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REPRESENTATION OF ISOMETRIC ISOMORPHISMS BETWEEN
MONOIDS OF LIPSCHITZ FUNCTIONS

MOHAMMED BACHIR

ABSTRACT. We prove that each isometric isomorphism between the monoids of all
nonnegative 1-Lipschitz maps defined on invariant metric groups and equipped with
the inf-convolution law, is given canonically from an isometric isomorphism between
their groups of units.

INTRODUCTION

Let X be a metric space with metric d which we briefly denote by (X, d). We denote
by Lip}r(X ) the set of all nonnegative 1-Lipschitz maps on X equipped with the metric

|f(z) — g(=)]|
p(f,g) = sup ;
9= 0 7@ — )
If X is a group and f,g : X — R are two functions, the inf-convolution of f and g is
defined by the following formula

(F@g)(x) = b {W+e)}, veeX

Vf.g € Lipl (X).

We recall the following definition.

Definition 1. Let (X,d) be a metric group. We say that (X, d) is invariant if and only
if,

d(zy, xz) = d(yzx, zz) = d(y,z), Vz,y,z € X.
If moreover X is complete for the metric d, then we say that (X,d) is an invariant
complete metric group.

Examples of invariant metric groups are given in [2]. In all the paper (X,d) and
(Y,d') will be assumed to be invariant metric groups having respectively e and €’ as
identity element and (X,d) (resp. (Y,d’)) denotes the group completion of (X, d) (resp.
of (Y,d')). Recall that the group completion (X, d) of an invariant metric group (X, d),
is constructed as follows (See [8]): Two Cauchy sequences u, and v, of X are said to
be equivalent u,, ~ v, iff lim, d(u,,v,) = 0. The elements of the metric completion
(X, d) are equivalence classes of Cauchy sequences, with d([z,], [y,]) = lim, d(z, yn)-
Now, suppose that z,,x,, yn,y, are Cauchy sequences with x,, ~ «/, and y, ~ y,,. For
each n € N let z, = z,y, and 2], = z,y,. Then, z, and z/, are Cauchy sequences,
with 2z, ~ z/,. Thus we can define multiplication in X by [z,][yn] = [*nys] and X
becomes a group in which X is isometrically and isomorphically embedded. The metric
d is invariant on X.

Recently, we established in [2] that the set (Lip} (X),®) enjoys a monoid structure,
having the map 6, : x + d(x, e) as identity element and that the group completion (X, d)
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of (X,d) is completely determined by the metric monoid structure of (Lip} (X),®, p).
In other words, (Lip}(X),®,p) and (Lipt (Y),®,p) are isometrically isomorphic as
monoids if and only if, (X,d) and (Y,d’) are isometrically isomorphic as groups. Also,
we proved that the group of all invertible elements of Lip}k(X ) coincides, up to isometric
isomorphism, with the group completion X (See [2, Theorem 1] and [2, Theorem 2]).
The main result of [2], gives a Banach-Stone type theorem. For information on general
topological structure of semigroups and monoids we refer for instance to [9], [4], [1].

The representations of isometries between Banach spaces of Lipschitz maps defined on
metric spaces and equipped with their natural norms, was considered by several authors
[5], [10], [7]. In general, such isometries are given, under some conditions, canonically
as a composition operators. Other Banach-Stone type theorems are also given for unital
vector lattice structure [6].

The aim of this note, is to prove the following result which gives complete representa-
tions of isometric isomorphisms for the monoid structure between Lip} (X) and Lip} (Y)
in the invariant metric group framework. This result complements those given in [2] and
answers positively Problem 2. in [3]. Recall that a set M with an internal law - is a
monoid if it is a semigroup with an identity element i.e. if it satisfies the following two
axioms: (1) (Associativity) For all a,b and ¢ in M, the equation (a-b)-¢c=a-(b-c)
holds. (2) (Identity element) There exists an element e in M such that for every element
a in M, the equations e-a = a - e = a hold.

Theorem 1. Let (X, d) and (Y, d") be two invariant metric groups. Let ® be a map from
(Lipt (X), &, p) into (Lip’.(Y),®, p). Then the following assertions are equivalent:

(1) @ is an isometric isomorphism of monoids,

(2) there exists an isometric isomorphism of groups T : (X,d) — (Y,d’) such that
(f) = (foT 1))y forall f € Lip} (X), where f denotes the unique 1-Lipschitz extension
of f to X and (foT™1)y denotes the restriction of foT ™ to Y.

If M (resp. G) is a metric monoid (resp. a metric group), by Ism, (M) (resp. Isy(G))
we denote the group of all isometric automorphism of the monoid M (resp. of all isometric
automorphism of the group G). The symbol ”~" means ”isomorphic as groups’. An
immediate consequence of Theorem 1 is given in the following corollary.

Corollary 1. Let (X,d) be an invariant metric group. Then
Isp(Liph (X)) =~ Isy(X).

As application of the results of this note, we discover new semigroup law on R"
(different from the usual operation +) having some nice properties. We treat this question
in Example 1 at Section 3, where it is shown that each finite group structure (G,-),
extends canonically to a semigroup structure on R™ (where n is the cardinal of G).
In other words, there always exists a semigroup law *s on R™ and an injective group
morphism ¢ from (G, -) into (R™, x¢) such that the maximal subgroup of (R”, x¢) having
e = (0,1,1,...,1) as identity element is isomorphic to the group G x R. The idea
is simply based on the use of the results of this paper and the identification between
(R™,xg) and (Lip(G),®) where G is equipped with the discrete metric, and Lip(G)
denotes the space of all Lipschitz map on G.

This note is organized as follows. Section 1 is concerned the proof of Theorem 1 and
is divided on two subsections: in Subsection 1.1 we prove some useful lemmas and in
Subsection 1.2, we give the proof of the main result Theorem 1. In Section 2, we give
some properties of the group of invertible elements for the inf-convolution law. In section
3, we review the results of this paper in the algebraic case.
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1. PROOF OF THE MAIN RESULT

1.1. Preliminary results. We follow the notation of [2]. For each fixed point z € X,
the map d,, is defined from X into R as follows

0.: X — R,
z = d(z,x) =d(za™e).
We define the subset G(X) of Lip! (X) as follows
G(X) = {6, : 2 € X} C Lip, (X).
We consider the operator vx defined as follows

’Y)(ZX — Q(X),
T = 0.

We are going to prove some lemmas.

Lemma 1. Let (X,d) and (Y,d') be two invariant complete metric groups having re-
spectively e and €' as identity elements. Let ® be a map from (Lip(X),®,p) onto
(Liph (Y),®, p) which is an isometric isomorphism of monoids. Then, the following
assertions hold:

(1) for all f € Lip! (X), infy ®(f) = infx f and for allr € RY, ®(r) =,

(2) there exists an isometric isomorphism of groups T : (X,d) — (Y,d') such that
B(r+0,) =74 0p@) =7+ 00T, for allr € RT and for all z € X,

(3) ®(f +71)=®(f) +r, for all f € Lip}(X) and for all r € RY.

Proof. Since an isomorphism of monoids, sends the group of units onto the group of
units, then using [2, Theorem 1], the restriction 77 := ®|g(x) is an isometric group
isomorphism from G(X) onto G(Y). On the other hand, the map vx : X — G(X) gives
an isometric group isomorphism by [2, Lemma 2]. Thus, the map T := fy;l o Ty ovx,
gives an isometric group isomorphism from X onto Y and we have that for all z € X,
®(0,) :==T1(6z) =Thoyx(x) =y o T(x) = Op(p) = 0o 0 T 1.

We prove part (1). Note that f @& 0 =0 f = infcx f for all f € Lip} (X). First,
we prove that ®(0) = 0. Indeed, for all x € X, we have that 0 ® 6, = 0. Thus,
®(0) = ¢(0) & ®(6,) = P(0) © dr,. Using the surjectivity of T', we obtain that for all
y € Y, we have that ®(0) = ®(0) & J,. So, using the definition of the inf-convolution,
we get ®(0)(z) = inf—. {®(0)(t) + 6,(s)} < ®(0)(zy~!) for all y,2z € Y. By taking
the infimum over y € Y, we obtain that ®(0)(z) < infy ®(0), for all z € Y. Tt follows
that ®(0) = infy ®(0) is a constant function. Now, since ®(0) is a constant function,
we have 2@(0) = ¢(0) @ ®(0) = (0 ® 0) = ®(0), it follows that &(0) = 0. Finally, we
prove that ®(r) = r for all » € RT. Indeed, since r & 0 = r and ®(0) = 0, it follows
that ®(r) = ®(r) @ 0 = infy ®(r), which implies that ®(r) is a constant function. Using
the fact that ® is an isometry, we get that p(®(r),0) = p(®(r),®(0)) = p(r,0). In

other words, {0 -

o0 147> which implies that ®(r) = r. Now, we have inf,cy ®(f) =
O(f) 0= 2(f) & 2(0) = (f ®0) = B(infrex f) = infrex f.
We prove part (2). Let r € Rt and set g = ®(r + 6.) € Lip} (Y'). We first prove that
g =1+ . Using part(1), we have that r = ®(r) = ®(infex (r + 0)) = infyey O(r +
6e) < ®(r+9d.) =g. Thus g —r >0 and so g — r € Lip’ (Y). On the other hand, since
Lip! (Y) is a monoid having . as identity element, we have that g = (9—r)® (r+d¢) =
(r+de) @® (g — ). Now, since ! is a monoid morphism, we get that

r+d. = (1)71(9)
O Hg—r) @@ (r+6s) =0 (r+d.)®d (g 7).
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As above we prove that ®~!(r 4 6./) —r > 0. Thus, ®~*(r + é./) — r € Lip (X). Since
r is a constant function, the above equality is equivalent to the following one:

b= g e @ rtde) 1) = (@ (r+8u) —r) & B (g - 7).

Since from [2, Theorem 1], the invertible elements in Lip} (X) are exactly the element
of G(X) and since G(X) is a group by [2, Lemma 2], we deduce from the above equality
that @~ 1(r+8.) —r € G(X) and ®~!(g—r) € G(X) and there exist a(r), (r) € X such
that

e=a(r)s(r)
@_1(7‘ =+ (Se/) =T = Ona(r)
D (g —7) = s
This implies that
e =a(r)B(r)
(1) (I)(T' + 6a(r)) =7+ 0

g=r+2(0s() =7+ 0150

We need to prove that a(r) = 3(r) = e for all r € RT. Indeed, since ® is an isometry,
we have that

p(@(r + 504(7“))7 ®(de)) = p(r + 504(7“)7 de)-

Using the above formula, the second equations in (1) and the definition of the metric p
with the fact that ®(d.) = 0./, we get

.
1+7r

= p(r+de,0e)

= p(é(r+6a(7))ﬂq>(5e))
= p<r+6a(r)766)
o |7’ + 5(1(7) (t) - 56 (t)|
= sup
teX 1+ |’I" + 6a(r) (t) - 5e(t)|
T+ 50{(7")(6)
1+7r+ 5a(r)(€) '

A simple computation of the above inequality, gives that d,(y(e) < 0i.e. d(a(r),e) <O0.
In other words, we have that a(r) = e for all r € RT. On the other hand, using the first
equation of (1), we get that 3(r) = e for all » € RT. It follows from the equation (1)
that ®(r +6,) = r + . for all r € RT. Now, it is easy to see that for all r € RT and all
x € X we have

40, = (r+de) ® .
It follows that
O(r+d,) = P(r+d.) dP(,)

(T + 56/) (S5) §T(z)
= r++ 5T(m)-

Since T is isometric, we obtain that ®(r + ;) =7+ dp() =7+ 00 T 1

Now, we prove part (3). Let f € Lipl (X) and r € R*. It is easy to see that
f4+r=7f&(r+9d). So, using part(2), we obtain that &(f + 1) = &(f) ® ®(r + ) =
O(f) ® (r+der) = (f) + 7. 0
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Lemma 2. Let (X,d) be an invariant metric group. Let f € Lip} (X). Then, for all
x € X and all positive real number a such that a > f(x), we have that

f(@) = (inf (3, 0) & )(a).
Proof. Let z € X and a > 0 such that f(z) < a. We have that

(inf(6e,0) & f)(2) = inf {inf(d(xt"!,€),0) + £(£)}

= Inf /(1) + inf(d(t,2), 0)}

=min{,__inf  (f(2) + inf(d(t.2). )}

teX/d(t,
tex/ggw a{f()+mf(( z),a)}}
=min{_ it {f(0) +dita)). inf {F0) +a)).

Since f is 1-Lipschitz we have that f(x) = inft/d(t,z)ga{f(t) +d(t,z)}. It follows that
(inf(de,a) & f)(z) = min{f(z), —inf {f(O)}+a}=f(z)

t/d(t,x)>a
O

Lemma 3. Let (X, d) be an invariant metric group. Then, the following assertions hold.
(1) For each f € Lipt (X) and for each bounded function h € Lip! (X), the function
f@®h e Lipt (X) is bounded.
(2) Let f,g € Lipt(X), then the following assertions are equivalent:
(a) f <y,
(b) h&d f < h&g, for all function h € Lip! (X) which is bounded.

Proof. (1) Since 0 < f @ h(x) < f(e) + h(x) for all x € X and since h is bounded, it
follows that f @ h is bounded. On the other hand, f @ h € Lip! (X) since Lip! (X) is a
monoid.

(2) Part (a) = (b) is easy. Let us prove part (b)) = (a). Indeed, let z € X and
chose a positive real number a > max(f(x),g(x)). Set h := inf(d.,a). It is clear that
h € Lip} (X) and is bounded. So, from the hypothesis (b) we have that (inf(.,a) ® f) <
(inf(de, a) ® g). Using Lemma 2, we obtain that f(z) < g(z). O

Lemma 4. Let A be a nonempty set and f,g : A — R be two functions. Then, the
following assertions are equivalent:

(1) supgea | f(x) — g(x)] < +o0,

(2) subsea T Lt < 1
Proof. Suppose that (1) holds. Using [2, Lemma 1], we have that sup,¢ 4 % =

sup, e 4 |f(2)—g(x)] _ f@)—g(z
1+Sipi:A |f(z)fg(z)| < 1. Now, suppose that (2) holds. Set o = sup,¢ 4 % < 1.

Then, we obtain that | f(x) —g(z)| < 1%, for all x € A. This implies that sup,c 4 | f(z)—
g(x)] < +o0. O

Lemma 5. Let (X,d) and (Y,d') be two invariant complete metric groups. Let
©: (Lipl (X),p) — (Lipl(Y), p)
be an isometric isomorphism of monoids. Then, for all f,g € Lip}r(X), we have

[ <9< 2(f) < 2(9).
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Proof. The proof is divided in two cases.

Case 1: (The case where f and g are bounded.) Let f,g € Lipl (X) be bounded
functions. In this case we have sup,cx |f(z) — g(x)| < 400, so using Lemma 4 and the
fact that ® is isometric, we get also that sup,cy [®(f)(y) — ®(g)(y)| < +oo. Using [2,
Lemma 1] and the fact that ® is isometric, we obtain that

sup,ey [®(f)(y) — 2(9)(y)] sup,c x |f(z) — g()]

L+ supyey [2(f)(y) — 2(9)(y)] 1+ supyex [ f(z) — g(a)|
This implies that

sup |®(f)(y) — ®(9)(y)| = sup |f(z) — g(=)|.
yey zeX

Set 1 := sup,cy [2(f)(y) — 2(9)(y)| = supcx |f(z) — g(x)| < +o00. By applying the
above arguments to f + r and g which are bounded, we also get that

sup |®(f +7)(y) — ®(9)(y)| = sup |(f +7)(z) — g(z)|-
yey zeX

Using the fact that ®(f +r) = ®(f) + r (by Lemma 1) and the choice of the number r,
we get that

sup{®(f)(z) — (g)(z) +r} = sup{f(z) — g(x) + 1},
zeX reX

which implies that

sup{®(f)(y) — ®(9)(y)} = sup{f(z) —g(z)}.

yey reX
It follows that f < g <= ®(f) < ®(g). Replacing ® by ®~! we also have k < | <=
d~1(k) < ®~1(1), for all bounded functions k,l € Lip} (V).

Case 2: (The general case.) First, note that for each bounded function k € Lip! (Y),
we have that ®~!(k) € Lip} (X) is bounded. Indeed, there exists 7 € R such that
0 < k < r. Using the above case, we get that ®~1(0) < ®~1(k) < ®~!(r). This shows
that ®~1(k) is bounded, since ®~1(0) = 0 and ®~!(r) = r by Lemma 1.

Now, let f,g € Lip! (X) be fixed functions such that f < g. Let k € Lip} (Y) be any
bounded function. It follows that ®~1(k) & f < ®~1(k) ® g. From part(1) of Lemma 3,
we have that ®~'(k)® f, &~ (k) ® g € Lip} (X) are bounded. Using Case 1, we get that
OO L(k)of) < ®(P1(k)®g). Since ® is a morphism, we have that k@ ®(f) < ko®(g),
which implies that ®(f) < ®(g) by using part(2) of Lemma 3. The converse is true by
changing ® by &~ 1. (I

Lemma 6. Let (X, d) and (Y,d') be two invariant metric groups and let ® be a bijec-
tive map @ : (Lipt(X),®,p) — (Lip’(Y),®,p). Then, the following assertions are
equivalent:

(1) for all f,g € Lip} (X), we have that (f < g <= ®(f) < ®(g)),

(2) for all f',g" € LipL (Y), we have that (f' < ¢’ < &~ 1(f") < 27(g")),

(3) for all family (fi)ier C Lipt(X), where I is any nonempty set, we have
O(inficr fi) = infier ©(f;).

Proof. Part (1) <= (2) is clear. Let us prove (1) = (3). Let (f;)icr C Lip} (X), where
I is any nonempty set. First, it is easy to see that the infimum of a nonempty family of
nonnegative and 1-Lipschitz functions is also nonnegative and 1-Lipschitz function. So,
inf;e; fi € Liph (X). For all i € I, we have that inf;c; f; < f;, which implies by hypoth-
esis that ®(inf;er f;) < ®(f;) for all ¢ € I. Consequently we have that ®(inf;c; f;) <
inf;er @(f;). On the other hand, since inf;e; @(f;) < ®(f;) for all i € I, using (2), we have
that @‘1(infi61 (I)(fz)) < fi7 for all ¢ € I. It follows that, q)_l(infiej (I)(fl)) < infieI fz
USng (1), we obtain that infie] (I)(fz) < (b(infie] fl) HGHCG‘, infiej (I)(fz) = @(infiej f?,)
Now, let us prove that (3) = (1). First, let us show that from (3) we also have that
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&~ !(infie; g;) = infie; @ '(g;), where I is a nonempty set and g; € Lip} (V) for all
i € I. Indeed, since ® is bijective, there exists (f;)ier C Lip (X) such that g; = ®(f;)
for all i € I. Thus, inf;c; g; = infier ®(f;) = ®(infies fi) = ®(inf;e; ®1(g;)), which
implies that ®~'(inf;c; g;) = infic; @ '(g;). Now, let f,g € Lip} (X). We have that
f<g<= f=1inf(fg), soif f < g then ®(f) = ®(inf(f,g)) = inf(P(f), P(g)). This
implies that ®(f) < ®(g). Conversely, if ®(f) < ®(g) then ®(f) = inf(®(f), ®(g))
and so f = &1 (B(f)) = B (inf(B(f), D(g))) = inf(®~ (D(f)), &1 ((g))) = mt(f, ).
This implies that f < g. (]

1.2. Proof of the main result. Now, we give the proof of the main result.
Proof of Theorem 1. We know from [2, Lemma 3] that the map

xx : (Liph(X), ®,p) — (Lip}(X),®,p),
o= f
is an isometric isomorphism of monoids, where f denotes the unique 1-Lipschitz extension
of f to X. Given a map ® : (Lip} (X),®,p) — (Lipt (Y),®,p), we define the map
@ : (Lipt(X),®,p) — (LipL (Y),@®,p) by @ := xy o ® o x5'. Then, ® is an isometric
isomorphism of monoids if and only if ® is an isometric isomorphism of monoids.

(1) = (2). Since Lip! (X) is a monoid having d. : X 3 x — d(z,e) as identity
element, we have that f = 6. @ f for all f € Lip} (X). Thus, f = inf,.{f(t) + &}
for all f € Lipi(Y). Using Lemma 6 together with Lemma 5, we have that for all
f € Liph (X), ®(f) = ®(inf,{f(t) + &) = inf,. ®(f(t) + 6¢). Using Lemma 1, there
exists an isometric isomorphism of groups T : (X, d) — (Y, d’) such that ®(f(t) +6;) =
F(t) + 67, for all t € X. Thus, we get that ®(f) = inf,c¢{f(t) + 67} Equivalently,
for all y € Y, we have

O(f)(y) = mf{f(t)+0re(y)}

teX
zgggm+?wﬂm}

— nE((O)+ AT ). 0)
= (Ge® HIT )

= f(T7'(y)

— ?oTﬁl(y).

From the formulas ® = X{,l o®oyx, we get that ®(f) = (?OT’1)|Y for all f € Lip! (X).

(2) = (1). ¥ T: (X,d — (Y,d) is an isometric isomorphism of groups, then
clearly the map @ defined by ®(f) := fo T~ for all f € Lip}F (X), gives an isometric
isomorphism from (Lip! (X), ®, p) onto (Lipt (Y), @, p). Thus, the map ® := x3'oPoyx
gives an isometric isomorphism from (Lip! (X), &, p) onto (Lip} (Y),®, p). Now, it clear
that ®(f) = (fo T 1)y for all f € Lip} (X). O

Remark 1. (1) The description of all isomorphisms seems to be more complicated than
the representations of the isometric isomorphisms. Here are two examples of isomor-
phisms which are not isometric.

(a) The map ® : Lip} (X) — Lipt (X) defined by ®(f) = f + infx(f) for all
fe Lipi(X), is an isomorphism of monoids which respect the order but is not isometric
for p (the proof is similar to the proof of [3, Theorem 7]. Note that we always have
infx (f ®g) = infx(f) +infy(g)).
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(b) The map @ : Lip} (R) — Lip! (R) defined by ®(f)(z) = f(z+infx (f)) for all
fe LipL(R) and all x € R, is an isomorphism but not isometric for p.
(2) Following the proof of Theorem 1 and changing ”“1-Lipschitz function” by
"1-Lipschitz and convex function”, we get a positive answer to the problem 2 in [3].

2. THE GROUP OF UNITS

In order to have that the inf-convolution of two functions f and g takes finite values
i.e fBg > —oo, we need to assume that f and g are bounded from below. Since, we work
with Lipschitz maps, for simplicity, we assume in this section that (X, d) is a bounded
invariant metric group. By Lip}(X) we denote the set of all 1-Lipschitz map f from X
into R such that infx(f) = 0. By Lip*(X) (resp. Lip(X), ) we denote the set of all
1-Lipschitz map (resp. the set of all Lipschitz map) defined from X to R. We have that

Lipy(X) C Lip} (X) C Lip"(X) C Lip(X).

Proposition 1. Let (X,d) be a bounded invariant metric (Abelian) group. Then, the
sets Lipy(X), Lipt(X) and Lip*(X) are (Abelian) monoids having 6. as identity element
and Lip(X) is a (Abelian) semigroup.

Proof. The proof is similar to [2, Proposition 1]. O
Note that since (X,d) is bounded, each function f € Lip!(X) (resp. f € Lip(X)) is

hounded and so doo(f, g) = sup,ex |f(z) — g(z)| < +oo for all f,g € Lip'(X) (resp.
fyg € Lip(X)). In this case, from [2, Lemma 1], we have that

J— doo
14 de

on Lip(X). We also consider the following metric:

0o (f. 9) = doo(f —0f(f), g — inf(g)) + [f(f) —inf(g)], Vf,g € Lip(X).

p

Proposition 2. Let (X,d) be a bounded invariant metric group. Then, the following
map

71 (Lip'(X),000) — (Lipg(X) X R, do +.]),
[ = (f—i§f(f),i§<f(f))

s an isomeric isomorphism of monoids, where Lz‘pl+ (X) xR is equipped with the operation
@ defined by (f,c0)®(f', )= (f® f,c+).

Proof. Clearly, (Lip} (X) x R,®) is a monoid having (d.,0) as identity element, since
(Lip} (X), ®) is a monoid having é. as identity element. It is also clear that 7 is a monoid
isomorphism. Now, 7 is isometric by the definition of f,. It follows that 7 is an isometric
isomorphism. O

The following proposition gives an alternative way to consider the group completion of
invariant metric groups. Recall that if (M, -) is a monoid having e, as identity element,
the group of units of M is the set

UM):={meM/Im' eM:m-m'=m'-m=ep}

The symbol =2 means isometrically isomorphic as groups. We give below an analogue
to [2, Corollary 1], for each of the spaces Lip{(X), Lip'(X) and Lip(X). Note that in
part(1) of the following proposition as in [2, Corollary 1], we do not need to assume that
X is bounded.
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Theorem 2. Let (X,d) be a bounded invariant metric group. Then, we have that

(1) (U(Lipy(X)), doo) = U(Lipk (X)), do) = (X, d),

(2) U(Lip" (X)), 00 )g(XXR d+ ).

(3) The group U(Lip*(X)) is the mazimal subgroup of the semigroup Lip(X), having
0 as identity element.

Proof. (1) The fact that (U(Lip}(X)),dx) = (X,d), is given in [2, Corollary 1]. On
the other hand, since, G(X) C U(Lip§(X)) C U(Lip} (X)) and since G(X) = X (see [2,
Lemma 2]) we get that U(Lip}(X)) = U(Lip} (X)). Let us prove part(2). Indeed, since
7 (Proposition 2) is an isometric isomorphism, it sends isometrically the group of units
onto the group of units. Hence, from Proposition 2 we have

U(Lip* (X)), @, 000) = (U(Liph(X) x R), @, doo +|.]).

Since U(Lip}(X) x R) = U(Lip{(X)) x R, the conclusion follows from the first part.
For part(3), let f be an element of the maximal group having §. as identity element.
Then, f @ . = f and so it follows that f is 1-Lipschitz map i.e f € Lip'(X). Thus,
f eU(Lip'(X)). O

~— —

3. EXAMPLES

Let G be an algebraic group having e as identity element and let f : G — R™ be a
function, we denote Osc(f) := sup, ycq |f(t) — f(')] and by G* we denote the following
set :

G*:={f:G — R"/Osc(f) <1}.

Note that the set G* is just the set Lip! (G) where (G, disc) is equipped with the discrete
metric "disc”, which is an invariant complete metric. So, (G*,®) is a monoid having J,
as identity element, where 6.(-) := disc(+,e) i.e. d.(e) = 0 and d.(¢t) = 1 for all ¢ # e.
Observe also that two algebraic groups G and G’ are isomorphic if and only they are
isometrically isomorphic when equipped respectively with the discrete metric. Thus, we
obtain that the algebraic group structure of any group G is completely determined by
the algebraic monoid structure of (G*, ®).

Corollary 2. Let G and G’ be two groups. Then the following assertions are equivalent:

(1) the groups G and G’ are isomorphic,

(2) the monoids (G*,®, p) and (G'*,®, p) are isometrically isomorphic,

(3) the monoids (G*,®,ds) and (G, ®,ds) are isometrically isomorphic (where
dOO(fag) = SuptGG |f(t) - g(t)| < +OO, fOT’ CLll fag S G*)7

(4) the monoids (G*,®) and (G'*,®) are isomorphic.

Moreover, ® : (G*,®,p) — (G'",®, p) (resp. ®: (G*,®,dss) — (G'",®,dw)) is an
isometric isomorphism of monoids, if and only if there exists an isomorphism of groups
T:G — G’ such that ®(f) = fo T~ for all f € G*.

Proof. Since G* = Lip! (G), where G is equipped with the discrete metric and since G
and G’ are isomorphic if and only if (G, disc) and (G’, disc) are isometrically isomorphic,
then part (1) < (2) is a direct consequence of Theorem 1. Part (2) = (3), follows
from the fact that p = 1+d by using [2, Lemma 1]. Part (3) = (4) is trivial. Let us
prove (4) = (1). Since an isomorphism of monoids sends the group of units onto the
group of units, and since the group of units of G* (resp. of G’*) is isomorphic to G (resp.
to G’) by Theorem 2, we get that G and G’ are isomorphic. The last assertion is given
by Theorem 1. ([l

As mentioned in Remark 1, if T : G — G’ is an isomorphism, then ®(f) := foT !+
infg(f) for all f € G* gives an isomorphism of monoids between G* and G'* which is
not isometric.
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In the following example, we treat the case where G is a finite group.

Examples 1. Let n > 1 and (R",ds) the usual n-dimensional space equipped with the
maz-distance. The subsets MY and M™ of R™ are defined as follows:

M—’;-L :{(171,,132,7$n)€R:L_/|l'z—$]|S1, ISZ,]STL},
M ::{(1’1,$2,...,$n)ER””Q%*SU”gl, ].SZ,]S”}
Let G := {g1,92,---gn}, be a group of cardinal n, where g1 is the identity of G. We
define the law xg on R™ depending on G as follows: for all x = (x1,x9,...,2,) and all
y=(1y2:-- - yn) in R,
xxgy = (21,22, ., 2n),
where for each 1 < k < n,
z =min{x; +y;/0i - 95 = gr, 1 < 1,5 <n}.

Then

(1) The set (R™,xg) has a semigroup structure (and is Abelian if G is Abelian).

(2) The sets (MY, xq) and (M",xg) are monoids having e = (0,1,1,1,...,1) as
identity element.

(3) Let G and G’ be two groups of cardinal n. The monoids (M1}, xg) and (M}, *c)
are isomorphic if and only if the groups G and G’ are isomorphic.

(4) We have that

UM?) ~aG,
UM™) ~G xR

Moreover, the mazimal subgroup of (R™, xg) having e as identity element is isomorphic
to the group G x R.

(5) We have that

Isy (MY) ~ Aut(G).

The properties (1) — (5) follows easily from the results of this note. It suffices to
see that the semigroup (R",xg,d~) can be identified isometrically to the semigroup
(Lip(GQ), @, dw) of all real-valued Lipschitz map on (G, disc). Indeed, the map

i: (Lip(G),®,ds) — (R", %g,dso),
f — (f(gl)7"'7f(gn))

is an isometric isomorphism of semigroups. On the other hand, the subset M is identified
to Lip} (G) and M™ is identified to Lip*(G).
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