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ON THE GRAPH K1,n RELATED CONFIGURATIONS OF

SUBSPACES OF A HILBERT SPACE

ALEXANDER STRELETS

Abstract. We study systems of subspaces H1, . . . , HN of a complex Hilbert space H

that satisfy the following conditions: for every index k > 1, the set {θk,1, . . . , θk,mk
}

of angles θk,i ∈ (0, π/2) between H1 and Hk is fixed; all other pairs Hk, Hj are
orthogonal. The main tool in the study is a construction of a system of subspaces of
a Hilbert space on the basis of its Gram operator (the G-construction).

1. Introduction

1.1. Systems of subspaces. A study of systems L = (V ;V1, . . . , Vn) of n subspaces
V1, . . . , Vn of a linear space V , n ∈ N, in particular, a description of indecomposable
quadruples of subspaces in V up to equivalence [1], a description of indecomposable
representations in the space V of finite posets (see, for example, [6]), etc., are classical
problems of algebra (see bibliography in [8]).

Let H be a complex Hilbert space and Hk, 1 6 k 6 n, a collection of its subspaces.
An important problem of functional analysis is to study systems of subspaces

S = (H;H1, . . . , Hn),

of the Hilbert space H or, which is the same thing, collections of the corresponding
orthogonal projections P1, . . . , Pn. This problem was studied in numerous publications,
see, for example [8], [9] and the bibliography therein.

A description of all irreducible n-tuples of subspaces S = (H;H1, . . . , Hn) is well-
known for n 6 2. If n = 1, then any irreducible system S is unitarily equivalent to one
of the systems S0 = (C; 0) and S1 = (C;C); if n = 2, then a list of pairs of irreducible
systems of subspaces, up to unitary equivalence, is the following:

(1) H = C
1,

S00 = (C; 0, 0), S01 = (C; 0,C), S10 = (C;C, 0), S11 = (C;C,C);

(2) H = C
2,

Sϕ = (C2; 〈(1, 0)〉, 〈cosϕ, sinϕ〉), ϕ ∈ (0,
π

2
).

For n > 3 the problem of description of irreducible n-tuples of subspaces up to unitary
equivalence is a ∗-wild problem (see. [5, 7, 4]). Moreover, the problem of description of
triples of subspaces S = (H;H1, H2, H3) such that H2⊥H3, is ∗-wild (see [5, 7]).

Therefore, it is natural to study a class of systems of subspaces S satisfying some
condition, and, if it is possible, to describe all irreducible systems S, up to unitary
equivalence, of this class.
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1.2. Some classes of systems of subspaces. The algebras

C〈p1, p2, . . . , pn | p2j = pj , j = 1, 2, . . . , n;

pipjpi = νpi, |i− j| = 1;

pipj = pjpi, |i− j| > 2〉,

ν ∈ C, were introduced in [10] by physicists H. N. V. Temperley and E. H. Lieb in
connection with studying models of statistical physics. Such algebras can be considered
as ∗-algebras if ν = τ20 ∈ (0, 1) and the involution is defined by p∗j = pj , 1 6 j 6 n. Let
π be some ∗-representation of such a ∗-algebra in a Hilbert space H, and subspaces Hi

are images of the orthogonal projections Pi = π(pi). Then we have obtained a system of
subspaces S = (H;H1, . . . , Hn) for which the following conditions hold:

(1) ”nearby“ pairs of subspaces lie at an angle θ0 to each other, τ0 = cos θ0, i.e.
PiPi+1Pi = τ20Pi, Pi+1PiPi+1 = τ20Pi+1, i = 1, . . . , n− 1;

(2) the rest of pairs of subspaces ”commutes“, i.e., the identities PiPj = PjPi hold.

Let An be a graph with a set of vertices {1, 2, . . . , n} and the edges {i, i + 1}, 1 6

i 6 n − 1. Then conditions on the angle between subspaces corresponding to pairs
of vertices i, j connected with an edge of the graph An are defined by the commutation
relations in (1) above, whereas, for spaces corresponding to pairs of vertices not connected
with an edge, we have conditions as in (2).

Let us consider a class of systems of subspaces described by a labeled graph G and
a mapping Θ which maps each edge of the graph into some finite subset of numbers
from [0, π/2). More precisely, let G be a graph without multiple edges and {1, 2, . . . , n}
be a set of vertices of the graph. Let R be a finite subset of N, and E =

⊔
r∈R E2r+1

where Es, s = 2r + 1, is a set of s-labeled edges. A set of pairs of vertices {i, j} that
are not connected with any edge in the graph G will be denoted by E. Let a mapping
Θ defined on edges of the labeled graph G be such that Θ : Es ∋ {i, j} 7→ Θi,j , where
Θi,j = Θj,i is a set of r numbers θi,j;k such that 0 6 θi,j;1 < · · · < θi,j;r < π/2. Define

fi,j(x) =

r∏

k=1

(x− τ2i,j;k), τi,j;k = cos θi,j;k .

By Sys(G,Θ) we will denote a class of systems of subspaces S such that

(1) if {i, j} ∈ Es then the subspaces Hi, Hj lie at the angles θi,j;k to each other, i.e.,

fi,j(PiPj)Pi = 0 and fi,j(PjPi)Pj = 0;

(2) if {i, j} ∈ E then the subspaces Hi, Hj ”commute“, i.e., PiPj = PjPi.

Systems S ∈ Sys(G,Θ) can be considered as ∗-representations of a corresponding ∗-al-
gebra,

T LG,Θ = C〈p1, p2, . . . , pn | p2j = p∗j = pj , j = 1, 2, . . . , n;

fi,j(pipj)pi = 0, {i, j} ∈ E;

pipj = pjpi, {i, j} ∈ E〉.

Note that this ∗-algebra can be considered as an algebra without involution. In this
case, the conditions p2j = p∗j = pj in the definition above should be replaced with the

conditions p2j = pj . Then such an algebra is a projective algebra (see [2], section 6).
A more restricted class of systems of subspaces can be obtained if for each pair of

vertices i, j non-connected with any edge, the commutation condition is replaced with
the orthogonality condition PiPj = PjPi = 0. A class of such systems of subspaces will
be denoted by Sys(G,Θ,⊥). Such systems can be considered as ∗-representations of the
related ∗-algebra T LG,Θ,⊥ (that is a factor algebra of the ∗-algebra T LG,Θ).
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1.3. Basic definitions. A system of subspaces S = (H;H1, . . . , Hn) is said to be de-
composable if there exists an orthogonal decomposition H = H ′⊕H ′′ and two systems of
subspaces, S′ = (H ′;H ′

1, . . . , H
′
n) and S′′ = (H ′′;H ′′

1 , . . . , H
′′
n), such that Hk = H ′

k ⊕H ′′
k

for k = 1, 2, . . . , n. A system S is said to be indecomposable if it is not decomposable. It
is well-known that a system S is indecomposable iff S is irreducible, that is, the follow-
ing condition is satisfied: if a bounded linear operator A : H → H commutes with Pk,
1 6 k 6 n, then A = λI for some λ ∈ C.

Two systems of subspaces S = (H;H1, . . . , Hn) and S′ = (H ′;H ′
1, . . . , H

′
n) are said

to be unitarily equivalent if there exists a unitary operator U : H → H ′ such that
H ′

k = U(Hk) for all 1 6 k 6 n. Clearly, this condition is equivalent to P ′
k = UPkU

∗, i.e.,
UPk = P ′

kU .
For a system of subspaces S, the vector (dimH; dimH1, . . . , dimHn), whose compo-

nents are cardinal numbers, is called a generalized dimension of the system S. In the
sequel, to simplify the notation, if S is such that all dimHk are equal, the generalized
dimension of S is defined to be (dimH; dimH1).

A system of subspaces S is called zero if Hi = 0 for 1 6 i 6 n. Otherwise the system
S is said to be nonzero.

1.4. On complexity of description of systems of subspaces. As we have already
mentioned, the problem of describing, up to unitary equivalence, irreducible triples of
subspaces, a pair of which is orthogonal, is a ∗-wild problem. This means that this prob-
lem is no less complicated than the problem of a description, up to unitary equivalence,
of a pair of self-adjoint operators.

Description problems considered in the paper for some classes of subspaces will be
referred to as complex if such a problem is no less complicated than the problem of
description of triples of subspaces (H;H1, H2, H3) such that (i) for some ε > 0 the
following inequality holds:

(1) PH1
+ PH2

+ PH3
6 (1 + ε)I

and (ii) H2⊥H3.
The hypothesis is that the task of description of such triples of subspaces is ∗-wild.
Let us note that in [9, section 3], a more complicated description problem for triples

of subspaces satisfying only the condition (i) was shown to be ∗-wild.

1.5. Formulation of the problem and main results. LetN be some natural number,
K1,N a star graph with N edges, and Θ some function on edges of K1,N such that

Θ : {0, k} 7→ Θk = {θk,1, . . . , θk,mk
},

mk ≥ 1, k = 1, . . . , N . In the paper we consider systems of subspaces Sys(K1,N ,Θ,⊥), in
other words, we study systems of subspaces S = (H;H0, H1, . . . , HN ) such that following
conditions hold.

(Ang): Condition on the angles. For any k = 1, . . . , N we have Ang(H0, Hk) =
Ang(Hk, H0) ⊂ Θk, that is,

mk∏

i=1

(P0PkP0 − τ2k,iP0) =

mk∏

i=1

(PkP0Pk − τ2k,iPk) = 0,

where τk,i = cos θk,i, i = 1, . . . ,mk.
(Ort): Orthogonality condition. If i, j ≥ 1 and i 6= j, then Hi and Hj are

orthogonal, that is, PiPj = PjPi = 0.
The main results of our work are the following.

(1) We describe (up to unitary equivalence) all systems of subspaces S that satisfy
(Ang), (Ort) (see Section 3.1).
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(2) We give a description (up to unitary equivalence) of all irreducible systems of
subspaces S which satisfy (Ang), (Ort) (see Theorem 1 and Section 3.2).

2. G-construction and the Gram operator of a system of subspaces

2.1. G-construction of a system of subspaces of a Hilbert space. In this section
we will recall the G-construction and some related results used for studying systems of
subspaces that satisfy (Ang) and (Ort). For more details and proofs for the results, we
refer the reader to [9].

Let H0,k, 1 6 k 6 n, be a collection of nonzero Hilbert spaces. Define the Hilbert

space H̃ = H0,1 ⊕ · · · ⊕H0,n, and let 〈·, ·〉0 be the corresponding scalar product. Define

the subspace H̃k of H̃ by

H̃k = {(0, . . . , 0, x︸︷︷︸
k

, 0, . . . , 0) | x ∈ H0,k}, 1 6 k 6 n.

Let B : H̃ → H̃ be a bounded non-negative self-adjoint operator such that its block
decomposition B = (Bi,j : H0,j → H0,i | 1 6 i, j 6 n) satisfies Bk,k = IH0,k

, 1 6 k 6 n.

Set H̃0 = ker(B). Using the operator B, we define the scalar product in the linear

space H̃/H̃0 by

〈x+ H̃0, y + H̃0〉 = 〈Bx, y〉0, x, y ∈ H̃.

Clearly, this definition is correct, that is, it does not depend on representatives of the

equivalence classes. Let H be the Hilbert space completion of the space H̃/H̃0 with
respect to this scalar product.

Let Hk = {x + H̃0 | x ∈ H̃k}, 1 6 k 6 n. Since ‖x + H̃0‖ =
√

〈Bx, x〉0 = ‖x‖0 for

arbitrary x ∈ H̃k, we see that Hk is a subspace of H. Since H1 + . . . +Hn = {x+ H̃0 |

x ∈ H̃} = H̃/H̃0, we conclude that H1 + . . .+Hn is dense in H.
We have thus obtained a collection of subspaces, H1, . . . , Hn, of the Hilbert space H.

In such a case, we will write (H;H1, . . . , Hn) = G(H0,1, . . . , H0,n;B). The construction
above is called the G-construction.

2.2. Basic properties of the G-construction. Let K be a Hilbert space,

S = (K;K1, . . . ,Kn)

an n-tuple of nonzero subspaces of K. Denote by Qi the orthogonal projection onto Ki,
1 6 i 6 n.

Definition 1. The operator G = G(S) : ⊕n
i=1Ki → ⊕n

i=1Ki defined by its block decom-
position by Gi,j = Qi ↾Kj

: Kj → Ki, 1 6 i, j 6 n, is called the Gram operator of the
system of subspaces S.

The crucial property of the G-construction is the following.

Proposition 1. Suppose that K1+ · · ·+Kn is dense in K. Then the system of subspaces
G(K1, . . . ,Kn;G(S)) is unitarily equivalent to S.

Consider the following question: when two systems of subspaces obtained by the G-
construction are unitarily equivalent ?

Proposition 2. Two systems of subspaces

G(H0,1, . . . , H0,n;B) and G(H ′
0,1, . . . , H

′
0,n;B

′)

are unitarily equivalent iff there exists a collection of unitary operators U0,k : H ′
0,k →

H0,k, 1 6 k 6 n, such that

(2) B′
i,j = U∗

0,iBi,jU0,j .

for any 1 6 i, j 6 n.
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Next, we are going to find conditions on the operator B under which the system of
subspaces G(H0,1, . . . , H0,n;B) is irreducible.

For a sequence of indices l = (i1, . . . , ik), where 1 6 i1, . . . , ik 6 n, k > 2, define the
operator Bl = Bi1,i2 . . . Bik−1ik . Let α ∈ {1, 2, . . . , n}. Denote by Lα the set of sequences
l = (i1, . . . , ik) such that i1 = ik = α. Note that the set of operators Bl, l ∈ Lα is a ∗-
set, that is, if an operator A belongs to this set, then the operator A∗ also belongs to
this set.

Proposition 3. Let α ∈ {1, 2, . . . , n} be such that for any k = 1, 2, . . . , n there exists a
sequence of indices l = (α, . . . , k) such that Bl is invertible. Then the following conditions
are equivalent:

(1) the system of subspaces G(H0,1, . . . , H0,n;B) is irreducible;
(2) the set of operators Bl, l ∈ Lα is irreducible.

2.3. Connection between properties of a system of subspaces G(H0,1, . . . , H0,n;B)
and properties of the operator B. Let S = (H;H1, . . . , Hn) = G(H0,1, . . . , H0,n;B).
Denote by Pi the orthogonal projection onto Hi, 1 6 i 6 n. Let G = G(S) be the Gram
operator of the system S, Gi,j = Pi ↾Hj

: Hj → Hi, 1 6 i, j 6 n.

Proposition 4. There exists a collection of unitary operators U0,k : Hk → H0,k, 1 6

k 6 n, such that Gi,j = U∗
0,iBi,jU0,j for 1 6 i, j 6 n.

Proof. From Proposition 1 it follows that S is unitarily equivalent to the system

G(H1, . . . , Hn;G).

Using Proposition 2, we obtain the needed assertion. �

Using Proposition 4, we will connect properties of the system of subspaces S with
properties of the operator B. Let α, β ∈ {1, 2, . . . , n}, α 6= β.

Example 1. Orthogonality condition. The subspaces Hα and Hβ are orthogonal iff
PαPβ = 0, that is, Gα,β = 0. Clearly, this condition is equivalent to Bα,β = 0.

Example 2. Condition on the set of angles between Hα and Hβ. Let A ⊂ [0, π/2].
Define cos2(A) = {cos2 ϕ | ϕ ∈ A}. The condition Ang(Hα, Hβ) ⊂ A is equivalent to
σ(PαPβPα ↾Hα

) ⊂ cos2(A). Since

PαPβPα ↾Hα
= Gα,βGβ,α = U∗

0,αBα,βBβ,αU0,α,

we conclude that Ang(Hα, Hβ) ⊂ A iff σ(Bα,βBβ,α) ⊂ cos2(A).

3. Description of all systems which satisfy (Ang) and (Ort)

In this section we

(1) obtain a description of all systems satisfying (Ang), (Ort);
(2) obtain a description of all irreducible unitarily nonequivalent systems satisfying

(Ang), (Ort);
(3) will give, as an example, a description of all irreducible unitarily nonequivalent

systems satisfying (Ang), (Ort) in the case N = 2 and m1 = 2, m2 = 3.

3.1. Description of all systems of subspaces S = (H;H0, H1, . . . , HN ) which sa-
tisfy (Ang) and (Ort). 1. A zero system S = (H; 0, . . . , 0) satisfies all conditions.
So we will consider only non-zero systems. Note that all operators B0k are invertible
so if a system S = (H;H0, . . . , HN ) satisfies conditions (Ang) and for some index k we
have Hk = 0, then H0 = · · · = HN = 0. Thus if a system of subspaces is non-zero then
Hk 6= 0, 0 6 k 6 N .
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2. Let S = (H;H0, . . . , HN ) be a non-zero system of subspaces which satisfies con-
ditions (Ang) and (Ort). Suppose the sum H0 + · · · +HN is not dense in the space H.
Define the systems

S′ = (H ′;H0, . . . , HN ) and S′′ = (H ⊖H ′; 0, . . . , 0),

where H ′ = H0 + · · ·+HN . Then S = S′ ⊕ S′′, S′ satisfies conditions (Ang), (Ort) and
S′′ is a zero system of subspaces. So to describe all systems of subspaces that satisfy
conditions (Ang) and (Ort) it is sufficient to describe systems that satisfy the condition
that the sum of subspaces H0 + · · ·+HN is dense in the space H.

3. Let us suppose for now that S = (H;H0, . . . , HN ) is a system of subspaces that
satisfies conditions (Ang) and (Ort), is such that Hk 6= 0, 0 6 k 6 N , and the sum
H0 + · · · +HN is dense in the space H. Let G = (Gi,j , 1 6 i, j 6 N + 1) be the Gram
operator of the system S. Then S is unitarily equivalent to the system G(H0, . . . , HN ;G).
If the identities

mk∏

i=1

(Gk,0G
∗
k,0 − τ2k,iIk) = 0,

mk∏

i=1

(G∗
k,0Gk,0 − τ2k,iI0) = 0

hold for any 1 6 k 6 n, then the operators

Uk = Gk,0(G0,kGk,0)
−1/2 : H0 → Hk, 0 6 k 6 n

are properly defined unitary operators. Define

Bj,k = U∗
j Gj,kUk : H0 → H0, 0 6 j, k 6 n,

then

B0,k = G0,kGk,0(G0,kGk,0)
−1/2 = (G0,kGk,0)

1/2

is a self-adjoint invertible operator with spectrum σ(B0,k) = σk = {τk,1, . . . , τk,mk
}, so

there exists a decomposition of the identity,

I0 = Qk,1 ⊕ · · · ⊕Qk,rk such that B0,k =

rk∑

i=1

τk,iQk,i.

Define the operator B : ⊕N+1
k=1 H1 → ⊕N+1

k=1 H1 by its block decomposition B = (Bi,j).
The proposition 2 claims that the system of subspaces G(H0, . . . , Hn;G) is unitarily
equivalent to G(H0, . . . , H0;B) so S is unitarily equivalent to G(H0, . . . , H0;B) as well.

Let now S = (H;H0, . . . , HN ) = G(H0, . . . , H0;B) for some Hilbert space H0 and

some operator B : ⊕N+1
k=1 H0 → ⊕N+1

k=1 H0 such that B0,k is equal to

(3) Bk =

rk∑

i=1

τk,iQk,i, I0 =

rk⊕

i=1

Qk,i, 1 6 k 6 N.

Let us find conditions on B that are required for system of subspaces to satisfy condi-
tions (Ang) and (Ort).

Conditions (Ang) are equivalent to the conditions

rk∏

i=1

(B2
k − τ2k,iI0) = 0,

that hold as far as
rk∏

i=1

(B2
k − τ2k,iI0) =

rk∏

i=1

( rk∑

j=1

(τ2k,j − τ2k,i)Qk,i

)
=

rk∑

j=1

( rk∏

i=1

(τ2k,j − τ2k,i)
)
Qk,i = 0.
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Conditions (Ort) just mean that Bi,j = 0 for any i 6= j, 1 6 i, j 6 N . Thus the operator
B has the form

(4) B =




I B1 B2 . . . BN

B1 I 0 . . . 0
B2 0 I . . . 0
...

...
...

. . .
...

BN 0 0 . . . I




,

where Bk =
∑rk

i=1 τk,iQk,i, for some set of projections Qk,j , 1 6 k 6 n, 1 6 j 6 rk, such
that Qk,j1Qk,j2 = 0 for any k and j1 6= j2. In the following this operator will be denoted
by B({Qk,j}).

To apply the G-construction, the operator B({Qk,j}) is required to be non-negative.
The following lemmas will be useful for studying the question when such an operator is
non-negative.

Lemma 1. Let K be a Hilbert space, A1, . . . , An non-negative invertible operators on
K. Let y ∈ K and µk > 0, 1 6 k 6 n. If uk ∈ K, 1 6 k 6 n, and

∑n
k=1 µkuk = y, then

n∑

k=1

〈Akuk, uk 〉 >

〈


n∑

j=1

µ2
jA

−1
j




−1

y, y

〉
,

with the equality taking place iff

uk = µkA
−1
k (

n∑

j=1

µ2
jA

−1
j )−1y, 1 6 k 6 n.

See a proof of this lemma in [9].

Proposition 5. Let the operator B be as in (4) for some self-adjoint positive operators
Bk, 1 6 k 6 N . Then B is non-negative if and only if

(5)
N∑

k=1

B2
k 6 I0.

Proof. The operator B is non-negative by definition iff

〈Bx, x〉 > 0, x = (z, x1, . . . , xN ) ∈ ⊕N
k=0H0.

Denote

z0 = z0(x1, . . . , xm) =

N∑

k=1

Bkxk, B0 = B0(x1, . . . , xm) =

N∑

k=1

‖xk‖
2

then we will get the condition

〈Bx, x 〉 = ‖z‖2 + 2Re 〈 z, z0 〉+B0 > 0.

This condition is equivalent to the condition

‖z + z0‖
2 − ‖z0‖

2 +B0 > 0.

The left-hand side of this inequality reaches a minimal value as z varies if z = −z0. Thus
the operator B is non-negative if and only if

B0 > ‖z0‖
2.

Denoting yk = Bkxk we can rewrite this inequality in following form:

N∑

k=1

〈B−2
k yk, yk〉 > ‖

N∑

k=1

yk‖
2.
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Let y =
∑N

k=1 yk. Then by lemma 1 the minimum of the left-hand side is equal to

〈( N∑

k=1

B2
k

)−1
y, y

〉
,

so the operator B is non-negative if and only if

( N∑

k=1

B2
k

)−1
> I0.

The last inequality is equivalent to inequality (5). �

The following proposition provides a description of KerB. It can be obtained from
proofs of previous lemmas.

Proposition 6. Let inequality (5) hold. A vector

x = (z, x1, . . . , xN )

belongs to KerB if and only if

(1) z = −
∑N

k=1 Bkxk;

(2) xk = Bky, 1 6 k 6 N , where y ∈ Ker(I −
∑N

k=1 B
2
k).

Corollary 1. Let inequality (5) hold and H0 be finite dimensional. Then

(6) dimKerB = dimKer(I −

N∑

k=1

B2
k).

A criterion for unitary equivalence of systems of subspaces (Proposition 2) in the
considered case can be formulated in terms operators Bk.

Proposition 7. Systems of subspaces G(H0, . . . , H0;B) and G(H ′
0, . . . , H

′
0;B

′) are uni-
tarily equivalent if and only if the sets of operators {Bk} and {B′

k} are unitarily equiva-
lent.

In the rest of this section we will consider the case where B = B({Qk,j}). Note that
the system of operators generated by the set of operators {Qk,j}, Qk,j1Qk,j2 = 0, is the
same as the one generated by the set {Bk =

∑rk
j=1 τk,jQk,j}. To prove this, it is sufficient

to see that

Qk,j = qk,j(Bk), qk,j(x) =
∏

i6=j

x− τk,i
τk,j − τk,i

.

Proposition 5 in the considered case can be formulated more precisely.

Proposition 8. Let

ξ(τ) = 1−

n∑

k=1

τ2k,1

and

M =

N⋃

k=1

Mk, Mk = {(k, j) | 2 6 j 6 rk} , k = 1 6 k 6 N.

The operator B = B({Qk,j}) is non-negative if and only if

(7)
∑

(k, j)∈M

δk,jQk,j 6 ξ(τ)I0,

where δk,j = τ2k,j − τ2k,1, (k, j) ∈ M .
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Proof. Substituting Bk =
∑rk

j=1 τk,jQk,j into inequality (5) we will get

N∑

k=1

rk∑

j=1

τ2k,jQk,j 6 I0.

Decreasing both side of this inequality by
∑N

k=1 τ
2
k,1I0 we will get (7) �

So considering all the sets of operators {Qk,j} that are different up to unitarily equiv-
alence and satisfy inequality (7), and applying the G-construction we will obtain all
non-equivalent non-zero systems of subspaces S satisfying conditions (Ang) and (Ort)
such that H0 + · · ·+HN is dense in the Hilbert space H.

Note that condition (7) requires that ξ(τ) > 0 if δk,i > 0. So if ξ(τ) < 0 then there is
a no non-zero system of subspaces S that satisfy (Ang) and (Ort). In the following we
will suppose that ξ(τ) > 0.

3.2. Description of all irreducible unitarily nonequivalent systems S satisfying
(Ang), (Ort). Before providing a description of all irreducible systems of subspaces let
us note that

• up to unitarily equivalence there exists the unique zero irreducible system of
subspaces S = (C1; 0, . . . , 0);

• for any non-zero irreducible system of subspaces S = (H;H1, . . . , HN+1), the
sum H1 + · · ·+HN+1 is dense in H.

Moreover a criterion for irreducibility (proposition 3) of systems of subspaces in terms
of operators Bk can be formulated in the following form.

Proposition 9. Let the operator B be as in (4) for some self-adjoint positive operators
Bk, 1 6 k 6 N . Then the system of subspaces G(H0, . . . , H0;B) is irreducible if and only
if the set of operators {Bk} is irreducible.

So up to unitary equivalence, all non-zero irreducible systems of subspaces satisfying
(Ang) and (Ort) are S = G(H0, . . . , H0;B({Qk,j})), where H0 is a Hilbert space and
Qk,j (Qk,j1Qk,j2 = 0, j1 6= j2, 1 6 k 6 N , 1 6 j, j1, j2 6 rk) is an irreducible family of
orthogonal projections in the Hilbert space H0 such that inequality (7) holds.

Since systems of subspaces S and S′ are unitarily equivalent if and only if the families
of orthogonal operators {Qk,j} and {Q′

k,j} are unitarily equivalent, the problem under
consideration is equivalent to the problem of describing, up to unitary equivalnce, all
irreducible families of orthogonal projections {Qk,j} that satisfy to inequality (7).

If ξ(τ) = 0 then Qk,j = 0, (k, j) ∈ M . So Qk,1 = I0, 1 6 k 6 N and
∑N

k=1 B
2
k = I0.

Because family of operators Qk,j should be irreducible, H0 = C
1. Using formula (6) we

will find that dimH = N and the generalized dimension of the system S is equal to
(N ; 1).

Let us consider the case ξ(τ) > 0.
A set of index pairs M can be split into three parts,

Ml = {(k, j) ∈ M | δk,j < ξ(τ)},

Me = {(k, j) ∈ M | δk,j = ξ(τ)},

Mg = {(k, j) ∈ M | δk,j > ξ(τ)}.

If (k0, j0) ∈ Mg then, obviously, Qk0,j0 = 0.
If (k0, j0) ∈ Me then, by inequality (7),

Qk0,j0Qk,j = 0, (k, j) ∈ M \Mk0
.
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Since the family {Qk,j} is irreducible, Qk0,j0 = 0 or Qk0,j0 = I. Furthermore, if Qk0,j0 =
I, then

Qk,j = 0, (k, j) ∈ M \ {(k0, j0)}.

In this case, H0 = C
1 and, by formula (6), we can find dimKerB = 1 so dimH = N

and the generalized dimension of the system S is equal to (N ; 1).
Thus we have found |Me| irreducible unitarily non equivalent systems of subspaces

S satisfying (Ang) and (Ort) corresponding to elements (k0, j0) ∈ Me. It remains to
consider the case where Qk0,j0 = 0 for all (k0, j0) ∈ Me. In this case, inequality (7) can
be rewritten as

(8)
∑

(k,j)∈Ml

δk,jQk,j 6 ξ(τ)I0.

Let us introduce index sets Ml,k = Ml ∩Mk, 1 6 k 6 N . Then Nl will be defined as a
number of indexes k such that Ml,k 6= ∅ and dl will be defined as max

k
|Ml,k|.

Without loss of generality, we assume that |Ml,1| > |Ml,2| > · · · > |Ml,N |.
1. In the case Nl > 3, define a set Ml,0 to be {(1, 2), (2, 2), (3, 2)} and, in the case

Nl = 2, dl > 2, define it as {(1, 2), (1, 3), (2, 2)}. Then define δ = max{δk,j | (k, j) ∈ Ml,0}
and put Qk,j = 0, if (k, j) ∈ Ml \Ml,0. Thus, for ε = ξ(τ)/δ−1 > 0 and three orthogonal
projections Qk,j , (k, j) ∈ Ml,0 such that

∑

(k,j)∈Ml,0

Qk,j 6 (1 + ε)I0

the following inequalities hold:
∑

(k,j)∈Ml,0

δk,jQk,j 6 δ
∑

(k,j)∈Ml,0

Qk,j 6 ξ(τ)I0.

So the task of describing all irreducible representations in these cases is complex.
2. Let Nl = 0. Then Qk,j = 0, (k, j) ∈ Ml. Because the family of the orthogonal

projections {Qk,j} is irreducible, H0 = C
1. Using equality (6), we will get dimKerB = 0.

Then dimH = N+1; dimHk = 1 for all 1 6 k 6 N+1. Thus, the generalized dimension
of the system S is equal to (N + 1; 1).

3. Let Nl = 1. Then equality (7) will become

dl+1∑

j=2

δ1,jQ1,j 6 ξ(τ)I0.

Because all δ1,j < ξ(τ) and Q1,j1⊥Q1,j2 , j1 6= j2, this inequality holds for any such
a family of orthogonal projections. Furthermore, the family Q1,j , 1 6 j 6 dl + 1, is

irreducible and
∑dl+1

j=1 Q1,j = I0 so H0 = C
1 and there exist dl + 1 possible cases

πj : Q1,j = I0, Q1,i = 0, i 6= j, 1 6 j 6 dl + 1.

In all these cases dimKerB = 0 so the generalized dimension of the related systems is
equal to (N + 1, 1).

4. Let Nl = 2 and dl = 1. Then inequality (8) can be rewritten as

(9) δ1,2Q1,2 + δ2,2Q2,2 6 ξ(τ)I0.

The following description of all irreducible pairs of orthogonal projections R1 and R2

in Hilbert space, up to unitary equivalence (not only those that satisfy inequality (9)) is
well known (see, for example [3]). All such pairs can be split into
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(1) four irreducible pairs of orthogonal projections in H0 = C
1:

π00 : R1 = 0, R2 = 0, π01 : R1 = 0, R2 = I,

π10 : R1 = I,R2 = 0, π11 : R1 = I,R2 = I;

(2) a family of pairs πϕ, ϕ ∈ (0, π/2), in H0 = C
2:

(10) R1 =

(
1 0
0 0

)
, R2 =

(
cos2 ϕ cosϕ sinϕ

cosϕ sinϕ sin2 ϕ

)
.

Let us find those of them that satisfy inequality (9). Consider the following cases.
4.1. In cases H0 = C

1, (i) Q1,2 = Q2,2 = 0, (ii) Q1,2 = I and Q2,2 = 0, or (iii)
Q1,2 = 0 and Q2,2 = I, inequality (9) holds and the generalized dimension of the system
S is equal to (N + 1; 1) if dimKerB = 0.

4.2. Let H0 = C
1, Q1,2 = Q2,2 = I. Inequality (9) holds if and only if ξ(τ) >

δ1,2 + δ2,2. In this case, the generalized dimension of the system S is equal to

(1) (N ; 1) if ξ(τ) = δ1,2 + δ2,2 for dimKerB = 1;
(2) (N + 1; 1) if ξ(τ) > δ1,2 + δ2,2 for dimKerB = 0.

4.3. Let us consider the case where H0 = C
2 and the operators Q1,2, Q2,2 are

represented by formulas (10), ϕ ∈ (0, π/2). Inequality (9) holds if and only if the (2×2)-
matrix (operator)

M = ξ(τ)I − δ1,2Q1,2 − δ2,2Q2,2 =

(
ξ(τ)− δ1,2 − δ2,2 cos

2 ϕ −δ2,2 cosϕ sinϕ
−δ2,2 cosϕ sinϕ ξ(τ)− δ2,2 sin

2 ϕ

)

is non-negative. This means that the diagonal elements and the determinant of the
matrix M are non-negative. An element (M)1,1 > 0 if and only if

cos2 ϕ 6
ξ(τ)− δ1,2

δ2,2
.

We also have that (M)2,2 > 0 for any ϕ. It is easy to check that

detM = (ξ(τ)− δ1,2)(ξ(τ)− δ2,2)− δ1,2δ2,2 cos
2 ϕ.

So the condition detM > 0 can be rewritten as follows:

cos2 ϕ 6
ξ(τ)− δ1,2

δ2,2

ξ(τ)− δ2,2
δ1,2

= η(τ).

The following cases are possible.
4.3.1. Let ξ(τ) > δ1,2+δ2,2. Then for any ϕ ∈ (0, π/2) the matrix M is non-negative.

Using formula (6) we will get dimKerB = 0. So dimH = 2N +2, dimHk = dimH0 = 2
for any 1 6 k 6 N+1. The generalized dimension of the system S is equal to (2N+2; 2).

4.4.2. Suppose that ξ(τ) < δ1,2 + δ2,2. Then define an angle

ϕ(τ) = arccos
√

η(τ) ∈ (0, π/2).

The matrix M is non-negative if and only if ϕ ∈ [ϕ(τ), π/2).
If ϕ ∈ (ϕ(τ), π/2) then M is positive and the generalized dimension of the system S

is equal to (2N + 2; 2).
If ϕ = ϕ(τ) then KerM is one-dimensional, so dimKerB = 1 and the generalized

dimensional of the system S is equal to (2N + 1; 2).
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3.3. Classification theorem. Let us formulate the results obtained in subsection 3.2
as a theorem.

Theorem 1. If ξ(τ) < 0 then there does not exist a non-zero system of subspaces S that
satisfies conditions (Ang) and (Ort).

In the case where ξ(τ) = 0, up to unitary equivalence, there exists a unique non-zero
irreducible system of subspaces S that satisfies conditions (Ang)and (Ort). Its generalized
dimension is (N ; 1).

In the case where ξ(τ) > 0, up to unitary equivalence, all non-zero irreducible systems
of subspaces S that satisfy conditions (Ang) and (Ort) can be described as follows.

(1) Nl = 0 :
(a) There are |Me| systems of subspaces with generalized dimension (N ; 1);
(b) there is one system of subspaces with generalized dimension (N + 1; 1).

(2) Nl = 1 :
(a) There are |Me| systems of subspaces with generalized dimension (N ; 1);
(b) there are |Ml|+1 systems of subspaces with generalized dimension (N+1; 1).

(3) Nl = 2, dl = 1,
∑

(k,j)∈Ml

δk,j > ξ(τ) :

(a) There are |Me| systems of subspaces with generalized dimension (N ; 1);
(b) there are three systems of subspaces with generalized dimension (N + 1; 1);
(c) there as an infinite family of systems of subspaces with generalized dimension

(2N + 2; 2) parameterized with the angle ϕ ∈ (ϕ(τ), π/2) where ϕ(τ) ∈
(0, π/2);

(d) there is one system of subspaces with generalized dimension (2N + 1; 2);
related to the angle ϕ = ϕ(τ).

(4) Nl = 2, dl = 1 and
∑

(k,j)∈Ml

δk,2 = ξ(τ) :

(a) There are |Me| systems of subspaces with generalized dimension (N ; 1);
(b) there are three systems of subspaces with generalized dimension (N + 1; 1);
(c) there is one system of system with generalized dimension (N ; 1);
(d) there is an infinite family of systems of subspaces with generalized dimension

(2N + 2; 2) parameterized by the angle ϕ ∈ (0, π/2).
(5) Nl = 2, dl = 1 and

∑
(k,j)∈Ml

δk,j < ξ(τ) :

(a) There are |Me| systems of subspaces with generalized dimension (N ; 1);
(b) there are four systems of subspaces with generalized dimension (N + 1; 1);
(c) there is an infinite family of systems of subspaces with generalized dimension

(2N + 2; 2) parameterized by the angle ϕ ∈ (0, π/2).
(6) Nl > 3 or Nl = 2, dl > 2: The task of description of all irreducible unitary

non-equivalent systems S that satisfy conditions (Ang) and (Ort) is complex.

3.4. Examples. Let us consider the results provided by the theorem in some simple
cases.

Example 3. Let the relations for a pairs P0, Pk be the same,

(P0PkP0 − τ21P0)(P0PkP0 − τ22P0) = 0 and (PkP0Pk − τ21Pk)(PkP0Pk − τ22Pk) = 0,

where 0 < τ1 < τ2 < 1.

In this case

a) ξ(τ) = 1−N · τ21 , so ξ(τ) > 0 if and only if τ21 6 N−1.
b) δk,2 = τ22 − τ21 , so δk,2 < ξ(τ) if and only if τ22 < 1− (N − 1) · τ21 , therefore,

• if τ22 > 1− (N − 1)τ21 then M = Mg;
• if τ22 = 1− (N − 1)τ21 then M = Me;



ON THE GRAPH K1,n RELATED CONFIGURATIONS OF SUBSPACES 297

• if τ22 < 1− (N − 1)τ21 then M = Ml.
c) In the case N = 2 we will get ξ(τ) = 1 − 2τ21 and δ1,2 + δ2,2 = 2(τ22 − τ21 ), so

δ1,2 + δ2,2 6 ξ(τ) if and only if τ22 6 1
2 .

Thus theorem 1 for these cases can be reformulated as the following propositions.

Proposition 10. Let N = 1. Then there exist two systems of subspaces with generalized
dimension (2; 1).

Proposition 11. Let N = 2.
If 1

2 < τ21 < 1 then there is no a non-zero system of subspaces S that satisfies conditions
(Ang) and (Ort).

In the case where τ21 = 1
2 , up to unitary equivalence, there exists a unique non-zero

irreducible system of subspaces S that satisfies conditions (Ang) and (Ort). Its generalized
dimension is (2; 1).

In the case where 0 < τ21 < 1
2 , up to unitary equivalence, all non-zero irreducible

systems of subspaces S that satisfy conditions (Ang) and (Ort) can be described as follows.

(1) 1− τ21 < τ22 < 1 :
(a) There is one system of subspaces with generalized dimension (3; 1).

(2) τ22 = 1− τ21 :
(a) There are two systems of subspaces with generalized dimension (2; 1);
(b) one system of subspaces with generalized dimension (3; 1).

(3) 1
2 < τ22 < 1− τ21 :
(a) There are three systems of subspaces with generalized dimension (3; 1);
(b) there is an infinite family of systems of subspaces with generalized dimension

(6; 2) parameterized by the angle ϕ ∈ (ϕ(τ), π/2), where ϕ(τ) ∈ (0, π/2);
(c) there is one system of subspaces with generalized dimension (5; 2); related

to angle ϕ = ϕ(τ).
(4) τ22 = 1

2 :
(a) There are three systems of subspaces with generalized dimension (3; 1);
(b) there is one system of subspaces with generalized dimension (2; 1);
(c) there is an infinite family of systems of subspaces with generalized dimension

(6; 2) parameterized by the angle ϕ ∈ (0, π/2).
(5) τ22 < 1

2 :
(a) There are four systems of subspaces with generalized dimension (3; 1);
(b) there is an infinite family of systems of subspaces with generalized dimension

(6; 2) parameterized by the angle ϕ ∈ (0, π/2).

Proposition 12. Let N > 3.
If N−1 < τ21 < 1 then there is no a non-zero system of subspaces S that satisfies

conditions (Ang) and (Ort).
In the case where τ21 = N−1, up to unitary equivalence, there exists a unique non-

zero irreducible system of subspaces S that satisfies conditions (Ang) and (Ort). Its
generalized dimension is (N ; 1).

In the case where 0 < τ21 < N−1, up to unitary equivalence, all non-zero irreducible
systems of subspaces S that satisfy conditions (Ang) and (Ort) can be described as follows.

(1) 1− (N − 1) · τ21 < τ22 < 1 :
(a) There is one system of subspaces with generalized dimension (N + 1; 1).

(2) τ22 = 1− (N − 1) · τ21 :
(a) There are N systems of subspaces with generalized dimension (N ; 1);
(b) there is one system of subspaces with generalized dimension (N + 1; 1).

(3) 0 < τ22 < 1 − (N − 1) · τ21 : The task of describing all irreducible unitary non-
equivalent systems of subspaces S that satisfy conditions (Ang) and (Ort) is
complex.
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Example 4. Let N = 2 and the relations for a pairs P0, Pk, k = 1, 2 be as follows:

4−k∏

j=1

(P0PkP0 − jτ2kP0) = 0,
4−k∏

j=1

(PkP0Pk − jτ2kPk) = 0,

where 0 < τ1 < 1, 0 < τ2 < 1.

In this case

a) ξ(τ) = 1− τ21 − τ22 , so ξ(τ) > 0 if and only if τ21 + τ22 6 1.
b) δk,2 = τ2k , k = 1, 2, δ1,3 = 2τ21 . So

• δ1,2 6 ξ(τ) if and only if 2τ21 + τ22 6 1;
• δ2,2 6 ξ(τ) if and only if τ21 + 2τ22 6 1;
• δ2,3 6 ξ(τ) if and only if τ21 + 3τ22 6 1.

c) Moreover, δ1,2+ δ2,2 = 2(τ21 + τ22 ), so δ1,2+ δ2,2 6 ξ(τ) if and only if τ21 + τ22 6 1
2 .

Thus theorem 1 in this case can be reformulated as the following proposition.

Proposition 13. If τ21+τ22 > 1 then there does not exist a non-zero system of subspaces S
that satisfies conditions (Ang) and (Ort).

In the case τ21 + τ22 = 1, up to unitary equivalence, there exists a unique non-zero
irreducible system of subspaces S that satisfies conditions (Ang)and (Ort). Its generalized
dimension is (2; 1).

In the case τ21 + τ22 < 1, up to unitary equivalence, all non-zero irreducible systems of
subspaces S that satisfy conditions (Ang) and (Ort) can be described as follows.

(1) τ21 + 2τ22 > 1 and 2τ21 + τ22 > 1 :
(a) There is one system of subspaces with generalized dimension (3; 1).

(2) τ21 + 2τ22 = 1, τ22 < 1
3 or 2τ21 + τ22 = 1, τ22 > 1

3 :
(a) There is one system of subspaces with generalized dimension (2; 1);
(b) there is one system of subspaces with generalized dimension (3; 1).

(3) τ21 = τ22 = 1
3 :

(a) There are two systems of subspaces with generalized dimension (2; 1);
(b) there is one system of subspaces with generalized dimension (3; 1).

(4) 2τ21 + τ22 < 1 and τ21 + 2τ22 > 1 or τ21 + 2τ22 < 1, τ21 + 3τ22 > 1 and 2τ21 + τ22 > 1 :
(a) There are two systems of subspaces with generalized dimension (3; 1).

(5) τ21 + 3τ22 = 1 and 2τ21 + τ22 > 1 :
(a) There is one system of subspaces with generalized dimension (2; 1);
(b) there are two systems of subspaces with generalized dimension (3; 1).

(6) τ21 + 3τ22 < 1 and 2τ21 + τ22 > 1 :
(a) There are three systems of subspaces with generalized dimension (3; 1).

(7) 2τ21 + τ22 < 1 and τ21 + 2τ22 = 1 or τ21 + 2τ22 < 1, τ21 + 3τ22 > 1 and 2τ21 + τ22 = 1 :
(a) There is one system of subspaces with generalized dimension (2; 1);
(b) there are two systems of subspaces with generalized dimension (3; 1).

(8) τ22 = 1
5 and τ21 = 2

5 :
(a) There are two systems of subspaces with generalized dimension (2; 1);
(b) there are two systems of subspaces with generalized dimension (3; 1).

(9) τ21 + 3τ22 < 1 and 2τ21 + τ22 = 1 :
(a) There is one system of subspaces with generalized dimension (2; 1);
(b) there are three systems of subspaces with generalized dimension (3; 1).

(10) τ21 + 2τ22 < 1, τ21 + 3τ22 > 1, 2τ21 + τ22 < 1 and τ21 + τ22 > 1
2 :

(a) There are three systems of subspaces with generalized dimension (3; 1);
(b) there is an infinite family of systems of subspaces with generalized dimension

(6; 2) parameterized by the angle ϕ ∈ (ϕ(τ), π/2) where ϕ(τ) ∈ (0, π/2);
(c) there is one system of subspaces with generalized dimension (5; 2); related

to the angle ϕ = ϕ(τ).
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(11) τ21 + 3τ22 = 1, 2τ21 + τ22 < 1 and τ21 + τ22 > 1
2 :

(a) There is one system of subspaces with generalized dimension (2; 1);
(b) there are three systems of subspaces with generalized dimension (3; 1);
(c) there is an infinite family of systems of subspaces with generalized dimension

(6; 2) parameterized by the angle ϕ ∈ (ϕ(τ), π/2), where ϕ(τ) ∈ (0, π/2);
(d) there is one system of subspaces with generalized dimension (5; 2); related

to the angle ϕ = ϕ(τ).
(12) τ21 + 2τ22 < 1, τ21 + 3τ22 > 1 and τ21 + τ22 = 1

2 :
(a) There is one system of subspaces with generalized dimension (2; 1);
(b) there are three systems of subspaces with generalized dimension (3; 1);
(c) there is an infinite family of systems of subspaces with generalized dimension

(6; 2) parameterized by the angle ϕ ∈ (0, π/2).
(13) τ21 = τ22 = 1

4 :
(a) There are two systems of subspaces with generalized dimension (2; 1);
(b) there are three systems of subspaces with generalized dimension (3; 1);
(c) there is an infinite family of systems of subspaces with generalized dimension

(6; 2) parameterized by the angle ϕ ∈ (0, π/2).
(14) τ21 + τ22 < 1

2 and τ21 + 3τ22 > 1 :
(a) There are four systems of subspaces with generalized dimension (3; 1);
(b) there is an infinite family of systems of subspaces with generalized dimension

(6; 2) parameterized by the angle ϕ ∈ (0, π/2).
(15) τ21 + τ22 < 1

2 and τ21 + 3τ22 = 1 :
(a) There is one system of subspaces with generalized dimension (2; 1);
(b) there are four systems of subspaces with generalized dimension (3; 1);
(c) there is an infinite family of systems of subspaces with generalized dimension

(6; 2) parameterized by the angle ϕ ∈ (0, π/2).
(16) if 2τ21 +τ22 < 1 and τ21 +3τ22 < 1 then the task of describing all irreducible unitary

non-equivalent systems of subspaces S that satisfy conditions (Ang) and (Ort) is
∗-wild.
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