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ON A FUNCTION SYSTEM MAKING A BASIS IN A WEIGHT

SPACE

V. A. ZOLOTAREV AND V. N. LEVCHUK

This paper is dedicated to the 80th birthday of E. R. Tsekanovskii

Abstract. We find necessary and sufficient conditions for systems of functions gen-

erated by a second order differential equation to form a basis. The results are applied
to show that Mathieu functions make a basis.

Introduction

Basis issues of function systems are among the most important problems of func-
tional analysis. The line of investigation in this realm developed due to the work by
B. S. Pavlov [9] is one of the most effective. Besides, connection of these problems of
analysis with spectral theory of non-selfadjoint operators plays the main role [4, 5, 7].

This paper is a continuation of investigations started in work [6]. Let ϕ be a real
function of the class C1(R), besides,

1) ϕ(x) ≥ 0 (∀x ∈ R+);
2) ϕ(−x) = (−1)νϕ(x) (ν ∈ R, x ∈ R+);

3)

b
∫

0

ϕ(x) dx <∞;

b
∫

0

dx

ϕ(x)
<∞ (∀b, 0 < b <∞).

Denote by L2
ϕ(−a, a) (0 < a ≤ ∞) the Hilbert space of functions with the scalar

product

〈f, g〉 =
a
∫

−a

f(x)g(x)|ϕ(x)| dx.

Consider the function

e(x, λ) = f(x, λ)− i

λ
f ′(x, λ),

where f(x, λ) is a solution of the integral equation

f(x, λ)− λ2
x
∫

0

dt

ϕ(t)

t
∫

0

f(s, λ)ϕ(s) ds = 1

(when ϕ(x) ≡ const, e(x, λ) = eiλx). In this paper the absolute bases

{e (x, λk) : λk ∈ Λ}
are studied in the space L2

ϕ(−a, a), where the set Λ = {λk ∈ C, k ∈ Z} has no limit points
and is situated at a positive distance from R. The function e(x, λ) has the representation

e(x, λ) = (I − λB)−11I,
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where B is a compact non-dissipative operator with its spectrum at zero. It is important
that e (x, λk) are eigenfunctions of the operator K (λkKe (x, λk) = e (x, λk) where K is
a one-dimensional perturbation of the operator B).

1. Preliminary information

For the Hilbert space

(1.1) L2
ϕ(−a, a)

def
=
{

f(x) :

a
∫

−a

|f(x)|2|ϕ(x)| dx <∞
}

,

where 0 < a 6 ∞, the decomposition

(1.2) L2
ϕ(−a, a) = L+ ⊕ L−

takes place, where

(1.3) L±
def
=

{

f±(x) =
1

2
(f(x)± f(−x)) : f(x) ∈ L2

ϕ(−a, a)
}

.

We specify in L2
ϕ(−a, a) the linear operator

(1.4) (Bf)(x)
def
= i

x
∫

0

f−(t) dt+
i

ϕ(x)

x
∫

0

f+(t)ϕ(t) dt.

It is easy to show [8] that if

(1.5) b =

∫

R

ϕ(x) dx <∞, b̃ =

∫

R

dx

ϕ(x)
<∞,

then the operator B (1.5) is bounded. The operator B (1.5) is non-dissipative and has
the two-dimensional imaginary component

(1.6)
B −B∗

i
f =

2
∑

α,β=1

〈f1, g2〉 (Jp)α,βgβ
(

f ∈ L2
ϕ(−a, a)

)

,

where

Jp =

[

0 1
1 0

]

, g1 =

(

b̃

4b

)
1

4

1I, g2(x) =

(

b̃

4b

)
1

4 {

χ+(x)

ϕ(x)
− χ−(x)

ϕ(−x)

}

,

besides, 1I = χ(x) and χ±(x) are characteristic functions of the sets [−a, a] and R± ∩
[−a, a], correspondingly.

Let us consider the integration operator

(1.7) (Jf)(x) = i

x
∫

0

f(x) dt

in the space L2(−a, a) without weight, besides, it is obvious that J = B, when ϕ(x) ≡ 1.
If, for ϕ(x), (1.5) takes place and ϕ(x) 6= 0, 1

ϕ(x) 6= 0 (∀x ∈ [0, a)), then [8] the operator

B (1.4) is similar to the operator J (1.7).
Denote by e(x, λ) the function

(1.8) e(x, λ) = (I − λB)−11I,

where B is given by (1.4). Then

(1.9) Be(x, λ) =
e(x, λ)− 1I

λ
,
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the function e(x, λ) is equal to

(1.10) e(x, λ) = f(x, λ)− i

λ
f ′(x, λ),

where f(x, λ) is a solution of the integral equation

(1.11) f(x, λ) = 1− λ2
x
∫

0

dt

ϕ(t)

t
∫

0

f(x, λ)ϕ(s) ds.

2. Perturbations of the operator B

Let us consider the operator K,

(2.1) Kh
def
= Bh+ 〈h, g〉1I (h ∈ L2

ϕ(−a; a))
in the space L2

ϕ(−a; a) where B is given by (1.4) and 1I = χ(−a,a)(x).

Lemma 1. For the Fredgolm resolvents K(λ) = K(I − λK), B(λ) = B(I − λK)−1 of

the operators K (2.1) and B (1.4), the formula

(2.2) K(λ)f = B(λ)f +
〈(I − λB)−1f, g〉

1− λ〈e, g〉 e

is true ∀f ∈ L2
ϕ(−a, a) (1.1) where e is given by (1.8).

Proof. Let (K − zI)−1f = h, then

f = (B − zI)h+ 〈h, g〉1I
or

(2.3) RB(z)f = h+ 〈h, g〉RB(z)1I,

where RB(z) = (B − zI)−1. This implies

〈RB(z)f, g〉 = 〈h, g〉(1 + 〈RB(z)1I, g〉),
therefore

RK(z)f = RB(z)f − 〈RB(z)f, g〉
1 + 〈RB(z)1I, g〉

RB(z)1I

in view of (2.3) and h = RK(z)f , where RK(z) = (K − zI)−1. Assuming that z = λ−1,
we obtain

(I − λK)−1f = (I − λB)−1f +
λ〈(I − λB)−1f, g〉

1− λ〈(I − λB)−11I, g〉 (I − λB)−11I.

Taking into account (I−λB)−1−1 = λB(I−λB)−1 and definition (1.13) of the function
e(xλ), we obtain

K(I − λK)−1f = B(I − λB)−1f +
〈(I − λB)−1f, g〉

1− λ〈e, g〉 e;

which gives us (2.2). �

Hereinafter, the function

(2.4) n(λ)
def
= 1− λ〈e, g〉

plays an important role. Formula (2.2) implies that the Fredholm spectrum of the com-
pletely continuous operator K (2.1) coincides with the set

(2.5) Λ = {λ ∈ C : n(λ) = 0}.



264 V. A. ZOLOTAREV AND V. N. LEVCHUK

If λn ∈ Λ, then

(2.6) Ke(x, λn) =
1

λn
e(x, λn)

and thus e(x, λn) is an eigenfunction of the operator K. Indeed,

Ke(x, λn) = Be+ 〈e, g〉1I = e(x, λn)− 1I

λn
+ 〈e, g〉1I

=
1

λn
e(x, λn)−

1

λn
n(λn)1 =

1

λn
e(x, λn)

since λn ∈ Λ (2.5), in view of (1.9).
Dimension of the root subspace of the operator K corresponding to the proper number

λ−1
n is equal to the multiplicity of the root λn of the function n(λ) (2.4).
The problem of description of bases of the type {e(x, λn)}∞ is closely connected with

a study of the operator K (2.1).

Theorem 1. Suppose that the function ϕ(x) is such that (1.5) take place and let the

totality {e(x, λn)} (λn ∈ Λ, 0 /∈ Λ) form an absolute basis in L2
ϕ(−a, a) (1.1). Then

there exists a single function g ∈ L2
ϕ(−a, a) such that the equalities (2.6) are true for an

operator K of type (2.1).

Proof. The fact that the totality {e(x, λn)} forms a basis implies that the sequence {λn}
coincides with the set of zeros of some entire function and thus λ−1

n is bounded when
λn ∈ Λ.We define the operator K in the space L2

ϕ(−a, a) which on the basis of the vector
e(x, λn) acts by formula (2.6), then K is bounded in view of the uniform boundedness
of λ−1

n . We search for K as K = B + Γ, where B is given by (1.5). Formulas (2.6) and
(1.14) imply that

1

λn
e(x, λn) =

1

λn
(e(x, λn)− 1I + Γe(x, λn),

therefore Γe(x, λn) = 1
λn

1I. The operator Γ is bounded since B and K have one-

dimensional image. This implies that there exists a single function g ∈ L2
ϕ(−a, a) such

that Γ = 〈., g〉1I, this proves the statement. �

Let a sequence of complex numbers Λ = {λk : k ∈ Z} lie at a positive distance from
R and have single limit point ∞. We divide Λ into two parts,

(2.7) Λ+ = {λK ∈ Λ : ImλK > 0} , Λ− = {λK ∈ Λ : ImλK < 0} ,

a sequences of numbers in C+ and C−, correspondingly.
We recall [4] that a set {λk}k∈Z satisfies the Carleson condition if

(2.8) inf
k

∏

j 6=k

∣

∣

∣

∣

λk − λj

λk − λj

∣

∣

∣

∣

> 0.

A weight ω(x) satisfies the A2 condition (or the Muckenhaupt condition) [3, 4] if

(2.9) sup
∆

( 1

|∆|

∫

∆

ω dx
)

(

1

∆

∫

1

ω
dx

)

<∞,

where ∆ runs over the set of intervals from R and |∆| is the length of ∆.
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3. Function n(λ)

I. Description of the class of functions n(λ) (2.4) is based on properties of the functions
〈e, g〉, where e(x, λ) is given by (1.8) and g ∈ L2

ϕ(−a, a).

Lemma 2. The resolvent (I − λJ)−1 of the operator J (1.12) is given by the formula

(3.1)
(

(I − λJ)−1h
)

(x) = h(x) + iλ

x
∫

0

eiλth(x− t) dt

∀h ∈ L2(−a, a).
Let A be a bounded (or bounded invertible) operator from L2

ϕ(−a, a) into L2(−a, a)
realizing the similarity of B (1.5), J (1.12), AB = JA [6, 8]. Then

〈e, h〉 =
〈

(I − λB)−11I, h
〉

=
〈

A(I − λB)−11I, A∗−1

h
〉

=
〈

(I − λJ)−1f,H
〉

,

where f = A1I ∈ L2(−a, a) and H = (A∗)−1f ∈ L2(−a, a). Using (3.1), we find

〈e, h〉 =
a
∫

−a

(

f(x) + iλ

x
∫

0

eiλtf(x− t) dt
)

H(x) dx

= 〈f,H〉+ iλ

a
∫

0

x
∫

0

eiλtf(x− t) dtH(x) dx+ iλ

0
∫

−a

x
∫

0

eiλtf(x− t) dtH(x) dx,

which, after the change of order of integration, gives us

(3.2) 〈e, h〉 = 〈1I, h〉+ iλ

a
∫

−a

eiλtψ(t) dt,

where

(3.3) ψ(t) =















a
∫

t

f(ξ − t)H(ξ) dξ, t ∈ [0, a],

−
t
∫

−a

f(ξ − t)H(ξ) dξ, t ∈ [−a, 0].

Since f,H ∈ L2(−a, a), we have ψ ∈ L2(−a, a). The function 〈e, h〉 represents an
analogue of the Fourier transform of the function h(x).

Lemma 3. For the function

(3.4) h̃(λ) = 〈e, h〉 ,
where e is given by (1.13), the representation

(3.5) h̃(λ) = h̃(0) + iλ

a
∫

−a

eiλtψ(t) dt

is true, where ψ(t) is given by formula (3.3) and belongs to L2(−a, a).
Proof of (3.5) follows from (3.2) since e(x, 0) = 1I.

Definition ([1]). The function f(λ) belongs to the Bernstein class Bσ if f(λ) is an
entire function of the exponential type 6 σ and

sup
x∈R

|f(x)| <∞.
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It is known that ∀f ∈ Bσ representation (3.5) takes place (σ = a). Thus h̃(λ) (3.4)
belongs to the class Ba.

Observation 1. For n(λ) (2.4),

(3.6) h
(

n,±π
2

)

= a

takes place, in view of (3.4), (3.5). Moreover, for h(λ) = λ−1 (n(λ)− n(0)), the inclusion
λ−1 (h(λ)− h(0)) ∈ L2(R) is true.

Observation 2. Let q(λ) > 0 (∀λ ∈ R) and q ∈ L1(R). Then the relations hq ∈ L1(R),

h
√
q ∈ L2(R) take place ∀h ∈ Ba. In particular, this is true as q = |ϕ| (q = |ϕ|−1), in

virtue of (1.9).

Lemma 4. Let q(λ) > 0 (∀λ ∈ R) and q ∈ L1(R), and the function f = A1I be such

that ∃f ′ and f ′ ∈ L2(−a, a). Then for h̃ (3.4) the estimation

(3.7)

∫

R

∣

∣

∣
h̃(λ)

∣

∣

∣

2

q(λ) dλ 6 C‖h‖2L2
ϕ
(−a,a)

is true.

II. Consider the inverse transform to h → h̃ (3.4). Let us show that ∀p ∈ L2
ϕ(−a, a)

there is such a function p̂(λ) that

(3.8) p(x) =

∫

R

e(x, λ)p̂(λ) dλ,

where e is given by (1.13). We apply the operator A (L2
ϕ(−a, a) → L2(−a, a)) to both

sides of the equality. Then

(3.9) P (x) =

∫

R

p̂(λ)
{

f(0)eiλx +

x
∫

0

eiλξf ′(x− ξ) dξ
}

dλ

in virtue of Ae = (I − λJ)−1f , where P = Ap, f = A1I. Consequently,

(3.10) f(0)r(x) +

x
∫

0

r(ξ)f ′(x− ξ) dξ = P (x),

where

(3.11) r(x) =

∫

R

p̂(λ)eiλxdλ

under the assumption that integral (3.11) converges. Let, as in Lemma 3.3, f(0) 6= 0
and f ′ ∈ L2(−a, a). Then the Volterra equation of the second kind (3.10) always has a
unique solution [10] r(x) ∈ L2(−a, a), in virtue of P, f ′ ∈ L2(−a, a). Hence it follows
that p̂(λ) is the inverse Fourier transform of the function r(x) ∈ L2(−a, a) and thus it is
an entire function of the exponential type 6 a such that p̂ ∈ L2(R).

Theorem 2. Let a function f = A1I from L2(−a, a) be such that f(0) 6= 0, f ′ exists

and belongs to L2(−a, a). Then for any function p ∈ L2
ϕ(−a, a) there exist a unique

p̂(λ), an entire function of exponential type 6 a, belonging to L2(R) if λ ∈ R, such that
representation (3.9) holds true. Besides, the estimation

(3.12) ‖p(x)‖L2
ϕ
(−a,a) 6 C ‖p̂(λ)‖L2(R)

takes place.
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Proof. It is left to prove estimation (3.12). For P = Ap, in view of invertibility of A,
‖p‖ < N‖P‖ takes place. Therefore we should estimate the norm of P in L2(−a, a).
Formula (3.10) implies that

‖P‖2L2(−a,a) 6 |f(0)|2‖r‖2 + 2|f0|‖r‖ ·
∥

∥

∥

x
∫

0

r(ξ)f ′(x− ξ) dξ
∥

∥

∥

+
∥

∥

∥

x
∫

0

r(ξ)f ′(x− ξ) dξ
∥

∥

∥

2

.

We note that ‖r‖ = ‖p̂‖ in view of unitarity of the Fourier transform and (3.11), and
since

∣

∣

∣

x
∫

0

r(ξ)f ′(x− ξ) dξ
∣

∣

∣

2

6

x
∫

0

|r(ξ)|2dξ
x
∫

0

|f ′(x− ξ)|2 dξ

we conclude from f ′ ∈ L2(−a, a) that
∣

∣

∣

x
∫

0

r(ξ)f ′(x− ξ) dξ
∣

∣

∣

2

6 ‖r‖2K2.

Therefore,

‖p‖2 6 ‖p̂‖2
(

|f(0)|2 + 2|f(0)|K +K2
)

,

which proves inequality (3.12). �

Theorem 3. Let the function ϕ (1.1) have properties (1.9) and n(λ) be given by

n(λ) = 1− λ 〈e, g〉 ,
where g ∈ L2

ϕ(−a, a) and e is given by formula (1.13), besides, the operator B in

L2
ϕ(−a, a) is given by (1.15). If the roots of n(λ) do not lie on R, then the following

conditions are equivalent:

1) ∀h ∈ L2
ϕ(−a, a) the estimation

(3.13)

∫

R

|ϕ(z)|−1|n(z)|2
∣

∣

∣

〈

(I − zB)−1h, g
〉

L2
ϕ
(−a,a)

∣

∣

∣

2

dz 6M‖h‖2L2
ϕ
(−a,a)

takes place.
2) The weight ω2(λ) = |ϕ(λ)||n(λ)|2 satisfies the A2 condition on R.

4. On the family {e (x, λk)} making a basis

The main result is as follows.

Theorem 4. Suppose that the function ϕ(x) has property (1.5) and the set Λ =

{λk ∈ C : k ∈ Z} lies at a positive distance from the axis R and let the function f = A1I
(A is the operator from L2

ϕ(−a, a) into L2(−a, a) realizing similarity of the operators B
(1.4) and J (1.7)) be such that f(0) 6= 0 and f ′(x) exists almost everywhere, besides,
f ′ ∈ L2(−a, a). In order that the family

(4.1) {e(x, λk), λk ∈ Λ} (0 /∈ Λ)

be an unconditional basis in L2
ϕ(−a, a) (1.1), it is necessary and sufficient that Λ form

a set of roots of an entire function of the exponential type n such that

1) λ−1 (n(λ)− n(0)) ∈ L2
ϕ(R);

2) h
(

n,±π
2

)

= a;
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3) the weight ω2(λ) = |ϕ(λ)||n(λ)|2 satisfies the A2 condition (2.9);
4) the roots n(λ) are simple and the sequences Λ± (2.7) satisfy the Carleson condi-

tion (2.8).

The proof of the theorem repeats the reasoning of work [6].

In conclusion of the paper, we consider one important special case. Note that the
integral equation (1.11) for f(x, λ) is equivalent to the Cauchy problem

(4.2)







f ′′(x, λ) +
ϕ′(x)

ϕ(x)
f ′(x, λ) + λ2f(x, λ) = 0

f(0, λ) = 1, ϕ(x)f ′(x, λ)|x=0 = 0
.

We rewrite equation (4.2) as

(4.3) (ϕ(x)f ′(x, λ))
′
+ λ2ϕ(x)f(x, λ) = 0.

Let

(4.4) f(x;λ) = u(ξ;λ), ξ(x)
def
=

x
∫

0

dt

ϕ(t)
+ C (C ∈ R),

then equation (4.3) becomes

(4.5) u′′(ξ, λ) + λ2q(ξ)u(ξ, λ) = 0,

where q(ξ) = ϕ2(x(ξ)) and x(ξ) is a function inverse to ξ(x) (4.4), which always exists
since ϕ(x) > 0 (x ∈ R+) and in virtue of (1.5).

Suppose that

(4.6) ϕ(x) =
√

b2 − x2 (b ∈ R+, x ∈ [0, b]).

Then the function ξ(x) (4.4) equals

ξ(x) = arcsin
x

b
, x = b sin ξ,

therefore q(ξ) in equation (4.5) is given by

(4.7) q(ξ) = b2 − b2 sin2 ξ =
b2

2
(1 + cos 2ξ).

As a result, we obtain the well-known Mathieu equation

(4.8) u′′(ξ, λ) + λ2
b2

2
(1 + cos 2ξ)u(ξ, λ) = 0.

The Mathieu functions of the first kind S(ξ, λ), C(ξ, λ) are solutions of such an equation,
besides, S(ξ, λ) (C(ξ, λ)) is an odd (even) function of ξ. Using (1.10), we obtain the
functions e(x, λ) in this case,

(4.9) e(x, λ) = C
(

arctg
x

b
, λ
)

− i

λ
√
b2 − x2

S
(

arctg
x

b
, λ
)

,

where C(ξ, λ) and S(ξ, λ) are even and odd Mathieu functions of the first kind. Using
Theorem 6, we obtain that the functions (4.9) form a basis.



ON A FUNCTION SYSTEM MAKING A BASIS IN A WEIGHT SPACE 269

References

1. N. I. Achiezer, Theory of Approximation, Frederick Ungar Publishing, New York, 1956.
2. H. Bateman and A. Erdelyi, Higher Transcendental Functions. Elliptic and Automorphic Func-

tions. Lame and Mathieu Functions, McGraw-Hill, New York, 1953.
3. J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.

4. G. M. Gubreev, Spectral theory of regular of quasi-exponentials and regular B-representable
vector functions (the projection method: 20 years later), Algebra i Analiz 12 (2000), no. 6,
1–97. (Russian); English transl. St. Petersburg Math. J. 12 (2001), no. 6, 875–947.

5. G. M. Gubreev, Selected Works, Dnipropetrovsk: Serednyak T. K., 2014. (Russian)
6. G. M. Gubreev and V. N. Levchuk, Description of unconditional bases formed by values of

the Dunkl kernels, Funktsional. Anal. i Prilozhen. 49 (2015), no. 1, 79–82. (Russian); English
transl. Funct. Anal. Appl. 49 (2015), no. 1, 64–66.

7. S. V. Khruschev, N. K. Nikolskii, B. S. Pavlov, Unconditional bases of exponentials and of re-
producting kernels, Lecture Notes in Mathematics, vol. 864, 1981, Springer, Berlin—Heidelberg,
214–335.

8. V. N. Levchuk, Basicity of an exponential system and Muckenhoupt’s condition, Journal of

Mathematical Physics, Analysis, Geometry (in print).
9. B. S. Pavlov, The basis property of a system of exponentials and the Muckenhoupt condition,

Dokl. Akad. Nauk SSSR 247 (1979), 37–40. (Russian); English transl. Soviet Math. Dokl. 20

(1979), 655–659.
10. F. G. Tricomi, Integral Equations, Dover Publ., New York, 1985.

Institute for Low Temperature Physics and Engineering of the National Academy of Sci-

ences of Ukraine, Kharkov, Ukraine

V. N. Karazin Kharkov National University, Kharkov, Ukraine

E-mail address: vazolotarev@gmail.com

Poltava National Technical Yuri Kondratyuk University, Poltava, Ukraine

E-mail address: levchyk.valentyna@gmail.com

Received 11/05/2017; Revised 23/06/2017.


