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Abstract. We study the problem of optimizing the imaginary parts Imω of quasi-
normal-eigenvalues ω associated with the equation y′′ = −ω2By. It is assumed
that the coefficient B(x), which describes the structure of an optical or mechanical

resonator, is constrained by the inequalities 0 ≤ b1 ≤ B(x) ≤ b2. Extremal quasi-
normal-eigenvalues belonging to the imaginary line iR are studied in detail. As an
application, we provide examples of ω with locally minimal | Imω| (without additional
restrictions on Reω) and show that a structure generating an optimal quasi-normal-

eigenvalue on iR is not necessarily unique.

1. Introduction

Under the assumption of normally passing electromagnetic waves, the Maxwell system
in a multilayer medium can be reduced to the wave equation of a non-homogeneous string,
B(x)∂2

t u(x, t) = ∂2
xu(x, t), where the coefficient B(x) ≥ 0 represents spatially varying

dielectric permittivity in the case of 1-D optical cavity, or the linear density of the string
in Mechanics settings. When the medium is homogeneous for x outside a finite interval
(a1, a2), i.e., when B(x) = ν2 for x 6∈ [a1, a2] with a certain constant ν > 0, resonances
(or quasi-normal-eigenvalues) ω associated with the string equation can be defined via
the eigenproblem

y′′(x) = −ω2B(x)y(x) a.e. for x ∈ (a1, a2),(1.1)

y′(a1)

−iων
= y(a1),

y′(a2)

iων
= y(a2).(1.2)

In these settings, B(x) is an integrable on the interval (a1, a2) function that describes
the inner structure of the resonator.

Because of the leakage of waves to the outer medium R \ [a1, a2], resonant eigenoscil-
lations e−iωty(x) decay exponentially when t → +∞. The minus imaginary part β =
− Imω of a resonance is positive and is called the decay rate, the real part α = Reω plays
the role of the frequency of oscillations.

Pure imaginary resonances ω ∈ iR in Mechanics settings correspond to the over-
damping and critical damping effects, when the solution e−iωty(x) of the wave equation
decays as t → +∞ without oscillations. This case has very special spectral and opti-
mization properties, which are the subject of the present note.

Explicitly computable examples of resonances are provided by constant structures
B(x) = b a.e. on (a1, a2), where b ∈ R+ \ {ν2}. For such structures, all the resonances
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ω[n] = ω[n](b), n ∈ Z, are given by [22, 5]

ω[n](b) = − i

b1/2(a2 − a1)
ln

∣

∣

∣

∣

b1/2 + ν

b1/2 − ν

∣

∣

∣

∣

+
πn

b1/2(a2 − a1)
, n ∈ Z.(1.3)

Since optical cavities with specific resonant properties are needed in a number of
applications including Cavity Quantum Electrodynamics, Optical Engineering, and Mi-
croscopy (see e.g. [16, 18, 20, 23]), optimization problems for resonances attracted con-
siderable interest of specialists in numerical methods [2, 8, 9, 15, 17].

The most used numerical approach in mathematical studies of the optimization of
resonances involves steepest ascent method searching for resonances with locally minimal
decay rate [9, 8, 17] over various discretizations of the family of admissible structures

(1.4) A0 := {B(x) ∈ L∞
R (a1, a2) : b1 ≤ B(x) ≤ b2 a.e. on (a1, a2)},

where b1, b2 ∈ R+ are constraints on dielectric permittivities of materials used in fabri-
cation. It is assumed often that the dielectric permittivity of the outer medium is also
in the above range, i.e.,

(1.5) b1 ≤ ν2 ≤ b2,

and is fixed (in the sense that it does not participate in the optimization).
The local minimizers that were studied in [7, 21, 9, 8, 17] can rigorously be defined in

the following way. For a fixed parameter ν > 0 and a fixed interval [a1, a2], the structure
B(·) ∈ L1

R
(a1, a2) completely determines the set Σ(B) of all associated resonances (in

short, resonances of B). Let A ⊂ L1
R
(a1, a2) be a certain family of admissible structures

B over that the optimization is performed (for brevity, admissible family). A pair (ω,B)
is called admissible if B ∈ A and ω ∈ Σ(B). Let us define

the decay rate functional Dr(ω,B) := − Imω on the set of all admissible pairs.

Definition 1.1 (cf. [7, 21] for Schrdinger equations). An admissible pair (ω0, B0) is said
to be a local minimizer of Dr if there exists ε > 0 such that Dr(ω0, B0) ≤ Dr(ω1, B1) for
every admissible pair (ω1, B1) with |ω1 − ω0| < ε and ‖B1 −B0‖1 < ε.

Under assumption (1.5), proofs of existence of such local minimizers over the family A

have not been available (while an attempt to justify the existence on the base of numerical
experiments has been done in [17]). One of the goals of the present paper is to rigorously
obtain the following result.

Theorem 1.1. Let b1 and b2 be constants so that 0 < b1 < b2. Then at least one of the
pairs (ω[0](bj), bj), j = 1, 2, is a local minimizer of the functional Dr over the admissible

family A0. (Recall that ω[0](b) is defined by (1.3).)

This is a particular case of more general Corollary 3.2 obtained below by the study
of total multiplicities of resonances in complex domains near the imaginary line iR (see
Section 3).

As a by-product, we obtain a negative answer on the question of uniqueness of 1-D
structures generating a resonance of minimal decay ω under an additional restriction on
its frequency Reω (this question was discussed in [7, 10, 12]). Namely, let

Σ[A] :=
⋃

B∈A

Σ(B)

be the set of admissible resonances (over A). For a frequency α ∈ ReΣ[A], the minimal
decay rate βmin(α) is defined by

(1.6) βmin(α) := inf{β ∈ R : α− iβ ∈ Σ[A]} (see [11]).
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If ω = α − iβmin(α) is a resonance of a certain structure B ∈ A (i.e., if the minimum is
achieved in (1.6)), then the resonances ω and the structures B are said to be of minimal
decay for the frequency α.

Example 1.2. Let b1 = 1, b2 = 4, and ν2 = 3. Then 0 ∈ ReΣ[A], and the resonance of

minimal decay for the frequency 0 exists and is equal to ω = − i
2(a2−a1)

ln
(

7 + 4
√
3
)

. The

two extreme allowed constant structures b1 and b2 are the structures of minimal decay
for the frequency 0. These statements follow from Corollary 3.2 (iii) and formula (1.3).

A preliminary version of these results was posted in Section 7 of the e-print
arXiv:1508.04706v1 [math.OC]. The other sections of the e-print arXiv:1508.04706v1
are concerned with optimization of resonances in C\ iR and were published as [13]. They
provide some background information for the present note.

Notation. The following sets of real and complex numbers are used: the open half-
lines R± = {x ∈ R : ±x > 0} and the open discs Dǫ(ζ) := {z ∈ C : |z − ζ| < ǫ}. By
∂xf , ∂zf , etc., we denote (ordinary or partial) derivatives with respect to (w.r.t.) x, z,
etc. Lp

C(R)(a1, a2) are the Lebesgue spaces of complex- (resp., real-) valued functions,

and W k,p[a1, a2] := {y ∈ Lp
C
(a1, a2) : ∂j

xy ∈ Lp
C
(a1, a2), 1 ≤ j ≤ k} are Sobolev

spaces. The corresponding standard norms are denoted by ‖ · ‖p and ‖ · ‖Wk,p . The space
of continuous complex-valued functions with the uniform norm is denoted by C[a1, a2].
The Lebesgue measure is denoted by measE. Let S be a subset of a normed space
U over C. For u0 ∈ U and z ∈ C, zS + u0 := {zu + u0 : u ∈ S}. Open balls are
denoted by Bǫ(u0) := {u ∈ U : ‖u − u0‖U < ǫ}. The closure of a set S (in the norm
topology) is denoted by S, the boundary of S by bdS. For a function f defined on S,
f [S] is the image of S. For a functional G(z;u) that maps C × U to C, we denote by
∂G(z;u0)

∂u (u1) := limζ→0
G(z;u0+ζu1)−G(z;u0)

ζ the directional derivative of G(z; ·) along the

vector u1 ∈ U at the point u0 ∈ U . We say that a map G : U1 → U2 between normed
spaces U1,2 is bounded-to-bounded if the set G[S] in U2 is bounded for any bounded S
in U1.

2. Optimization of resonances on iR

2.1. Basic facts about resonances in 1- and 2- side open cavities. To consider re-
sonances in more general settings that include 1-side open cavities and the massless string
approximation, we assume that B(·) ∈ L1

C
(a1, a2) and that equation (1.1) is equipped

with the more general boundary conditions

y′(a1)

−iω
= ν1y(a1),

y′(a2)

iων2
= y(a2)(2.1)

involving the (extended) constants ν1,2, which throughout the paper are assumed to be
fixed and satisfy

ν1 ∈ [0,+∞), ν2 ∈ (0,+∞], ν1 + 1/ν2 6= 0, and ν1 ≤ ν2.(2.2)

When ν2 = +∞, we suppose that 1/ν2 = 0, and that the second boundary condition in
(2.1) turns into y(a2) = 0.

Resonances ω associated with B(·) are defined as numbers in the set C\{0} such that
eigenproblem (1.1), (2.1) has a nontrivial solution y ∈ W 2,1[a1, a2] (i.e., a solution that
is not identically zero). This solution y is called a (resonant) mode.

Denote by θ(x) = θ(x, z;B) the solutions to ∂2
xy(x) = −z2B(x)y(x) satisfying

θ(a1, z;B) = 1, ∂xθ(a1, z;B) = −izν1,(2.3)
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and by F (z) = F (z;B) the functional

(2.4) F (z;B) := θ(a2, z;B) +
ν1
ν2

− iz

ν2

∫ a2

a1

θ(s, z;B) B(s) ds.

It is easy to see that for z 6= 0, F (z;B) = θ(a2, z;B) + i∂xθ(a2,z;B)
zν2

, and that the set of

resonances Σ(B) is the set of zeros of the function F (·;B). When ν2 = ∞, the formula
for F turns into F (z;B) = θ(a2, z;B).

The functional F (z;B) is analytic on the Banach space C×L1
C
(a1, a2). By definition,

the multiplicity of a resonance of B is its multiplicity as a zero of the analytic function
F (·;B) (see [14, 19, 11] and references therein). A resonance is called simple if its
multiplicity is 1. The set of non-simple resonances is denoted by Σmult(B) (non-simple
resonances are often called multiple). There exist triples (ν1, ν2, B) that fit to our settings
and generate multiple resonances [6, 19].

Since F (0;B) = 1 + ν1

ν2

> 0, the set Σ(B) is either empty, or consists of isolated
resonances, which have finite multiplicities and can accumulate only at ∞. In the case
B(x) ≥ 0 a.e., it is easy to see that Σ(B) ⊂ C− and Σ(B) is symmetric w.r.t. the
imaginary axis iR taking multiplicities into account.

2.2. Local extrema on iR with functions as constraints. Optimization of reso-
nances will be considered over the admissible family

(2.5) A := {B(x) ∈ L1
R(a1, a2) : b1(x) ≤ B(x) ≤ b2(x) a.e. on (a1, a2)},

where b1(·) and b2(·) are certain Lebesgue integrable functions defined on (a1, a2) such
that

0 ≤ b1(x) ≤ b2(x) on (a1, a2) and(2.6)

measE > 0, where E = {x ∈ (a1, a2) : b1(x) < b2(x)}.(2.7)

This more general definition of A allows one to consider uncertain resonances [13] and
an important for applications situation when only some parts of the device are suitable
for modifications to achieve better resonant properties (see references in [13]).

Besides Definition 1.1, we will use several other definitions of local minima and
maxima. The next one includes an additional restriction on Reω. We say that an
admissible pair (ω0, B0) is a local maximizer of Imω for the frequency Reω0 if there
exist ε > 0 such that Imω1 ≤ Imω0 for any admissible pair (ω1, B1) satisfying the fol-
lowing three conditions: Reω1 = Reω0, |ω1 − ω0| < ε, and ‖B1 − B0‖1 < ε. Local
minimizers of Imω for a particular frequency α are defined in a similar way. A pair
(ω,B) is a local extremizer of Imω for a frequency α if it is a local minimizer of Imω for
α or a local maximizer of Imω for α.

The following result, which can be seen as a generalization of [11, Theorem 2.5], is
one of our main tools.

Proposition 2.1. If (ω0, B0) is a local extremizer of Imω for the frequency 0, then either
B0(x) = b1(x) a.e., or B0(x) = b2(x) a.e. .

Since the steps of the proof are somewhat different from that of [11], the rest of this
section gives a sketch. It is based on the resonances’ perturbation theory [11, 13].

Let ω be a resonance of B ∈ L1
C
of multiplicity m ∈ N. Let V ∈ L1

C
. Then, for

ζ ∈ Dδ(0) \ i(−δ, 0) with δ > 0 small enough, all resonances (taking multiplicities into
account) of B + ζV lying in a vicinity of ω are given by Ωj(ζ), j = 1, . . . ,m, where Ωj

can be enumerated such that they are continuous functions in ζ ∈ Dδ(0) \ i(−δ, 0) and
have the following asymptotics as ζ → 0:

(2.8) Ωj(ζ) = ω+[K(ω,B;V )ζ]1/m+o(|ζ|1/m), where K(ω,B;V ) := −m! ∂F (ω,B)
∂B (V )

∂m
z F (ω;B)

.
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When ω ∈ Σ(B), the directional derivative of F in the direction V ∈ L1
C
equals

(2.9)
∂F (ω,B)

∂B
(V ) =

ω2

∂xθ(a2, ω,B)

∫ a2

a1

θ2(s, ω;B) V (s) ds.

In the case ω ∈ iR, the mode θ(x) = θ(x, ω;B) associated with ω has specific properties
different from that of the case ω 6∈ iR. These properties are described by the following
lemma, which is easy to obtain from (1.1), (2.1), and (2.3).

Lemma 2.2. Let ω ∈ Σ(B) ∩ iR and B(x) ≥ 0 a.e. on (a1, a2). Then
(i) θ(x) ∈ R for all x ∈ [a1, a2].
(ii) There exists a subinterval [x∗, x

∗] of [a1, a2] such that

θ(x)∂xθ(x) < 0 if x < x∗, θ(x)∂xθ(x) = 0 if x ∈ [x∗, x
∗],

and θ(x)∂xθ(x) > 0 if x > x∗.

(iii) If x∗ < x∗, then B(x) = 0 a.e. on (x∗, x
∗) and θ(x) is a nonzero constant function

on [x∗, x
∗]. In particular, if B(x) > 0 a.e. on (a1, a2), then x∗ = x∗.

(iv) The function θ(x) has at most one zero in [a1, a2]. More precisely, if θ(x0) = 0, then
x0 = x∗ = x∗.

Assume that (ω0, B0) is a local extremizer of Imω for frequency 0 over A. Assume
that B0(·) 6= b1(·) and B0(·) 6= b2(·) (in the sense of L1-space). Then it follows from (2.9)

and Lemma 2.2 (iv), that there exist V ±
1 ∈ A−B0 such that ±∂F (ω0;B0)

∂B (V ±
1 ) > 0. This,

formula (2.8), the symmetry of Σ(B) w.r.t. iR, and the arguments of [11, Section 4.4]
allows one to show that there exist V ±

2 ∈ A − B0 and ω±(ζ) ∈ Σ(B0 + ζV ±
2 ) such that

for small enough ζ > 0,

Reω±(ζ) = 0, ±[Imω±(ζ)− Imω0] > 0, and ω±(ζ) → ω0 as ζ → 0.

(Note that V +
2 and V −

2 are not necessarily different. Whenm is even, one of the directions
V ±
1 can be taken as V +

2 = V −
2 .) Thus, (ω0, B0) is not a local extremizer for the frequency

0. This contradiction concludes the proof of Proposition 2.1.

Remark 2.1. Problems of other types involving optimization of resonances on iR in the
context of optimal damping were studied in [3, 4] (see also [5]).

3. Local minimizers of Dr and non-uniqueness

A frequency α ∈ R is called admissible (over A defined by (2.5)) if it is the frequency
of some admissible resonance ω, i.e., if α = Reω for certain ω ∈ Σ[A].

An admissible frequency α0 is a local minimizer for βmin if there exists ε > 0 such
that βmin(α0) ≤ βmin(α) for all admissible α in (α0 − ε, α0 + ε). If for certain ε > 0
and all admissible α from a punctured neighborhood (α0 − ε, α0)∪ (α0, α0 + ε) the strict
inequality βmin(α0) < βmin(α) holds, α0 is said to be a strict local minimizer for βmin.

It is obtained in [11, 13] by weak compactness arguments that

(3.1) the set of admissible resonances Σ[A] is closed.

This and Proposition 2.1 imply that,

(3.2) if 0 ∈ ReΣ[A], then iR ∩ [Σ(b1) ∪ Σ(b2)] is a nonempty closed set and

βmin(0) = min
ω∈iR∩[Σ(b1)∪Σ(b2)]

| Imω|.

More generally, (3.1) implies that ω = α− iβmin(α) is a resonance of a certain admis-
sible structure B ∈ A whenever α ∈ ReΣ[A], i.e., there exists the resonance of minimal
decay and at least one structure of minimal decay for every admissible frequency. Taking
Σ[A] ⊂ C− into account, we see that βmin(α) > 0 for each α ∈ ReΣ[A]. The reflected
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w.r.t. R graph {α − iβmin(α) : α ∈ ReΣ[A]} of the function βmin(·) plays the role of
the Pareto optimal frontier for minimization of | Imω| [10, 12].

The following result provides information about the shape of the Pareto optimal fron-
tier for low frequencies.

Theorem 3.1. Suppose that A is defined by (2.5) and 0 ∈ ReΣ[A]. Then α = 0 is
a strict local minimizer of βmin whenever ω = −iβmin(0) does not belong to Σmult(b1) ∪
Σmult(b2) (i.e., whenever ω is not a multiple resonance for each of the two extreme allowed
structures b1(·) and b2(·)).

The proof is given in Subsection 3.1. To show that Theorem 3.1 and Proposition 2.1
imply Theorem 1.1, let us consider in more details the case when b1 and b2 are constants.
Note also that each local minimizer α of βmin and any associated B of minimal decay
compose a local minimizer (α− iβmin(α), B) of the decay rate functional Dr.

When B(x) equals a.e. a constant b ∈ [0,+∞), resonances can be calculated explicitly
[13]. Namely,

Σ(b) = ∅ if b1/2 = ν1 or b1/2 = ν2;(3.3)

Σ(b) = {ω[0](0)} if b = 0 6= ν1, where ω[0](0) := −i
1/ν1 + 1/ν2
a2 − a1

.(3.4)

When b ∈ R+ \ {ν21 , ν22}, one has Σ(b) = {ω[n](b)}n∈Z with

(3.5)

ω[n](b) = − i

2b1/2(a2 − a1)
ln

∣

∣

∣

∣

1 +K1

1−K1

∣

∣

∣

∣

+
π

b1/2(a2 − a1)
×
{

n, if b1/2 6∈ [ν1, ν2]
(n+ 1/2), if b1/2 ∈ (ν1, ν2)

,

where K1 = K1(b) :=
1+ν1/ν2

ν1

b1/2
+ b1/2

ν2

> 0; moreover,

(3.6) in the cases (3.5) and (3.4) all resonances are simple.

Note that

(3.7) 1 > K1(b) ⇔ b1/2 6∈ [ν1, ν2], 1 < K1(b) ⇔ b1/2 ∈ (ν1, ν2),

and K1 = 1 ⇔ b1/2 ∈ {ν1, ν2},
and that, in the case ν1 = ν2 = ν, (3.5) turns into (1.3).

Let us define

K2(b) := sgn[1−K1(b)]

∣

∣

∣

∣

1−K1(b)

1 +K1(b)

∣

∣

∣

∣

1/
√
b

for b > 0,

and K2(0) := exp(−2/ν1 − 2/ν2) (when ν1 = 0, we suppose K2(0) := 0).

Corollary 3.2. Let b1 and b2 be constants such that b
1/2
1 < ν1 or b

1/2
2 > ν2. Then

(i) α = 0 is a strict local minimizer for βmin and βmin(0) = − 1
2(a2−a1)

×
ln max{K2(b1),K2(b2)}.
(ii) If K2(b1) > K2(b2) ( K2(b1) < K2(b2)), then b1 (resp., b2) is the unique structure of
minimal decay for α = 0.
(iii) If K2(b1) = K2(b2), then b1 and b2 are structures of minimal decay for α = 0.

Proof. It follows from (3.5) that 0 is an admissible frequency. It follows from (3.4), (3.5),
and (3.7) that K2(b) ≤ 0 exactly when Σ(b) ∩ iR = ∅. On the other side, K2(b) > 0
exactly when Σ(b) ∩ iR = {ω[0](b)}, where ω[0](b) is defined by (3.4), (3.5). In this case,
K2(b) = exp

(

2(a2 − a1) Imω[0](b)
)

. This, (3.2), (3.6), and Theorem 3.1 complete the
proof. �
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Note that for Example 1.2, the case (iii) of Corollary 3.2 takes place.

Remark 3.1. The following result of independent interest can be obtained immediately
from (3.2): if the constraint functions b1(·) and b2(·) are such that the two corresponding
sets of resonances Σ(b1) and Σ(b2) have no points in iR, then Σ(B) have no points in iR
for any B(·) satisfying b1(x) ≤ B(x) ≤ b2(x) a.e.. This case takes place, for example,

when b1 and b2 are constants such that ν1 ≤ b
1/2
1 < b

1/2
2 ≤ ν2. This result can be seen

as a generalization of [5, Theorem 4.2 (i)].

3.1. Proof of Theorem 3.1. If 0 is an isolated point of ReΣ[A], the theorem is obvious
from the definition of a strict local minimizer of βmin.

Assume that 0 is not an isolated point of ReΣ[A]. Since Σ[A] and Σ(B) for each B ∈ A

are symmetric w.r.t. iR, there are sequences of admissible frequencies that converge to
0 from the left and from the right. Consider

β∗ := lim inf
α→0−

α∈ReΣ[A]

βmin(α) (then also β∗ = lim inf
α→0+

α∈ReΣ[A]

βmin(α) ).

Note that β∗ ∈ R+ ∪ {+∞} since Σ[A] = Σ[A] ⊂ C−. If β∗ = +∞, the theorem is also
obvious.

Consider the case β∗ < +∞.
We need the following result of [13] on local weak continuity of resonances. Let us

fix a countable family {fn}∞n=1 of continuous functions that is dense in C[a1, a2]. This

family generates the metric ρM(dM1, dM2) :=

∞
∑

n=1

|
∫ a2

a1

fn(dM1 − dM2)|
2n(1 + |

∫ a2

a1

fn(dM1 − dM2)|)
on the

space M of complex Borel measures on [a1, a2]. The weak* topology on any closed ball
in M coincides with the topology generated by the metric ρM. We will use the met-
ric ρ(B1, B2) := ρM(B1dx,B2dx) on L1

C
(a1, a2), where Bj dx are absolutely continuous

measures corresponding to the functions Bj ∈ L1
C
.

The total multiplicity of resonances of B in a set D ⊂ C is the sum of multiplicities
of all ω ∈ Σ(B) ∩ D. Let R > 0 and let BR(0) = {‖f‖1 ≤ R} be the closed ball in
L1
C
(a1, a2).

Proposition 3.3. ([13]) . Let B0 ∈ L1
C
(a1, a2) and R ≥ ‖B0‖1. Let D be an open

bounded subset of C such that its boundary bdD does not contain resonances of B0.
Then there exists a neighborhood W ⊂ BR(0) of B0 in the topology of the metric space

(BR(0), ρ) such that, for every B ∈ W , there are no resonances of B on bdD, and the
total multiplicity of resonances of B in D coincides with that of B0.

Lemma 3.4. Assume that 0 ∈ ReΣ[A] is not an isolated point of ReΣ[A] and that
β∗ < +∞. Then there exist sequences Bn ∈ A and ω±n ∈ Σ(Bn), n ∈ N, such that
Imω±n → −β∗, Reω±n → 0±, and the sequence Bn converges to a certain B∗ ∈ A

w.r.t. the metric ρ.

Proof. The existence of {Bn}n∈N ⊂ A generating resonances ω±n ∈ Σ(Bn) that converge
to ω∗ = −iβ∗ follows from the assumption that 0 is not an isolated point of ReΣ[A]. So
it is enough to show that {Bn}n∈N contains a ρ-convergent subsequence.

For each B ∈ A there exists unique H(x) = H(x;B) such that B(x) = (b2(x) −
b1(x))H(x) + b1(x) a.e. on (a1, a2) and H(x) belongs to the set A∗ of L∞

R
-functions

satisfying 0 ≤ H(x) ≤ 1 a.e. on (a1, a2) and H(x) = 0 a.e. on (a1, a2) \ E (for E, see
(2.7)). Let us take R > ‖b2‖1. One can see that

(3.8) the map H(·;B) 7→ B(·) is a bijection of A∗ to A which is continuous

from the weak∗ topology of L∞
R to the metric topology of (BR(0), ρ)
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(the continuity is sequential w.r.t. the corresponding induced topologies). From this and
the sequential Banach-Alaoglu theorem applied to A∗, we see that {Bn}n∈N contains a
ρ-convergent subsequence. This completes the proof. �

Now, we are ready to show that

(3.9) ω∗ = −iβ∗ is a multiple resonance of B∗

(for any B∗ satisfying the statement of Lemma 3.4). Indeed, ω∗ ∈ Σ(B∗) due to Propo-
sition 3.3 and Lemma 3.4. However, Lemma 3.4 implies that for every ε > 0, the disc
Dε(ω∗) contains at least two distinct resonances ω±n of Bn if n is large enough. Hence, it
follows from Proposition 3.3 that the multiplicity of ω∗ as a resonance of B∗ is at least 2.

By the assumptions of the theorem, ω = −iβmin(0) is a simple resonance of any
structure B of minimal decay for the frequency 0 (note that Proposition 2.1 implies that
B is either b1, or b2). This yields ω∗ 6= ω (since they have different multiplicities). Thus,
β∗ > βmin(0) and so 0 is a strict local minimizer of βmin.

Remark 3.2. When this note was in preparation, examples showing non-uniqueness of
structures of minimal decay for a 3-D Schrödinger equation with point interactions were
constructed in [1]. These examples are of very different nature.
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