. Math. Anal. Appl. 52 (1975), 235-254.
13. J. A. Ball, I. Gohberg, and L. Rodman, Interpolation of Rational Matrix Functions, vol. 45, Birkhäuser Verlag, Basel-Boston-Berlin, 1990.
14. J. A. Ball and J. W. Helton, A Beurling-Lax theorem for the Lie group U(m, n) which contains most classical interpolation theory J. Operator Theory 9 (1983), 107-142.
15. L. de Branges, Some Hilbert spaces of analytic functions. I, Trans. Amer. Math. Soc. 106 (1963), 445-668.
16. J. Bognar, Indefinite Inner Product Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 78, Springer-Verlag, New York-Heidelberg, 1974.
17. V. Derkach, On Schur-Nevanlinna-Pick indefinite interpolation problem, Ukrain. Mat. Zh. 55 (2003), no. 10, 1299-1314. (Russian); English transl. Ukrainian Math. J. 55 (2003), no. 10, 1567-1587.
18. V. Derkach and H. Dym, On linear fractional transformations associated with generalized Jinner matrix functions, Integr. Equ. Oper. Theory 65 (2009), 1-50.
19. V. Derkach and H. Dym, Bitangential interpolation in generalized Schur classes, Complex Analysis and Operator Theory 4 (2010), 701-765.
20. V. Derkach and H. Dym, A generalized Schur-Takagi interpolation problem, Integr. Equ. Oper. Theory 80 (2014), 165-227.
21. H. Dym, J-contractive matrix functions, reproducing kernel Hilbert spaces and interpolation, CBMS Regional Conference Series in Mathematics, vol. 71, Amer. Math, Soc., Providence, RI, 1989.
22. I. V. Kovalishina and V. P. Potapov, An indefinite metric in the Nevanlinna-Pick problem, Dokl. Akad. Nauk Armjan. SSR 59 (1974), no. 1, 17-22. (Russian)
23. M. G. Krĕ̆n and H. Langer, Über die verallgemeinerten Resolventen und die characteristische Function eines isometrischen Operators im Raume Π_{κ}, Hilbert space Operators and Operator Algebras (Proc. Intern. Conf., Tihany, 1970); Colloq. Math. Soc. Janos Bolyai, vol. 5, NorthHolland, Amsterdam, 1972, pp. 353-399.
24. M. G. Kreĭn and H. Langer, Some propositions of analytic matrix functions related to the theory of operators in the space Π_{κ}, Acta Sci. Math. (Szeged) 43 (1981), 181-205.
25. M. S. Livsič, On a certain class of linear operators in Hilbert space, Mat. Sbornik 19 (1946), no. 2, 239-262. (Russian)
26. A. A. Nudelman, A new problem of the type of the moment problem, Dokl. Akad. Nauk SSSR 233 (1977), no. 5, 792-795. (Russian)
27. A. A. Nudelman, On a generalization of classical interpolation problems, Dokl. Akad. Nauk SSSR 256 (1981), no. 5, 790-793. (Russian)
28. V. P. Potapov, Multiplicative structure of J-nonexpanding matrix functions, Trudy Moskov. Mat. Obsch. 4 (1955), 125-236. (Russian)
29. L. Schwartz, Sous espaces hilbertiens d'espaces vectoriels topologiques et noyaux associes, J. Analyse Math. 13 (1964), 115-256.
30. O. Sukhorukova, Factorization formulas for some classes of generalized J-inner matrix valued functions, Methods Funct. Anal. Topology 20 (2014), no. 4, 365-378.
31. E. R. Tsekanovskii and Ju. L. Šmul'jan, The theory of biextensions of operators in rigged Hilbert spaces, Unbounded operator colligations and characteristic functions, Uspekhi Mat. Nauk 32 (1977), no. 5, 69-124. (Russian); English transl. Russian Math. Surveys 32 (1977), no. 5, 73-131.

National Pedagogical Dragomanov University, 9 Pirogova, Kyiv, 01001, Ukraine

Vasyl' Stus Donetsk National University, 21 600-Richchya Str., Vinnytsya, 21021, Ukraine
E-mail address: derkach.v@gmail.com
National Pedagogical Dragomanov University, 9 Pirogova, Kyiv, 01001, Ukraine
Received 15/05/2017; Revised 11/06/2017

[^0]: This work was supported by a Volkswagen Stiftung grant and grants of the Ministry of Education and Science of Ukraine (projects 0115U000136 and 0115U000556).

